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1 Wednesday January 8
Course text: http://math.uga.edu/~pete/integral2015.pdf

Summary: The study of commutative rings, ideals, and modules over them.

The chapters we’ll cover:

• 1 (Intro),
• 2 (Modules, partial),
• 3 (Ideals, CRT),
• 7 (Localization),
• 8 (Noetherian Rings),
• 11 (Nullstellensatz),
• 12 (Hilbert-Jacobson rings),
• 13 (Spectrum),
• 14 (Integral extensions),
• 17 (Valuation rings),
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• 18 (Normalization),
• 19 (Picard groups),
• 20 (Dedekind domains),
• 22 (1-dim Noetherian domains)

In number theory, arises in the study of Zk, the ring of integers over a number field k, along with
localizations and orders (both preserve the fraction field?).

In algebraic geometry, consider R = k[t1, · · · , tn]/I where k is a field and I is an ideal.

Some preliminary results:

1. In Zk, ideals factor uniquely into primes (i.e. it is a Dedekind domain).

2. Zk has an integral basis (i.e. as a Z-modules, Zk ∼= Z[k:Q]).

3. The Nullstellansatz: there is a bijective correspondence

{Irreducible Zariski closed subsets of Cn} ⇐⇒ {Prime ideals in C[t1,··· ,tn]} .

4. Noether normalization (a structure theorem for rings of the form R above).

All of these results concern particularly “nice” rings, e.g. Zk,C[t1, · · · , tn]. These rings are

• Domains
• Noetherian
• Finitely generated over other rings
• Finite Krull dimension (supremum of length of chains of prime ideals)

– In particular, dimZk = 1 since nonzero prime ideals are maximal in a Dedekind domain
• Regular (nonsingularity condition, can be interpreted in scheme-theoretic language)

Note: schemes will have “local charts” given by commutative rings, analogous to building a
manifold from Euclidean n-space. General philosophy (Grothendieck): Every commutative
ring is the ring of functions on some space, so we should study the category of commutative
rings as a whole (i.e. let the rings be arbitrary). This does not hold for non-commutative
rings! I.e. we can’t necessarily associate a geometric space to every non-commutative ring. A
common interesting example: k[G], the group ring of an arbitrary group. Good references:
Lam, ‘Lectures on Modules and Rings’.

Example: Let X be a topological space and C(X) be the continuous functions f : X −→ R. This
is a ring under pointwise addition/multiplication. (This generally holds for the hom set into any
commutative ring.)

Example: Take X = [0, 1] and C(X) as a ring.

Exercise:

1. Show that C(X) is a not a domain.

Hint: find two nonzero functions whose product is identically zero, e.g. bump functions. Note
that they are not analytic/holomorphic.

2. Show that it is not Noetherian (i.e. there is an ideal that is not finitely generated).

3. Fix a point x ∈ [0, 1] and show that the ideal mx =
{
f
∣∣∣ f(x) = 0

}
is maximal.

4. Are all maximal ideals of this form?
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Hint: See textbook chapter 5, or Gilman and Jerison ‘Rings of Continuous Functions’.

Theorem of Swan: A theorem about topological vector bundles over C([0, 1]), see textbook. There
is a categorical equivalence between vector bundles on a compact space and f.g. projective modules
over this ring.

So commutative algebra has something to say about other branches of Mathematics!

Definition: A topological space is called boolean (or a Stone space) iff it is compact, hausdorff,
and totally disconnected.

Example: A projective variety over p-adics with Qp points plugged in.

Definition: A ring is boolean if every element is idempotent, i.e. x ∈ R =⇒ x2 = x.

Exercise: If R is a boolean domain, then it is isomorphic to the field with 2 elements.

Lemma: There is a categorical equivalence between Boolean spaces, Boolean rings, and so-called
“Boolean algebras”.

2 Monday January 13
2.1 Logistics
Some topics for final projects

• The cardinal Krull dimension of Hol(X).
• Galois connections
• Ordinal filtrations
• Lam-Reyes prime ideal principal
• C(X)
• Hol(X)
• Semigroup rings
• Swan’s Theorem

– Vector bundles on a compact space
• Boolean rings and Stone duality
• More Nullstellansatz

– Beyond Hilbert’s usual one
• Hochster’s Theorem

– Characterizes SpecR as a topological space, i.e. when is a topological space homeomorphic
to the spectrum of some commutative ring.

• Invariant theory (quotients of rings under finite group actions, i.e. RG for |G| <∞)
– For R = k a field, this is Galois theory
– Easy case of geometric invariant theory, when G is infinite

• UFDs
– What conditions does a ring need to have to ensure unique factorization?

• Euclidean rings
• Claborn (Leedham-Green-Clark): Every commutative group is (up to isomorphism) the class
group of some Dedekind domain.
– A type of inverse problem, class group measures deviation from being a UFD
– Uses ordinal filtrations, transfinite induction

4



– See proof in elliptic curves course

2.2 Rings of Functions
Let k be a field, X a set of cardinality |X| ≥ 2, and define kX := Maps(X.k) = {f : X −→ K} is a
ring under pointwise addition and multiplication. As a ring, this is a (big!) cartesian product.

Some facts:

• kX is not a domain (exercise), and there are nontrivial idempotents (e2 = e)

Note: it could be worse and have nilpotents.

• kX is reduced, i.e. it has no nonzero nilpotents, where z ∈ R is nilpotent iff ∃n ≥ 1 such that
zn = 0.

– Note: domains are reduced, cartesian products of reduced rings are reduced.

• Every subring of kX is reduced.

Moral: should be viewing every ring as functions on some space, but this can’t literally
be true because of the above restrictions. Nilpotent elements are “hard to view as
functions”.

• For X a topological space, C(X) the ring of continuous functionals to R, then C(X) ⊂ RX .

Exercise: When is C(X) a domain? (Note that we can have products of nonzero functions being
identically zero.)

Example: LetR be the ring of holomorphic functions C	, i.e. Hol(C,C) :=
{
f : C −→ C

∣∣∣ f is holomorphic
}
.

The set of zeros of such an f must be discrete, the example of bump functions doesn’t go through
holomorphically.

This is a domain, not Noetherian, not a PID, but every f.g. ideal is principal (thus this is a Bezout
domain, a non-Noetherian analog of a PID).

It has infinite Krull dimension: recall that ideals are prime iff xy ∈ p =⇒ x ∈ p or y ∈ p iff R/p is
a domain, and the Krull dimension is the supremum S of lengths of chains of prime ideals (only
when S is finite).

If C ⊂ (X,≤) is a finite-length chain in a totally ordered set, then the length `(C) = |C| − 1 (1 less
than the number of elements appearing). The cardinal Krull dimension of a ring R is the actual
supremum.

Note: in Noetherian rings, there can still be finite but unbounded length chains.

LettingX be a complex manifold (i.e. covered by subsets of Cn with holomorphic transition functions)
and let Hol(X) be the holomorphic functionals f : X −→ C. Then Hol(X) is a domain iff X is
connected.

Note that if X is disconnected, we can take a function that is constant on one component and
zero on another, then switch, then multiply to get a zero function.
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If X is a compact connected projective variety, then Hol(X) is just constant functions by the open
mapping functions. So Hol(X) = C, and carddimC = 0 because for any field there are only two
ideals, and here (0) is prime. Moreover, carddimHol(C) ≥ α0.

Note that for complex manifolds, X is either compact or supports many holomorphic functions.

Theorem: If X is a connected complex manifold which has a nontrivial holomorphic function,
i.e. Hol(X) ⊃ C, then there exists a chain of prime ideals in Hol(X) of length |R| > ℵ0, i.e. it has at
least the cardinality of the continuum.

Note: the cardinality could be even bigger!

Maximals are prime: equivalent to fields are integral domains.

2.3 Rings
Take all rings to be unital, i.e. containing 1. A ring without identity is referred to as an rng. In this
course, all rings are commutative.

Example: This is a fairly special restriction. Take (A,+) a commutative group and define End(A) =
{f : A −→ A} the ring of group homomorphisms under pointwise addition and composition. This is
generally not commutative, i.e. End(Z/(2)⊕ Z/(2)) = M2(Z/(2)) the ring of matrices with Z/(2)
entries, which is not commutative.

Exercise: Given (A,+), show that End(
n⊕
A) = Mn(End(A)).

Generally, if R is a ring and M is as R-module, then EndR(M) = {f : M −→M} of R-module
homomorphisms is always a ring under pointwise addition and composition, and is (probably)
non-commutative.

3 Wednesday January 15th
Cayley’s theorem: For G a group, then there is a canonical injective group homomorphism
Φ : G ↪→ Sym(G) ∼= Sn for n = |G|. The map is given by g 7→ g · , i.e. multiplying on the left.

Is there an analog for rings?

Take a similar map:

R −→ EndZ(R,+)
r 7→ (x 7→ rx).

Unfortunately there is no specialization for commutative groups/rings – Sym(G) for example is
noncommutative when |G| ≥ 2. Similarly, even if R is commutative, End(R,+) is probably not.
As per the Grothendieck philosophy, we find that all rings are a ring of functions on something –
namely themselves, since this map is injective.

All rings are commutative here, so take R× =
{
x ∈ R

∣∣∣ ∃ys.t.xy = 1
}
. For R a group, R× is a

commutative group, so this is an interesting invariant.
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Another interesting invariant: the class group.

Notation: Let R• = R \ 0. An element x ∈ R is a zero divisor iff there exists y ∈ R• such that
xy = 0. For x, y ∈ R we write x

∣∣∣ y iff ∃z ∈ R such that xz = y.

R is a domain iff 0 is the only zero divisors, i.e. xy = 0 =⇒ x = 0 or y = 0. (R•, ·) is a commutative
monoid (group without inverses) iff R is a domain. Observe that R is a field iff R• = R×.

For rings R,S we have the usual definition of ring homomorphism, additionally requiring f(1) = 1.
Note that f(0) = 0 follows from f(x+ y) = f(x) + f(y), but f(1) = 1 does not. Rings have products
R1 × R2 which is again a ring under coordinate-wise operations. Note that there are canonical
projections πiR1 × R2 −→ Ri. There is a dual inclusion ι1 : R1 −→ R1 × R2 given by x 7→ (x, 0),
but these are not ring homomorphisms (although everything is a group homomorphism). This
is because ι1(1) = (1, 0) 6= (1, 1), the identity of R1 × R2. Note that 1 always has to map to an
idempotent element, i.e. e2 = e, and idempotents are always zero divisors. Also note that the map
x 7→ 0 is not a ring homomorphism unless S = 0.

Definition: A ring homomorphism is a map f : R −→ S is an isomorphism iff it has a two-sided
inverse, i.e. there exists a morphism g : S −→ R with g ◦ f = idR and f ◦ g = idS .

Exercise: Check that this is equivalent to f being a bijection.

Exercise: Check that the zero ring is the final object in the category of rings. Show that Z is the
initial object in this category?

R is a subring of S iff R ⊂ S and the inclusion R ↪→ S is a morphism.

Adjoining elements: Suppose R ≤ S is a subring and X ⊂ S is just a subset. Then there exists a
ring R[X] such that

• Top-down description: R[X] ≤ S is a subring containing R and X, and is minimal with respect
to this property (obtained by intersecting all such subrings)
• Bottom-up description: things resembling

∑
rixi

Exercise 1.6: Take R = Z, S = Q, P a arbitrary set of prime numbers. Let ZP = Z[
{1
p

∣∣∣ p ∈ P}].

a. When do we have ZP1
∼= ZP2?

Hint: take P1 = {3, 7, 11} , P2 = {5}. Need P1 = P2!

b. Show that every subring T such that Z ≤ T ≤ Q is of the form ZP for some unique set of
primes P .

Note that if T is any intermediate ring between R and S, then R[T ] = T .

3.1 Ideals and Quotients
For f : R −→ S a ring homomorphism, define I = ker f = f−1({0}). Then I is a subgroup of (R,+),
and for all i ∈ I and all r ∈ R we have ri ∈ I, since f(ri) = f(r)f(i) = f(r)0 = 0. In other words,
RI ⊆ I.

By definition, an ideal I of R is an additive subgroup of R that satisfies these properties. Is every
ideal the kernel of a ring homomorphism? The answer is yes, namely the quotient π : R −→ R/I.
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Theorem: Let I ⊂ (R,+), then TFAE:

a. I is an ideal of R, written I E R.
b. There exists a ring structure on the quotient group R/I such that the projection r 7→ r + I is

a ring morphism.

When these conditions hold, the ring structure on R/I is unique and we refer to this as the quotient
ring.

4 Friday January 17th
For a R ⊂ T a subring of a ring, the set of intermediate rings is a large/interesting class of rings.
Recall: uncountably many rings between Z and Q! Taking R a PID and T its fraction field, a
similar result will hold.

