1 2021-11-22

Tags: #untagged

Refs: ?

1.1 01:01

1.2 UGA Topology Seminar, Irving Dai, Equivariant Concordance and Knot Floer Homology

1.3 19:57

A nice modern intro to homotopy theory: https://www.uni-regensburg.de/Fakultaeten/nat_Fak_I/Bunke/intro-homoto.pdf

Quotients are colimits:

Geometric realization as a \begin{align*}\[coend\end{align*} ]

Homotopy fibers:

Homotopy cofiber:

Spectra as a presentable \begin{align*}\[infty-category\end{align*} ]

2 2021-11-10

Tags: #untagged

Refs: ?

2.1 16:20

Hector Pasten, UGA NT seminar.

3 2021-11-09

Tags: #untagged

Refs: ?

3.1 00:11

3.2 15:51

4 2021-11-08

Tags: #untagged

Refs: ?

4.1 15:05

Hannah Turner, GT: Branched Cyclic Covers and L-Spaces

5 2021-11-05

Tags: #untagged

Refs: ?

5.1 01:31

Differential forms on (derived) \begin{align*}\[stacks\end{align*} ]:

What is non-commutative geometry?

Category of singularities:

Bloch’s conductor conjecture:

6 Other Stuff

On harmonic bundles:

6.1 13:41

Existence of spin and string structures: kind of like applying a functor to the Whitehead tower and asking for sections of the image tower:

Link to Diagram

7 2021-11-04

Tags: #untagged

Refs: ?

7.1 01:36

8 2021-11-03

Tags: #untagged

Refs: ?

8.1 15:09

UGA AG Seminar: Eloise Hamilton?

8.2 16:23

8.3 19:43

Idk I just like this:

9 2021-11-01

Tags: #untagged

Refs: ?

9.1 15:03 UGA Topology Seminar

Lev Tovstopyat-Nelip, “Floer Homology and Quasipositive Surfaces,” MSU.

10 2021-10-29

Tags: #untagged

Refs: ?

10.1 21:10

https://arxiv.org/pdf/1904.06756.pdf

Some notes on \begin{align*}\[quadratic differentials\end{align*} ]:

11 2021-10-27

Tags: #quick_notes

Refs: ?

11.1 15:17

Kristin DeVleming, UGA AG seminar talk on moduli of quartic \begin{align*}\[K3 surfaces\end{align*} ].

11.2 16:24

Jiuya Wang’s, UGA NT seminar talk

12 2021-10-25

Tags: #quick_notes

Refs: \begin{align*}\[Advice\end{align*} ]

12.1 00:00

12.2 16:16

13 2021-10-24

Tags: #quick_notes

Refs: ?

13.1 00:01

14 2021-10-19

14.1 23:01

14.2 23:12

15 2021-10-18

15.1 15:07

Tags: #knots #concordance #geometric_topology

\(K_1, K_2\) are smoothly concordant iff there exists a smoothly embedded cylinder \(S^1\times I \hookrightarrow S^3\times I\) with \({{\partial}}(S^1\times I) = K_1 {\textstyle\coprod}-K_2\). The concordance group \(C\) is the abelian group given by knots \(K \hookrightarrow S^3\) under connect sum, modulo concordance.

If \(K_i \hookrightarrow Y_i \in \mathbb{Z}\operatorname{HS}^3\), then the \(K_i\) are homologically concordant if there is smoothly embedded cylinder \(S^1\times I \hookrightarrow W\) with \({{\partial}}(W, S^1\times I) = (Y_1, K_1) {\textstyle\coprod}(Y_2, K_2)\) with \(W\) a homology cobordism:

This yields a homological concordance group \(\widehat{C}_{\mathbb{Z}}\).

There is an injection (?) \(C_{\mathbb{Z}}\hookrightarrow\widehat{C}_{\mathbb{Z}}\) which is known by Levine not to be surjective. What can be said about the cokernel?

See \begin{align*}\[Seifert fibered space\end{align*} ], \begin{align*}\[ZHS3\end{align*} ]. These are all \begin{align*}\[homology cobordant\end{align*} ] to \(S^3\).

Proof uses \begin{align*}\[CFK\end{align*} ], a \({\mathbb{F}}[u, v]{\hbox{-}}\)module.

A knot-like complex over \(R\) is a complex \(C \in {\mathsf{gr}\,}_{{\mathbb{Z}}{ {}^{ \scriptscriptstyle\times^{2} } }} \mathsf{Ch}(R)\) such that

Some examples: the knot Floer complex \begin{align*}\[CFK\end{align*} ] over a knot, \(\CFK_{{\mathbb{F}}[u, v]}(K)\). Theorem: every such complex is locally equivalent to a unique standard complex. Concordant knots produce locally equivalent complexes \(\CFK_R(K)\) for \(R \mathrel{\vcenter{:}}={\mathbb{F}}[u] \otimes_{\mathbb{F}}{\mathbb{F}}[z] / \left\langle{uv}\right\rangle\).

Set \(\mathsf{C} \mathrel{\vcenter{:}}={\operatorname{Emb}}(S^1, S^3)\), add the monoidal structure \({\sharp}\) for connect sum. Take “isotopy” category instead of homotopy category? The unit is \(\one = U\), the unknot up to isotopy. What is the stabilization of \({-}{\sharp}X\) for fixed choices of \(X\)? Or of other interesting functors? #idle_thoughts

16 2021-10-13

16.1 00:18

Tags: #quick_notes

17 2021-10-08

17.1 21:03

Link to diagram

17.2 22:52

http://individual.utoronto.ca/groechenig/stacks.pdf #references

Refs: \begin{align*}\[stack\|stacks\end{align*} ] \begin{align*}\[vector bundles\|vector bundle\end{align*} ] \begin{align*}\[descent data\end{align*} ]

Link to diagram

17.3 23:25

Tags: #quick_notes

18 2021-10-06

18.1 00:22

Tags: #terms_and_questions

Tags: #quick_notes

19 2021-10-05

19.1 DAG-X

Tags: #reading_notes #derived #infinity_cats

Derived AG: https://people.math.harvard.edu/~lurie/papers/DAG-X.pdf

\begin{align*}\[dg Lie algebras\end{align*} ] :

\begin{align*}\[attachments/2021-10-05_00-03-49.png\end{align*} ]

\begin{align*}\[elliptic curve\|elliptic curve\end{align*} ] and \begin{align*}\[deformation theory\end{align*} ] :

\begin{align*}\[attachments/2021-10-05_00-05-28.png\end{align*} ]

\begin{align*}\[presentable infinity category\end{align*} ]. \begin{align*}\[deformation-obstruction theory\end{align*} ] :

\begin{align*}\[attachments/2021-10-05_00-08-54.png\end{align*} ]

\begin{align*}\[k-linear category\end{align*} ] :

\begin{align*}\[attachments/2021-10-05_00-19-40.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_00-21-36.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_00-28-30.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_00-30-48.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_00-33-46.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_00-34-14.png\end{align*} ]

19.2 10:49

Weak weak approximation would imply a positive answer to the \begin{align*}\[inverse Galois problem\end{align*} ].

