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We’ll be using Hungerford’s Algebra text.

1.1 Definitions
The following definitions will be useful to know by heart:

The order of a group
Cartesian product
Relations

Equivalence relation
Partition

Binary operation
Group

Isomorphism

Abelian group

Cyclic group

Subgroup

Greatest common divisor
Least common multiple
Permutation
Transposition

88
88
88
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92
92
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95
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98
98
98
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99

101



Orbit

Cycle

The symmetric group Sy,
The alternating group A,
Even and odd permutations
Cosets

Index

The direct product of groups
Homomorphism

Image of a function

Inverse image of a function
Kernel

Normal subgroup

Factor group

Simple group

Here is a rough outline of the course:

Group Theory
— Groups acting on sets
— Sylow theorems and applications
— Classification
Free and free abelian groups
Solvable and simple groups
— Normal series
Galois Theory
— Field extensions
Splitting fields
Separability
Finite fields
Cyclotomic extensions
— Galois groups
— Solvability by radicals
Module theory
— Free modules
— Homomorphisms
— Projective and injective modules
— Finitely generated modules over a PID
Linear Algebra
— Matrices and linear transformations
Rank and determinants
Canonical forms
— Characteristic polynomials
— FEigenvalues and eigenvectors



1.2 Preliminaries

Definition: A group is an ordered pair (G, - : G X G — G) where G is a set and - is a binary
operation, which satisfies the following axioms:

1. Associativity: (g192)93 = 91(9293),

2. Identity: de € G ‘ ge =eg =g,

3. Inverses: g € ¢ — EIheG‘gh:gh:e.

Ezamples of groups:
o (Z,+)
(@Q +)
(@, x)
o (R* x)
(GL(n

e (GL(n,R),x) = {4 € Mat,, | det(4) # 0}
e (Sp,0)
Definition: A subset S C G is a subgroup of G iff
1. Closure: s1,50 € S =— 5152 € S
2. Identity: e € S
3. Inverses: s€ S =— s ' €8
We denote such a subgroup S < G.
FEzxamples of subgroups:

e (Z,+) < (Q+)
e SL(n,R) < GL(n, R), where SL(n,R) = {4 € GL(n, ) ] det(4) =1}

1.3 Cyclic Groups
Definition: A group G is cyclic iff G is generated by a single element.

FExercise: Show

<g>:{g”‘n€Z}% N {H]HgGandgeH}.
geG
Theorem: Let G be a cyclic group, so G = (g).
o If |G| = oo, then G = Z.
o If |G| =n < oo, then G = Zy,.



Definition: Let H < GG, and define a right coset of G by aH = {ah ’ H ¢ H}

A similar definition can be made for left cosets.

Fundamental Theorem of Cosets:

aH =bH < b 'ac Hand Hao = Hb < ab ' € H.

Some facts:

e Cosets partition H, i.e.

bg H = aH[)bH = {e}.

e |H|=|aH|=|Ha| for all a € G.
Theorem (Lagrange): If G is a finite group and H < G, then |H| ‘ |G]|.

Definition A subgroup N < G is normal iff gN = Ng for all g € G, or equivalently gNg~* C N.
(I denote this N < G.)

When N < G, the set of left/right cosets of N themselves have a group structure. So we define
G/N = {gN ‘ g e G} where (g1 V) - (g2N) == (g192)N.

Given H, K < (G, define

HK:{hk‘heH, k:eK}.

We have a general formula,

[H||K]

HK| = .
K= 15K

1.4 Homomorphisms
Definition: Let G, G’ be groups, then ¢ : G — G’ is a homomorphism if (ab) = ¢(a)p(b).
FEzxamples of homomorphisms:

e exp: (R, +) — (R™Y) .) since
b

exp(a + b) = e?T0 = % == exp(a) exp(b).

e det : (GL(n,R), x) — (R*, x) since

det(AB) = det(A) det(B).

e Let N < @G and define



¢:G— G/N
g+ gN.
o Let v :Z — 7Z,, where ¢(g) = [g] = g mod n where Z,, = Z/nZ

Definition: Let ¢ : G — G’. Then ¢ is a monomorphism iff it is injective, an epimorphism iff
it is surjective, and an isomorphism iff it is bijective.

1.5 Direct Products
Let G1, G2 be groups, then define

G x Gy = {(91,92) ‘ g1 €G,92 € Gz} where (g1, 92)(h1, h2) = (g1h1, g2, ha).

We have the formula |G| x G| = |G1||G2.

1.6 Finitely Generated Abelian Groups
Definition: We say a group is abelian if G is commutative, i.e. g1,90 € G = ¢192 = g291-

Definition: A group is finitely generated if there exist {g1,92, - gn} C G such that G =
(91,92, gn)-

This generalizes the notion of a cyclic group, where we can simply intersect all of the subgroups
that contain the g; to define it.

We know what cyclic groups look like — they are all isomorphic to Z or Z,. So now we’d like a
structure theorem for abelian finitely generated groups.

Theorem: Let GG be a finitely generated abelian group.
Then

S
~ 7T || )
G—Z X‘ lzp?z
1=

for some finite 7, s € N where the p; are (not necessarily distinct) primes.
Example: Let G be a finite abelian group of order 4.

Then G = Z4 or Z%, which are not isomorphic because every element in Z% has order 2 where Z4
contains an element of order 4.

1.7 Fundamental Homomorphism Theorem

Let ¢ : G — G’ be a group homomorphism and define

ker ¢ == {geG ‘ go(g):e’}.



1.7.1 The First Homomorphism Theorem

Theorem: There exists a map ¢’ : G/ ker o — G’ such that the following diagram commutes:

G £ y G

/

)

G/ ker ¢
That is, ¢ = ¢’ on, and ¢ is an isomorphism onto its image, so G/ ker ¢ = im .

This map is given by
¢ (g(ker ) = ¢(g).
FEzercise: Check that ¢ is well-defined.

1.7.2 The Second Theorem
Theorem: Let K, N < G where N < G. Then

Proof: Define a map

K% NK/N
k— kN.
You can show that ¢ is onto, then look at ker ¢; note that

EN =¢(k) =N < k€N,

and so kertp:NﬂK.

2 Tuesday August 20th

2.1 The Fundamental Homomorphism Theorems

Theorem 1: Let ¢ : G — G’ be a homomorphism. Then there is a canonical homomorphism
n: G — G/ ker ¢ such that the usual diagram commutes.

Moreover, this map induces an isomorphism G/ ker ¢ = im .



Theorem 2: Let K, N < G and suppose N < GG. Then there is an isomorphism

K _ NK
KON~ N

Proof Sketch: Show that K ﬂ N < G, and NK is a subgroup exactly because N is normal.
Theorem 3: Let H, K < G such that H < K.
Then
1. H/K is normal in G/K.
2. The quotient (G/K)/(H/K) = G/H.
Proof: We’ll use the first theorem.
Define a map

¢:G/K - G/H
gk — gH.

Ezxercise: Show that ¢ is surjective, and that ker ¢ = H/K.

2.2 Permutation Groups

Let A be a set, then a permutation on A is a bijective map AO. This can be made into a group with
a binary operation given by composition of functions. Denote S4 the set of permutations on A.

Theorem: S4 is in fact a group.

Proof: Exercise. Follows from checking associativity, inverses, identity, etc.

In the special case that A = {1,2,---n}, then S, := S4.

Recall two line notation

Moreover, |S,,| = n! by a combinatorial counting argument.
Ezxample: Ss is the symmetries of a triangle.

FEzrample: The symmetries of a square are not given by Sy, it is instead Dy.

10



2.3 Orbits and the Symmetric Group
Permutations S4 act on A, and if o € Sy, then (o) also acts on A.

Define a ~ b iff there is some n such that ¢"(a) = b. This is an equivalence relation, and thus
induces a partition of A. See notes for diagram. The equivalence classes under this relation are
called the orbits under o.

1 2

8 2
Definition: A permutation o € S, is a cycle iff it contains at most one orbit with more than one
element.

Ezample:

345 6 7 8
6 3 7 4 5 1>=(18)(2)(364)(57),

The length of a cycle is the number of elements in the largest orbit.
Recall cycle notation: o = (g(1)o(2) ---o(n)).
Note that this is read right-to-left by convention!
Theorem: Every permutation o € S,, can be written as a product of disjoint cycles.
Definition: A transposition is a cycle of length 2.
Proposition: Every permutation is a product of transpositions.

Proof:

(araz---ap) = (a1an)(a1an-1) - - - (a1a2).

This is not a unique decomposition, however, as e.g. id = (12)? = (34)%
Theorem: Any o € S, can be written as either
e An even number of transpositions, or
e An odd number of transpositions.
Proof:
Define

An:{UESn’aiseven}.

We claim that A4, < 5,,.
1. Closure: If 71,7 are both even, then 779 also has an even number of transpositions.

2. The identity has an even number of transpositions, since zero is even.
S S
3. Inverses: If 0 = H 7; where s is even, then ol = H Ts—;. But each 7 is order 2, so 1= T,
i=1 i=1
so there are still an even number of transpositions.

11



So A, is a subgroup.

It is normal because it is index 2, or the kernel of a homomorphism, or by a direct computation.

2.4 Groups Acting on Sets
Think of this as a generalization of a G-module.
Definition: A group G is said to act on a set X if there exists a map G x X — X such that
l.enz=2z
2. (192) ~ 2= g1 ~ (g2 ).
FEzxamples:
1. G=54~ A
2. H <@, then G ~ X = G/H where g ~ zH = (gx)H.
3. G ~ G by conjugation, i.e. ¢ ~ x = grg .

Definition: Let x € X, then define the stabilizer subgroup

Gz:{gGG‘gmx:x}SG

We can also look at the dual notion,

Xg:{xEX‘gmx:x}.