Define I E R as the kernel of a ring morphism. This implies that I ⊂ (R,+) with the absorption
property RI ⊂ I. Conversely, any I satisfying these two properties is the kernel of a ring morphism:
namely R −→ R/I. This makes sense as a group morphism.

Exercise: Define xy+I = (x+I)(y+I), need to check well-definedness. Write out (x+i1)(y+i2) =
· · ·, need to check that i1y + i2x+ i1i2 ∈ I, but the absorption property does precisely this.

Note that if we were in a non-commutative setting, this would define a left ideal. These don’t have
to coincide with right ideals – there are rings where the former satisfy properties that the latter
does not.

Example: The subrings of R = Z are of the form nZ for n ≥ 0, with the usual quotient.

Definition: An ideal I E R is proper iff I ( R.

Exercise: An ideal I is not proper iff I contains a unit.

Exercise: R is a field iff the only ideals are 0, R.

Definition: Let I(R) be the set of all ideals in R. What structure does it have? It is par-
tially ordered under inclusion. It is a complete lattice, i.e. every element has an infimum (GLB)
and a supremum (LUB). Namely, for a family of ideals {Ij}, the infimum is the intersection
and supremum is defined as

〈
Ij
∣∣∣ j ∈ J〉, the smallest ideal containing all of the Ij , i.e. 〈y〉 ={

n∑
riyi

∣∣∣ n ∈ N>0, ri ∈ R, yi ∈ y
}
.

Exercise: For I1, I2 E R, it is the case that I1 + I2 := {i1 + i2} = 〈I1, I2〉.

Theorem: Let I E R and φ : R −→ R/I, and define `(I) = {I ⊂ J E R}. Then we can define
maps

Φ : `(R) −→ `(R/I)

J 7→ I + J

J
,

and
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Ψ : `(R/I) −→ `(R)
J E R/I 7→ φ−1(J).

We can check that Ψ ◦ Φ)(J) = I + J , and Φ ◦Ψ(J) = J (= J/I?) So Ψ has a left inverse and is
thus injective. Its image is the collection of ideals that contain J , and Ψ : `(R/I) −→ `I(R) is a
bijection and is in fact a lattice isomorphism with `I(R) ⊂ `(R).

Note that this gives us everything above (?) an ideal in the ideal lattice; the dual notion will come
from localization.

Remarks: The ideal lattice `(R) is

• A complete lattice under subset inclusion,
• A commutative monoid under addition
• A commutative monoid under multiplication, which we’ll define.

Definition: For I, J E R, we define IJ =
〈
ij
∣∣∣ i ∈ I, j ∈ J〉. Note that we have to take the ideal

generated by products here.

For 〈x〉 = (x) a principal ideal and 〈y〉 principal, we do have (x)(y) = (xy). Note that IJ ⊂ I
⋂
J ,

whereas the sum was larger than I, J .

Exercise: Note that (`(R), ·) has an absorbing element, namely (0)I = (0). For (M,+) a
commutative monoid and M ↪→ G a group, then multiplication by x is injective and so for
all y ∈M , xz = yz =⇒ x = y, so M is cancellative.

Question: what if we consider I•(R) the set of nonzero ideals of R. Does this help? We will see
next time.

5 Wednesday January 22nd
Let R be a ring and let I(R) be the set of ideals I E R. This algebraic structure is

• Partially ordered under inclusion
• Forms a complete lattice with sup the ideal generated by a family and inf the intersection.
• Forms a commutative monoid under I + J
• Forms a commutative monoid under IJ

For any commutative monoid (M,+), there exists a group completion G(M) such that

• G(M) is a commutative group
• g : M −→ G(M) is a monoid homomorphism
• For any map φ : (M,+) −→ (G,+) into a commutative group, we have the following diagram

M G

M(G)

∀φ

g ∃!Φ

9



So φ factors through M(G).

If this exists, it is unique up to unique isomorphism (as are all objects defined by universal properties).
It remains to construct it.

Exercise: For (M,+) a commutative monoid, show that TFAE

1. There exists an injective ι : M ↪→ G monoid homomorphism for G some commutative group.
2. The map g : M −→ G(M) is an injection.
3. M is cancellative, i.e. ∀x, y, z ∈M we have x+z = y+z =⇒ x = y, i.e. the map pz(x) = x+z

is injective.

The content here is in 3 =⇒ 1.

A commutative monoid is reduced iff M× = (0), i.e. if “∀m ∈ M∃n such that m + n = 0” =⇒
m = 0

Example: (N,+) and (Z+, ·) are cancellative and reduced.

Definition: z ∈M is a zero element iff z + x = z for all x ∈M .

Remark: If M has a zero element, then G(M) = {0}.

(0) is a zero element of (I(R), ·), so this is not cancellative. If we take I• the set of nonzero ideals
with multiplication, then this is a submonoid of I(R) iff R is a domain.

For R a domain, let I1(R) be the set of nonzero principal ideals of R, then I1(R) = R•/R×, so this
is reduced and cancellative.

What is the group completion? In this case, it will consist of fractional ideals.

If R is a PID, then I•1 (R) = I•(R) is reduced and cancellative.

Example: I• ∼= (Z+, ·).

Warning: If R is not a PID, then I•(R) need not be cancellative.

Exercise: Take R = Z[
√
−3] and p2 :=

〈
1 +
√
−3, 1−

√
−3
〉
. Show that |R/p2| = 2, |R/(2)| = 4,

and p2
2 = p2(2) and

∣∣∣R/p2
2

∣∣∣ = 8. Conclude that I•(R) is not cancellative.

What went wrong here? Take K = Q[
√
−3], then Zk[

1 +
√
−3

2 ] is the integral closure of Z in K.
Zk is a Dedekind domain, and there are inclusions

Z ⊂ Z[
√
−3] ( Z[1 +

√
−3

2 ] ⊆ K.

Here the problem is that Z[
√
−3] is not a Dedekind domain. If R is a Dedekind domain, then I•(R)

is cancellative.

Exercise: Does the converse hold?

Things that are too small to be the full rings of integers, and things tend to wrong.
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5.1 Pushing / Pulling
Let f : R −→ S be a ring homomorphism.

We can define a pushforward on the set of ideals I(R):

f∗ : IR −→ I(S)
I 7→ 〈f(I)〉 .

and a pullback

f∗ : I(S) −→ I(R)
J 7→ f−1(J).

Exercise: Show that f−1(J) E R.

For I E R and J E S, then

f∗f∗(I) ⊇ I
f∗f
∗(J) ⊆ J.

Exercise: These are not equal in general, and give examples where equality does and does not
hold.

If f is surjective, f∗f∗J = J .

Will also hold for localization, which is dual to taking a quotient.

Define I := f∗f∗(I) and J◦ := f∗f
∗(J), the closure and interior respectively. Show that these

operations are idempotent.

Definition: An ideal p is prime iff ab ∈ p =⇒ a ∈ p or b ∈ p.

Exercise: I is prime iff R/I is a domain.

Definition: Spec(R) = {p E R} the collection of prime ideals is the spectrum.

Exercise: Show that for I E R, if we define

V (I) :=
{
p ∈ Spec(R)

∣∣∣ p ⊇ I} ⊆ Spec(R),

then
{
V (I)

∣∣∣ I ∈ I(R)
}
are the closed sets for a topology on Spec(R) (the Zariski topology).

Exercise: If f : R −→ S and J ∈ Spec(S) then f∗(J) ∈ Spec(R). Show that f∗ : Spec(S) −→
Spec(R) is a continuous map. Conclude that Spec( · ) is a functor.

Definition: I E R is maximal iff I is proper and is not contained in any other proper ideal.

11



Exercise: I is maximal iff R/I is a field.

Exercise: Show that maximal ideals are prime.

Definition: Let Specmax(R) be the set of maximal ideals and define V (I) =
{
m ∈ Specmax(R)

∣∣∣ m ⊇ I}.
Exercise: Show that these form the closed sets for a topology, and that this is the subspace
topology for the Zariski topology.

Exercise: Show that if f : R −→ S and m ∈ Specmax(S) that f∗(m) is prime but need not be
maximal.

Exercise: Show that if f is an integral extension, then maximals do pull back to maximals.

6 Friday January 24th
6.1 Ideals and Products
Recall: Prime and maximal ideals.

Fact: If I E R then there exists a maximal ideal I ⊂ m E R.

Proof: Use Zorn’s lemma.

Corollary: maxSpec R 6= ∅ ⇐⇒ R 6= 0.

Later: Multiplicative avoidance, if S ⊂ R is nonempty with SS ⊂ S, let I E R with I
⋂
S = ∅,

then

a. There exists an ideal J ⊇ I with J
⋂
S = ∅ which is maximal with respect to being disjoint

from S.

b. Any such ideal J is prime.

Taking S = {1} recovers the previous fact.

Exercise: Let f : R −→ S be a ring homomorphism and p ∈ Spec(R). Show that f∗(p) need not
be prime in S.

We can consider products of rings, and correspondingly I(R1 ×R2).

Exercise: Show that if φ is surjective, φ(I) is an ideal.

Proposition: Let I ∈ I(R1 ×R2). Take πi −→ Ri the projections, and let Ii be the corresponding
images of I. Then I = I1 × I2.

Note: a suspiciously strong result! Not every group is the cartesian product of some subgroups.

It’s clear that I ⊂ I1 × I2.

Proof: Showing I1 × I2 E R1 ×R2 is an ideal, since it equals 〈I1 × {0} , {0} × I2〉.

To show I1 × I2 ⊆ I, show that I1 × 0, 0× I2 ⊆ I. E.g. I1 × 0 ⊆ I: take (x, 0) ∈ I1 × 0 such that
there exists a y ∈ R2 with (x, y) ∈ I. Then (x, y) · (1, 0) = (x, 0) ∈ I, then similarly 0× Is ⊆ I.

�
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Figure 1: Image
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Exercise: Use I(R1 ×R2) = I(R1)× I(R2) to describe Spec(R1 ×R2) in terms of Spec(R1) and
Spec(R2).

Question: For a ring R, when is R ∼= R1 ×R2 for some nonzero R1, R2?

Exercise: Show that comaximal ideals correspond with coprime ideals when R = Z.

Theorem (Chinese Remainder): If I1, I2 are comaximal, so I1 + I2 = R, then the map

Φ : R −→ R/I1 ×R/I2

x 7→ (x+ I1, x+ I2).

Then ker Φ = I1
⋂
I2

CRT= I1I2 and Φ is surjective, and

R/(I1
⋂
I2) = R/I1I2 ∼= R/I1 ×R/I2.

Case 1: Let I1 + I2 = R and I1
⋂
I2 = 0 (equivalently I1I2 = (0)), then R ∼= R/I1 ×R/I2.

Conversely, let R = R1×R2 with R1, R2 nonzero. Let e1 = (1, 0) and e2 = (0, 1). Then e1e2 = 0 and
e2 = (1−e1), so 0 = e1(1−e1) = e1−e2

1 and e1 is idempotent. So e1, e2 are complementary nontrivial
idempotents. Then I1I2 = e1e2 = (0), I1 + I2 = 〈e1, e2〉 = R, and thus R = R/e2R×R/e1R. Note
that e2R = 0×R2 and e1R = R1 × 0, thus

R/e2R = R1 ×R2
0×R2

= R1

R/e1R = R1 ×R2
R1 × 0 = R2.

�

We thus have a correspondence

{Nontrivial product decompositions R=R1×R2} ⇐⇒ {I1,I2 E R such that I1I2=0 and I1+I2=R} ⇐⇒ {Idempotents e 6=0,1} .

Thus a ring can be decomposed as a product iff it contains nontrivial idempotents.

Definition: R is connected iff there do not exists nonzero R1, R2 such that R ∼= R1×R2 iff R does
not contain an idempotents e 6= 0, 1.

Exercise: Show that R is connected iff Spec(R) is connected as a topological space.

Note: Not every ring is a finite product of connected rings.

14



6.2 Modules
For (M,+) a commutative group, we want an action RyM for R a ring. Recall that End(M) for
a group is a (potentially noncommutative) ring. An R-module structure is a ring homomorphism
R −→ End(M). Equivalently, it is a function R×M −→M with rs(x) = r(sx), r(x+ y) = rx+ ry,
and 1 · x = x for all x ∈M .

Note that this defines a left R-module, but right/left modules coincide for commutative rings.

Exercise: Let M be an R-module and for m ∈M define Ann(m) =
{
r ∈ R

∣∣∣ xm = 0
}
E R; show

this is in fact an ideal.
Note: skipped chapter on Galois connections, i.e. some binary relation on a pair of sets. This
is an instance of such a connection, where x ∼ m ⇐⇒ xm = 0.