19.3 20:02

\begin{align*}\[attachments/2021-10-05_20-02-50.png\end{align*} ]

19.4 Elliptic Cohomology Paper

Tags: #stable_homotopy #physics #summaries

Refs: \begin{align*}\[Elliptic cohomology\end{align*} ], \begin{align*}\[Thom-Dold\end{align*} ], \begin{align*}\[Orientability of spectra\|orientability\end{align*} ], \begin{align*}\[formal group law\end{align*} ], \begin{align*}\[ring spectra\end{align*} ], \begin{align*}\[Bousfield localization\end{align*} ], \begin{align*}\[Topological modular forms\|tmf\end{align*} ],

Reference: M-theory, type IIA superstrings, and elliptic cohomology https://arxiv.org/pdf/hep-th/0404013.pdf

\begin{align*}\[attachments/2021-10-05_20-39-39.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-40-20.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-41-16.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-41-33.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-41-56.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-42-42.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-43-37.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-44-09.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-44-36.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-45-25.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-46-47.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-48-43.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-51-54.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-51-38.png\end{align*} ]

19.5 22:49

\begin{align*}\[attachments/2021-10-05_23-01-03.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_23-04-52.png\end{align*} ]

20 Volcano Stuff

21 2021-10-04

21.1 01:02

Refs: \begin{align*}\[algebra valued differential forms\end{align*} ]

22 2021-10-03

22.1 Spectra Stuff

Tags: #stable_homotopy

Producing a LES:

Integration pairing: for \(E \in {\mathsf{SHC}}(\mathsf{Ring})\), \begin{align*} E^*X &\longrightarrow E_* X \\ \omega \in [\mathop{\mathrm{{\Sigma_+^\infty}}}X, E] &\longrightarrow\alpha \in [{\mathbb{S}}, E\wedge X] \\ \\ {\mathbb{S}}\xrightarrow{\alpha} E \wedge X \cong E\wedge{\mathbb{S}}\wedge X &\cong E \wedge\mathop{\mathrm{{\Sigma_+^\infty}}}X \xrightarrow{1\wedge\omega } E{ {}^{ \scriptscriptstyle\wedge^{2} } } \xrightarrow{\mu} E .\end{align*}

22.2 Categories

Tags: #category_theory #simplicial #infinity_cats

Link to Diagram

22.3 Lie Algebras?

References: https://arxiv.org/pdf/0801.3480.pdf and https://people.math.umass.edu/~gwilliam/thesis.pdf

Tags: #reading_notes #lie_algebras

String structures on \(X\): spin structures on \({\Omega}X\).

Defining algebra-valued forms when curvature doesn’t vanish:

See \begin{align*}\[factorization algebra\end{align*} ]

Link to Diagram

23 2021-10-02

23.1 00:20

Tags: #idle_thoughts

Idk this weird thing

Link to diagram

24 2021-09-24

24.1 14:33

Tags: #terms_and_questions

25 2021-09-23

25.1 22:37

Tags: #terms_and_questions

26 2021-09-20

26.1 01:29

https://math.stanford.edu/~conrad/papers/hypercover.pdf

27 2021-09-19

27.1 22:51

Tags: #idle_thoughts #simplicial

Not sure how to get this to work yet, but here’s the condition for a functor to be a sheaf:

But we can write \(n{\hbox{-}}\)fold intersections as \begin{align*}\[fiber products\end{align*} ] :

So the condition of \({\mathcal{F}}\) being a sheaf seems to look like letting \({\mathcal{U}}\rightrightarrows X\) be an open cover, setting \(M = {\textstyle\coprod}U_i\), then applying a \begin{align*}\[bar construction\end{align*} ] \begin{align*} M: M{ {}^{ \scriptscriptstyle{ \underset{\scriptscriptstyle {X} }{\times} }^{1} } } \leftarrow M{ {}^{ \scriptscriptstyle{ \underset{\scriptscriptstyle {X} }{\times} }^{2} } } \leftarrow\cdots .\end{align*} Then apply \({\mathcal{F}}\), and look at some kind of image sequence? And ask for exactness for \(n\) many levels to get a sheaf, \begin{align*}\[stack\end{align*} ], etc:

Link to Diagram

The problem is that I don’t really know how to relate the bottom line (whose exactness is the usual condition for sheaves, stacks, etc) to the intermediate steps. This seems like it wants \({\mathcal{F}}({\textstyle\coprod}{-}) = \prod {\mathcal{F}}({-})\), so it commutes with (co?)limits, since probably contravariant functors send coproducts to products. Moreover the bar construction in the 2nd line might form a simplicial object? And the condition of satisfying \begin{align*}\[descent\end{align*} ] is maybe related to either this being a \begin{align*}\[simplicial object\end{align*} ], or its image in the bottom line assembling to a simplicial object, since there are clear degeneracy maps and one would want sections in order to build face maps. Super vague, there are a lot of details missing here!!

28 2021-09-16

28.1 20:04

Tags: #category_theory

29 2021-09-14

29.1 14:45

Tags: #representation_theory #terms_and_questions #number_theory #langlands

29.2 22:17

30 2021-09-12

Tags: #homological_stability #representation_theory

30.1 \({\mathsf{FI}}{\hbox{-}}\)modules (23:45)

Reference: Church-Ellenberg-Farb

Tags: #modular_forms #moduli_spaces #stacks

31 2021-08-05

31.1 Classical / Analytic Moduli Theory

Tags: #reading_notes Refs: \begin{align*}\[modular form\end{align*} ]

Reference: see https://www.math.purdue.edu/~arapura/preprints/shimura2.pdf

31.2 Moduli as Stacks

\begin{align*} \text { ord }_{x}(f):= \begin{cases}0 & \text { if } \mathrm{f} \text { is holomorphic and non-zero at } x \\ k & \text { if } \mathrm{f} \text { has a zero of order } k \text { at } x \\ -k & \text { if } \mathrm{f} \text { has a pole of order } k \text { at } x\end{cases} .\end{align*}

To pick back up: https://repositorio.uniandes.edu.co/bitstream/handle/1992/43725/u830743.pdf?sequence=1

32 2021-06-22

32.1 12:47

Tags: #category_theory #homotopy_theory

\begin{align*}\[mapping cone\end{align*} ] as a \begin{align*}\[pushout\end{align*} ] and \begin{align*}\[mapping fiber\end{align*} ] as \begin{align*}\[pullback\end{align*} ] :

Link to Diagram

32.2 Probability Review

Tags: #probability #review_material #undergraduate

Link to Diagram

32.3 Combinatorics Review

Tags: #combinatorics #review_material #undergraduate

33 2021-06-20

33.1 21:57

Tags: #stable_homotopy #k_theory

34 2021-06-06

34.1 12:12

Refs: \begin{align*}\[A1 Homotopy\end{align*} ]

up to the \begin{align*}\[Quillen equivalence\end{align*} ]

\begin{align*} {\mathsf{Kan}}\xrightarrow{\sim} {\mathsf{Spaces}} \end{align*}

First step in proof: forget embedding into \({\mathbb{A}}^\infty\), send \({ \mathsf{Vect} }_{d-1}\) to finite flat schemes of degree \(d\) \({\mathsf{FFlat}}_d(R)\) over \(\operatorname{Spec}R\), which are stacks.

34.2 Talbot, Mike Hill

Tags: #stable_homotopy #seminar_notes

\begin{align*}\[attachments/image_2021-06-06-15-32-17.png\end{align*} ]

See \begin{align*}\[Lubin-Tate theory\end{align*} ] and \begin{align*}\[Witt Vectors\|Witt vector\end{align*} ].

\begin{align*}\[attachments/image_2021-06-06-15-58-57.png\end{align*} ]

35 2021-06-05

35.1 Talbot, Lyne Moser Part 1

35.2 12:58

Things to look up from written notes:

35.3 Talbot, Lyne Moser Part 2

\begin{align*}\[attachments/image_2021-06-05-13-09-28.png\end{align*} ]

\begin{align*}\[attachments/image_2021-06-05-13-09-54.png\end{align*} ]

\begin{align*}\[attachments/image_2021-06-05-13-10-05.png\end{align*} ]

36 2021-06-04

36.1 Random Physics Reading?

37 2021-05-25

37.1 12:03

Reference: eAKTs

Tags: #seminar_notes #k_theory
Refs: \begin{align*}\[Brauer group\end{align*} ] \begin{align*}\[Azumaya algebra\end{align*} ]

38 2021-05-24

38.1 12:07

Reference: ???, GROOT

38.2 17:45

Tags: #idle_thoughts

38.3 21:36

39 2021-05-22

39.1 23:27

Tags: #idle_thoughts #category_theory #infinity_cats

39.1.1 Cats with cats of morphisms

Terrible attempt at a way around ZFC: axiomatically define a category the way one axiomatizes Euclidean geometry:

This makes the definition infinitely recursive, which might be a problem. One could truncate this by asking the 1st iteration of taking “the hom category” to result in a discrete category: some objects but no morphisms between distinct objects. This is definitely taken care of by \begin{align*}\[infinity categories\end{align*} ].

39.1.2 Set as a category freely generated under colimits?

Define the category of sets by specifying a single point as an initial object, then freely taking powersets and unions. I think you at least get something whose nerve is the same as the nerve of the category of finite sets. I think one can also realize these operations at the categorical level: powersets are like exponentials \(2^X\), you can get disjoint unions from limits, and maybe usual unions/intersections from pushouts/pullbacks?