We then define the orbit of an element x as
Gm‘:{gmx‘geG}

and we have a similar result where z ~y <= x € Gy, and the orbits partition X.

Theorem: Let G act on X. We want to know the number of elements in an orbit, and it turns out
that

|Gx| =[G : Gy

Proof: Construct a map Gz Y, G/Gz where ¢¥(g ~ x) = gGx.

FEzercise: Show that this is well-defined, so if 2 elements are equal then they go to the same coset.
Exercise: Show that this is surjective.

Injectivity: 1(g12) = ¥(gax), s0 1Gx = g2Gx and (g5 'g1)Gz = G s0

g;lgler <— gglglma}:x < g1 = go.

Next time: Burnside’s theorem, proving the Sylow theorems.

12



3 Thursday August 22nd

3.1 Group Actions

Let G be a group and X be a set; we say G acts on X (or that X is a G- set) when there is a map
G x X — X such that ex = z and

(gh) ~xz =g~ (h~ ).

We then define the stabilizer of = as

Stabg(z) = Gy :z{gEG’gmx:x}gG,

and the orbit

G.x:szz{gmx‘xeX}gX.

When G is finite, we have

Gl

G.x| =
e TeN

We can also consider the fixed points of X,

Xg:{a:EX’gm:L‘::EVgGG}QX

3.2 Burnside’s Theorem

Theorem (Burnside): Let X be a G-set and v := | X/G| be the number of orbits. Then

Gl =) Xl

geG

Proof: Define

N:{(g,x)’gmx:x}ngX,

we then have

13



INT= > 1

geG

= Y16l

zeX
G|

- Z ﬁ by Orbit-Stabilizer

G

(ZX )

= |G| (
Gz € X/G

~ 6] (err
Gz € X/G

- 6|
Gx € X/G

= |G|v.

zeX
=G|

)

The last two equalities follow from the following fact: since the orbits partition X, say into
v

X = Hi:lai’ so let 0 = {ai }

By abuse of notation, replace each orbit in o with a representative element z; € o; C X.

We then have

Application: Consider seating 10 people around a circular table. How many distinct seating
arrangements are there?

Let X be the set of configurations, G = Sig, and let G ~ X by permuting configurations. Then v,
the number of orbits under this action, yields the number of distinct seating arrangements.

By Burnside, we have

1
X4 = —(10! 9!
v yG|Z’ ol = 10 =
sinceXg:{xEX’gmxzm}:®unlessg:e,andX6:X.

3.3 Sylow Theory

Recall Lagrange’s theorem:

14



If H < G and G is finite, then |H| divides |G]|.
Consider the converse: if n divides |G|, does there exist a subgroup of size n?

The answer is no in general, and a counterexample is A4 which has 4!/2 = 12 elements but no
subgroup of order 6.

3.3.1 Class Functions
Let X be a G-set, and choose orbit representatives z - - - .

Then
v
| X| = Z |G ..
=1

We can then separately count all orbits with exactly one element, which is exactly

ng{xEG‘gmx:ngeG}

We then have
v
|X| = [Xe| + ) |G.ail
i=j
for some j where |G.z;| > 1 for all i > j.
Theorem: Let G be a group of order p™ for p a prime.

Then
| X| =[X¢| mod p.

Proof: We know that
|G.zi| = [G: Gg,] for j <i<wvand |Gz >1 = G.ux; #G,
and thus p divides [G : Gz;]. The result follows.

Application: If |G| = p", then the center Z(G) is nontrivial.
Let X = G act on itself by conjugation, so ¢ ~ z = grg~'. Then

XG:{xEG‘gxg_lzx}:{xeG‘gac::cg}:Z(G)

But then, by the previous theorem, we have
|Z(G)| = |X| =|G| mod p,
but since Z(G) < G we have |Z(G)| =0 mod p. So in particular, Z(G) # {e}.

Definition: A group G is a p-group iff every element in G has order p* for some k. A subgroup is
a p-group exactly when it is a p-group in its own right.

15



3.3.2 Cauchy’s Theorem

Theorem (Cauchy): Let G be a finite group, where p is prime and divides |G|. Then G has an
element (and thus a subgroup) of order p.

Proof: Consider

X = {(91792,"' ,gp) € GFP ‘ G192 gp = 6}-
Given any p — 1 elements, say gi---gp—1, the remaining element is completely determined by
9= (g1 gp—1)" "
So | X| = |G|P~*.and since p ) |G|, we have p ‘ | X
Now let o € S, the symmetric group act on X by index permutation, i.e.
gy (91792 e gp) = (90(1)790(2)7 T )ga(p))'
FEzercise: Check that this gives a well-defined group action.

Let 0 =(12 --- p) €Sy, and note (o) < S, also acts on X where |[(o)| = p. Therefore we have

|X| = ’X(C,)‘ mod p.

Since p ’ | X|, it follows that ‘X@

=0 mod p, and thus p ‘ ‘X(0>

If <U> fixes (glag2a o 'gp)a then g1 =92 =" 3gp-

Note that (e,e,--) € X4, as is (a,a,---a) since p ’ ’XM‘. So there is some a € G such that

a? = 1. Moreover, (a) < G is a subgroup of size p.

3.3.3 Normalizers

Let G be a group and X = S be the set of subgroups of G. Let G act on X by g ~ H = gHg™ .
What is the stabilizer?

GI:GH:{geG’gHg_le},
making G the largest subgroup such that H < Gp.
So we define Ng(H) = Gpg.
Lemma: Let H be a p-subgroup of G of order p™. Then
NG(H) : H] =[G : H] mod p.

Proof: Let S = G/H be the set of left H-cosets in G. Now let H act on S by
H~ x4+ H = (hx) + H.

16



By a previous theorem, |G/H| = |S| = |Sy| mod p, where |G/H| =[G : H|]. What is Sg?

This is given by

SHz{a:JrHeS‘xHx*leH\meH}.

Therefore © € Ng(H).

Corollary: Let H < G be a subgroup of order p". If p ’ G : H| then Ng(H) # H.
Proof: Exercise. |
Theorem: Let G be a finite group, then G is a p-group <= |G| = p" for some n > 1.

Proof: Suppose |G| = p" and a € G. Then |{a)| = p® for some a.

Conversely, suppose G is a p-group. Factor |G| into primes and suppose Jq such that ¢ ‘ |G| but
q#p.

By Cauchy, we can then get a subgroup (c) such that |{c)] ‘ q, but then |G| # p".

4 Tuesday August 27th

Let G be a finite group and p a prime. TFAE:

o |H| =p" for some n
e Every element of H has order p® for some «.

If either of these are true, we say H is a p-group.

Let H be a p-group, last time we proved that if p ’ [G : H] then Ng(H) # H.

4.1 Sylow Theorems
Let G be a finite group and suppose |G| = p"m where (m,n) = 1. Then

4.1.1 Sylow 1

Idea: take a prime factorization of |G|, then there are subgroups of order p* for every prime
power appearing, up to the maximal power.

1. G contains a subgroup of order P for every 1 <i < n. A
2. Every subgroup H of order p’ where i < n is a normal subgroup in a subgroup of order p'*!.

Proof: By induction on i. For ¢ = 1, we know this by Cauchy’s theorem. If we show (2), that shows
(1) as a consequence.

17



So suppose this holds for i < n. Let H < G where |H| = p', we now want a subgroup of order p*!.

Since p ’ [G : H], by the previous theorem, H < Ng(H) is a proper subgroup (7).

Now consider the canonical projection Ng(H) — Ng(H)/H. Since
p | ING(H) : H] = |NG(H)/H|,
by Cauchy there is a subgroup of order p in this quotient. Call it K. Then 7~ *(K) < Ng(H).
Exercise: Show that ‘Qﬁ_l(K)’ =pitt,
It now follows that H < ¢~ }(K).
Definition: For G a finite group and |G| = p™m where p does not divide m.
Then a subgroup of order p" is called a Sylow p-subgroup.

Note: by Sylow 1, these exist.

4.1.2 Sylow 2

If P, P> are Sylow p-subgroups of GG, then P, and P» are conjugate.
Proof: Let L be the left cosets of Pp, i.e. L=G/P;.

Let P; act on L by

p2 ~ (g + Pr) = (p2g) + Pi.

By a previous theorem about orbits and fixed points, we have

|Lp,| = |L£|] mod p.
Since p does not divide |£|, we have p does not divide |Lp,|. So Lp, is nonempty.
So there exists a coset P such that P, € Lp,, and thus

yrP, = xP; for all y € Ps.

Then :c_lnyl = P, for all y € P, and so :U_ngx = P;. So P, and P» are conjugate.

4.1.3 Sylow 3
Let G be a finite group, and p ‘ |G|. Let r, be the number of Sylow p-subgroups of G.
Then

e r, =1 mod p.

®7p ‘ |G

18
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o 7, =[G : Ng(P)]
Proof:
Let X = & be the set of Sylow p-subgroups, and let P € X be a fixed Sylow p-subgroup.
Let P ~ S by conjugation, so for P € S let z ~ P = z Pz L.

By a previous theorem, we have

|S| =Sp mod p

What are the fixed points Sp?

sz{Tes]xTx—lzT V:EGP}.

Let T € Sp, so Tz ' =T for all = € P.
Then P < Ng(T), so both P and T are Sylow p- subgroups in Ng(H) as well as G.

So there exists a f € Ng(T) such that T'= gPg~'. But the point is that in the normalizer, there is
only one Sylow p- subgroup.

But then 7T is the unique largest normal subgroup of N¢(7T'), which forces T' = P.

Then Sp = {P}, and using the formula, we have r, =1 mod p.

Now modify this slightly by letting G act on S (instead of just P) by conjugation.