For any subset S ⊂ M , define Ann(S) :=
{
x ∈ R

∣∣∣ xm = 0 ∀m ∈ S
}
. Show that Ann(S) =⋂

m∈S
Ann(m) and Ann(M) =

{
x ∈ R

∣∣∣ xM = 0
}

= ker(R −→ End(M)).

Definition: M is faithful iff Ann(M) = 0 iff R ↪→ End(M) is an injection.

Exercise: Any M is naturally a faithful R/Ann(M)-module.

7 Monday January 27th
7.1 Localization
Consider rings T such that Z ⊆ T ⊆ Q, and let P be a set of prime numbers. We’ve shown that if
P,Q are two sets of prime numbers, then Zp = Zq ⇐⇒ Zp ∼= Zq ⇐⇒ P = Q.

Let R be a domain with fraction field K. Let P be a set of mutually nonassociate prime elements.
Note that p ∈ R is a prime element iff (p) is a prime ideal. We say x, y are associates iff there exists
a u ∈ R× such that y = ux. Since we’re in a domain, (exercise) this is equivalent to (x) = (y).

Fact: We can then consider RP := R[
{1
p

∣∣∣ p ∈ P}], and the fact is that the previous statement
still holds.

But if R = Z, we also have (exercise) if Z ⊂ T ⊂ Q then T = Zp for a unique P .

Exercise: How do we find such a P? This comes down to looking at a
b
∈ T with gcd(a, b) = 1,

then 1
b
∈ T .

Hint: In a PID, gcd(a, b) exists and is a Z-linear combination of a and b. The solution should
work for an arbitrary PID.

Let R be a domain and S multiplicatively closed (so (S, ·) ≤ (R, ·) is a submonoid). Then S is
primal if S is generated as a monoid by its prime elements. Suppose that S is saturated, i.e. if s ∈ S
and r ∈ R with r

∣∣∣ s, then r ∈ S.
Can always add in all divisors.
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We can then define the localization of R at S,

Rs :=
{
a

s

∣∣∣ a ∈ R, s ∈ S} .
This satisfies R ⊂ RS ⊂ K, and is a multiplicative partial group completion. If we took nonzero
elements, this would yield exactly the fraction field.

Theorem (Negata): Let R be a Noetherian domain with S ⊂ R primal as above. If RS is a UFD,
then R is a UFD.

Exercise: Show that the converse holds.
Fraction fields are always UFDs? Localizing makes it easier for irreducibles to be prime. This
helps prove that some interesting rings are UFDs.

7.2 Modules
If M is an R-module, then an R-submodule N ≤M is a subgroup of (M,+) such that Ry N ⊂ N .

Every ring R is an R-module over itself, and the R-submodules of R are precisely the ideals of R.

Can express certain concepts about rings/commutative algebra in the language of modules.

A morphism of R-modules f : M −→ N is a homomorphism (M,+) −→ (N,+) such that
f(r y m) = r y f(m).

Exercise: Any module morphism that is a bijection is an isomorphism. (Usually true in algebraic
settings.)

We can form quotient modules M
N

which is an R-module with r y (m+N) = (r y m) +N , and

M −→ M

N
is a surjective morphism.

If I E R is an R-submodule of R, then R/I is an R-module. We have Ann(R/I) = I.

Fact: Every ideal in R is the annihilator of some R-module.

Fact: Suppose R is a ring such that every every nonzero R-module is faithful, then R is a field.
The converse also holds.

General idea: we study rings by looking at modules over them.

For an R-module M and S ⊂M , then we can consider 〈S〉 the R-submodule generated by S. We
can write this as

⋂
N s.t. S⊂N⊆RM

N =
{∑
i=1n

risi
∣∣∣ ri ∈ R, si ∈ S

}
.

We say R is finitely generated iff there exists a finite generating set S ⊂M . We say M is cyclic iff
it is generated by a single element, i.e. M = 〈s〉.

16



Let {Mi}i∈I be a family of R-modules. Let
∏
i∈I

Mi be the cartesian product with a coordinate-wise

R-action be the direct product. Let⊕
i∈I

Mi =
{

(xi) ∈
∏

Mi

∣∣∣ xi 6= 0 for finitely many i
}
,

which is a submodule of
∏

Mi. When I is finite, these are equal.

Recall: If R is a PID and M is a finitely generated R-module, then there exist finitely many cyclic
R- modules {C1, · · · , Cn}, then M ∼=

⊕
Ci.

Exercise: Let R be a ring and C a cyclic R-module, then show that C ∼= R/Ann(C) as R-modules.

We’ll later see that the class of rings R such that every R-module is free are exactly fields.

Remark: Let I E R, then I is cyclic as an R-module iff I is principal.

Exercise:

a. Let I E R for R a domain, then I is indecomposable, i.e. I 6= M1 ⊕M2 for any nonzero
M1,M2 R-modules.

b. If R is additionally Noetherian and not a PID, then there exists an I E R where I is finitely
generated, not principal, and so I is not a cyclic R-module.

Converse to structure theorem! Mild assumptions negate cyclic direct sum decomposition.

8 Wednesday January 29th
Coming up: the modules

⊕
Z, homR(M,N),M ⊗R N , as well as various properties:

• Torsion
• Torsionfree
• Free
• Projective
• Flat
• Injective
• Divisible

We have a series of implication

free =⇒ projective =⇒ flat =⇒ torsionfree

8.1 Universal Mapping Properties

Definition 8.1.
For a collection {Mi} of modules, the direct product is characterized by

17



Mj

N
∏

Mi

Mk

ϕj

ϕk

∃!

πk

πj

Here we define the canonical projection by πj(m1, · · · ,mj , · · · ) = mj .

Fact

homR(N,
∏

Mi) =
∏

homR(N,Mi)

Definition 8.2.
For a collection {Mi} of modules, the direct sum is characterized by

Mj

⊕
Mi N

Mk

ιi

ϕj

∃!

ιk

ϕk

Here we define the canonical injection by ιj(m) = (0, 0, · · · ,m, 0, · · · ). In this case, we can define
φ(m1,m2, · · · ,mi, · · · ) =

∑
φi(mi), which makes sense because cofinitely many of the terms in this

sum are zero.

Fact

homR(
⊕
s∈S

R,N) =
∏
s∈S

homR(R,N) = NS

Fact homR(R,N) ∼= N via the map f ∈ hom(R,N) 7→ f(1).

8.2 Free Modules

Definition 8.3.
For M an R-module and S ⊂M ,

1. S spans M if 〈S〉 = M , where 〈S〉 is the set of all finite linear combinations of elements in S.

2. S is R-linearly independent iff
∑

rimi = 0 =⇒ ri = 0 for all i.

3. S is a basis for M iff S is a spanning R-linearly independent subset of M .

If M admits a basis, M is said to be free.

18



Theorem 8.1. a. If S = {si} is a basis for M , then there is a surjection⊕
s∈S

R −→M

ri ←[
∑

risi

b. For any set S, the module
⊕
s∈S

R has a canonical basis

es = (0, 0, · · · , 0, 1, 0, · · · , 0)

c. If φ :
⊕
s∈S

R −→M is an isomorphism, then {φ(es)}s∈S is a basis for M .

Fact Let F be a free R-module, then Ann(F ) = R if F = (0) and 0 otherwise. Moreover,

• Ann(
⊕

Mi) =
⋂

Ann(Mi)
• Ann(R) = {0}

Proposition 8.2.
For a ring R 6= 0, TFAE:

a. Every R-module is free
b. R is a field

Proof .
a =⇒ b: If R is not a field, then 0 < I E R is proper, and since Ann(R/I) = I, we have
0 < Ann(R/I) < R. So Ann(R/I) is proper, and R/I is thus not a field.

�

The reverse implication is linear algebra. Every vector space has a basis by AOC (note that this is
equivalent to Zorn’s Lemma).

Fact Every R-module N is the quotient of a free module.

This follows by taking the generating set S = N , then
⊕
n∈N

R� N using a previous fact.

Fact N is quotient of a finitely generated free module iff N is finitely generated.

Exercise Show that for 0 −→ A −→ B −→ C −→ 0 a SES of R-modules,

a. If A,C are finitely generated, then so is B.

b. If B is finitely generated, then so is C.

Example 8.1.
It is possible for B to be finitely generated with A < B and A not finitely generated. Let R be
non-Noetherian. Equivalently, there exists I E R that is not finitely generated. So take B = R
and A = I. For example, take M = C([0, 1], R) the module of continuous functionals, which is
non-Noetherian.

Examples of non-Noetherian rings:

19



1. {Ri} where each Ri is infinite and ???; then
∏

Ri is non-Noetherian.

2. For k a field, T =
{
tn
∣∣∣ 1 ≤ n <∞

}
, take R = k[T ]. Then I = 〈T 〉 is not finitely-generated.

Fact If R is a Noetherian ring, then every finitely generated R-module is a Noetherian module.

Example 8.2.
Take R,M = Z, which are free modules, and S = {2}. Note that S is R-linearly independent in M ,
but can not be extended to a basis, and 〈S〉 = 2Z 6= Z. Similarly, S′ = {2, 3} can not be reduced to
a basis, while

〈
S′
〉

= Z.

Question: can M have basis sets of different cardinalities? Answer: sometimes, commutative rings
have the invariant basis property.

9 Friday January 31st
9.1 Tensor and Hom
Let M,N be R-modules, then we define

homR(M,N) :=
{
f : M −→ N

∣∣∣ f is an R-module map
}
.

Recall that R-module maps satisfy

• f : (M,+) −→ (N,+) a morphism of abelian groups
• For all r ∈ R, for all m ∈M , f(rm) = rf(m).

Note that homR is a commutative group, and is in fact an R-module with structure given by
(r · f) ·m 7→ rf(m) = f(rm).

Note that the proof of this fact uses commutativity in a key way.

Facts:

homR(R,N) = N

homR

(⊕
s∈S

Rs, N

)
= NS

homR(M,R) := M∨.

Note: Infinite dimensional vector spaces over fields are never isomorphic to its dual.

Exercise: Think about M∨ and (M∨)∨.

Recall the map
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ι : M −→ (M∨)∨ = homR(homR(M,R), R)
x 7→ (` : M −→ R 7→ `(x) ∈ R).

Exercise: If R = k is a field, then show that ι is injective iff dimM is finite.

Is this always injective? No! Counterexample: Take R = Z and M = Z/pZ, then M∨ =
homZ(Z/pZ,Z) = 0.

It can also fail to be surjective in the infinite dimensional case – the space M∨ is strictly larger than
M .

Definition: M is reflexive if ι : M ∼−→ (M∨)∨ is an isomorphism.

Exercise: Show the following:

• If M is free and finitely generated, then M is reflexive.
• If R = k is a field, then M is reflexive iff M is finitely generated.
• There exists a ring R and a reflexive R-module M that is not finitely generated.

9.2 Free Torsion Modules
Let R be a domain, and for all a ∈ R• the map [a] : R −→ R is injective, and [a] ∈ homR(R,R) = R.

Definition: M [tors] :=
{
m ∈M

∣∣∣ Ann(m) 6= (0)
}
≤M is the torsion submodule of M .

Definition: M is torsion iff M = M [tors], and M is torsion-free iff M [tors] = (0).

Exercise: Show that if 0 −→ A −→ B −→ C −→ 0, then

• Show that if B is torsion then A,C are torsion.
• If A,C are torsion, must B be torsion?
• Show that if B is torsion-free then A is torsion-free but C need not be torsion-free.
• If A,C are torsion-free, must B be torsion-free?

Note: 0 −→ Z/2 −→ Z/4 −→ Z/2 −→ 0 is an extension that isn’t a semidirect product!

Fact: Free modules are torsion-free.

Note that we need to be in a domain to even talk about torsion.

Proposition: Let R be a domain and M an R-module. Then

a. M/M [tors] is torsion-free.
b. If M is finitely generated, then M is torsion free iff M is isomorphic to a submodule of a

finitely-generated free module.

Proposition: Free =⇒ projective =⇒ flat =⇒ R a domain torsion-free.

Proof of a: Let x ∈ M/M [tors] such that ∃r ∈ R• such that rx = 0. Lift x to x̃ ∈ M , then
rx̃ ∈ M [tors]. Then ∃r′ ∈ R• such that 0 = r′(rx̃) = (r′r)x̃ := r2x̃ for some r2 6= 0. But then
x̃ ∈M [tors], and so x = 0 in M/M [tors].
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Proof of b: Let M = 〈x1, · · · , xr〉 with r ≥ 1 and xi 6= 0. After reordering, there exists some s with
1 ≤ s ≤ r such that x1, · · · , xs are R-linearly independent, and for all i > s, {xj}j≤s

⋃
xi is linearly

dependent. Then define F := 〈x1, · · · , xs〉; this is a finitely generated free module. If r = s, we done.