40 2021-05-18

40.1 Kristen Hendricks, Surgery formulas for involutive Heegaard Floer homology

Tags: #seminar_notes #geometric_topology #floer Refs: \begin{align*}\[Heegard-Floer homology\end{align*} ]

Reference: Kristen Hendricks, Surgery formulas for involutive Heegaard Floer homology. Stanford Topology Seminar.

40.2 22:01

Check out \begin{align*}\[ideal sheaves\end{align*} ], \begin{align*}\[Birdgeland stability conditions\end{align*} ].

41 2021-05-13

41.1 00:14

42 2021-05-12

42.1 10:28

See \begin{align*}\[Serre's uniformity conjecture\end{align*} ].

42.2 Pavel Etingof, Frobenius exact symmetric tensor categories

Source: Frobenius exact symmetric tensor categories - Pavel Etingof. IAS Geometric/modular representation theory seminar. https://www.youtube.com/watch?v=7L06K7SL5qw

Tags: #seminar_notes #representation_theory #category_theory #monoidal Refs: \begin{align*}\[tensor category\end{align*} ]

Link to Diagram

43 2021-05-11

43.1 12:48

44 2021-05-10

44.1 12:34

We haven’t been able to classify the rational points on \begin{align*}\[modular curves\end{align*} ]!

44.2 Kirsten Wickelgren, Zeta functions and a quadratic enrichment.

Reference: Kirsten Wickelgren, Colloquium Presentation: zeta functions and a quadratic enrichment. Rational Points and Galois Representations workshop

Tags: #seminar_notes #homotopy_theory #algebraic_geometry #stable_homotopy #motivic Refs: \begin{align*}\[motivic homotopy\end{align*} ]

Link to Diagram

Link to Diagram

Link to Diagram

44.3 Foling Zou, Nonabelian Poincare duality theorem and equivariant factorization homology of Thom spectra

Tags: #THH #factorization_homology #seminar_notes Refs: \begin{align*}\[nonabelian Poincare duality\end{align*} ], \begin{align*}\[factorization homology\end{align*} ]

Reference: Foling Zou, Nonabelian Poincare duality theorem and equivariant factorization homology of Thom spectra. MIT Topology Seminar.

where \(R{\hbox{-}}\)line is the \(\infty{\hbox{-}}\)category of line bundles up to equivalence?

For \(\operatorname{THR}\) on the algebra side, see Teena Gerhardt’s work? Haynes Miller suggests looking at the \begin{align*}\[de Rham-Witt complex\end{align*} ]?

45 2021-05-08

45.1 22:55

Not every \begin{align*}\[simplicial complex\end{align*} ] is a \begin{align*}\[PL\end{align*} ] manifold:

46 2021-05-06

\begin{align*}\[Arpon Raksit - Hochschild homology and the derived de Rham complex revisited\end{align*} ]

\begin{align*}\[Andrew Blumberg, Floer homotopy theory and Morava K-theory\end{align*} ]

\begin{align*}\[Beuzart-Plessis, On the spectral decomposition of the Jacquet-Rallis trace formula and the Gan-Gross-Prasad conjecture for unitary groups\end{align*} ]

47 2021-05-05

47.1 01:42

47.2 Padmavathi Srinivasan, UGA NT Seminar

^22ba3a

Reference: Padmavathi Srinivasan, UGA NT Seminar.

48 2021-05-04

48.1 The reciprocity law for the twisted second moment of Dirichlet L-functions

Reference: The reciprocity law for the twisted second moment of Dirichlet L-functions https://arxiv.org/pdf/0708.2928.pdf

48.2 The K-Theory of monoid sets

Reference: The \(K'\)-theory of \begin{align*}\[monoid\end{align*} ] sets https://arxiv.org/pdf/1909.00297.pdf

\begin{align*}\[K-Theory\end{align*} ]

48.3 Stefan Schreieder, Refined unramified cohomology

Tags: #seminar_notes #algebraic_geometry

Reference: Stefan Schreieder, Refined unramified cohomology. Harvard/MIT AG Seminar talk.

Main theorem, works not just for smooth schemes, but in greater generality:

48.4 Clausen on rep theory

Reference: https://www.youtube.com/watch?v=XTOwj1LvntM

49 2021-05-03

49.1 Representations of Hopf Algebras

Tags: #representation_theory

See \begin{align*}\[Hopf algebra\end{align*} ]

Link to Diagram

Link to Diagram

Why \begin{align*}\[Hopf algebra\end{align*} ]? Some natural examples:

49.2 Clausen, the K-theory of adic spaces.

Tags: #k_theory #adic #seminar_notes

Reference: Clausen, the K-theory of adic spaces. https://www.youtube.com/watch?v=e_0PTVzViRQ

50 2021-05-02

50.1 Hopf Invariant One

51 2021-05-01

51.1 Notes on

\begin{align*}\[Arithmetic Statistics\end{align*} ] {#notes-on-arithmetic-statistics}

51.2 Old Notes: Erik Schreyer

Some old notes from March 10th, 2020

I talked to Erik Schreyer today about some of the research he did with his advisor Jason Cantarella, including his dissertation work (which he spoke about in the Geometry seminar last week) and a few other papers.

His dissertation work involved a cool way to represent arbitrary planar curves by piecewise circular arcs:

From what I understand, this involves fixing a curve (blue), choosing a collection of circles \(C_1, \cdots C_n\) (black) such that each \(C_i\) intersects \(C_{i+1}\) in at least one distinguished point \(p_i\) (pink). The curve traced out by following an arc on \(C_i\) and switching to circle \(C_{i+1}\) at \(p_i\) is intended to yield a good approximation to the original curve, with certain regularity conditions at the \(p_i\) (such as the first derivatives along both arcs agreeing at the point).

Erik’s work actually seems to go a bit farther – he has an algorithm (a curve-closing operator) that actually takes an open curve and produces a closed curve that is nearby in the \(C_1\) norm. He uses this to construct piecewise circular approximations that consist of circles of equal radii, along with some control over the \(C^1\) distance between the original curve and the approximation.

We also talked a bit about another problem Jason was working on, discussed in the following papers:

51.3 Dirichlet’s Theorem

Dirichlet’s Theorem: An arithmetic progress with \((a, p) = 1\) contains infinitely many primes. As a corollary, one can always find a prime \(q\) that generates \({\mathbb{Z}}_p^{\times}\) for any prime \(p\).

51.4 A SES isomorphic to a direct sum that does not split

Reference

Not every sequence of the form \(0\to A \to A \oplus C \to C \to 0\) splits; take \begin{align*} 0 \to {\mathbb{Z}}\to {\mathbb{Z}}\oplus \bigoplus_{\mathbb{N}}{\mathbb{Z}}/(2) \to \bigoplus_{\mathbb{N}}{\mathbb{Z}}/(2) \to 0 \end{align*} where the first map is multiplication by 2, the second is the quotient map and a right-shift. This can’t split because \((1, 0, \cdots)\) has order 2 in the RHS but pulls back to \((1, 0) \oplus (2{\mathbb{Z}}\oplus 0)\) which has no element of order 2.

51.5 Cogroups

See \begin{align*}\[cogroup\end{align*} ].

52 2021-04-30

52.1 Remy van Dobben de Bruyn, “Constructing varieties with prescribed Hodge numbers modulo m in positive characteristic.”

Reference: Remy van Dobben de Bruyn (Princeton and IAS), “Constructing varieties with prescribed Hodge numbers modulo m in positive characteristic.” Stanford AG Seminar.

\begin{align*} h(\operatorname{Bl}_2 X) &= h(X) - h(z) + h(E) \\ &= h(X) - h(z) + h(z)(1 + {\mathbb{L}}+ {\mathbb{L}}^2 + \cdots + {\mathbb{L}}^{c-1} )\\ &= h(z) + ({\mathbb{L}}+ {\mathbb{L}}^2 + \cdots + {\mathbb{L}}^{c-1} ) ,\end{align*}

where \(z\) is the point removed and \(E\) is the \begin{align*}\[exceptional divisor\end{align*} ].