Since all Sylows are conjugate, by Sylow (1) there is only one orbit, so S = GP for P € S. But then

rp =8| =GP =[G : Gy | [GI.

Note that this gives a precise formula for 7,, although the theorem is just an upper bound of sorts,
and G, = Ng(P).

4.2 Applications of Sylow Theorems

Of interest historically: classifying finite simple groups, where a group G is simple If N < G and
N # {e}, then N = G.

Ezample: Let G = Z,, any subgroup would need to have order dividing p, so G must be simple.
Ezample: G = A, for n > 5 (see Galois theory)

One major application is proving that groups of a certain order are not simple.

Applications:

Proposition: Let |G| = p"q with p > ¢. Then G is not simple.

Proof:

Strategy: Find a proper normal nontrivial subgroup using Sylow theory. Can either show
rp = 1, or produce normal subgroups by intersecting distinct Sylow p-subgroups.
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Consider r,, then r, = pq” for some «, . But since rp =1 mod p, p does not divide r,, we must
have r, = 1,q.

But since ¢ < p and ¢ # 1 mod p, this forces r, = 1.

So let P be a sylow p-subgroup, then P < G. Then gPg*

them, so P is normal.

is also a sylow, but there’s only 1 of

|
Proposition: Let |G| = 45, then G is not simple.
Proof: Exercise.

|
Proposition: Let |G| = p", then G is not simple if n > 1.
Proof: By Sylow (1), there is a normal subgroup of order p"~! in G.

|

Proposition: Let |G| = 48, then G is not simple.
Proof:

Note 48 = 213, so consider 3, the number of Sylow 2-subgroups. Then ro = 1 mod 2 and ro ‘ 48.
So rg =1,3. If r9 = 1, we're done, otherwise suppose ry = 3.

Let H # K be Sylow 2-subgroups, so |H| = |K| = 2* = 16. Now consider HﬂK, which is a
subgroup of G. How big is it?

Since H # K, Hn K’ < 16. The order has to divides 16, so we in fact have ’Hﬂ K‘ < 8. Suppose
it is less than 4, towards a contradiction. Then
H|K| _ (16)16)
HOK|— 4

|HK| =

=64 > |G| = 48.

So we can only have ‘H ﬂ K ’ = 8. Since this is an index 2 subgroup in both H and K, it is in fact
normal. But then

H,K C Ng(H(K) = X.

But then | X| must be a multiple of 16 and divide 48, so it’s either 16 or 28. But |X| > 16, because
H C X and K C X. So then

Ng(HﬂK) = G and so HﬂK <G.

5 Thursday August 29th

5.1 Classification of Groups of Certain Orders

We have a classification of some finite abelian groups.
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Order of G Number of Groups List of Distinct Groups

{e}
Ly
73

2
Z4,Z2
Ls
Zﬁ7 ‘93 (*)
Ly
ZS7 Z4 X Z2a ng D4a Q
Ly, 73
Z0, Ds
211

© 00 O Ui W N+~
R NN O N RN R &

[
= O

Ezercise: show that groups of order p? are abelian.

We still need to justify Ss, D4, Q, Ds.

Recall that for any group A, we can consider the free group on the elements of A given by F[A].
Note that we can also restrict A to just its generators.

There is then a homomorphism F[A] — A, where the kernel is the relations.

Ezample:

Zx7 = <:1c,y ’ zyz tyl = e> where z = (1,0), y = (0,1).

5.2 Groups of Order 6
Let G be nonabelian of order 6.
Idea: look at subgroups of index 2.

Let P be a Sylow 3-subgroup of G, then r3 =1 so P < G. Moreover, P is cyclic since it is order 3,
so P = (a).

But since |G/P| = 2, it is also cyclic, so G/P = (bP).

Note that b & P, but b*> € P since (bP)? = P, so b* € {e,a,aZ}.

If b = a,a® then b has order 6, but this would make G = (b) cyclic and thus abelian. So b* = 1.
Since P <4 G, we have bPb~! = P, and in particular bab~! has order 3.

So either bab™! = a, or bab~! = a?. If bab~! = a, then G is abelian, so bab~! = a?. So
G= <a,b ‘ a®=e b =ebab! = a2>.
We’ve shown that if there is such a nonabelian group, then it must satisfy these relations — we still

need to produce some group that actually realizes this.

Consider the symmetries of the triangle:
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You can check that a, b satisfy the appropriate relations.

5.3 Groups of Order 10

For order 10, a similar argument yields

G:<a,b‘a5:1,b2:1,ba:a4b>,

and this is realized by symmetries of the pentagon where a = (1234 5),b= (1 4)(2 3).

5.4 Groups of Order 8

Assume G is nonabelian of order 8. G has no elements of order 8, so the only possibilities for orders
of elements are 1, 2, or 4.

Assume all elements have order 1 or 2. Let a,b € GG, consider
(ab)? = abab = ab=b"'a"! = ba,

and thus G is abelian. So there must be an element of order 4.

So suppose a € G has order 4, which is an index 2 subgroup, and so (a) < G.



But |G/ (a)| = 2 is cyclic, so G/ (a) = (bH).
Note that v* € H = (a).

If b = a,a® then b will have order 8, making G cyclic. So b*> = 1,a%. These are both valid
possibilities.

Since H < G, we have b(a) b~ = (a), and since a has order 4, so does bab™'.
So bab~! = a, a®, but a is not an option because this would make G abelian.

So we have two options:

Gy = <a,b ‘ a* =1,b% = 1,bab~! = a3>

Gy = <a,b ‘ at =1, =a® bab™ ! = a3>.

Ezercise: prove G1 % Gs.
Now to realize these groups:
e (3 is the group of symmetries of the square, where a = (1 2 3 4),b = (1 3).

e G9 = (), the quaternions, where @ = {£1, i, +j, +k}, and there are relations (add picture
here).

5.5 Some Nice Facts

e If and ¢ : G — G’, then
— N <G = N < ¢(G), although it is not necessarily normal in G.
- N 4G = ¢ '(N) <G

Definition: A mazimal normal subgroup is a normal subgroup M < G that is properly contained
in G, and if M < N < G (where N is proper) then M = N.

Theorem: M is a maximal normal subgroup of G iff G/M is simple.

5.6 Simple Groups
Definition: A group G is simple iff N < G — N = {e},G.

Note that if an abelian group has any subgroups, then it is not simple, so G = Z,, is the only simple
abelian group. Another example of a simple group is A,, for n > 5.

Theorem (Feit-Thompson, 1964): Every finite nonabelian simple group has even order.

Note that this is a consequence of the “odd order theorem”.
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5.7 Series of Groups

A composition series is a descending series of pairwise normal subgroups such that each successive
quotient is simple:

Go 4Gy 4Gy D {e}
G;i/Git1 simple.

Example:
Zg 4 Z3 2 {e}
Zg| %3 = s,
Zg/ {e} = Z3.

Ezample:
Ze 4 Z3 2 {e}
Ze|Zs = 7o
Lo/ {e} = Zo.

but also

Ze 4 Zy Q {e}
Ze|Zo =73
Zs3/{e} = Zs.

Theorem (Jordan-Holder): Any two composition series are “isomorphic” in the sense that the
same quotients appear in both series, up to a permutation.

Definition: A group is solvable iff it has a composition series where all factors are abelian.
Ezercise: Show that any abelian group is solvable.

Ezxample: S, is not solvable for n > 5, since

Sp <A, 4 {6}
Sn /A = Zg simple
A,/ {e} = A, simple <= n > 5.

Example:
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Sy <Ay <G QD {e} where|H|=4
Sa/As = 7o
Au/H =75
H/{e} ={a,b}?.

6 August 30th

Recall the Sylow theorems:
e p groups exist for every p' dividing |G|, and H(p) < H(p?) < --- H(p").
e All Sylow p-subgroups are conjugate.
e Numerical constraints

— 1, =1 mod p,

— T ‘ |G| and 7, ‘ m,

6.1 Internal Direct Products

Suppose H, K < (G, and consider the smallest subgroup containing both H and K. Denote this
HVK.

If either H or K is normal in G, then we have HV K = HK.

There is a “recipe” for proving you have a direct product of groups:

Theorem (Recognizing Direct Products): Let G be a group, H < G and K < G, and
1. HVK =HK =G,

2. H( K = {e}.
Then G = H x K.
Proof: We first want to show that hk = kh Vk € K,h € H. We then have

hkh 'k~ = (hkh™")k™' € K = h(kh'k™') € H = hkh™ k™' € H(\K = {e}.

So define

o: HxK—G
(h, k) — hk,

FEzercise: check that this is a homomorphism, it is surjective, and injective.
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Applications:
Theorem: Every group of order p? is abelian.

Proof: If G is cyclic, then it is abelian and G' = Z,2. So suppose otherwise. By Cauchy, there is an
element of order p in G. So let H = (a), for which we have |H| = p.

Then H < G by Sylow 1, since it’s normal in H(p?), which would have to equal G.

Now consider b ¢ H. By Lagrange, we must have o(b) = 1,p, and since e € H, we must have
o(b) = p. This uses fact that G is not cyclic.

Now let K = (b). Then |K| = p, and K < G by the same argument.

Theorem: Let |G| = pg where ¢ # 1 mod p and p < q. Then G is cyclic (and thus abelian).

Proof: Use Sylow 1. Let P be a sylow p-subgroup. We want to show that P < G to apply our direct
product lemma, so it suffices to show r, = 1.

We know r, =1 mod p and r, ’ |G| = pg, and so r, =1, ¢. It can’t be ¢ because p < g.

Now let @ be a sylow g-subgroup. Then r, =1 mod 1 and ry ’ pq, so rq = 1,q. But since p < ¢,

we must have r, = 1. So Q < G as well.