Otherwise, r < s, then ∀i > r there exists an ai ∈ R• such that aixi ∈ F . So we can take
a := as+1 · · · ar 6= 0; then aM ⊂ F . Since M is torsion-free, the multiplication maps are injective,
so [a] : M

∼=−→M ⊂ F , so M ↪→ F embeds M into a free module.

�

Does this work with M not finitely generated? No, we can’t take an infinite product for a. Is every
torsion-free module a submodule of a free module? No.

Remark: This fails without finite generation, see Theorem 3.56 on ordinal filtration. If R is a PID
and F is a free R-module and M ≤ F as an R-submodule, then M is free.

Thus if R is a PID, “subfree” ⇐⇒ free. Does torsion-free imply free? No, take R = Z and
M = (Q,+), this is not finitely generated and torsion-free but not a free Z-module.

Definition: For R a domain, M is divisible if ∀a ∈ M• iff [a] : M � M is a surjection. M is
uniquely divisible if for all a ∈ M•, [a] : M

∼=−→ M is an isomorphism, i.e. M is torsion-free and
divisible.

Exercise: Show that (Q,+) is a uniquely divisible Z-module.

Exercise: Let R be a domain with fraction fieldK, with R 6= K. Show that a nonzero free R-module
is not divisible but (K,+) is a divisible torsion-free R-module. Thus (K,+) is a torsion-free module
R-module that is not free.

Remark: Finitely generated torsion free modules are embedded in free modules. Note that in the
spectrum of properties earlier (projective, free, etc), the two extremes are equal for f.g. PIDs.

Exercise: Let R be a Noetherian domain which is not a PID. Then an ideal I E R with I f.g.,
not principal, and a torsion-free R-module. Show that since I is not principal, I is not free as an
R-module.

So ideals can’t contain linearly independent elements, so they have to be free of rank 1 and
thus principal. So f.g. torsion-free is strictly weaker then free in this setting.

10 Monday February 3rd
Some module topics from Chapter 8.

10.1 Noetherian and Artinian Modules
Definition: A poset (X,≤) is said to satisfy the ACC or to be Noetherian iff there does not
exist an infinite sequence (a chain) {xn} with strict inequalities x1 < x2 < · · ·. Equivalently,
every weakly ascending chain x1 ≤ x2 ≤ · · · eventually stabilizes, i.e. there exists an N such that
xN = xN+1 = · · ·.

Definition: Similarly, a poset satisfies the DCC or is Artinian iff there does not exist an infinite
decreasing sequence x1 > x2 > · · ·.
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Definition: For (X,≤), define the order dual (X∨,≤) where x ≤ y ∈ X∨ ⇐⇒ y ≤ x ∈ X.

Proposition: X is Noetherian iff X∨ is Artinian.

Lemma: The ACC holds iff every nonempty subset has a maximum (and similarly the DCC with
minimums).

Proof: Otherwise use AOC to pick elements xi; if xi isn’t the maximum then there is some xi+1 > xi,
and this yields an infinite ascending chain iff no maximum.

Let M be an R-module, and define SubRM = {(R-submodules of M,≤)}.

Lemma: M is Noetherian ⇐⇒ every submodule N ≤M is finitely generated.

Proof: Apply DCC.

�

Exercise: Let M ′ ⊂M and q : M −→M/M ′. Let N1 ⊂ N2 ⊂M such that

• N1
⋂
M ′ = N2 = M ′, and

• q(N1) = q(N2).

Then N1 = N2.

Proposition: If 0 −→ M ′ −→ M −→ M ′′ −→ 0 is exact and M is Noetherian (resp. Artinian)
then M ′,M ′′ are both Noetherian (resp. Artinian).

Proof: Note that SubRM ′,SubRM ′′ ↪→ SubRM in an order-preserving manner. If we then have

N1 ⊂ N2 ⊂ · · · with Ni ≤M submodules of M , we can consider Nn = Nn +M ′

M ′
, which is weakly

increasing in M ′.

Note: this is how we push forward into quotients.

Thus this chain stabilizes, so for i, j � 0 we have Ni+M ′ = Nj +M ′. So then Ni

⋂
M ′ = Nj

⋂
M ′,

and by the exercise, Ni = Nj for all i, j � 0.

�

Corollary: R is Noetherian (resp. Artinian) iff every finitely-generated R-module is Noetherian
(resp. Artinian)

Proof:

=⇒ : Suppose R is Noetherian. Note that 0 −→ R −→ R2 −→ R −→ 0 since R2 is an extension of
R by R. Thus R2 is Noetherian, and inductively Rn is a Noetherian R-module.

If M is a finitely-generated R-module, it is a quotient of a finitely-generated free R-module, and in
particular 0 −→ K −→ Rn −→M −→ 0 is exact. So M is Noetherian, by the previous proposition
(middle of a SES Noetherian =⇒ ends are Noetherian).

�

10.2 Tensor Products
Motivation from Representation Theory: For G finite, H ≤ G, and ρ : G −→ V a finite-dimensional
C-representation, this data is equivalent to a C[G]-module structure on V . If W is a representation
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on H, then IndGHW is a representation of G given by V = IndGHW = W ⊗C[H] C[G].

Definition: Let M,N be R-modules, then the tensor product M ⊗R N is an object characterized
up to canonical isomorphism by the following universal property: If P is an R-module and Φ :
M ×N −→ P is any bilinear map, then there exists a unique lift such that the following diagram
commutes:

M ⊗R N

M ×N P

∃!ψ

Φ

ι

where ι : M ×N −→M ⊗RN is R-bilinear and for all (m,n) ∈M ×N , we denote m⊗n := ι(m,n).

By dimension counting in the finite-dimensional case of vector space, it’s clear that ι need not be
surjective. In general, elements in M ⊗RN are finite sums of simple tensors, not just simple tensors,
i.e. M ⊗R N = 〈ι(m,n)〉.

Proof (existence): Let F be the free R-module on M × N with basis
{

(m,n)
∣∣∣ m ∈M, n ∈ N

}
.

Mod out by the following relations: for all m,m1,M2 ∈M and for all n, n1, n2 ∈ N and all r ∈ R,

• (m1 +m2)⊗ n−m1 ⊗ n−m2 ⊗ n
• m⊗ (n1 + n2)−m⊗ n1 −m⊗ n2
• r(m⊗ n)− (rm)⊗ n
• r(m⊗ n)−m⊗ (rn)

Let R be the ideal generated by these relations, the define M ⊗RN = F/R by (m,n) 7→ (m,n) +R.
Then (straightforward check) the universal mapping property holds.

�

How do we work with tensor products? Namely, how do we even know whether an arbitrary element
is zero or not in this complicated quotient.

• To show m⊗ n = 0, use bilinear relations (reduce to relations above)
• To show m ⊗ n 6= 0, find an R-module and a bilinear map ψ : M ⊗R N −→ P such that

im (m⊗ n) 6= 0.
• To show M ⊗R N ∼= X, show that X satisfies the universal property.

Exercise: R⊗RM ≡M by (r,m) 7→ r ·m, with · the R-module action on M . Let P be arbitrary,
let φ : R×M −→ P be arbitrary, and define ψ : M −→ P by m 7→ φ(1,m).

Exercise: Z/mZ ⊗Z Z/nZ ≡ Z/ gcd(n,m)Z. Show that every element is both n-torsion and
m-torsion.

Proposition: For M and R-module and f : R −→ S, we can create an S-module S ⊗RM by base
change.

Definitely the most important concept thus far!
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11 Wednesday February 5th

Recall that if M,N are R-modules then there is a map M ×N Φ−→M ⊗R N where (r,m) 7→ r ⊗m
which is universal wrt the property that any bilinear map φ : M × N −→ A factors through Φ
uniquely.

We have a notion of pullback, where if i : R −→ S and N is an S-module then i∗N is an R module
with action given by composition R i−→ S

·−→ EndZ(N).

Dually, we have a notion of base change, where for M an R-module we can form i∗M := S ⊗RM
an S-module where s(

∑
si ⊗mi) =

∑
ssi ⊗mi.

An R-algebra is i : R −→ S a ring morphism, where algebra morphisms f : S1 −→ S2 are given by
commutative diagrams

R S1

S2

i1

i2
f

For S, T R-algebras, the tensor product S⊗RT is anR-algebra with (s1⊗m1)·(s2⊗m2) = s1s2⊗m1m2.
Note that the tensor product satisfies the universal property of the direct sum or coproduct:

t

T 1⊗ t

R S ⊗R T W

S s⊗ 1

s

ψ

∃!

φ

Exercise: Verify the following identities

One: LetM be anR-module andN an S-module with ι : R −→ S. homR(M, ι∗N) = homS(ι∗M,N) =
homS(S ⊗RM,N). What’s the map? s⊗m 7→ sf(m).

Two: For P and R-module and M,N S-modules, we have M ⊗X (i∗N ⊗R P ) = i∗(M ⊗S N)⊗R P .
So for N = S, then M ⊗S (S ⊗R P ) = M ⊗R P .

Three (Good Exercise! Very important!): ForM an R-module and I E R, we have IM ⊂R M .
Show that we can identify the base change as R/I ⊗RM = M/I.

Show that the RHS satisfies the appropriate universal property.

Four:

• (⊕Mi)⊗R N = ⊕(Mi ⊗R N).
• The tensor product of free modules is free.
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• If F is a free R-module and we base change with ι : R −→ S then S ⊗R F is a free S-module.

Definition: Let R be a ring, then R satisfies the invariant basis number property (IBN) iff any two
bases for a free left R-module have the same cardinality.

Definition: R satisfies the rank condition iff whenever there exists a q : Rm � Rn, n ≤ m. R
satisfies the strong rank condition iff whenever q : Rm ↪→ Rn then n ≤ m.

Facts: If R is commutative or (left)-Noetherian, then strong rank condition =⇒ rank condition
=⇒ IBN.

Note: this is not obvious, since if R is not Noetherian there are submodules that aren’t finitely
generated but can still have bounded rank.

Exercise (Non-Commutative): Let k be a field and V an infinite dimensional k-vector space,
i.e. V ∼= V ⊕ V . Let R := Endk(V ); then R does not satisfy the IBN.

Proposition: If R is nonzero and commutative then R satisfies IBN.

Proof: Suppose there exist I, J such that ⊕i∈IR ∼=R ⊕j∈JR. We want to show that |I| = |J |. Since
R 6= 0, there is a maximal ideal m ∈ maxSpec (R). Since R/m is a field, we base change to it to
obtain R/m⊗R (

⊕
i∈I

R) =
⊕
i∈I

R/m. We know this equals R/m⊗R (
⊕
j∈J

R) = ⊕j∈JR/m. So I, J are

bases of isomorphic vector spaces and thus |I| = |J | by linear algebra.

Definition: A module M is Noetherian iff ACC on submodules, and Artinian iff DCC on submod-
ules.

Exercise: If R = k is a field and V is a k-vector space, then V is Noetherian iff Artinian iff
infinite-dimensional.

Exercise: If R = Z, R is Noetherian but not Artinian. Find a Z-module that is Artinian but not
Noetherian.

Try all 2n possibilities for adjectives.

Exercise: If R is finite, it is both Artinian and Noetherian, and moreover has only finitely many
ideals.

Artinian is much stronger, and implies Noetherian? Converse iff every ideal is maximal. The
only Artinian integral domains are fields. Very small class of rings. It’s not true that Artinian
alone implies finitely many ideals.

Exercise (8.29 in Notes): Let I = (x2, xy, y2) = (xy)2 E C[x, y] and take R = C[x, y]/I.

a. Show that a C-basis for R is given by {1 + I, x+ I, y + I}.

b. Deduce that R is Noetherian and Artinian.

c. Show proper ideals of R are precisely the C-subspaces of 〈x, y〉+ I.

d. Deduce that R has continuum many ideals.
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12 Friday February 7th
12.1 Projective Modules
For X a topological space and π : E −→ X a real vector bundle on X. Then Γ(E,X) ={
σ : X −→ E

∣∣∣ π ◦ σ = idX
}
is naturally a module over the ring C(X,R) of continuous real-valued

functions. For p ∈ X, the fibers σ(p) ∈ π−1(p) are vector spaces, and we can consider f(p)σ(p) for
any f ∈ C(X,R). For trivial bundles Rn ×X π−→ X with a global section

σ : X −→ Rn ×X
p 7→ (σ̃(p), p).

Then σ̃ : X −→ Rn, or equivalently a collection of n continuous functions σ̃j −→ R. Thus
Γ(X,E) ∼= C(X,R)n.

Theorem (Swan): Suppose X is compact. Then

a. Γ(X,E) is a finitely generated projective C(X,R)-module, i.e. π is a direct summand of a
trivial vector bundle on X, and

b. There is an equivalence of categories between vector bundles on X and finitely generated
projective C(X,R)-modules.