52.2 l-adic Representations

\begin{align*}\[Seminars and Talks/2021-04-29 The Galois Action on Symplectic K Theory\end{align*} ]

\begin{align*}\[Seminars and Talks/2021-04-29_2 Yves Andre On the canonical, fpqc and finite topologies\end{align*} ]

\begin{align*}\[Seminars and Talks/2021-04-29_3 Ribet Class groups and Galois representations\end{align*} ]

53 2021-04-26

53.1 Random Notes

Some random notes: #todo

-Working out relative homology, an example:

53.2 Random Algebraic Topology

Reference: paper on “constructive” algebraic topology J. Rubio, F. Sergeraert / Bull. Sci. math. 126 (2002) 389-412 403

53.3 19:38

54 2021-04-25

54.1 Fukaya Category

Description of a certain wrapped \begin{align*}[Fukaya category](#fukaya-category)\end{align*} \({\mathcal{O}}\): take the objects to be (Lagrangian) embedded curves, the morphisms are the graded abelian groups \(\hom_{\mathcal{O}}\mathrel{\vcenter{:}}=\qty{\bigoplus_{L_0 \pitchfork L_1} {\mathbb{Z}}/2{\mathbb{Z}}, {{\partial}}}\) where \({{\partial}}\) is given by counting holomorphic strips, localize along small isotopies.

54.2 Notes from Eisenbud

Add to Algebra qual review doc #todo

An ideal \({\mathfrak{p}}\) is prime iff \(JK \subset {\mathfrak{p}}\implies J \subset {\mathfrak{p}}\) or \(K\subset {\mathfrak{p}}\).

A ring is a domain iff the ideal \((0)\) is prime.

Inductively, if \({\mathfrak{p}}\) contains a product of ideals then it contains one of them.

Maximal ideals are prime, since \({\mathfrak{m}}\) maximal implies that \(R/{\mathfrak{m}}\) is a field.

A ring is local iff it has a unique maximal ideal \({\mathfrak{m}}\).

An element \(e\) is idempotent iff \(e^2 = e\).

An \(R{\hbox{-}}\)algebra \(S\) is a ring \(S\) and a homomorphism \(\alpha:R \to S\).

Every ring is a \({\mathbb{Z}}{\hbox{-}}\)algebra in a unique way.

The most interesting commutative algebras are \(S/I\) where \(S = k[x_1, \cdots, x_n]\) for \(k\) a field, \({\mathbb{Z}}\), or the \begin{align*}\[localization\end{align*} ] of a ring at a prime ideal.

54.3 Random

54.4 Milnor K Theory in the Wild

See \begin{align*}\[Milnor K theory\end{align*} ]

54.5 Modular forms and Deligne-Serre theorem

54.6 The representation ring

Tags: #idle_thoughts

55 2021-04-23

55.1 What is

\begin{align*}\[equivariant cohomology\end{align*} ]? {#what-is-equivariant-cohomology}

https://arxiv.org/pdf/1305.4293.pdf

55.2 What is a scheme?

55.3 Notes on

\begin{align*}\[homotopy colimit\end{align*} ] via Diagrams {#notes-on-homotopy-colimit-via-diagrams}

55.4 15:07

\begin{align*}\[2021-04-23 Advice on research and problems\end{align*} ]

55.5 Time Management

\begin{align*}\[attachments/image_2021-04-23-15-55-40.png\end{align*} ]

55.6

\begin{align*}\[group cohomology\end{align*} ] in \begin{align*}\[homotopy theory\end{align*} ]? {#group-cohomology-in-homotopy-theory}

Tags: #idle_thoughts

55.7 SeZoom

\begin{align*}[l-adic representations](#l-adic-representations)\end{align*}

55.8 17:13

55.9 22:29

56 2021-04-22

56.1 Gromov-Witten Invariants in Derived AG

56.2 Derived Stacks

57 2021-04-21

57.1 15:05: Bhargav Bhatt (Harvard NT Seminar)

#seminar_notes #blog #prisms

Link to Diagram

57.2 Why are

\begin{align*}\[triangulated categories\end{align*} ] and \begin{align*}\[derived category\end{align*} ] important? {#why-are-triangulated-categories-and-derived-category-important}

57.3 A Roadmap to

\begin{align*}\[Hill-Hopkins-Ravenel\end{align*} ] {#a-roadmap-to-hill-hopkins-ravenel}

Roadmap to HHR

57.4 Some

\begin{align*}\[Lurie stuff\end{align*} ] Content {#some-lurie-stuff-content}

Lurie’s Seminar on Algebraic Topology

A bunch of suggested papers

Lurie’s Topics in Geometric Topology

57.4.1 The Relationship Between

\begin{align*}\[topological Hochschild homology\|THH\end{align*} ] and \begin{align*}\[K-Theory\end{align*} ] {#the-relationship-between-topological-hochschild-homologythh-and-k-theory}

Some remarks on \({\operatorname{THH}}\) and \(K{\hbox{-}}\)Theory, no clue what the original source was:

57.4.2

\begin{align*}\[Eilenberg-MacLane spaces\end{align*} ] {#eilenberg-maclane-spaces}

57.4.3 Why Care About

\begin{align*}\[stacks\end{align*} ]? {#why-care-about-stacks}

57.5 Homotopy Theory is Connected to

\begin{align*}\[Lie algebra cohomology\end{align*} ] {#homotopy-theory-is-connected-to-lie-algebra-cohomology}

57.6

\begin{align*}\[schemes\end{align*} ] and \begin{align*}\[class field theory\end{align*} ] {#schemes-and-class-field-theory}

-Actual class group for schemes

58 2021-04-18

58.1 Notes on modular forms

#modular_forms

59 2021-04-17

59.1 The “Three Things” Exercise

#advice

Reminding myself of Ravi’s “Three Things” exercise.

\begin{align*}\[Three Things Exercise\#Process for talks\end{align*} ]

60 2021-04-16

60.1 Stanford AG: Samir Canning, joint with Hannah Larson

#seminar_notes

61 2021-04-15

61.1 Beilinson-Bloch Conjecture

Reference: Chao Li, “Beilinson-Bloch conjecture for unitary Shimura varieties.” Priinceton/IAS NT Seminar

61.2 20:13

Paper recommended by Juliette Bruce: https://arxiv.org/pdf/2003.02494.pdf

62 2021-04-14

62.1 21:22

62.2 Bloch-Kato conjecture and L functions

63 2021-04-12

63.1 Chat with Phil

#research_projects

63.2 15:23: Topology Talk

#seminar_notes

64 2021-04-11

64.1 19:29

64.2 19:29

Tags: #qual_analysis

65 2021-04-09

65.1 18:12

\begin{align*}\[quasiisomorphism\end{align*} ] :

66 2021-04-08

66.1 18:11

66.2 23:24

67 2021-04-04

67.1 16:53

See \begin{align*}\[qual review\end{align*} ].

Note from Pete: a common technique on qual Algebra problems is extracting an index 2 subgroup using the Cayley action of \(G\) on itself. These are always normal, so if this exists, \(G\) can’t be simple unless it’s order 2.

68 2021-04-03

68.1 16:28

The connections between \begin{align*}\[Formal group\end{align*} ] and \begin{align*}\[chromatic homotopy theory\end{align*} ] are key. Read Quillen’s paper, J.F. Adams’ blue book, Ravenel, etc. Ravenel has some slides on Quillen’s work (good entry pt). If you really want to go in depth, I enjoyed learning from Hazewinkel’s book “Formal Groups and Applications.”

68.2 16:30

#advice #goals

68.2.1 Setting Goals

68.2.2 Studying

68.3 19:04

68.3.1 Spectral Sequences

Reference: Link to PDF

See \begin{align*}\[Spectral sequence\end{align*} ].

69 2021-04-02

69.1 22:38

70 2021-03-28

70.1 23:18

71 2021-03-26

71.1 20:00

\begin{align*} L(s ; \chi):=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}} =\prod_{p} \qty{ 1-\chi(p) p^{-s} }^{-1} .\end{align*}

72 2021-03-25

72.1 00:08

What is a \begin{align*}\[Kan extension\end{align*} ]? #todo

72.2 00:09

73 2021-03-24

73.1 00:11

74 2021-03-17

#rational_points

74.1 17:00

75 2021-01-21

75.1 13:37

75.2 14:27

75.3 16:13

76 2021-01-20

76.1 16:52

76.2 20:00

77 2021-01-19

77.1 16:29

78 2021-01-05

78.1 00:01

79 2021-01-03

79.1 18:05

80 2021-11-22

Tags: #untagged

Refs: ?