We now have Pﬂ Q =0 (why?) and

1PlQ
PNQ

|PQ| = = |P||Q] = pq,

and so G = PQ, and G = Zy X Zg = Lpq.

Ezample: Every group of order 15 = 53! is cyclic.

6.2 Determination of groups of a given order

Order of G Number of Groups List of Distinct Groups

{e}

Ly

73

Ly, 72

Zs

Ze, S5 ()
Ly

Zg,Zy X Ly, 73, Dg, Q
Ly, 73
Z10, Ds
Z11

[u—y

© 00 O Ui W N =

NN O NN ==

—_ =
i)
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We still need to justify 6, 8, and 10.

6.3 Free Groups

Define an alphabet A = {ay,aq,---ay}, and let a syllable be of the form a;" for some m. A word is
any expression of the form H A

n;
We have two operations,
e Concatenation, i.e. (ajas) * (a3as) = ajaza3as.
C . . 2 -1 _ 2 -1 _
e Contraction, i.e. (a1a3) * (ay as) = ajaza; as = ajagas.
If we’ve contracted a word as much as possible, we say it is reduced.

We let F[A] be the set of reduced words and define a binary operation

£ F[A] x F[A] — F[A]

(w1, w2) — wiwsy (reduced) .

Theorem: (A, f) is a group.
Proof: Exercise.

Definition: F'[A] is called the free group generated by A. A group G is called free on a subset
ACGiff G= F[A]

Ezxamples:
1L A={z} = FlA]={a" |nez}=z
2. A={z,y} = F[A] =Zx*Z (not defined yet!).

Note that there are not relations, i.e. zyzyzxy is reduced. To abelianize, we’d need to introduce the
relation zy = yz.

Properties:
1. If G is free on A and free on B then we must have |[A| = |B]|.
2. Any (nontrivial) subgroup of a free group is free.

(See Fraleigh or Hungerford for possible Algebraic proofs!)

Theorem: Let G be generated by some (possibly infinite) subset A = {Ai 1el } and G’ be
generated by some A, C A;.
Then

a. There is at most one homomorphism a; — al.

b. If G = F[A], there is exactly one homomorphism.

27



Corollary: Every group G’ is a homomorphic image of a free group.

Proof: Let A be the generators of G’ and G = F[A], then define

¢: F[A] — G

a; — a;.

This is onto exactly because G’ = (a;), and using the theorem above we’re done.

6.4 Generators and Relations

Let G be a group and A C G be a generating subset so G = <a ‘ a € A>. There exists a ¢ : F[A] - G,
and by the first isomorphism theorem, we have F[A]/ker ¢ = G.

Let R = ker ¢, these provide the relations.

Examples:

Let G = Z3 = ([1]3). Let = [1]3, then define ¢ : F[{z}] - Zs.
Then since [1] + [1] + [1] = [0] mod 3, we have ker ¢ = <a:3>
Let G=Z ®Z, then G = <:17,y ’ [x,y] = 1>.

We'll use this for groups of order 6 — there will be only one presentation that is nonabelian,
and we’ll exhibit such a group.

7 September 9th

7.1 Series of Groups
Recall that a simple group has no nontrivial normal subgroups.

Example:

Definition: A normal series (or an invariant series) of a group G is a finite sequence H; < G such
that H; < H;41 and H, = G, so we obtain

H d4H,<.--- <H,=0G.

Definition: A normal series {K;} is a refinement of {H;} if K; < H; for each i.
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Definition: We say two normal series of the same group G are isomorphic if there is a bijection
from

{Hi/Hit1} <= {Kj/Kj1}

Theorem (Schreier): Any two normal series of G has isomorphic refinements.

Definition: A normal series of G is a composition series iff all of the successive quotients
H;/H;;, are simple.

Note that every finite group has a composition series, because any group is a maximal normal
subgroup of itself.

Theorem (Jordan-Holder): Any two composition series of a group G are isomorphic.
Proof: Apply Schreier’s refinement theorem.

Ezample: Consider S, < A,, < {e}. This is a composition series, with quotients Zs, A,,, which are
both simple.

Definition: A group G is solvable iff it has a composition series in which all of the successive
quotients are abelian.

Examples:

e Any abelian group is solvable.

e S, is not solvable for n > 5, since A,, is not abelian for n > 5.
Recall Feit-Thompson: Any nonabelian simple group is of even order.

Consequence: Every group of odd order is solvable.

7.2 The Commutator Subgroup
Let G be a group, and let [G,G] < G be the subgroup of G generated by elements aba~1pt
i.e. every element is a product of commutators. So [G,G] is called the commutator subgroup.

)

Theorem: Let G be a group, then

1. [G,G] <G

2. [G, @] is a normal subgroup

3. G/|G,G] is abelian.

4. |G, G] is the smallest normal subgroup such that the quotient is abelian,

Ie., H < G and if G/N is abelian = [G,G] < N.
Proof of 1:
[G,G] is a subgroup:

e Closure is clear from definition as generators.
e The identity is e = ee tee ™.
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e So it suffices to show that (aba~'b~')~! € [G, G, but this is given by bab~*a~' which is of
the correct form.

|
Proof of 2:
[G, G] is normal.

Let z; € [G,G], then we want to show gl_[;zcl-g_1 € [G,G], but this reduces to just showing
grg~! € [G,G] for a single z € [G,G).

Then,
glaba™ b 1)g ™! = (g7 aba" )e(b™'g)
= (g7 aba™")(gb™"bg ™) (07" g)
=[(g~"a)b(g ™ a)" "o "] [bg b "g]
€ |G, Gl
|
Proof of 3:
G/|G, G| is abelian.
Let H = [G,G]. We have aHbH = (ab)H and bHaH = (ba)H.
But abH = baH because (ba) ' (ab) = a 'b71ab € [G, G).
|
Proof of 4:
H < G and if G/N is abelian = [G,G] < N.
Suppose G/N is abelian. Let aba 107! € [G, G].
Then abN = baN, so aba'b~! € N and thus [G,G] C N.
|

7.3 Free Abelian Groups
Example: Z x Z.

Take e; = (1,0),e2 = (0,1). Then (z,y) € Z? can be written x(1,0) 4+ y(0,1), so {e;} behaves like a
basis for a vector space.

Definition: A group G is free abelian if there is a subset X C G such that every g € G can be
represented as

'
g= Znixi, x; € X, n; € 7.
i=1
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Equivalently, X generates G, so G = (X), and if anxl =0 = n; =0Vi.
If this is the case, we say X is a basis for G.
Examples:

e 7" is free abelian

e Z, is not free abelian, since n[1] = 0 and n # 0.

In general, you can replace Z, by any finite group and replace n with the order of the
group.

Theorem: If G is free abelian on X where |X|=r, then G = Z".

Theorem: If X = {z;};_,, then a basis for Z" is given by

{(1,0,0,"'),(0,1,0,"'),'" v(oa"' 7071)} = {617627"' ,er}

Proof: Use the map ¢ : G — Z" where x; — ¢;, and check that this is an isomorphism of groups.
Theorem: Let G be free abelian with two bases X, X', then | X| = |X|.
Definition: Let G be free abelian, then if X is a basis then |X]| is called the rank of of G.

8 Thursday September 5th
8.1 Rings

Recall the definition of a ring: A ring (R, +, X) is a set with binary operations such that

1. (R,+) is a group,
2. (R, x) is a monoid.

Ezxamples: R =7,Q,R,C, or the ring of n x n matrices, or Z,.

A ring is commutative iff ab = ba for every a,b € R, and a ring with unity is a ring such that 31 € R
such that al = la = a.

Ezercise: Show that 1 is unique if it exists.

In a ring with unity, an element a € R is a unit iff 3b € R such that ab = ba = 1.
Definition: A ring with unity is a division ring <= every nonzero element is a unit.
Definition: A division ring is a field <= it is commutative.

Definition: Suppose that a,b # 0 with ab = 0. Then a, b are said to be zero divisors.
Definition: A commutative ring without zero divisors is an integral domain.

Ezample: In Z,, an element «a is a zero divisor iff ged(a,n) # 1.

Fact: In a ring with no zero divisors, we have

ab=acand a #0 = b=rc.

Theorem: Every field is an integral domain.
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Proof: Let R be a field. If ab= 0 and a # 0, then a~! exists and so b = 0.

Theorem: Any finite integral domain is a field.
Proof:
Idea: Similar to the pigeonhole principle.
Let D ={0,1,a1, -+ ,an} be an integral domain. Let a; # 0,1 be arbitrary, and consider a;D =
{ajzn ’ x €D\ {0}}
Then a;D = D\ {0} as sets. But

a;D = {aj,aja1,ajaz,- - ,a;a,} .
Since there are no zero divisors, 0 does not occur among these elements, so some a;a; must be equal
to 1.
|

8.2 Field Extensions

If F < FE are fields, then E is a vector space over F, for which the dimension turns out to be
important.

Definition: We can consider
Aut(E/F) = {O‘ cEO ‘ feF = o(f)= f},

i.e. the field automorphisms of F that fix F.
Ezxzamples of field extensions: C — R — Q.

Let F(x) be the smallest field containing both F' and z. Given this, we can form a diagram
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Let F[x] the polynomials with coefficents in F.

Theorem: Let F be a field and f(x) € F[z] be a non-constant polynomial. Then there exists an
F — FE and some « € E such that f(a) = 0.

Proof: Since F[z] is a unique factorization domain, given f(x) we can find an irreducible p(z) such
that f(z) = p(x)g(x) for some g(z). So consider E = F[z|/(p).

Since p is irreducible, (p) is a prime ideal, but in F[z] prime ideals are maximal and so E is a field.
Then define
W:F = E
a— a+ (p).

Then ¢ is a homomorphism of rings: supposing ¥ («) = 0, we must have a € (p). But all such
elements are multiples of a polynomial of degree d > 1, and « is a scalar, so this can only happen if
a=0.