Example: Let X be the two points space {1, 2}. Take a 0-dimensional vector space over 1 and a
1-dimensional vector space over 2.
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Remark: Such cheap examples exist on X iff X is disconnected.

Definition: Recall that it 0 −→ A −→ B
f−→ C −→ 0 is exact, then a splitting is a map σ : C −→ B

such that f ◦ σ = idC . Then B = A⊕ σ(C) ∼= A⊕ C.

Exercise: Take R = Z and find a SES such that B ∼=Z A⊕B but the sequence is not split.

Definition: A module P is projective iff 0 −→M −→ N −→ P −→ 0 is split.

Exercise: show that free implies projective. Lift basis and use universal property.

Theorem: If P is projective, then there exists a K such that P ⊕K is free.

Idea: summands can be both a submodule and a quotient module.

Proof: Choose a free F and an R-module surjection q : F � P with K = ker q to obtain
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0 −→ K −→ F −→ P −→ 0. Since P is projective, this sequence splits and thus F ∼= K ⊕ P is free.

�

Comment: If P is finitely generated, then we can take K (and hence F ) to be finitely generated
module. A quotient of a finitely-generated module is also finitely generated, and F ∼= K ⊕ P .

Theorem: If there exists a K such that P ⊕K is free, then P satisfies this lifting property:

P

M N 0

f
∃f̃

Proof: Choose K such that P ⊕K is free, and let {fi}i∈I be a basis for F . Then write F = P ⊕K
and fi = pi + ki where pi ∈ P, ki ∈ K. Then we can construct a unique g : F −→M by sending fi
to mi.

{fi}

F = P ⊕K

P

M N 0

{mi} {ni}

π

∃!g

f

ι(p)=(p,0)

q

Then q ◦ g ◦ ι = (q ◦ g) ◦ ι = (f ◦ π) ◦ ι = f ◦ (π ◦ ι) = f since ι is a section.

Todo: Revisit!

�

This P is projective iff

• Every length 2 resolution of P splits.
• P is a direct summand of a free module.
• P satisfies this lifting property.

If P satisfies this lifting property, we have:

P

0 M N P 0

∃σ idP
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Exercise: Show free implies projective in as many ways as you can (using any of these properties).

Remark: An easy consequence of the lifting property implies that the functor M 7→ homR(P,M) is
covariant and exact.

Natural question: for any new property of modules, is there a class of rings for which this
coincides with known properties?

Question: How different is projective from free?

Free =⇒ projective =⇒ subfree =⇒ R a domain torsion-free.

For R a PID and M finitely generated, these are all equivalent (hence the diminished importance of
projectivity when studying the structure theorem). Recall (Theorem 3.56) that if R is PID, then
subfree =⇒ free and projective ⇐⇒ free, but (Q,+) is torsion-free but not free.

Recall Spec(R1 ×R2) = SpecR1
∐

SpecR2

Example (Projective does not imply free): Let R1, R2 be rings and consider R = R1 × R2. Then
recall that I E R implies I = I1 × I2 for Ii E Ri. Take M1 := R1 × 0 E R, and M2 := 0×R2 E R.

Then M1 ⊕M2 = M1 + M2 = R, so both Ri are projective. They are not free though, since
AnnM1 = M2 and vice-versa.

Example: Let R = C× C, so SpecR = {1, 2}, then M1 = C× 0 −→ SpecR, and we can construct
“cheap” bundles in analogy to the disconnected topological case.

Next question: What is an example of a nonfree projective module over a domain.

13 Wednesday February 12th
Summary: Free =⇒ projective =⇒ flat =⇒ R a domain torsion free. Moreover, projective =⇒
reflexive.

If M,N are cyclic R-modules, then Ann(M ⊗R N) = AnnM + AnnN . Does this hold for every
M,N? The answer is no; we have Ann(M ⊗R N) ⊇ AnnM + AnnN . See MSE post: let I E R and
M an R-module, we have M ⊗R R/I = M/IM . Is there an equality Ann(M/IM) = Ann(M) + I?
No, take R = C[x, y].

Recall that an R-module is reflexive iff ι : M −→ (M∨)∨ is an isomorphism, where M∨ =
homR(M,R). This is injective for R a field, and then surjective iff R is finite-dimensional. As shown
in the problem sessions, finitely generated free modules are reflexive.

Exercise: Show that direct summands of reflexive modules are reflexive, and M1 ⊕M2 is reflexive
iff Mi are reflexive. Conclude that finitely generated projective modules are reflexive.

Example: To get a projective module that is not free, take C2 = (C× 0)⊕ (0× C) = C2, which is
free, so the summands are projective, but not free.

Note: this corresponds to taking a vector bundle over a disconnected space, and letting the
fibers just be different dimensions.

Letting the summands above be I, J , note that I + J = R and IJ = 0, which is a comaximality
condition.
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Lemma (3.17): Let I, J,K1, · · · ,Kn E R. Then

a. (I + J)(I
⋂
J) ⊆ IJ

b. If I + J = R (so I, J are comaximal), then I
⋂
J = IJ .

c. If I + ki = R for all 1 ≤ i ≤ n then I +K1 · · ·Kn = R.

Proof: Omitted.

Proposition: Let R be a domain, IJ E R such that I + J = R. We can form a map:

I

I ⊕ J R

J

q

where

q : I ⊕ J −→ R

(i, j) 7→ i+ j.

Then

a. q is surjective

b. ker q =
{

(x,−x)
∣∣∣ x ∈ I⋂ J

}
∼=R I

⋂
J = IJ .

c. There is a SES 0 −→ IJ −→ I ⊕ J q−→ R −→ 0, and since R is projective, I ⊕ J ∼=R IJ ⊕R.

d. If IJ is principal (so IJ ∼=R R) then I is projective.

See “monogenic”. This gives a criterion for determining if ideals are projective.

Exercise: Let R = Z[
√
−5] with p1 =

〈
3, 1 +

√
−5
〉
and p2 =

〈
3, 1−

√
−5
〉
.

a. Show that R/p1 ∼= R/p2 ∼= Z/3Z.

b. Show p1 + p2 = R.

c. Show p1p2 = 〈3〉.

d. Show neither p1, p2 are not principal.

e. Conclude p1 ∼=R p2 is a finitely generated projective but not free R-module.

Definition: Let R be a domain with fraction field K, we’ll define picard group Pic (R) in the
following way: For I E R with I 6= 0. we say I is invertible iff there exists a J E R such that IJ is
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principal. Then Pic (R) is the set of invertible ideals modulo the equivalence I ∼ J iff there exist
a, b ∈ R• such that 〈a〉 I = 〈b〉 J .

This is a group under [I] + [J ] = [IJ ] (check that this is well-defined). Note that if I is principal,
then [I] = 1 is the identity, and if IJ = 〈x〉, then [I][J ] = [〈x〉] = 1.

Fact: If I is invertible, then I is a projective R-module.

Fact (Stronger): If I E R in a domain, then I is invertible iff I is a projective R-module. [I] = 1
in Pic R iff I is principal iff I is a free R-module.

Proof: Later!

Every nontrivial element gives a projective but not free R-module! Note that Pic R = 0 for R
a PID.

Definition: R is a Dedekind domain iff every nonzero I E R is invertible, and Pic R is referred to
as the class group of R. In this case, Pic R = 0 iff every ideal is principal iff R is a PID.

So the class group measures how far R is from a PID. Any Dedekind domain that is not a PID
yields projectives that aren’t free.

Rings of integers over number fields are Dedekind domains.

Embarrassingly open problem: are there are infinitely many number fields K such that the
ring of integers ZK is a PID, or equivalently Pic ZK = 0?

Example (Important): Let k be a field and n ∈ Z+, and define R := k[t1, · · · , tn]. Since k is a
PID, R is a PID, and every finitely generated module over a PID is free.

Theorem (Bass, 1962): Let R be connected (recall: rules out silly case!) and noetherian. Then
every infinitely generated (i.e. not finitely generated) projective module is free.

So we can restrict our attention to the finitely generated case.

Analogy: is every topological vector bundle trivial? E.g. for Cn, yes. Are all holomorphic
bundles trivial? In general, no, see Stein manifolds.

Question (Serre, 1950s): Is every projective R-module free?

Answer: Yes, showed by Quillen, Suslin 1976. See book about this by T.Y. Lam.

Upcoming: Algebraic K-theory, built from f.g. projective R-modules. Trivial in K0 doesn’t quite
imply free, usually weaker. Tries to analyze distinction between projective and free. Also some
results about flat modules.

14 Friday February 14th
Let R be a ring and consider K0(R).

Measures difference between f.g. projective and free modules over R.

Define (M(R),+) := the commutative monoid of isomorphism classes of f.g. projective R-modules
with addition given by direct sum, i.e. [P ] + [Q] = [P ⊕ Q] with identity the zero modules, and
K0(R) = G((M(R),+)) is the group completion, which any map M(R) −→ G a group factors
through. Concretely, any element of K0(R) is of the form [P ]− [Q], where [P1]− [Q1] ∼ [P2]− [Q2]
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iff [M ] + [P1] + [Q2] = [M ] + [P2] + [Q2] for every finitely generated projective R- module M . Note
that excluding the R here fails transitivity and thus doesn’t yield an equivalence relation.

If P,Q are finitely generated projective R-modules, then [P ] = [Q] iff ∃M such that P⊕M ∼= Q⊕M iff
there exists N a finitely generated projective such thatM⊕N ∼= Rn for some n, i.e. P⊕Rn ∼= Q⊕Rn.
In such a case, we say P,Q are stably isomorphic.

Note that [P ] = 0 iff [P ] has rank zero, or [P ] ⊕ Rn ∼= Rn. Also note that [P ] ∼= [Q] can occur
without necessarily having P ∼= Q as modules.

We can actually make K0(R) into a ring with [P ] · [Q] := [P ⊗R Q].

Note that the tensor product of two finitely-generated R-modules is still finitely generated as
an R-module.

Example: Let R be a PID, then M(R) is a commutative semiring (no additive inverses) and is equal
to (N,+, ·) (occurs whenever )very finitely generated projective is free). Similarly G(R) = (N,+, ·).
Since R has invariant basis number, there is always an injective group morphism

(Z,+) 7→ (K0(R),+)
n 7→ [Rn].

Yields no cancellation among free modules. We want to essentially ignore this case, so we’ll
mod out.

Definition: The reduced K group is given by ˜K0(R) := (K0(R),+)/(Z,+).

Note that [P ] = [G] in ˜K0(R) iff there exist m,n such that P ⊕Rm ∼= Q⊕Rn. Moreover [P ] = 0 iff
∃m,n such that P ⊕Rn ∼= Rn. In this case we say P is stably free.

Exercise: If P is a projective module (possibly not finitely generated) then there exists a free module
F such that P ⊕ F is free.

Example: For n ∈ Z, define Rn := R[t0, · · · , tn]/
〈∑

t2i − 1
〉
. This is the ring of polynomial functions

on the n-sphere. To construct a stably free module that is not free, take TSn for any n for which
it’s trivial.

By Poincare Hopf, need euler characteristic zero, which happens when n is odd. Tangent
bundle also trivial for lie groups.

Big theorem (Bott-Milnor): this happens iff n ∈ {1, 3, 7}.

If every module is free, they are stably free, yielding K0 = 0.

Fact: If R is a dedekind domain, ˜K0(R) = Pic (R), the ideal class group.

So f.g. projectives need not be free, since ideals need not be principal. Theorem of Clayborn:
Pic (R) can be any commutative group!

Analogy: bundles are locally trivial, are projective modules “locally free”? We’ll need localization
to make sense of this, but such a theorem turns out to be true.

Definition: A local ring is a ring R with a unique maximal ideal, usually written (R,m).

Exercise: R is local iff R \R× E R is an ideal.
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Localizing in the right way will yield local rings.

Lemma: Let q : R −→ R/m and x ∈ R, then x ∈ R× ⇐⇒ q(x) ∈ (R/m)×.

Proof: The forward implication holds for any ring. The converse doesn’t usually (think Z −→ Z/pZ).
But if q(x) ∈ (R/m)× = R/m \ 0, then x ∈ R \m = R×.

Theorem: A f.g. projective module over a local ring is free.

This turns out to be true with “f.g.” dropped, but that is a harder theorem.

To prove this, we’ll need the following:

Fact (Corollary of Nakayama’s Lemma): For (R,m) a local ring and M a finitely generated
R-module. Take a finite collection {mi} such that {mi} ∈M/mM are generators as an R/m module.
Then M is generated by {xi}.

Usually identified as Nakayama’s Lemma.