80.1 01:01

80.2 UGA Topology Seminar, Irving Dai, Equivariant Concordance and Knot Floer Homology

80.3 19:57

A nice modern intro to homotopy theory: https://www.uni-regensburg.de/Fakultaeten/nat_Fak_I/Bunke/intro-homoto.pdf

Quotients are colimits:

Geometric realization as a \begin{align*}\[coend\end{align*} ]

Homotopy fibers:

Homotopy cofiber:

Spectra as a presentable \begin{align*}\[infty-category\end{align*} ]

81 2021-11-10

Tags: #untagged

Refs: ?

81.1 16:20

Hector Pasten, UGA NT seminar.

82 2021-11-09

Tags: #untagged

Refs: ?

82.1 00:11

82.2 15:51

83 2021-11-08

Tags: #untagged

Refs: ?

83.1 15:05

Hannah Turner, GT: Branched Cyclic Covers and L-Spaces

84 2021-11-05

Tags: #untagged

Refs: ?

84.1 01:31

Differential forms on (derived) \begin{align*}\[stacks\end{align*} ]:

What is non-commutative geometry?

Category of singularities:

Bloch’s conductor conjecture:

85 Other Stuff

On harmonic bundles:

85.1 13:41

Existence of spin and string structures: kind of like applying a functor to the Whitehead tower and asking for sections of the image tower:

Link to Diagram

86 2021-11-04

Tags: #untagged

Refs: ?

86.1 01:36

87 2021-11-03

Tags: #untagged

Refs: ?

87.1 15:09

UGA AG Seminar: Eloise Hamilton?

87.2 16:23

87.3 19:43

Idk I just like this:

88 2021-11-01

Tags: #untagged

Refs: ?

88.1 15:03 UGA Topology Seminar

Lev Tovstopyat-Nelip, “Floer Homology and Quasipositive Surfaces,” MSU.

89 2021-10-29

Tags: #untagged

Refs: ?

89.1 21:10

https://arxiv.org/pdf/1904.06756.pdf

Some notes on \begin{align*}\[quadratic differentials\end{align*} ]:

90 2021-10-27

Tags: #quick_notes

Refs: ?

90.1 15:17

Kristin DeVleming, UGA AG seminar talk on moduli of quartic \begin{align*}\[K3 surfaces\end{align*} ].

90.2 16:24

Jiuya Wang’s, UGA NT seminar talk

91 2021-10-25

Tags: #quick_notes

Refs: \begin{align*}\[Advice\end{align*} ]

91.1 00:00

91.2 16:16

92 2021-10-24

Tags: #quick_notes

Refs: ?

92.1 00:01

93 2021-10-19

93.1 23:01

93.2 23:12

94 2021-10-18

94.1 15:07

Tags: #knots #concordance #geometric_topology

\(K_1, K_2\) are smoothly concordant iff there exists a smoothly embedded cylinder \(S^1\times I \hookrightarrow S^3\times I\) with \({{\partial}}(S^1\times I) = K_1 {\textstyle\coprod}-K_2\). The concordance group \(C\) is the abelian group given by knots \(K \hookrightarrow S^3\) under connect sum, modulo concordance.

If \(K_i \hookrightarrow Y_i \in \mathbb{Z}\operatorname{HS}^3\), then the \(K_i\) are homologically concordant if there is smoothly embedded cylinder \(S^1\times I \hookrightarrow W\) with \({{\partial}}(W, S^1\times I) = (Y_1, K_1) {\textstyle\coprod}(Y_2, K_2)\) with \(W\) a homology cobordism:

This yields a homological concordance group \(\widehat{C}_{\mathbb{Z}}\).

There is an injection (?) \(C_{\mathbb{Z}}\hookrightarrow\widehat{C}_{\mathbb{Z}}\) which is known by Levine not to be surjective. What can be said about the cokernel?

See \begin{align*}\[Seifert fibered space\end{align*} ], \begin{align*}\[ZHS3\end{align*} ]. These are all \begin{align*}\[homology cobordant\end{align*} ] to \(S^3\).

Proof uses \begin{align*}\[CFK\end{align*} ], a \({\mathbb{F}}[u, v]{\hbox{-}}\)module.

A knot-like complex over \(R\) is a complex \(C \in {\mathsf{gr}\,}_{{\mathbb{Z}}{ {}^{ \scriptscriptstyle\times^{2} } }} \mathsf{Ch}(R)\) such that

Some examples: the knot Floer complex \begin{align*}\[CFK\end{align*} ] over a knot, \(\CFK_{{\mathbb{F}}[u, v]}(K)\). Theorem: every such complex is locally equivalent to a unique standard complex. Concordant knots produce locally equivalent complexes \(\CFK_R(K)\) for \(R \mathrel{\vcenter{:}}={\mathbb{F}}[u] \otimes_{\mathbb{F}}{\mathbb{F}}[z] / \left\langle{uv}\right\rangle\).

Set \(\mathsf{C} \mathrel{\vcenter{:}}={\operatorname{Emb}}(S^1, S^3)\), add the monoidal structure \({\sharp}\) for connect sum. Take “isotopy” category instead of homotopy category? The unit is \(\one = U\), the unknot up to isotopy. What is the stabilization of \({-}{\sharp}X\) for fixed choices of \(X\)? Or of other interesting functors? #idle_thoughts

95 2021-10-13

95.1 00:18

Tags: #quick_notes

96 2021-10-08

96.1 21:03

Link to diagram

96.2 22:52

http://individual.utoronto.ca/groechenig/stacks.pdf #references

Refs: \begin{align*}\[stack\|stacks\end{align*} ] \begin{align*}\[vector bundles\|vector bundle\end{align*} ] \begin{align*}\[descent data\end{align*} ]

Link to diagram

96.3 23:25

Tags: #quick_notes

97 2021-10-06

97.1 00:22

Tags: #terms_and_questions

Tags: #quick_notes

98 2021-10-05

98.1 DAG-X

Tags: #reading_notes #derived #infinity_cats

Derived AG: https://people.math.harvard.edu/~lurie/papers/DAG-X.pdf

\begin{align*}\[dg Lie algebras\end{align*} ] :

\begin{align*}\[attachments/2021-10-05_00-03-49.png\end{align*} ]

\begin{align*}\[elliptic curve\|elliptic curve\end{align*} ] and \begin{align*}\[deformation theory\end{align*} ] :

\begin{align*}\[attachments/2021-10-05_00-05-28.png\end{align*} ]

\begin{align*}\[presentable infinity category\end{align*} ]. \begin{align*}\[deformation-obstruction theory\end{align*} ] :

\begin{align*}\[attachments/2021-10-05_00-08-54.png\end{align*} ]

\begin{align*}\[k-linear category\end{align*} ] :

\begin{align*}\[attachments/2021-10-05_00-19-40.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_00-21-36.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_00-28-30.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_00-30-48.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_00-33-46.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_00-34-14.png\end{align*} ]

98.2 10:49

Weak weak approximation would imply a positive answer to the \begin{align*}\[inverse Galois problem\end{align*} ].