Then consider @ =  + (p); the claim is that p(a) = 0 and thus f(a) = 0. We can compute

p(x +(p)) = a0 + ar(z + (p)) + - + anlz + (p))"
= p(z) + (p) = 0.
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Exzample: R[z]/(x* + 1) over R is isomorphic to C as a field.

8.3 Algebraic and Transcendental Elements

Definition: An element o € F with F' — F is algebraic over F' iff there is a nonzero polynomial
in f € F[z] such that f(a)=0.

Otherwise, « is said to be transcendental.
Examples:

e V2c R+ Qis algebraic, since it satisfies 2% — 2.

e V—1 € C + Q is algebraic, since it satisfies 2> + 1.

e m,¢ € R+ Q are transcendental

This takes some work to show.

An algebraic number o € C is an element that is algebraic over Q.
Fact: The set of algebraic numbers forms a field.

Definition: Let F' < E be a field extension and o € E. Define a map

¢ : Flz] - E
¢a(f) = f(a)

This is a homomorphism of rings and referred to as the evaluation homomorphism.
Theorem: Then ¢, is injective iff « is transcendental.

Note: otherwise, this map will have a kernel, which will be generated by a single element that
is referred to as the minimal polynomial of «.

8.4 Minimal Polynomials

Theorem: Let F' < E be a field extension and a € F algebraic over F'. Then
1. There exists a polynomial p € F[x] of minimal degree such that p(«) = 0.
2. p is irreducible.
3. p is unique up to a constant.

Proof:

Since « is algebraic, f(a) = 0. So write f in terms of its irreducible factors, so f(z) = Hpj(x) with
each p; irreducible. Then p;(a) = 0 for some ¢ because we are in a field and thus don’t have zero
divisors.

So there exists at least one p;(x) such that p(a) = 0, so let ¢ be one such polynomial of minimal
degree.
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Suppose that degq < degp;. Using the Euclidean algorithm, we can write p(z) = q(z)c(x) + r(z)
for some ¢, and some r where degr < degg.

But then 0 = p(a) = ¢(a)c(a) + r(a), but if g(a) = 0, then r(a) = 0. So r(z) is identically zero,
and so p(x) — q(x) = ¢(x) = ¢, a constant.

Definition: Let o € E be algebraic over F', then the unique monic polynomial p € F[x]| of minimal
degree such that p(a)) = 0 is the minimal polynomial of «.

Ezample: \/1+ v/2 has minimal polynomial 2* + 2 — 1, which can be found by raising it to the
2nd and 4th power and finding a linear combination that is constant.

9 Tuesday September 10th

9.1 Vector Spaces

Definition: Let F be a field. A vector space is an abelian group V with a map F x V' — V such
that

o a(pv) = (af)v
o (a+ p)v=av+fv,
e a(Vv+w)=av+aw
o lv=v
Ezamples: R",C", F[z] = span({l,x,xQ, . -}),Lz(R)

Definition: Let V be a vector space over F; then a set W C V spans V iff for every v € V, one
can write v = z a;w; where o; € F, w; € W.

Definition: V is finite dimensional if there exists a finite spanning set.

Definition: A set W C V is linearly independent iff

Z%’Wz’ =0 = «; =0 for all 4.

Definition: A basis for V is a set W C V such that
1. W is linearly independent, and
2. W spans V.
A basis is a midpoint between a spanning set and a linearly independent set.

We can add vectors to a set until it is spanning, and we can throw out vectors until the remaining
set is linearly independent. This is encapsulated in the following theorems:

Theorem: If W spans V', then some subset of W spans V.
Theorem: If W is a set of linearly independent vectors, then some superset of W is a basis for V.

Fact: Any finite-dimensional vector spaces has a finite basis.

35



Theorem: If W is a linearly independent set and B is a basis, then |B| < |W]|.
Corollary: Any two bases have the same number of elements.

So we define the dimension of V' to be the number of elements in any basis, which is a unique
number.

9.2 Algebraic Extensions

Definition: E > F is an algebraic extension iff every o € E is algebraic of F.

Definition: F > F is a finite extension iff E is finite-dimensional as an F-vector space.
Notation: [E : F| = dimp E, the dimension of E as an F-vector space.

Observation: If E = F(«) where « is algebraic over F, then E is an algebraic extension of F'.
Observation: If E > F and [E: F| =1, then E = F.

Theorem: If E > F is a finite extension, then E is algebraic over F.

n

Proof: Let 8 € E. Then the set {1, 8,32, } is not linearly independent. So Z ¢; 8" = 0 for some
i=0
n and some ¢;. But then f is algebraic. |

Note that the converse is not true in general. Ezample: Let E = R be the algebraic numbers.
Then E > Q is algebraic, but [E : Q] = co.

Theorem: Let K > E > F, then [K : F| = [K : E|[E : F].
Proof: Let {ca;}™ be a basis for E/F Let {3;}" be a basis for K/E. Then the RHS is mn.
Claim: {a;(;}"™" is a basis for K/F.

Linear independence:

Z cijaifBj =0
,J
= DD i =0
i
— Z cijo; = 0 since 8 form a basis
i
— Z cij =0 since o form a basis.

Exercise: Show this is also a spanning set.

Corollary: Let £, > E,_1 > --- > FEy > F, then

[E,:F)=[E,: E,1][Er—1: Er—2]--[Es: E1][Ey : F].

Observation: If o € E > F and « is algebraic over F' where E > F(a) > F, then F(«) is algebraic
(since [F(a) : F] < o0) and [F(«) : F] is the degree of the minimal polynomial of o over F.
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Corollary: Let E = F(a) > F where « is algebraic. Then

B € Fla) = degmin(8, F) ‘ deg min(«, F).

Proof: Since F(a) > F(B) > F, we have [F(«a) : F| = [F(«) : F(8)][F(8) : F]. But just note that

[F(a) : F] = degmin(«, F') and
[F'(B) : F] = degmin(p, F).
|
Theorem: Let E > F' be algebraic, then
[E:F]<o < E=F(a, - ,ap) for some o, € E.

9.3 Algebraic Closures
Definition: Let ¥ > F', and define
Fp = {a ek ‘ « is algebraic over F}
to be the algebraic closure of F' in F.
Ezample: Q — C, while Q = A is the field of algebraic numbers, which is a dense subfield of C.
Proposition: Fg is a always field.
Proof: Let o, 8 € Fg, so [F(a,f8) : F] < co. Then F(a, 3) C Fg is algebraic over F and

atp, af, € F(a, B).

™| 2

So FF is a subfield of E and thus a field.

Definition: A field F is algebraically closed iff every non-constant polynomial in F[x] is a root
in F. Equivalently, every polynomial in F[z] can be factored into linear factors.

If F is algebraically closed and F > F' and F is algebraic, then £ = F'.

9.3.1 The Fundamental Theorem of Algebra
Theorem (Fundamental Theorem of Algebra): C is an algebraically closed field.
Proof:

Liouville’s theorem: A bounded entire function f : CO is constant.
e Bounded means M | z € C = |f(2)| < M.

e FEntire means analytic everywhere.

Let f(z) € C[z] be a polynomial without a zero which is non-constant.

1
Then —— : CO is analytic and bounded, and thus constant, and contradiction.

f(z)
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9.4 Geometric Constructions:

Given the tools of a straightedge and compass, what real numbers can be constructed? Let C be the
set of such numbers.

Theorem: C is a subfield of R.

10 Thursday September 12th

10.1 Geometric Constructions

Definition: A real number « is said to be constructible iff |«| is constructible using a ruler and
compass. Let C be the set of constructible numbers.

Note that £1 is constructible, and thus so is Z.
Theorem: C is a field.

Proof: 1t suffices to construct a + 3, af, a/p.
Showing £ and inverses: Relatively easy.

Showing closure under products:

fo

—
2|

£
T\ 12 X =0 ZEap

Corollary: Q <C is a subfield.

Can we get all of R with C? The operations we have are
1. Intersect 2 lines (gives nothing new)
2. Intersect a line and a circle

3. Intersect 2 circles
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Operation (3) reduces to (2) by subtracting two equations of a circle (2* + y* + az + by + ¢) to get
an equation of a line.

Operation (2) reduces to solving quadratic equations.

Theorem: C contains precisely the real numbers obtained by adjoining finitely many square roots
of elements in Q.

Proof: Need to show that « € C = a €C.
Bisect PA to get B.

e Draw a circle centered at B.

Let @ be intersection of circle with y axis and O be the origin.

e Note triangles 1 and 2 are similar, so
0oQ PO 9
5= 56 = (0@ =(P0)(04) =1a

Corollary: Let v € C be constructible. Then there exist {a;};_; such that

n

Y= Hai and [Q(Oél,‘ s ,Oé]') : Q(ala to 7aj*1)] = 27
=1

and [Q(a) : Q] = 2¢ for some d.
Applications:

Doubling the cube: Given a cube of size 1, can we construct one of size 27 To do this, we’d need
23 = 2. But note that min(v/2,Q) = 23 — 2 = f(x) is irreducible over Q. So [Q(V/2) : Q] = 3 # 2¢
for any d, so this can not be constructible.

Trisections of angles: We want to construct regular polygons, so we’ll need to construct angles.
We can get some by bisecting known angles, but can we get all of them?

Ezxample: Attempt to construct 20° by trisecting the known angle 60°, which is constructible using
a triangle of side lengths 1,2, V3.

If 20° were constructible, cos 20° would be as well. There is an identity

cos 360 = 4 cos® 6 — 3 cos .