Proof of Theorem: Let P be a f.g. projective R-module for R a local ring. Choose Q such that
P ⊕Q = Rn. By base change, P/mP ⊕Q/mQ = (R/m)n.

So choose R/m bases {pi}
a of P/mP and

{
qj

}b
of Q/mQ. Choose any lifts pi ∈ P, qj ∈ Q. Let

A ∈Mn,m(R) be the matrix formed by setting the first columns to pi and the remaining to qj .

Then det(A) mod m ∈ (R/m)×, and by the lemma, det(A) ∈ R× and thus A is invertible. So
{pi, qj} are R-linearly independent, so {pi} span P by Nakayama’s lemma. Thus P is a free
R-module.

14.1 Flat Modules
Why are projective modules called such? See notes, characterization in terms of linear algebra
and projection operators.

Suppose we have a SES of R-modules and we tensor with some R-module M :

0 N1 N2 N3 0

· · · · · · N1 ⊗RM N2 ⊗RM N3 ⊗RM 0

· ⊗RM

Note that the induced map of the injection need not remain an injection.

Example: Take Z 7→ ×2Z −→ Z/2Z, then taking · ⊗Z/2Z yields Z/2Z ×2−−→ Z/2Z, which is the zero
map.

Definition: A module M is flat iff M ⊗R · is exact, i.e. if N1 ↪→ N2 =⇒ M ⊗R N1 ↪→M ⊗R N2.

Proposition: If R is a domain, then flat =⇒ torsionfree.

Proof: For the contrapositive, suppose M is not torsionfree, then there exists some nonzero r ∈ R•

and 0 6= m ∈ M such that rm = 0. Then take R ×r−−→ R, which is injective since R is a domain.
Then tensoring with M yields M ×r−−→M , which has nonzero kernel by assumption.
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Exercise (Important): Let Mi be a family of R-modules, then
⊕
i

Mi is flat iff Mi is flat for all i.

Use the fact that tensor commutes with direct sum, use functoriality of direct sum to sum
maps.

Proposition: Projective =⇒ flat.

We now have the chain:

Free =⇒ projective =⇒ flat =⇒ R a domain torsionfree.

Proof (easy): By the exercise, P projective implies existence of a Q where P ⊕ Q is free, so it’s
enough to show that free =⇒ flat. If F is free, F ∼= ⊕iR, so F is flat iff R is flat. But R⊗RR = R,
which does not change a SES at all.

�

So flat is somewhere between projective and torsionfree.

The next theorem is related to Cayley-Hamilton.

Proposition: Let M be a finitely generated R-module with generators {xi} and I E R, and
take φ ∈ EndR(M) such that φ(M) ⊆ IM . Then there exist a set of coefficients {ai}n such that
φn + an−1φ

n−1 + · · ·+ a1φ+ a0 = 0 ∈ EndR(M).

Proof (Sneaky): For all i ≤ n, there exists a set {aij}nj=1 ⊂ I such that φ(xi) =
n∑
j=1

aijxj . Equivalently,

for all i,

n∑
j=1

(δijφ− aij) = 0.

Let P be a matrix with entry i, j equal to δijφ− aij ∈Mn×n(R[φ]) where R[φ] ≤ EndR(M) is the
subalgebra generated by φ. Note that this makes the base ring commutative, so this matrix makes
sense. We can rewrite this as P · [x1, x2, · · · , xn]t = 0.

Claim: If S is a ring and P ∈Mn×n(S), then there is an identity

Padj(P ) = adj(P )P = det(P )In.

Note that expanding this in the 2× 2 case yields a collection of polynomial identities, which
tend to remain true in arbitrary rings (see “permanence of polynomial identities”).

Then det(P )Inx = adj(P )Mx = 0 (often called the determinant trick). Thus det(P )xi = 0 for
all i. But then det(P )M = 0, and since M is a faithful R[φ]-module, we have det(P ) = 0.

Then thinking of φ as a variable, expanding the determinant yields a monic polynomial in φ with
coefficients that are products of aij , which are in I.

�
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Note the analogy to det(Iλ−A), so this yields the usual characteristic polynomial in the case
of fields.

Theorem (NAK, a.k.a. Nakayama-Azumaya-Krull): Let J E R be an ideal and M ∈
R −mod finitely generated such that JM = M . Then

a. ∃x ∈ R such that x ∼= 1 mod J and xM = 0.

b. Suppose J ∈ J (the Jacobson radical), i.e. J is in every maximal ideal; then M = 0.

Note that if R were local, this reduces to a simple case.

Proof of (a): Apply the previous proposition to φ = idM and I = J ; then the polynomial relation
reduces to the existence of some x = 1 + an−1 + · · ·+ a0 with ai ∈ J , and this is equal to the zero
endomorphism and thus xM = 0 and x = 1 mod J as desired.

Proof of (b): If J ∈ m for all m ∈ maxSpec (R), then if x = 1 mod J and x = 1 mod m, this forces
x 6∈ m and so x ∈ R×. So if yx = 1 and $xM = 0 $, then 0 = yxM = M .

�

Corollary: Suppose J ∈ J and M ∈ R −mod is f.g. with N ≤R M a submodule such that
JM +N = M , then N = M .

Proof: Apply part (b) above toM/N . IfM is f.g. then so isM/N , and J(M/N) = JM +N

N
= M/N

(just from pushing into quotients).

�

Definition: An element x ∈M is a non-generator if whenever S is a generating set for M , then
S \ x is still a generating set.

Thus if you’re trying to find generators for a module, it never helps to add elements of J .

Corollary: Let J ∈ J , M ∈ R −mod f.g., x1, · · · , xn such that {xi} ∈ M/JM are generators.
Then M is generated by {xi}.

Proof: Take N = 〈{xi}〉 ≤M . Then im (N) ⊂M/JM is given by im (N) = N + JM

JM
= M

JM
since

im (N) was assumed a generating set. But then N = M by the previous corollary.

�

Proposition 3.44 (Generalized NAK): Let J E R, M ∈ R −mod f.g., then JM = M ⇐⇒
J + AnnM = R.

Proof:

⇐= JM = M ⇐⇒ M/JM = 0 ⇐⇒ AnnM/JM = R, and AnnM/JM = Ann(M ⊗ R/J) ⊇
J + AnnM = R.

=⇒ : Exercise.

Exercise: Why does this imply part (b) in NAK?

Use the assumption that J,AnnM are comaximal, and J ∈ Z, which forces AnnM = R and
thus M = 0.
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15 Monday February 17th
Last time: R is a ring, M a finitely-generated R-modules, J E R.

Nakayama: If M = JM , then there exists an x ∈ R with x = 1 mod (J) such that xM = (0).

Generalized Nakayama: M = JM ⇐⇒ J + AnnM = R. The reverse implication is immediate,
the forward is by Nakayama.

15.1 Injective Modules
Recall that every R-module is free ⇐⇒ R is a field. What is the analogous condition for every
R-module to be projective?

Exercise: For R = R1 ×R2 and M = M1 ×M2, Mi is an Ri-module.

Answer: Every SES

0 −→M1 −→M2 −→M3 −→ 0

of R-modules splits.

Focusing on M2: every submodule M1 of M2 is a direct summand.

Theorem: For an R-module M , TFAE

1. Every submodule of M is a direct summand.
2. M is a direct sum of simple modules (semisimple).
3. M is generated by its simple submodules.

Definition: M is simple iff ∃0 ( N (R M .

In this case, M ∼= R/AnnM (i.e. cyclic, monogenic) and the AnnM is maximal.

Proof: Omitted, see chapter 8 of notes.

Thus every R-module is projective iff every R-module is semisimple.

Definition: Dually, now focusing on M1, every SES starting with M1 is split iff whenever M1 ≤M2,
M1 is a direct summand. In this case we say M1 is injective.

Proposition: For R a ring, TFAE

1. Every SES of R-modules splits
2. Every R-module is projective
3. Every R-module is semisimple
4. Every R-module is injective
5. (Claim) R is itself a semisimple R-module.

Proof: 3 =⇒ 5 is clear, and we’ll prove 5 =⇒ 3 shortly using Baer’s Criterion.

Definition: R is semisimple iff for all I E R, there exists a J E R such that I ⊕ J = R. Moreover,
Ann(I) = J and Ann(J) = I.

Exercise (easy): If Ri are semisimple, R1 ×R2 is semisimple.

Corollary: Fields are semisimple, so any finite product of fields is semisimple.
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In fact, the converse is true:

Theorem: If R is semisimple, then R is a product of fields.:

Note that everything works here for left modules over non-commutative rings.

Theorem (Wedderburn-Artin): A ring1 R is semisimple iff R ∼=
r∏
i=1

Mni(Di) a product of matrix

rings over division rings.

Let 0 −→M1
ι−→M2 −→M3 −→ 0 be a SES.

Note that splitting is slightly stronger than M2 ∼= M1 ⊕M3.

This sequence is split iff there exists a retraction π : M2 −→M1 such that ι ◦ π = idM2 . In this case,
M2 ∼= ι(M1)⊕ kerπ.

Definition: An R-module E is injective iff every SES 0 −→ E −→ M2 −→ M3 −→ 0 admits a
retraction π : M2 −→ E.

Theorem: For an R-module E, TFAE

2. E is injective
3. Reversing arrows of projective condition, there exists a lift of the following form:

E

0 M N

ϕ
∃Φ

4. If M ↪→ N , then hom(N,E)� hom(M,E).
5. The contravariant functor hom( · , E) is exact.

Not big difference: no analog of being a direct summand of a free module! Free modules are
usually not injective.

Example: Z is a free but not injective Z-module. Take 0 −→ Z ×2−−→ Z −→ Z/2Z −→ 0. If this
splits, we would have Z ∼= Z⊕ Z/2Z as Z-modules. Why isn’t this true? Z is a domain, the LHS is
torsionfree, and the RHS has torsion.

Suppose now R is a domain and not a field, then let a be a non-unit and run the same argument
with multiplication by a. This would yield R ∼= R⊕R/aR, where the LHS is torsionfree and the
RHS has torsion. So R itself need not be an injective R-module.

Definition: A ring R is self-injective iff R is injective as an R-module.

Example: A field or a semisimple ring.

Claim: Let R̃ be a PID, π a prime element, n ∈ Z+, then take R := R̃/(πn). Then R is self-injective.

Example: Let R = Z/pnZ, and let M be a finite p-primary commutative group (i.e. a p-group).
Then expM = pn ⇐⇒ AnnM = (pn). M is a faithful Z/pnZ-module, so there exists an element
x ∈M such that # 〈x〉 = pn. There is a SES of Z/pnZ-modules

11
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0 −→ 〈x〉 −→M −→M/ 〈x〉 −→ 0.

Since 〈x〉 ∼= Z/pnZ, which is self-injective, so there exists a module N such that M = 〈x〉 ⊕N ∼=
Z/pnZ⊕N . Continuing on N yields a decomposition of M into a sum of cyclic submodules.

Conclusion: a finitely generated torsion module over a PID is a direct sum of cyclic
modules.

In general, to show a module is injective, we need to consider lifts over all pairs of modules M ↪→ N .
How to do this in practice?

Baer’s Criterion: If suffices to check the lifting condition for N = R and M = I E R. I.e. if
there is a lift of the following form:

E

0 I R

ϕ
∃Φ

then E is injective.

Proof: Omitted for time.

Application: Let R be a semisimple R-module and let E be any R-module. Let I E R, and
f ∈ hom(I, E). If R is semisimple, then there exists a J E R such that R = I ⊕ J . So extend f to
f ⊕ 0, which yields a lift:

E

0 I R = I ⊕ J

f (f,0)

Exercise: Prove the claim that R is self-injective for R = R̃/(πn) above.

16 Monday February 24th
16.1 Divisible Modules
We know that injective implies divisible, and uniquely divisible implies injective. Fact: quotients of
divisible modules are divisible

Exercise If R is a domain that is not a field and M is a finitely-generated divisible R-module, then
M = 0.

Proof (of exercise).
Claim: for any ring R, any nonzero f.g. R-moduleM has a nonzero cyclic (monogenic) quotient
given by modding out by all but one of the generators. Thus if M admits a finitely generated
divisible R-module, it admits a cyclic module.
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Then M ∼= R/AnnM , and there are two cases:
• AnnM = 0, in which case M ∼= R. Then choosing r ∈ R• \R×, then [r] : R −→ R is not
a surjection.
• Otherwise, choose x ∈ Ann(M) \ {0}. Then ×x : R −→ R is the same map as
×0 : R −→ R, so it is not surjective.