98.3 20:02

\begin{align*}\[attachments/2021-10-05_20-02-50.png\end{align*} ]

98.4 Elliptic Cohomology Paper

Tags: #stable_homotopy #physics #summaries

Refs: \begin{align*}\[Elliptic cohomology\end{align*} ], \begin{align*}\[Thom-Dold\end{align*} ], \begin{align*}\[Orientability of spectra\|orientability\end{align*} ], \begin{align*}\[formal group law\end{align*} ], \begin{align*}\[ring spectra\end{align*} ], \begin{align*}\[Bousfield localization\end{align*} ], \begin{align*}\[Topological modular forms\|tmf\end{align*} ],

Reference: M-theory, type IIA superstrings, and elliptic cohomology https://arxiv.org/pdf/hep-th/0404013.pdf

\begin{align*}\[attachments/2021-10-05_20-39-39.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-40-20.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-41-16.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-41-33.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-41-56.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-42-42.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-43-37.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-44-09.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-44-36.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-45-25.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-46-47.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-48-43.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-51-54.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_20-51-38.png\end{align*} ]

98.5 22:49

\begin{align*}\[attachments/2021-10-05_23-01-03.png\end{align*} ]

\begin{align*}\[attachments/2021-10-05_23-04-52.png\end{align*} ]

99 Volcano Stuff

100 2021-10-04

100.1 01:02

Refs: \begin{align*}\[algebra valued differential forms\end{align*} ]

101 2021-10-03

101.1 Spectra Stuff

Tags: #stable_homotopy

Producing a LES:

Integration pairing: for \(E \in {\mathsf{SHC}}(\mathsf{Ring})\), \begin{align*} E^*X &\longrightarrow E_* X \\ \omega \in [\mathop{\mathrm{{\Sigma_+^\infty}}}X, E] &\longrightarrow\alpha \in [{\mathbb{S}}, E\wedge X] \\ \\ {\mathbb{S}}\xrightarrow{\alpha} E \wedge X \cong E\wedge{\mathbb{S}}\wedge X &\cong E \wedge\mathop{\mathrm{{\Sigma_+^\infty}}}X \xrightarrow{1\wedge\omega } E{ {}^{ \scriptscriptstyle\wedge^{2} } } \xrightarrow{\mu} E .\end{align*}

101.2 Categories

Tags: #category_theory #simplicial #infinity_cats

Link to Diagram

101.3 Lie Algebras?

References: https://arxiv.org/pdf/0801.3480.pdf and https://people.math.umass.edu/~gwilliam/thesis.pdf

Tags: #reading_notes #lie_algebras

String structures on \(X\): spin structures on \({\Omega}X\).

Defining algebra-valued forms when curvature doesn’t vanish:

See \begin{align*}\[factorization algebra\end{align*} ]

Link to Diagram

102 2021-10-02

102.1 00:20

Tags: #idle_thoughts

Idk this weird thing

Link to diagram

103 2021-09-24

103.1 14:33

Tags: #terms_and_questions

104 2021-09-23

104.1 22:37

Tags: #terms_and_questions

105 2021-09-20

105.1 01:29

https://math.stanford.edu/~conrad/papers/hypercover.pdf

106 2021-09-19

106.1 22:51

Tags: #idle_thoughts #simplicial

Not sure how to get this to work yet, but here’s the condition for a functor to be a sheaf:

But we can write \(n{\hbox{-}}\)fold intersections as \begin{align*}\[fiber products\end{align*} ] :

So the condition of \({\mathcal{F}}\) being a sheaf seems to look like letting \({\mathcal{U}}\rightrightarrows X\) be an open cover, setting \(M = {\textstyle\coprod}U_i\), then applying a \begin{align*}\[bar construction\end{align*} ] \begin{align*} M: M{ {}^{ \scriptscriptstyle{ \underset{\scriptscriptstyle {X} }{\times} }^{1} } } \leftarrow M{ {}^{ \scriptscriptstyle{ \underset{\scriptscriptstyle {X} }{\times} }^{2} } } \leftarrow\cdots .\end{align*} Then apply \({\mathcal{F}}\), and look at some kind of image sequence? And ask for exactness for \(n\) many levels to get a sheaf, \begin{align*}\[stack\end{align*} ], etc:

Link to Diagram

The problem is that I don’t really know how to relate the bottom line (whose exactness is the usual condition for sheaves, stacks, etc) to the intermediate steps. This seems like it wants \({\mathcal{F}}({\textstyle\coprod}{-}) = \prod {\mathcal{F}}({-})\), so it commutes with (co?)limits, since probably contravariant functors send coproducts to products. Moreover the bar construction in the 2nd line might form a simplicial object? And the condition of satisfying \begin{align*}\[descent\end{align*} ] is maybe related to either this being a \begin{align*}\[simplicial object\end{align*} ], or its image in the bottom line assembling to a simplicial object, since there are clear degeneracy maps and one would want sections in order to build face maps. Super vague, there are a lot of details missing here!!

107 2021-09-16

107.1 20:04

Tags: #category_theory

108 2021-09-14

108.1 14:45

Tags: #representation_theory #terms_and_questions #number_theory #langlands

108.2 22:17

109 2021-09-12

Tags: #homological_stability #representation_theory

109.1 \({\mathsf{FI}}{\hbox{-}}\)modules (23:45)

Reference: Church-Ellenberg-Farb

Tags: #modular_forms #moduli_spaces #stacks

110 2021-08-05

110.1 Classical / Analytic Moduli Theory

Tags: #reading_notes Refs: \begin{align*}\[modular form\end{align*} ]

Reference: see https://www.math.purdue.edu/~arapura/preprints/shimura2.pdf

110.2 Moduli as Stacks

\begin{align*} \text { ord }_{x}(f):= \begin{cases}0 & \text { if } \mathrm{f} \text { is holomorphic and non-zero at } x \\ k & \text { if } \mathrm{f} \text { has a zero of order } k \text { at } x \\ -k & \text { if } \mathrm{f} \text { has a pole of order } k \text { at } x\end{cases} .\end{align*}

To pick back up: https://repositorio.uniandes.edu.co/bitstream/handle/1992/43725/u830743.pdf?sequence=1

111 2021-06-22

111.1 12:47

Tags: #category_theory #homotopy_theory

\begin{align*}\[mapping cone\end{align*} ] as a \begin{align*}\[pushout\end{align*} ] and \begin{align*}\[mapping fiber\end{align*} ] as \begin{align*}\[pullback\end{align*} ] :

Link to Diagram

111.2 Probability Review

Tags: #probability #review_material #undergraduate

Link to Diagram

111.3 Combinatorics Review

Tags: #combinatorics #review_material #undergraduate

112 2021-06-20

112.1 21:57

Tags: #stable_homotopy #k_theory

113 2021-06-06

113.1 12:12

Refs: \begin{align*}\[A1 Homotopy\end{align*} ]

up to the \begin{align*}\[Quillen equivalence\end{align*} ]

\begin{align*} {\mathsf{Kan}}\xrightarrow{\sim} {\mathsf{Spaces}} \end{align*}

First step in proof: forget embedding into \({\mathbb{A}}^\infty\), send \({ \mathsf{Vect} }_{d-1}\) to finite flat schemes of degree \(d\) \({\mathsf{FFlat}}_d(R)\) over \(\operatorname{Spec}R\), which are stacks.

113.2 Talbot, Mike Hill

Tags: #stable_homotopy #seminar_notes

\begin{align*}\[attachments/image_2021-06-06-15-32-17.png\end{align*} ]

See \begin{align*}\[Lubin-Tate theory\end{align*} ] and \begin{align*}\[Witt Vectors\|Witt vector\end{align*} ].

\begin{align*}\[attachments/image_2021-06-06-15-58-57.png\end{align*} ]

114 2021-06-05

114.1 Talbot, Lyne Moser Part 1

114.2 12:58

Things to look up from written notes:

114.3 Talbot, Lyne Moser Part 2

\begin{align*}\[attachments/image_2021-06-05-13-09-28.png\end{align*} ]

\begin{align*}\[attachments/image_2021-06-05-13-09-54.png\end{align*} ]

\begin{align*}\[attachments/image_2021-06-05-13-10-05.png\end{align*} ]

115 2021-06-04

115.1 Random Physics Reading?

116 2021-05-25

116.1 12:03

Reference: eAKTs

Tags: #seminar_notes #k_theory
Refs: \begin{align*}\[Brauer group\end{align*} ] \begin{align*}\[Azumaya algebra\end{align*} ]

117 2021-05-24

117.1 12:07

Reference: ???, GROOT

117.2 17:45

Tags: #idle_thoughts

117.3 21:36

118 2021-05-22

118.1 23:27

Tags: #idle_thoughts #category_theory #infinity_cats

118.1.1 Cats with cats of morphisms

Terrible attempt at a way around ZFC: axiomatically define a category the way one axiomatizes Euclidean geometry:

This makes the definition infinitely recursive, which might be a problem. One could truncate this by asking the 1st iteration of taking “the hom category” to result in a discrete category: some objects but no morphisms between distinct objects. This is definitely taken care of by \begin{align*}\[infinity categories\end{align*} ].