Letting # = 20° so 36 = 60°, we obtain

1
5= 4(cos20°)3 — 3 cos 20°,

so if we let z = cos20° then z satisfies the polynomial f(x) = 82> — 6z — 1, which is irreducible.
But then [Q(20°) : Q] = 3 # 2%, s0 cos 20° & C.
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10.2 Finite Fields

Definition: The characteristic of F'is the smallest n > 0 such that nl = 0, or 0 if such an n does
not exist.

Ezercise: For a field F, show that char F' =0 or p a prime.

Note that if char F =0, then Z € F since 1, 1 +1, 1 +141,--- are all in F'. Since inverses must
also exist in F', we must have Q € F as well. So char FF =0 <= F is infinite.

If char F' = p, it follows that Z, C F.

Theorem:

For E > F where [E : F] =n and F finite, |F|=q = |E| =¢".

n

Proof: E is a vector space over F. Let {v;}" be a basis. Then « € F = a = Z a;v; where each
i=1

a; € F. There are ¢ choices for each a;, and n coefficients, yielding ¢" distinct elements.

Corollary: Let E be a finite field where char E = p. Then |E| = p" for some n.
Theorem: Let Z, < E with |E| = p". If a € E, then « satisfies

a?" —x € Zyla].
Proof: If a = 0, we're done. So suppose a # 0, then o € E*, which is a group of order p” — 1. So
o 71 =1, and thus e ' =al = o =a.
|

Definition: « € F' is an nth root of unity iff o = 1. It is a primitive root of unity of n iff
k<n = of #1 (son is the smallest power for which this holds).

Fact: If F is a finite field, then F* is a cyclic group.
Corollary: If E > F with [E : F| = n, then E = F(«) for just a single element a.
Proof: Choose a € E* such that (o) = E*. Then F = F(«).

Next time: Showing the existence of a field with p" elements.
For now: derivatives.
Let f(z) € F[x] by a polynomial with a multiple zero « € E for some E > F.

If it has multiplicity m > 2, then note that
f@) = (z —a)"g(z) = [(x)m(z —a)" g(z) + ¢ (x)(z — )" = ['(a) =0.
So

« a multiple zero of f = f'(a) =0.
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The converse is also useful.

Application: Let f(x) = 2" — x, then f(z) = ptaP Tl —1=—1+#0, so all of the roots are distinct.

11 Tuesday September 17th

11.1 Finite Fields and Roots of Polynomials

Recall from last time:

Let F be a finite field. Then F* = F \ {0} is cyclic (this requires some proof).
Let f € Flx] with f(a) = 0. Then « is a multiple root if f'(a)) = 0.

Lemma: Let F be a finite field with characteristic p > 0. Then

f(x) = 2" —x € Fla]

has p™ distinct roots.

Proof:
fla)=pra? Tt 1= 1,

since we are in char p.

This is identically -1, so f'(z) # 0 for any x. So there are no multiple roots. Since there are at most
p"" roots, this gives exactly p™ distinct roots.

|
Theorem: A field with p™ elements exists (denoted GF(p")) for every prime p and every n > 0.
Proof: Consider Z,, C K C Zp where K is the set of zeros of 2P" — . Then we claim K is a field.
Suppose «, 3 € K. Then (o + 6)pn = o + P,

We also have

(@) =" " —af and ™" =a™h.

So K is a field and |K| = p".
|

Corollary: Let F be a finite field. If n € NT, then there exists an f(z) € F[z] that is irreducible
of degree n.

Proof: Let F be a finite field, so |F| = p". By the previous lemma, there exists a K such that
Z,CkCF.

K is defined as

K::{aGF‘aPn—a:()}.
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We also have

F:{aef‘apn—a:O}.

Moreover, p™® = p’"pr(s_l). So let a € F, then o — a = 0.
Then

rn rr(n—1) T\ nr(n—1) r(n—1)
AN = (a?")? — P

)

and we can continue reducing this way to show that this is yields to o = av.

So a € K, and thus F' < K. We have [K : F] = n by counting elements. Now K is simple, because
K™ is cyclic. Let 3 be the generator, then K = F(8). This the minimal polynomial of 5 in F has
degree n, so take this to be the desired f(x).

11.2 Simple Extensions
Let ' < E and
¢o: Flz] - E
e fla).

denote the evaluation map.
Case 1: Suppose « is algebraic over F.

There is a kernel for this map, and since F'[z] is a PID, this ideal is generated by a single element —
namely, the minimal polynomial of a.

Thus (applying the first isomorphism theorem), we have F(«) 2 E isomorphic to F[z]/ min(a, F).
Moreover, F'(«) is the smallest subfield of E containing F' and «.

Case 2: Suppose « is transcendental over F'.

Then ker ¢ =0, so Fz] — E. Thus F[z] = F[a].

Definition: E > F is a simple extension if E = F(«) for some « € E.
Theorem: Let E = F(«) be a simple extension of F' where « is algebraic over F.

Then every 5 € E can be uniquely expressed as

n—1
B = Z cia’ where n = deg min(a, F).
i=0

Proof:

FExistence: We have

Fla) = {iﬁiai Bi € F},
=1
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so all elements look like polynomials in c.

Using the minimal polynomial, we can reduce the degree of any such element by rewriting o’ in
terms of lower degree terms:

=0
n
o Zazo/’ =0
=0
n—1 ]
= o= — Z a;a’.
=0
n—1 n—1

Uniqueness: Suppose Z ciot = Z dia. Then Z(CZ —di)ai = (. But by minimality of the minimal
polynomial, this forces ¢; — d; = 0 for all i.

Note: if « is algebraic over F', then {1,04, . -~a”_1} is a basis for F'(a) over F where n =
deg min(«, F'). Moreover,

[F(a): F] = dimp F(a) = degmin(a, F).

Note: adjoining any root of a minimal polynomial will yield isomorphic (usually not identical)
fields. These are distinguished as subfields of the algebraic closure of the base field.

Theorem: Let F' < F with a € E algebraic over F.

If degmin(a, F') = n, then F(a) has dimension n over F', and {1,04, e ,a”_l} is a basis for F'(a)
over F.

Moreover, any 3 € F(«), is also algebraic over F,and deg min(f3, F') ‘ deg min(a, F).
Proof of first part: Exercise.

Proof of second part: We want to show that 3 is algebraic over F.

We have

so [F(fB) : F] is less than n since this is a finite extension, and the division of degrees falls out
immediately.

11.3 Automorphisms and Galois Theory

Let F be a field and F be its algebraic closure. Consider subfields of the algebraic closure, i.e. E
such that F < E < F. Then E > F is an algebraic extension.
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Definition: «, 5 € E are conjugates iff min(a, F') = min(8, F).
Examples:
o V/3,/3¢, V/3¢? are all conjugates, where ¢ = e>™/3.

e a=a+ bi € C has conjugate & = a — bi, and

min(a, R) = min(a, R) = 2% — 2az + (a® + b%).

12 Thursday September 19th

12.1 Conjugates
Let E > F be a field extension. Then «, 5 € E are conjugate <= min(«, F)) = min(j3, F) in F[z].

Ezample: a + bi,a — bi are conjugate in C/R, since they both have minimal polynomial z? — 2ax +
(a® +b*) over R.

Theorem: Let F be a field and «, 8 € E > F with deg min(«, F') = degmin(5, F), i.e.

Then «, 8 are conjugates <= F(«) = F() under the map

¢: F(a) = F(B)
Zaiai — Zalﬂi.

Proof: Suppose ¢ is an isomorphism.

Let
f=min(a, F) = Zcmi where ¢; € F,

so f(a)=0.
Then

0=f(a) = fO_cia’) =) af,

so [ satisfies f as well, and thus f = min(a, F) ‘ min (3, F).

But we can repeat this argument with =1 and g(z) := min(8, F), and so we get an equality. Thus
«, B are conjugates.

Conversely, suppose a, 3 are conjugates so that f = g. Check that ¢ is a homomorphism of fields,
so that

(z +y) = ¢(x) + ¢(y) and ¢(zy) = ¢(z)9(y).
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Then ¢ is clearly surjective, so it remains to check injectivity.

To see that ¢ is injective, suppose f(z) = 0. Then Z a;3* = 0. But by linear independence, this
forces a; = 0 for all 4, which forces z = 0. |

Corollary: Let o € F be algebraic over F.
Then
1. ¢: F(a) = F for which ¢(f) = f for all f € F maps « to one of its conjugates.

2. If B € F is a conjugate of «, then there exists one isomorphism v : F(a) — F(f3) such that
Y(f)= fforall feF.

Corollary: Let f € R[z] and suppose f(a + bi) = 0. Then f(a — bi) =0 as well.

Proof: We know i, —i are conjugates since they both have minimal polynomial f(z) = 22 +1. By
(2), we have an isomorphism R][i] Y, R[—i]. We have ¢(a + bi) = a — bi, and f(a + bi) = 0.

This isomorphism commutes with f, so we in fact have

0 = (f(a+bi)) = F(sb(a—bi)) = Fla— bi).

12.2 Fixed Fields and Automorphisms
Definition: Let F' be a field and vy : FO is an automorphism iff 1 is an isomorphism.

Definition: Let o : EO be an automorphism. Then o is said to fix a € E iff 0(a) = a. For any
subset F' C F, o fixes F iff o fixes every element of F'.

Ezample: Let E = Q(V/2, \/5) DQ=F.

A basis for E/F is given by {1, V2,5, \EO} Suppose ¥ : EO fixes Q. By the previous theorem,
we must have ¥(v/2) = £v/2 and ¢(v/5) = £V/5.

What is fixed by 9? Suppose we define ¥ on generators, 1)(v/2) = —v/2 and ¥(v/5) = V5.

Then

f(CO + Cl\/§—|— 02\/54— c3V 10) =cCcy— Cl\/§—|— 02\/5 —c3Vv 10.