�

Fact: there is a classification of divisible (iff injective) Z-modules:

• (Q,+), since the fraction field of any domain is divisible.
• (Q/Z,+) =

⊕
primes

Qp/Zp, where Qp/Zp = limZ/pnZ. This is isomorphic to the group of p

power roots of unity. On the other hand, Q/Z is the group of all roots of unity

Fact (Classification of Divisible Z-Modules: Any divisible Z-module is isomorphic to a direct sum
of copies of

• (Q,+)
• (Qp/Zp,+)

Note that any direct sum of divisible groups is still divisible. Moreover, this decomposition is unique.

16.2 Toward Localization
Proposition 16.1(Multiplicative Avoidance).
Let S ⊂ R with SS ⊂ S, 1 ∈ S, 0 6∈ S. Define I(S) =

{
I E R

∣∣∣ I⋂S = ∅
}
. Then

1. I(S) 6= ∅
2. Every element of I(S) is contained in a maximal element of I(S).
3. Every maximal element of I(S) is prime.

Proof .
In parts:

a. (0) ∈ I(S) by construction.
b. Standard Zorn’s lemma argument.
c. Let I ∈ I(S) be a maximal element, and let x, y ∈ R such that xy ∈ I with x 6∈ I. Then
〈x, I〉 ) I, so S

⋂
〈x, I〉 6= ∅ by maximality. I.e., there exists s1 ∈ S such that s1 = i1+ax

for some a ∈ R. Continuing this way, if y 6∈ I, produce an s2 = i2 + by1 for some b ∈ R.
Since S is multiplicatively closed, s1s2 ∈ S. But we also have s1s2 = (i1 +ax)(i2 +by) ∈ I,
a contradiction.

�

See Kaplansky’s Commutative Algebra book.

Proposition 16.2.
Let p ∈ Spec(R) and I1, · · · , In E R, then if p ⊃

∏
Ii, then p ⊃ Ii for some i.
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Proof .
Suppose p ) Ii for any i, and let xi ∈ Ii \ p. Consider x :=

∏
xi ∈

∏
Ii ⊂ p; then since p is

prime, some xi ∈ p.
�

Corollary: If p ⊃ In, then p ⊃ I.

I.e. prime ideals are radical.

16.3 Radicals

Definition 16.1.
An element x ∈ R is nilpotent iff xn = 0 for some n ∈ Z. An ideal is nilpotent iff In = (0) for
some n, and is nil iff every element x ∈ I is nilpotent.

Proposition 16.3.
Nilpotent =⇒ nil.

Proof .
If In = (0), then for any x ∈ I, xn ∈ In = (0) so xn = 0.

�

Proposition 16.4.
If I is finitely generated and nil, then I is nilpotent.

Proof .
Let I = 〈x1, · · · , xn〉. Then for each i, choose ei ∈ Z such that xei

i = 0. The (check) I
∑

ei = (0).
�

An ideal is nil iff all generators are nilpotent.

Corollary: If R is Noetherian, I is nilpotent iff I is nil.

Exercise Exhibit a ring with an ideal that is nil but not nilpotent. (Note: need to choose a non-
Noetherian ring, e.g. a polynomial ring in infinitely many indeterminates {ti}, and consider〈
tnn

∣∣∣ n ∈ N
〉
.

Definition 16.2.
The nilradical of R, nil(R), is the set of all nilpotent elements.

Proposition 16.5. a. nil(R) E R, since an = bn = 0 =⇒ (xa+ yb)2n = 0.
b. R/nil(R) is reduced, and this quotient map is universal wrt morphism into a reduced ring.

I.e., if R −→ S with S reduced, there is commutative diagram

41



R S

R/nil(R)

f

π ∃f̃

c. nil(R) =
⋂

prime ideal
p.

Proof (of c).
⊆: If x ∈ nil(R), then xn = 0 for some n, so xn ∈ p and since p is prime, x ∈ p.
⊆: We’ll show that if x is not nilpotent, then it avoids some prime ideal. Define S :={
xn
∣∣∣ n ∈ N

}
; since x is not nilpotent, S is multiplicatively closed and does not contain zero,

so by a previous result, there is some p ∈ Spec(R) such that S
⋂

p = ∅.
�

Definition 16.3.
An ideal I E R is radical iff for all x ∈ R there exists an n such that xn ∈ I =⇒ x ∈ I.

Proposition 16.6.
Prime ideals are radical.

Idea: the set of radical ideals is much easier to work with than the set of prime ideals.

17 Wednesday February 26th
17.1 Radicals
For R a ring, we defined nil(R) :=

{
x ∈ R

∣∣∣ ∃n ∈ N, xn = 0
}
E R. We had a theorem: nil(R) =⋂

p∈Spec(R)
p.

Definition 17.1.
For I E R, we define rad(I) =

{
x ∈ R

∣∣∣ ∃n, xn ∈ I} ⊇ I.
Fact I E R. To see this, note that for any I E R, then nil(R/I) E R = rad(I).

Definition 17.2.
I is a radical ideal iff I = rad(I).

Example 17.1.
Prime ideals are radical.
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Definition 17.3.
Define a closure operator ` : I 7→ rad(I). In general, if (X,≤) is a poset, then a Moore closure
operator is a map c : X −→ X satisfying

1. c(c(x)) = c(x)
2. x ≤ c(x)
3. x ≤ y =⇒ c(x) ≤ c(y).

This is most often applied to X the family of subsets of a set A and ≤ subset inclusion. Note that
this doesn’t completely correspond to a topological closure, since this would also require preservation
of intersections.

Related to Galois connections, not covering in this class but good for a final topic.

We can produce a nice characterization: rad(I) = nil(R/I) =
⋂

p∈R/I
p =

⋂
p⊇I

p

Exercise (easy) If {Ii} is any family of radical ideals, then
⋂
i

Ii is radical.

Exercise Let R = Z. What are the radical ideals? (0), (p), but (p2) is not radical – i.e. (0), (n) for
n squarefree.

Fact I is radical iff R/I is reduced. Noting that by the CRT, Z/nZ ∼=
∏

Z/pai
i Z, which is reduced

iff ai = 1 for all i. If R is a PID, π1 · · ·πr radical ideals, then (π1 · · ·πr) nonassociate prime
elements ??

Exercise Let R be a ring, p1 6= p2 prime ideals.

1. Must p1p2 be radical?
2. If p1 + p2 +R, then p1p2 = p1

⋂
p2, and is thus radical.

Product may be smaller than intersection in general.

Proposition 17.1.
Let I, J E R.

a. I ⊂ rad(I), rad(rad(I)) ⊂ rad(I), and I ⊂ J =⇒ rad(I) ⊂ rad(J).

b. rad(IJ) = rad(I
⋂
J) = rad(I)

⋂
rad(J)

c. rad(I + J) = rad(rad(I) + rad(J))

d. rad(I) = R ⇐⇒ I = R

e. rad(In) = rad(I) for n ≥ 1

f. If R is Noetherian and J ⊂ rad(I), then Jn ⊂ I for some n ≥ 1.

So for Noetherian rings, two radicals are equal iff powers of each ideal land in the other.

Proof (of (b)).
IJ ⊆ I

⋂
J and thus rad(IJ) ⊂ rad(I

⋂
J). If x ∈ rad(I

⋂
J), there exists an n such that
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xn ∈ I
⋂
J . Then x2n = xnxN ∈ IJ =⇒ x ∈ rad(IJ).

�

Proof (of b).
Since I

⋂
J ⊂ I, J , we have rad(I

⋂
J) ⊂ rad(I)

⋂
rad(J). If x ∈ rad(I)

⋂
rad(J), then

xn ∈ I, xm ∈ J for some n,m, so xm+n ∈ I
⋂
J ⊂ rad(I

⋂
J).

�

Proof (of (f)).
By replacing R with R/I, assume I = (0), then J ∈ nil(R) and since R is Noetherian, J is
nilpotent and Jn = (0) for some n.

�

So we simplify things by passing from I to rad(I). There is a class of rings for which it’s feasible to
understand all radical ideals, and hopeless to understand all ideals.

Example 17.2.
Take R = C[x], a PID. Suppose I E R and rad(I) = xn, then I = (xn). So this is no big deal, it’s
just an extra integer parameter.

Now instead take R = C[x, y], and let I = 〈x, y〉. Note that applying (f) above to J = rad(I), we
find that I ⊃ 〈x, y〉n for some n. But note that 〈x, y〉n =

〈
xn, xn−1y, · · · , xyn−1, yn

〉
.

Exercise Suppose I ⊃ 〈x, y〉2. For such I, dimCR/I < ∞. So for each d, try to find all ideals I
such that rad(I) = 〈x, y〉 and dimCR/I = d.

Note that these correspond to “fat points” in algebraic geometry. The idea 〈x, y〉 corresponds
to a fat point at zero. When doing AG, we hope to restrict attention entirely to radical ideals.

Definition 17.4.
The Jacobson radical is defined by J (R) =

⋂
m∈maxSpec (R)

m.

Fact J (R) ⊃ nil(R), since not every prime ideal is maximal.

Example 17.3.
If (R,m) is a local domain, then nil(R) = 0 and J (R) = m.

Exercise Let R be a domain, show that J (R[t]) = (0).

Proposition 17.2.
x ∈ J (R) ⇐⇒ 1± xR ⊂ R×.

Exercise Show directly that xn = 0 =⇒ ∀y, 1− xy ∈ R×.
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18 Friday February 28th
18.1 Radicals: The Jacobson Radical

Definition 18.1.
J (R) =

⋂
m ∈ maxSpec (R)m. For a noncommutative ring, instead of intersecting just two-

sided ideals, need to intersect either left ideals or right ideals (the intersections turn out to be
equivalent).

If R is finite dimensional over a field, then J (R) = 0 ⇐⇒ R is semisimple. By Wedderburn, this
happens iff R =

∏
Mni(Di).

Definition 18.2.
A ring is semiprimitive (or J -semisimple or Jacobson-semisimple) iff J (R) = 0.

Proposition 18.1.
x ∈ J (R) ⇐⇒ 1− xR ⊂ R×.

Proof .
Let x ∈ J (R) and suppose 1 − xy 6∈ R×, so 1 − xy ∈ m for some maximal ideal. But then
x ∈ m, so xy ∈ m, so 1 = m + xy ∈ m, a contradiction.

�

Suppose instead that x 6∈ J (R), so there exists some maximal such that 〈m,x〉 = R. Thus for
y ∈ R,m ∈ m, we have 1 = m+ xy so 1− xy = m ∈ m and thus 1− xy 6∈ R×.

In other words, R× + J (R) ⊂ R×, and is the largest ideal with this property. Thus the elements
are “close to zero” in the sense that it doesn’t take you outside of the unit group.

18.2 Proposition (Commutative Algebra Analog of Euclid IX.20: Infinitely Many
Primes)

Let R be a domain, then recall that p ∈ R• is irreducible iff p 6∈ R× and p = xy =⇒ x ∈ R× or
y ∈ R×. If p is irreducible and u ∈ R×, then up is irreducible and associate to p, and (up) = (p).

Define an atom to be the principal ideal generated by an irreducible element.

Define a Fursentenberg domain to be a domain such that x ∈ R• \R× has an irreducible divisor.
Note that we have a chain of implication, UFD =⇒ Noetherian = ACC =⇒ ACC on principal
ideals =⇒ nonzero nonunits factor into irreducibles (atomic domain) =⇒ Fursentenberg. So this
is a weak factorization condition.

Exercise Let R = Hol(C) be the ring of holomorphic functions, which is a domain by the identity
theorem. Show that R is semiprimitive, Furstenberg but not atomic.

Theorem 18.2(Euclidean Criterion).
Let R be a domain, not a field, and semiprimitive.

a. There exists a sequence of pairwise comaximal elements {an}∞n such that 〈am, aN 〉 = R
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for m 6= n.
b. If R is Forstenburg, then there is a sequence of primitive pairwise comaximal irreducible

elements, and thus infinitely many atoms.

Note that applying this to R = Z, the only unit ideals are generated by ±1, and the result follows
immediately.

Proof .
Exercise.

�

For what class of rings does this criterion apply?

Application For R a Noetherian domain, then by Hilbert’s basis theorem R[t] is Noetherian and
semiprimitive. So by the above result, R[t] is has infinitely many elements. Most interesting
for R = Fq, since for e.g. R = R we can consider ideals (x− r).

Fact a. If I, J E R and r(I) + r(J) = R, then I + J = R, and r(r(I)) + r(J) = r(I + J).
b. If I, J1, · · · , Jn E R and I + Ji = R for each i, then I +

∏
Ii = R.

c. Suppose I1, · · · , In are pairwise comaximal, then
∏

Ii =
⋂
Ii (note: could be smaller

and general).

Theorem 18.3(Chinese Remainder).
Suppose R is arbitrary with I1, · · · , In E R pairwise comaximal. Then there is a natural map

Φ : R −→
n∏
i=1

R/Ii

r 7→ (r + I1, · · · , r + Ii).