118.1.2 Set as a category freely generated under colimits?

Define the category of sets by specifying a single point as an initial object, then freely taking powersets and unions. I think you at least get something whose nerve is the same as the nerve of the category of finite sets. I think one can also realize these operations at the categorical level: powersets are like exponentials \(2^X\), you can get disjoint unions from limits, and maybe usual unions/intersections from pushouts/pullbacks?

119 2021-05-18

119.1 Kristen Hendricks, Surgery formulas for involutive Heegaard Floer homology

Tags: #seminar_notes #geometric_topology #floer Refs: \begin{align*}\[Heegard-Floer homology\end{align*} ]

Reference: Kristen Hendricks, Surgery formulas for involutive Heegaard Floer homology. Stanford Topology Seminar.

119.2 22:01

Check out \begin{align*}\[ideal sheaves\end{align*} ], \begin{align*}\[Birdgeland stability conditions\end{align*} ].

120 2021-05-13

120.1 00:14

121 2021-05-12

121.1 10:28

See \begin{align*}\[Serre's uniformity conjecture\end{align*} ].

121.2 Pavel Etingof, Frobenius exact symmetric tensor categories

Source: Frobenius exact symmetric tensor categories - Pavel Etingof. IAS Geometric/modular representation theory seminar. https://www.youtube.com/watch?v=7L06K7SL5qw

Tags: #seminar_notes #representation_theory #category_theory #monoidal Refs: \begin{align*}\[tensor category\end{align*} ]

Link to Diagram

122 2021-05-11

122.1 12:48

123 2021-05-10

123.1 12:34

We haven’t been able to classify the rational points on \begin{align*}\[modular curves\end{align*} ]!

123.2 Kirsten Wickelgren, Zeta functions and a quadratic enrichment.

Reference: Kirsten Wickelgren, Colloquium Presentation: zeta functions and a quadratic enrichment. Rational Points and Galois Representations workshop

Tags: #seminar_notes #homotopy_theory #algebraic_geometry #stable_homotopy #motivic Refs: \begin{align*}\[motivic homotopy\end{align*} ]

Link to Diagram

Link to Diagram

Link to Diagram

123.3 Foling Zou, Nonabelian Poincare duality theorem and equivariant factorization homology of Thom spectra

Tags: #THH #factorization_homology #seminar_notes Refs: \begin{align*}\[nonabelian Poincare duality\end{align*} ], \begin{align*}\[factorization homology\end{align*} ]

Reference: Foling Zou, Nonabelian Poincare duality theorem and equivariant factorization homology of Thom spectra. MIT Topology Seminar.

where \(R{\hbox{-}}\)line is the \(\infty{\hbox{-}}\)category of line bundles up to equivalence?

For \(\operatorname{THR}\) on the algebra side, see Teena Gerhardt’s work? Haynes Miller suggests looking at the \begin{align*}\[de Rham-Witt complex\end{align*} ]?

124 2021-05-08

124.1 22:55

Not every \begin{align*}\[simplicial complex\end{align*} ] is a \begin{align*}\[PL\end{align*} ] manifold:

125 2021-05-06

\begin{align*}\[Arpon Raksit - Hochschild homology and the derived de Rham complex revisited\end{align*} ]

\begin{align*}\[Andrew Blumberg, Floer homotopy theory and Morava K-theory\end{align*} ]

\begin{align*}\[Beuzart-Plessis, On the spectral decomposition of the Jacquet-Rallis trace formula and the Gan-Gross-Prasad conjecture for unitary groups\end{align*} ]

126 2021-05-05

126.1 01:42

126.2 Padmavathi Srinivasan, UGA NT Seminar

^22ba3a

Reference: Padmavathi Srinivasan, UGA NT Seminar.

127 2021-05-04

127.1 The reciprocity law for the twisted second moment of Dirichlet L-functions

Reference: The reciprocity law for the twisted second moment of Dirichlet L-functions https://arxiv.org/pdf/0708.2928.pdf

127.2 The K-Theory of monoid sets

Reference: The \(K'\)-theory of \begin{align*}\[monoid\end{align*} ] sets https://arxiv.org/pdf/1909.00297.pdf

\begin{align*}\[K-Theory\end{align*} ]

127.3 Stefan Schreieder, Refined unramified cohomology

Tags: #seminar_notes #algebraic_geometry

Reference: Stefan Schreieder, Refined unramified cohomology. Harvard/MIT AG Seminar talk.

Main theorem, works not just for smooth schemes, but in greater generality:

127.4 Clausen on rep theory

Reference: https://www.youtube.com/watch?v=XTOwj1LvntM

128 2021-05-03

128.1 Representations of Hopf Algebras

Tags: #representation_theory

See \begin{align*}\[Hopf algebra\end{align*} ]

Link to Diagram

Link to Diagram

Why \begin{align*}\[Hopf algebra\end{align*} ]? Some natural examples:

128.2 Clausen, the K-theory of adic spaces.

Tags: #k_theory #adic #seminar_notes

Reference: Clausen, the K-theory of adic spaces. https://www.youtube.com/watch?v=e_0PTVzViRQ

129 2021-05-02

129.1 Hopf Invariant One

130 2021-05-01

130.1 Notes on \begin{align*}\[Arithmetic Statistics\end{align*} ]

130.2 Old Notes: Erik Schreyer

Some old notes from March 10th, 2020

I talked to Erik Schreyer today about some of the research he did with his advisor Jason Cantarella, including his dissertation work (which he spoke about in the Geometry seminar last week) and a few other papers.

His dissertation work involved a cool way to represent arbitrary planar curves by piecewise circular arcs:

From what I understand, this involves fixing a curve (blue), choosing a collection of circles \(C_1, \cdots C_n\) (black) such that each \(C_i\) intersects \(C_{i+1}\) in at least one distinguished point \(p_i\) (pink). The curve traced out by following an arc on \(C_i\) and switching to circle \(C_{i+1}\) at \(p_i\) is intended to yield a good approximation to the original curve, with certain regularity conditions at the \(p_i\) (such as the first derivatives along both arcs agreeing at the point).

Erik’s work actually seems to go a bit farther – he has an algorithm (a curve-closing operator) that actually takes an open curve and produces a closed curve that is nearby in the \(C_1\) norm. He uses this to construct piecewise circular approximations that consist of circles of equal radii, along with some control over the \(C^1\) distance between the original curve and the approximation.

We also talked a bit about another problem Jason was working on, discussed in the following papers:

130.3 Dirichlet’s Theorem

Dirichlet’s Theorem: An arithmetic progress with \((a, p) = 1\) contains infinitely many primes. As a corollary, one can always find a prime \(q\) that generates \({\mathbb{Z}}_p^{\times}\) for any prime \(p\).

130.4 A SES isomorphic to a direct sum that does not split

Reference

Not every sequence of the form \(0\to A \to A \oplus C \to C \to 0\) splits; take \begin{align*} 0 \to {\mathbb{Z}}\to {\mathbb{Z}}\oplus \bigoplus_{\mathbb{N}}{\mathbb{Z}}/(2) \to \bigoplus_{\mathbb{N}}{\mathbb{Z}}/(2) \to 0 \end{align*} where the first map is multiplication by 2, the second is the quotient map and a right-shift. This can’t split because \((1, 0, \cdots)\) has order 2 in the RHS but pulls back to \((1, 0) \oplus (2{\mathbb{Z}}\oplus 0)\) which has no element of order 2.

130.5 Cogroups

See \begin{align*}\[cogroup\end{align*} ].

131 2021-04-30

131.1 Remy van Dobben de Bruyn, “Constructing varieties with prescribed Hodge numbers modulo m in positive characteristic.”

Reference: Remy van Dobben de Bruyn (Princeton and IAS), “Constructing varieties with prescribed Hodge numbers modulo m in positive characteristic.” Stanford AG Seminar.

\begin{align*} h(\operatorname{Bl}_2 X) &= h(X) - h(z) + h(E) \\ &= h(X) - h(z) + h(z)(1 + {\mathbb{L}}+ {\mathbb{L}}^2 + \cdots + {\mathbb{L}}^{c-1} )\\ &= h(z) + ({\mathbb{L}}+ {\mathbb{L}}^2 + \cdots + {\mathbb{L}}^{c-1} ) ,\end{align*}

where \(z\) is the point removed and \(E\) is the \begin{align*}\[exceptional divisor\end{align*} ].