This forces ¢; = 0,c3 = 0, and so ¥ fixes {Co + 02\/5} = Q(\/g)

Theorem: Let I be a set of automorphisms of E and define

E]:{OZEE‘O'((I):U,VUEI}

Then E; < F is a subfield.
Proof: Let a,b € E;. We need to show a £b,ab,b#0 = b~ e I.
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We have o(a +b) = o(a) £ 0(b) = a+ b € I since o fixes everything in I. Moreover

olab) =o(a)o(b)=abel and o(b )=o) t=btel

Definition: Given a set I of automorphisms of F', E; is called the fized field of E under I.

Theorem: Let E be a field and A = {O’ : EO ‘ o is an automorphism } Then A is a group under
function composition.

Theorem: Let E/F be a field extension, and define
G(E/F)={0:EC | feF = o(f)=f}.

Then G(E/F) < A is a subgroup which contains F.
Proof: This contains the identity function.

Now if o(f) = f then f = o~ (f), and

0,7 € G(E[F) = (007)(f) =0o(7(f)) =o(f) = f.

Note G(E/F) is called the group of automorphisms of E fixing F, i.e. the Galois Group.
Theorem (Isomorphism Extension): Suppose F' < E < F, so F is an algebraic extension of F.
Suppose similarly that we have F' < E' < F’, where we want to find E'.

Then any o : F' — F’ that is an isomorphism can be lifted to some 7 : E — E’, where 7(f) = o(f)
for all f € F.
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13.1 Isomorphism Extension Theorem

Suppose we have F < E < F and F' < F' < F. Supposing also that we have an isomorphism
o:F — F', we want to extend this to an isomorphism from E to some subfield of ' over F'.

Theorem: Let F be an algebraic extension of F and ¢ : F' — F' be an isomorphism of fields. Let
F' be the algebraic closure of F’.
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Then there exists a 7 : E — E’ where E' < F’ such that 7(f) = o(f) for all f € F.

Proof: See Fraleigh. Uses Zorn’s lemma.

Corollary: Let F be a field and F, T be algebraic closures of F. Then F = F.
Proof: Take the identity F — F and lift it to some 7 : F — E = 7(F) inside F .

)
SEss

Then 7(F) is algebraically closed, and ' > 7(F) is an algebraic extension. But then F' = 7(F). B

di
)
_ VE”'T' —
1
J

Corollary: Let F > F be an algebraic extension with «, 8 € E conjugates. Then the conjugation
isomorphism that sends v — 3 can be extended to E.

Proof:
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Note: Any isomorphism needs to send algebraic elements to algebraic elements, and even more
strictly, conjugates to conjugates.

)

™.
id
—,

*rr-g -m -7

Counting the number of isomorphisms:

Let £ > F be a finite extension. We want to count the number of isomorphisms from FE to a subfield
of F that leave F fixed.

L.e., how many ways can we fill in the following diagram?



T:_

El—= E

F

Theorem: Let E > F with [E: F] < co and ¢ : F — F’ be an isomorphism.

Let G(E/F) == Gal(E/F); this will be a finite group if [E : F| < cc.

Then the number of isomorphisms 7 : E — E’ extending o is finite.

Proof: Since [E : F] is finite, we have Fy := F (a1, a2, ,a4) for some t € N. Let 7: Fy — E’ be
an isomorphism extending o.

Then 7(a;) must be a conjugate of c, of which there are only finitely many since degmin(c;, F') is

finite. So there are at most Hdeg min(a;, F') isomorphisms.
i

Ezample: f(z) = x> — 2, which has roots v/2, v/2(, \3/22.

Two other concepts to address:



e Separability (multiple roots)
e Splitting Fields (containing all roots)
Definition: Let

Y

{E:F} = HU ' E— E ‘ o is an isomorphism extending id : F' — F}

and define this to be the indexz.
Theorem: Suppose F' < F < K, then

(K:F}={K:E}\{E:F}.

Proof: Exercise.

Ezample: Q(\@, V/5)/Q, which is an extension of degree 4. It also turns out that {Q(\/ﬁ, \/5) : @} =
4 as well.

Questions:
1. When does [E : F] = {E : F'}? (This is always true in characteristic zero.)
2. When is {E : F'} = |Gal(E/F)|?

Note that in this example, v/5 — ++v/5 and likewise for v/2, so any isomorphism extending the
identity must in fact be an automorphism.

We have automorphisms

01 - (\/Qv \/5) = (_\/§> 5)
o9 1 (V2,V5) = (V2,—V5),

as well as id and oy 0 g9. Thus Gal(E/F) = 7.2

13.2 Separable Extensions

Goal: When is {E : F'} = [E : F|? We'll first see what happens for simple extensions.
Definition: Let f € F[z] and a be a zero of f in F.

The maximum v such that (z — «)” ‘ f is called the multiplicity of f.

Theorem: Let f be irreducible.

Then all zeros of f in F have the same multiplicity.

Proof: Let a, 5 satisfy f, where f is irreducible. Then consider the following lift:
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id

This induces a map
F(a)[z] = F(8)[x]
Z ezt Z Y(c;)xt,
sox+—xzand a— (3,80 x+— x and o — 5.

Then 7(f(z)) = f(z) and
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Since 7(f(z)) = f(z), we then have

f(z) = (z = B)"7(h(x)).

So we get mult(a) < mult(f). But repeating the argument with «, 8 switched yields the reverse
inequality, so they are equal.

Observation: If F(a) — E’ extends the identity on F, then E' = F(3) where 3 is a root of
f = min(c, F'). Thus we have

{F(a) : F'} = |{distinct roots of f}|.

Moreover,

where v is the multiplicity of a root of min(c«, F).

Theorem: Let £ > F, then {E: F} | [E: F].

14 Thursday October 3rd

When can we guarantee that there is a 7 : FO lifting the identity?
If E is separable, then we have |Gal(E/F)|={E: F}[E : F).

Fact: {F(«): F'} is equal to number of distinct zeros of min(c, F).

If F is algebraic, then [F'(«) : F] is the degree of the extension, and {F(«) : F'} ’ [F(a) : F.

Theorem: Let E > F be finite, then {E : F'} ‘ [E : F].

Proof: If E > F is finite, E = F(aq, -+, ay).

So min(ay, F') has a; as a root, so let n; be the number of distinct roots, and v; the respective
multiplicities.

Then

[F:F(al, - ,an-1)] =njv; =v;{F : Flaq, - ,on—1)}.

So [E: F]| = Hnjvj and {F: F} = H nj, and we obtain divisibility.
J J

Definitions:
1. An extension E > F' is separable iff [E: F] ={E : F'}

2. An element a € E is separable iff F'(a) > F is a separable extension.
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3. A polynomial f(x) € F[z] is separable iff f(a) =0 = « is separable over F.
Lemma:

1. « is separable over F'iff min(«, F') has zeros of multiplicity one.

2. Any irreducible polynomial f(x) € Fx] is separable iff f(z) has zeros of multiplicity one.

Proof of (1): Note that [F(«) : F] = degmin(a, F'), and {F(«) : F} is the number of distinct zeros
of min(a, F).

Since all zeros have multiplicity 1, we have [F(«) : F] = {F(«) : F'}.

Proof of (2): If f(x) € F[x] is irreducible and « € F a root, then min(c, F') ’ fla).

But then f(z) = ¢min(c, F') for some constant ¢ € F, since min(«, F') was monic and only had
zeros of multiplicity one.

Theorem: If K > E > F and [K : F] < oo, then K is separable over F' iff K is separable over FE
and F is separable over F.

Proof:

[K:F|=[K:E|E:F]
={K:E}{FE:F}
={K :F}.

Corollary: Let E > F be a finite extension. Then

F is separable over F' <= Every a € F is separable over F.

Proof:

= : Suppose E > F' is separable.

Then E > F(a) > F implies that F'(«) is separable over F' and thus « is separable.
<= Suppose every a € E is separable over F'.

Since E = F(aq, -+ ,ay,), build a tower of extensions over F'. For the first step, consider F'(ay, ag) —
F(al) — F.

We know F'(«q) is separable over F'. To see that F'(aq, a2) is separable over F(«1), consider ag.

ap is separable over F' <= min(ag, F') has roots of multiplicity one.
Then min(aeg, F(a1)) ‘ min(ag, F), so min(ag, F'(«)) has roots of multiplicity one.

Thus F(aq, ag) is separable over F'(aq).
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14.1 Perfect Fields

Lemma: f(x) € F[z] has a multiple root <= f(z), f'(z) have a nontrivial (multiple) common
factor.

Proof:
= : Let K > F be an extension field of F.
Suppose f(z), g(z) have a common factor in K[z]; then f, g also have a common factor in F[x].

If f, g do not have a common factor in F[z], then ged(f,g) =1 in F[z], and we can find p(x), ¢(x) €
Flz] such that f(z)p(x) + g(z)g(x) = 1.

But this equation holds in K[z] as well, so ged(f,g) =1 in K|z].

We can therefore assume that the roots of f lie in F'. Let a € F be a root of f. Then

(@) =m(z — )" tg(x) + (x — a)"g'(2).

If v is a multiple root, m > 2, and thus (z — «) ‘ f.
<= Suppose f does not have a multiple root.

We can assume all of the roots are in F', so we can split f into linear factors.

So

F@)=>"T[= - o).

i=1 j#i

But then f'(ay) = Hj # k(z — o) # 0. Thus f, f’ can not have a common root.

Moral: we can thus test separability by taking derivatives.
Definition: A field F' is perfect if every finite extension of F' is separable.
Theorem: Every field of characteristic zero is perfect.
Proof: Let F be a field with char(F) = 0, and let E > F be a finite extension.