1. Φ is surjective, and ker Φ =
⋂
Ii.

2. By pairwise primality, R/
∏

Ii ∼=
∏

R/Ii.

Note that as modules, both sides are cyclic.

Proof .
By induction on n, with trivial base case.

Let R′ :=
n−1∏
i=1

R/Ii and assume by induction that Φ′ : R −→ R′ is surjective by induction. Let

(r′, s) ∈ R′ ×R/In. By hypothesis, ker Φ′ =
n−1∏
i=1

. So there exists an r ∈ R such that Φ′(r) = r′.

Lifting to s ∈ R such that s+ In = s+ In.

By assumption, I ′+I :=
(
n−1∏
i=1

Ii

)
+In = R. So there exist x ∈ I ′, y ∈ In such that s−r = x+y.

Note that Φ′(r + x) = r′ since x ∈ ker Φ, so

rx = r + x+ y = x mod In.
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But then Φ(r + x) = (r′, s).
�

Exercise (Converse to CRT (Good for Problem Sessions)) Let I1, · · · , In E R. If
∏

R/Ii is a
cyclic R-module, then the Ii are pairwise comaximal.

Immediately reduce to n = 2 case. Also a nice proof using tensor products, use
characterization of R/I ⊗R/J .

18.3 Monoid Rings
Here let R be a ring∗ (potentially noncommutative) and (M, ·) a monoid (i.e. a group without
requiring inverses).

Goal: we want to define a monoid ring R[M ].

If M is finite, the definition is unambiguous, but for infinite M we require an extra condition. In
this case we define the big monoid ring R[[M ]].

Example 18.1.
For R a nonzero ring and M = (N,+), R[M ] = R[t], and R[[M ]] = R[[t]].

Step 1: supposeM is finite, then R[M ] =R−mod R
M = {f : M −→ R}, the set of all functions. Note

that (f+g)(m) = f(m)+g(m), and define a new multiplication (f ∗g)(m) :=
∑

(x,y)∈M2, xy=m
f(x)g(y),

the convolution product. One must check that this actually satisfies the axiom of a ring, since we
are building this by hand. This is a ring iff R is a ring and (M, ∗) is commutative.

There is an identity, namely 1 7→ 1 and x 7→ 0 for x 6= 1. Distributivity isn’t difficult, but we need
to check that ∗ is associative. This follows from ((f ∗ g) ∗ h)(m) =

∑
x,y,z∈M3, xyz=m

f(x)g(y)h(z) =

(f ∗ (g ∗ h)).

Define [m] · [n] = [mn], then check that
( ∑
m∈M

rm[m]
)( ∑

m∈M
sm[m]

)
=?.

19 Monday March 2nd
19.1 Semigroup and Monoid Rings
For today, let R be a ring∗, so not necessarily commutative, and (M, ·) be a nonzero monoid, we
then define the monoid ring R[M ] by the following condition:

If M is infinite and divisor-finite, i.e. for all m ∈M , the set {(x, y) ∈M2
∣∣∣ xy = m} is finite.

Note that M finite implies divisor-finite, and M a group and divisor-finite implies finite.

For S a set, the free commutative monoid on S is given by
⊕
s∈S

(N,+).
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Example 19.1.

(Z>0, ·) =
∞⊕
n=1

(N,+) by the fundamental theorem of arithmetic. The map is given by

M =
n∏
i=1

pi
ti 7→ (ti).

We define the big monoid ring R[[M ]]. Note that R[M ] and R[[M ]] are commutative iff R,M are
commutative. For R[M ], we try R[M ] = RM = {f : M −→ R} with pointwise addition and instead
of point wise multiplication, we take the convolution product

(f ∗ g)(m) :=
∑
xy=m

f(x)g(y).

Note that this is a finite sum ⇐⇒ M is divisor-finite. Moreover, if M is divisor-finite, then
this defines R[[M ]].

For any M , we define R[M ] as above not RM but rather
⊕
m∈M

R ⊂ RM , i.e. those f : M −→ R with

finite support, so for all f , {m ∈M
∣∣∣ f(m) 6= 0} <∞.

Note that this makes the convolution product again a finite sum.

For M divisor-finite, R[M ] ↪→ R[[M ]], but in general the latter is larger.

Define [m] = δm, and expand f =
∑
m∈M

rm[m]. Forming the product fg comes down to defining

what [m1] ∗ [m2] := [m1m2] should be. We saw that this yields an associative product, since both
ways of associating parentheses yield a sum that ranges over triples.

For M = (N,+), we find R[M ] =
∑
n

rn[n] where [n] ∗ [m] := [n+m], so we can define [n] := tn, so

this is R[t].

More generally, take M =
⊕
s∈S

(N,+) for S an arbitrary set, then

R[M ] := R[{ts
∣∣∣ s ∈ S}]

is a multivariate polynomial ring.

Consider alsoM = (Z,+). Since this construction should be functorial, there should be a containment
R[(Z,+)] ⊃ R[(N,+)] = R[t]. In this case, M ∼= R[t, t−1], the ring of Lauren polynomials.

We can also identify R[[(N,+)]] = R[[t]] is the ring of formal power series over R, since we’re
dropping the finiteness condition.

Note that R = Z is not divisor finite, so we can’t necessarily take R[[M ]].

Proposition 19.1.
For R a ring and (G,+) a commutative group, R[G] and R[[G]] are domains iff R is a domain and
G is torsionfree.
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Note that R being a domain is necessary because it occurs as a subring via r 7→ r[1].

Proof (Idea).
See notes. If g ∈ G[tors] \ {0}, then [g]− [0] is a zero divisor.

�

See Kaplansky’s Group Ring Conjecture.

Exercise Let R be a field, identify the fraction field of R[[t]]. Should be formal, finite-tailed Lauren
series – but what does this mean?

There is a universal property of monoid rings: Let R be a ring, (M, ·) a commutative monoid. Let
B be an R-algebra. Then homR−alg(R[M ], B) = hommonoid(M, (B, ·)) given by restriction.

Thus if f : M −→ B is a monoid morphism, there exists a unique map

F : R[M ] −→ B∑
rm[m] 7→

∑
rmf(m).

Note that this is the only possible map that could extend f .

Exercise Check that this gives an R-algebra morphism.

Note that the monoid ring is thus adjoint to the forgetful functor R − alg −→ Monoids.

Note that if M =
⊕
s∈S

(N,+), then

homMonoid(M,T ) = homSets(S, T ),

i.e. it is fully determined by where it sends basis elements.

This yields a universal mapping property for polynomial rings, i.e. homR−alg(R[T ], B) = homSets(T,B).

19.2 Localization
Let S ⊂ R with SS ⊂ S, with 1 ∈ S, then there exists a ring S−1R and a ring morphism
ι : R −→ S−1R such that

1. For all s ∈ S, ι(s) ∈ (S−1R)×
2. ι is universal for property 1, i.e.

S−1R

R T
f

∼ ∃!F

Remark: when R is a domain, this reduces to the fraction field construction, i.e. (R•)R = K = ff(R).
For S any multiplicatively closed subset,

S−1R = R[1
s

∣∣∣ s ∈ S].
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Make sense of partial group completion of a monoid with respect to a submonoid.

Construction: We’ll define S−1R = (R× S)/ ∼, where

(r1, s1) ∼ (r2, s2) ⇐⇒ ∃s ∈ S such that sr1s2 = sr2s1.

Recall that this stabilization is needed, and becomes clear if you try to carry out the construction
without it. If R is a domain, the s appearing can just be canceled.

Define maps

(r1, s1) + (r2, s2) := (r1s2 + r2s1, s1s2)
(r1, s1) · (r2, s2) := (r1r2, s1s2)

Need to check that this is well-defined.

Exercise Check that localization satisfies the universal mapping property.

Question: what is ker(R −→ S−1R) where R 7→ (r, 1)? This has to do with the s that appears in
the stabilization.

20 Wednesday March 4th
For R a ring and S ⊂ R such that S2 ⊂ S and 1 ∈ S, there exists a ring S−1R and a ring morphism
ι : R −→ S−1R such that

1. ι(S) ⊂ (S−1R)×, and
2. ι is universal for such morphisms, i.e every R f−→ T with f(S) ⊂ T× lifts to S−1R

f̃−→ T .

Last time we constructed it as R× S/ ∼ where (r1, s1) ∼ (r2, s2) iff there exists an s ∈ S such that
sr1s2 = sr2s1 (needed to obtain transitivity).

We then have ι(r) = [(r, 1)]; what is its kernel? If (r, 1) ∼ (0, 1) then there exists s ∈ S such that
s · r · 1 = s · 1 · 0 = 0, so Ann(r)

⋂
ker ι 6= ∅. Note that if 0 ∈ S then ker ι = R and thus S−1R = 0.

Conversely, if 0 6∈ S, then Ann(1)
⋂
S = ∅, so S−1R 6= 0. Thus S−1R = 0 iff 0 ∈ S.

Example 20.1.
For f ∈ R, Rf := S−1

f R where Sf =
{

1, f, f2, · · ·
}
, then Rf = 0 ⇐⇒ f ∈ nil(R).

Definition 20.1.
A multiplicatively closed set S is saturated iff for s ∈ S, f ∈ R with f dividing S, then f ∈ S.
Denote the S the saturation of S obtained by adding all divisors, then S−1R = S

−1
R.

Recall link to early problem of characterizing rings between Z and Q. There are more
localizations than such rings, since localizing at n is as good as localizing at kn.

If R is a domain, then for any S with 0 6∈ S, there is a diagram
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R S−1R

K

where K = ff(R).

In any ring, take S to be the nonzero divisors, then there is a maximal injective localization.

ιR S−1R

Total fraction field

Can generalize results from domains to arbitrary rings this way.

Exercise Take R1, R2 nonzero rings, R = R1 ×R2, and take S = R1 × {1}. What is S−1R? (First
figure out the kernel of the localization.)

20.1 Pushing and Pulling

Note that we can push/pull for quotients and get back what we started with – want something
similar for localization.

Consider the map ι : R −→ S−1R.

Lemma 20.1.
I E R implies that ι∗(I) =

{
x

s

∣∣∣ x ∈ I, s ∈ S}.

Proof .
Easy.

�

Proposition 20.2.
For all J E S−1R,

ι∗ι
∗J = J.

Proof .
Note that we always have containment, just need to show reverse containment.

�

Lemma 20.3.
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For I E R,

i∗(I) = S−1R ⇐⇒ I
⋂
S 6= ∅.

Proposition 20.4.
In parts,

a. For p ∈ Spec(R), TFAE:

• ι∗p ∈ Spec(S−1R)
• ι∗ ( S−1R
• p

⋂
S = ∅

b. If p
⋂
S = ∅, then ι∗ι∗p = p.

Corollary 20.5.
i∗ and i∗ are mutually inverse, order-preserving bijections

Spec(S−1R)
i∗

�
i∗

{
p ∈ Spec(R)

∣∣∣ p⋂S = ∅
}
.

Lemma 20.6.
For I E R, S a multiplicatively closed set, let f : R � R/I be the quotient map and S := q(S).
Then

S−1R/IS−1R
∼=−→ S

−1(R/I)
a

s
+ IS−1R 7→ a+ I

s+ I
.

Thus localizing commutes with taking quotients.

Let p ∈ Spec(R), then Sp := RSetsminusp is multiplicatively closed. (Note that localizing at any
non-prime ideal gives you the zero ring.) Let Rp := S−1

p R.

Proposition 20.7(Extremely Important!).
Rp is a local ring with a unique maximal ideal pRp,

Proof .
The poset Spec(Rp) =

{
q ∈ Spec(R)

∣∣∣ q⋂(R \ p) = ∅ ⇐⇒ q ≤ p
}
.

�

This gives us a way to construct a local ring from any maximal ideal. Perhaps the most
important construction thus far.
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Exercise Let (R,m) be local and S ⊂ R be multiplicatively closed. Show that S−1R need not be
local.

20.2 Localization for Modules
Let M be an R-module and S ⊂ R multiplicatively closed. We want S−1M to satisfy:

• S−1M is an R-module
• There is a morphism M −→ S−1M such that for all s ∈ S, the map S−1M

[s]−→ S−1M is an
isomorphism, i.e. S −→ EndR(S−1M) with i(S) ⊂ EndR(S−1M)
• This is universal wrt the above property.

There are two potential constructions.

Construction 1: Adapt the S−1R construction, defining S−1M = M × S/ ∼.

Construction 2: Define S−1M := S−1R⊗RM , where ι : M −→ S−1M where m 7→ 1⊗m.

It can be checked that these both satisfy the appropriate Universal mapping property.

Exercise If M is an R-module, then M has an S−1R-module structure iff S acts invertibly (so
[s] : M −→M is invertible), and if so the structure is unique.
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