131.2 l-adic Representations

\begin{align*}\[Seminars and Talks/2021-04-29 The Galois Action on Symplectic K Theory\end{align*} ]

\begin{align*}\[Seminars and Talks/2021-04-29_2 Yves Andre On the canonical, fpqc and finite topologies\end{align*} ]

\begin{align*}\[Seminars and Talks/2021-04-29_3 Ribet Class groups and Galois representations\end{align*} ]

132 2021-04-26

132.1 Random Notes

Some random notes: #todo

-Working out relative homology, an example:

132.2 Random Algebraic Topology

Reference: paper on “constructive” algebraic topology J. Rubio, F. Sergeraert / Bull. Sci. math. 126 (2002) 389-412 403

132.3 19:38

133 2021-04-25

133.1 Fukaya Category

Description of a certain wrapped \begin{align*}[Fukaya category](#fukaya-category-1)\end{align*} \({\mathcal{O}}\): take the objects to be (Lagrangian) embedded curves, the morphisms are the graded abelian groups \(\hom_{\mathcal{O}}\mathrel{\vcenter{:}}=\qty{\bigoplus_{L_0 \pitchfork L_1} {\mathbb{Z}}/2{\mathbb{Z}}, {{\partial}}}\) where \({{\partial}}\) is given by counting holomorphic strips, localize along small isotopies.

133.2 Notes from Eisenbud

Add to Algebra qual review doc #todo

An ideal \({\mathfrak{p}}\) is prime iff \(JK \subset {\mathfrak{p}}\implies J \subset {\mathfrak{p}}\) or \(K\subset {\mathfrak{p}}\).

A ring is a domain iff the ideal \((0)\) is prime.

Inductively, if \({\mathfrak{p}}\) contains a product of ideals then it contains one of them.

Maximal ideals are prime, since \({\mathfrak{m}}\) maximal implies that \(R/{\mathfrak{m}}\) is a field.

A ring is local iff it has a unique maximal ideal \({\mathfrak{m}}\).

An element \(e\) is idempotent iff \(e^2 = e\).

An \(R{\hbox{-}}\)algebra \(S\) is a ring \(S\) and a homomorphism \(\alpha:R \to S\).

Every ring is a \({\mathbb{Z}}{\hbox{-}}\)algebra in a unique way.

The most interesting commutative algebras are \(S/I\) where \(S = k[x_1, \cdots, x_n]\) for \(k\) a field, \({\mathbb{Z}}\), or the \begin{align*}\[localization\end{align*} ] of a ring at a prime ideal.

133.3 Random

133.4 Milnor K Theory in the Wild

See \begin{align*}\[Milnor K theory\end{align*} ]

133.5 Modular forms and Deligne-Serre theorem

133.6 The representation ring

Tags: #idle_thoughts

134 2021-04-23

134.1 What is \begin{align*}\[equivariant cohomology\end{align*} ]?

https://arxiv.org/pdf/1305.4293.pdf

134.2 What is a scheme?

134.3 Notes on \begin{align*}\[homotopy colimit\end{align*} ] via Diagrams

134.4 15:07

\begin{align*}\[2021-04-23 Advice on research and problems\end{align*} ]

134.5 Time Management

\begin{align*}\[attachments/image_2021-04-23-15-55-40.png\end{align*} ]

134.6 \begin{align*}\[group cohomology\end{align*} ] in \begin{align*}\[homotopy theory\end{align*} ]?

Tags: #idle_thoughts

134.7 SeZoom

\begin{align*}[l-adic representations](#l-adic-representations-1)\end{align*}

134.8 17:13

134.9 22:29

135 2021-04-22

135.1 Gromov-Witten Invariants in Derived AG

135.2 Derived Stacks

136 2021-04-21

136.1 15:05: Bhargav Bhatt (Harvard NT Seminar)

#seminar_notes #blog #prisms

Link to Diagram

136.2 Why are \begin{align*}\[triangulated categories\end{align*} ] and \begin{align*}\[derived category\end{align*} ] important?

136.3 A Roadmap to \begin{align*}\[Hill-Hopkins-Ravenel\end{align*} ]

Roadmap to HHR

136.4 Some \begin{align*}\[Lurie stuff\end{align*} ] Content

Lurie’s Seminar on Algebraic Topology

A bunch of suggested papers

Lurie’s Topics in Geometric Topology

136.4.1 The Relationship Between \begin{align*}\[topological Hochschild homology\|THH\end{align*} ] and \begin{align*}\[K-Theory\end{align*} ]

Some remarks on \({\operatorname{THH}}\) and \(K{\hbox{-}}\)Theory, no clue what the original source was:

136.4.2 \begin{align*}\[Eilenberg-MacLane spaces\end{align*} ]

136.4.3 Why Care About \begin{align*}\[stacks\end{align*} ]?

136.5 Homotopy Theory is Connected to \begin{align*}\[Lie algebra cohomology\end{align*} ]

136.6 \begin{align*}\[schemes\end{align*} ] and \begin{align*}\[class field theory\end{align*} ]

-Actual class group for schemes

137 2021-04-18

137.1 Notes on modular forms

#modular_forms

138 2021-04-17

138.1 The “Three Things” Exercise

#advice

Reminding myself of Ravi’s “Three Things” exercise.

\begin{align*}\[Three Things Exercise\#Process for talks\end{align*} ]

139 2021-04-16

139.1 Stanford AG: Samir Canning, joint with Hannah Larson

#seminar_notes

140 2021-04-15

140.1 Beilinson-Bloch Conjecture

Reference: Chao Li, “Beilinson-Bloch conjecture for unitary Shimura varieties.” Priinceton/IAS NT Seminar

140.2 20:13

Paper recommended by Juliette Bruce: https://arxiv.org/pdf/2003.02494.pdf

141 2021-04-14

141.1 21:22

141.2 Bloch-Kato conjecture and L functions

142 2021-04-12

142.1 Chat with Phil

#research_projects

142.2 15:23: Topology Talk

#seminar_notes

143 2021-04-11

143.1 19:29

143.2 19:29

Tags: #qual_analysis

144 2021-04-09

144.1 18:12

\begin{align*}\[quasiisomorphism\end{align*} ] :

145 2021-04-08

145.1 18:11

145.2 23:24

146 2021-04-04

146.1 16:53

See \begin{align*}\[qual review\end{align*} ].

Note from Pete: a common technique on qual Algebra problems is extracting an index 2 subgroup using the Cayley action of \(G\) on itself. These are always normal, so if this exists, \(G\) can’t be simple unless it’s order 2.

147 2021-04-03

147.1 16:28

The connections between \begin{align*}\[Formal group\end{align*} ] and \begin{align*}\[chromatic homotopy theory\end{align*} ] are key. Read Quillen’s paper, J.F. Adams’ blue book, Ravenel, etc. Ravenel has some slides on Quillen’s work (good entry pt). If you really want to go in depth, I enjoyed learning from Hazewinkel’s book “Formal Groups and Applications.”

147.2 16:30

#advice #goals

147.2.1 Setting Goals

147.2.2 Studying

147.3 19:04

147.3.1 Spectral Sequences

Reference: Link to PDF

See \begin{align*}\[Spectral sequence\end{align*} ].

148 2021-04-02

148.1 22:38

149 2021-03-28

149.1 23:18

150 2021-03-26

150.1 20:00

\begin{align*} L(s ; \chi):=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}} =\prod_{p} \qty{ 1-\chi(p) p^{-s} }^{-1} .\end{align*}

151 2021-03-25

151.1 00:08

What is a \begin{align*}\[Kan extension\end{align*} ]? #todo

151.2 00:09

152 2021-03-24

152.1 00:11

153 2021-03-17

#rational_points

153.1 17:00

154 2021-01-21

154.1 13:37

154.2 14:27

154.3 16:13

155 2021-01-20

155.1 16:52

155.2 20:00

156 2021-01-19

156.1 16:29

157 2021-01-05

157.1 00:01

158 2021-01-03

158.1 18:05