Let a € E, we want to show that « is separable. Consider f = min(a, F). We know that f is
irreducible over F', and so its only factors are 1, f. If f has a multiple root, then f, f' have a common
factor in F[z]. By irreducibility, f ‘ f', but deg f' < deg f, which implies that f’(z) = 0. But this

forces f(z) = ¢ for some constant ¢ € F', which means f has no roots — a contradiction.

95



So « separable for all a € E, so E is separable over F', and F is thus perfect.

Theorem: Every finite field is perfect.

Proof: Let F be a finite field with charF' = p > 0 and let E > F' be finite. Then E = F(«) for
some « € F, since E is a simple extension (look at E*?) So E is separable over F' iff min(a, F') has
distinct roots.

So EX = E\ {0}, and so |E| =p" = |E|= p" 1. Thus all elements of E satisfy

f(x) = a?" —x € Zylz].

So min(a, F) ’ f(z). One way to see this is that every element of E satisfies f, since there are

exactly p" distinct roots.

Another way is to note that

f(z) = plaP Tt —1=—-1+#0.

Since f(x) has no multiple roots, min(c, F') can not have multiple roots either.

Note that [E: F] < o0 = F(ay,- - ,ay) for some «; € E that are algebraic over F.

14.2 Primitive Elements

Theorem (Primitive Element): Let £ > F' be a finite extension and separable.
Then there exists an o € E such that £ = F(«).

Proof: See textbook.

Corollary: Every finite extension of a field of characteristic zero is simple.

15 Tuesday October 8th
15.1 Splitting Fields

For F > E > F, we can use the lifting theorem to get a 7 : £ — E’. What conditions guarantee
that £ = E'?

If E = F(a), then E' = F(p) for some 3 a conjugate of a. Thus we need E to contain conjugates
of all of its elements.

Definition: Let {fz(ac) € Flx] ’ i€ I} be any collection of polynomials. We way that E is a
splitting field <= FE is the smallest subfield of F containing all roots of the f;.

Examples:

e Q(v/2,V/3) is a splitting field for {:c_2, z? — 5}.

56



e C is a splitting field for {x2 + 1}.

e Q(V/2) is not a splitting field for any collection of polynomials.

Theorem: Let F' < E < F. Then FE is a splitting field over F' for some set of polynomials <=
every isomorphism of F fixing F' is in fact an automorphism.

Proof:

= : Let E be a splitting field of {fz(x) ‘ fi(z) € Flzl,i € I}.

Then F = <ozj ‘ Jje J> where a; are the roots of all of the f;.

Suppose o : E — E' is an isomorphism fixing F. Then consider o(«;) for some j € J. We have
min(a, F) = p(x) = ap + a1z + - - an_12" 1+ apz”,

and so

p() =0, 0€F = 0=0(p(ey)) = > aio(ay)"

Thus o(cy;) is a conjugate, and thus a root of some f;(z).
<= Suppose any isomorphism of E leaving F' fixed is an automorphism.

Let g(x) be an irreducible polynomial and o € E a root.
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Using the lifting theorem, where F(a < E, we get a map 7 : E — E’ lifting the identity and the
conjugation homomorphism. But this says that £’ must contain every conjugate of a.

Therefore we can take the collection

S = {gz(x) € Flz] ) gi irreducible and has a root in E} .

This defines a splitting field for {g;}, and we’re done.

Examples:

1. 22 +1 € R[z] splits in C, i.e. 22 + 1 = (z +14)(x — 1).
2. 2% — 2 € Q[z] splits in Q(v/2).
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Corollary: Let E be a splitting field over F. Then every irreducible polynomial in F[x] with a
root « € E splits in E[x].

Corollary: The index {E : F'} (the number of distinct lifts of the identity). If E is a splitting field
and 7 : E — E' lifts the identity on F, then E = E’. Thus {E : F'} is the number of automorphisms,
ie. |Gal(E/F)|.

Question: When is it the case that
[E:F|={FE:F}=|Gal(E/F)|?
e The first equality occurs when E is separable.
e The second equality occurs when E is a splitting field.
Characteristic zero implies separability
Definition: If E satisfies both of these conditions, it is said to be a Galois extension.
Some cases where this holds:
e F > I a finite algebraic extension with E characteristic zero.
e F a finite field, since it is a splitting field for " — z.
Ezample 1: Q(v/2,V/5) is
1. A degree 4 extension,
2. The number of automorphisms was 4, and
3. The Galois group was Z%, of size 4.
Ezample 2: E the splitting field of 2 — 3 over Q.
This polynomial has roots v/3, (3v/3, (3v/3 where ¢5 = 1.
Then E = Q(V/3,(3), where
min(v/3,Q) = 23 — 3
min(C3, Q) = 2? + = + 1,

so this is a degree 6 extension.
Since char Q = 0, we have [E : Q] = {E : Q} for free.
We know that any automorphism has to map
V3 V3, V3¢, V3G

G G3, G5

You can show this is nonabelian by composing a few of these, thus the Galois group is S°.
Ezample 3 If [E : F] = 2, then F is automatically a splitting field.
Since it’s a finite extension, it’s algebraic, so let « € E'\ F.

Then min(a, F') has degree 2, and thus F = F(«) contains all of its roots, making E a splitting
field.
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15.2 The Galois Correspondence

There are three key players here:

[E:F), {E:F}, Gal(E/F).

How are they related?

Definition: Let E > F be a finite extension. E is normal (or Galois) over F' iff E is a separable
splitting field over F.

Examples:
1. Q(\@, \/§) is normal over Q.
2. Q(+/3) is not normal (not a splitting field of any irreducible polynomial in Q[z]).
3. Q(V/3,(3) is normal
Theorem: Let F < E < K < F, where K is a finite normal extension of F. Then
1. K is a normal extension of E as well,
2. Gal(K/FE) < Gal(K/F).
3. For 0,7 € Gal(K/F),

Gal(K/F
o :T’ <= o, T are in the same left coset of al(K/F)

= Gal(K/E)

Proof of (1): Since K is separable over F, we have K separable over E.
Then K is a splitting field for polynomials in F[z] C E[z]. Thus K is normal over E.

Proof of (2):
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So this follows by definition.

Proof of (3): Let 0,7 € Gal(K/F') be in the same left coset. Then

7710 € Gal(K/E),

solet =710,

Note that p fixes E by definition.

L LY




So o = T, and thus

o(e) =7(u(e)) =7(e) for all e € E.

Note: We don’t know if the intermediate field E is actually a normal extension of F'.
Standard example: K > F > F where
K=Q(V3,6) E=QW3) F=Q

Then K < F and K < F, since Gal(K/F) = S3 and Gal(K/E) = Zy. But E 4 F, since
ZQ ﬂ Sg.

16 Thursday October 10th

16.1 Computation of Automorphisms
Setup:
e F<E<K<KF
o [K:F] <
e K is a normal extension of F'
Facts:
e Gal(K/E) = {0 € Gal(K/F) | o(c) = e ¥Ye € E}.
e 0,7 € Gal(K/F) and 0|, = 7|y <= 0,7 are in the same left coset of Gal(K/F')/Gal(K/E).
Ezample: K = Q(v/2,V/5).
Then Gal(K/Q) = 72, given by the following automorphisms:

id: V2 V2, V55

P13\/§'—>\/§, \/5»—>—\/5

p2 i V2 —V/2, V5 V5
p10p22\/§l—)—\/§, \/5>—>—\/5

We then get the following subgroup/subfield correspondence:
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Z \ Q(V2,V5)
{id, p1} {id, p2} {id, p1 0 p2} Q(v2) Q(V5) |
{id} \ R

16.2 Fundamental Theorem of Galois Theory
Recall that = Gal(K/FE).
Theorem (Fundamental Theorem of Galois Theory):

Let D be the collection of subgroups of Gal(K/F) and C be the collection of subfields E such that
F<E<K.

Define a map

A:C—=D
ANE) = {O‘E Gal(K/F) ‘ ole) :eVeeE}.

Then X is a bijective map, and
1. M(E) = Gal(K/E)
3. If H < Gal(K/F) then

NKpy)=H

4. [K : E] = |A(F)| and

[E: F] = [Gal(K/F) : \(E)]

5. E is normal over F' <= A(E) < Gal(K/F), and in this case

Gal(E/F) = Gal(K/F)/Gal(K/E).

6. A is order-reversing, i.e.

Fi<FEy — )\(EQ) < )\(El)

Proof of 1: Proved earlier.
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Proof of 2: We know that £ < Laak/k)- Let a € K\ E; we want to show that « is not fixed by
all automorphisms in Gal(K/E).

We build the following tower:

/

K T » K
E(a) ——— E(p)

E—Y L F

F——49 ,F

This uses the isomorphism extension theorem, and the fact that K is normal over F'.

If B # a, then 8 must be a conjugate of a, so 7/(a) # a while 7’ € Gal(K/E).

Claim: ) is injective.
Proof: Suppose A(E1) = A(E3). Then by (2), E1 = Ky(g,) = Kx(g,) = Ea. |

Proof of 8: We want to show that if H < Gal(K/F) then \(Ky) = H.
We know H < \(Kp) = Gal(K/Kp) < Gal(K/F), so suppose H < A\(Kp).
Since K is a finite, separable extension, K = Ky (a) for some a € K.

Let

Since H < A\(Kpr), we have |H| < n. So denote H = {0, 02, - -} and let define

f@) =] = oi(a)).

i
We then have
o deg f = [H|
e The coefficients of f are symmetric polynomials in the o;(a) and are fixed under any o € H
o f(z) € Kn(a)[x]
e f(a) =0 since o;(a) = « for every i.
This is a contradiction, so we must have

[Kpg : K] =n=degmin(o, Kg) < deg f = |H]|.

Assuming (3), A is surjective, so suppose H < Gal(K/F). Then AM(Kg) = H = M\ is
surjective.
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Proof of 4:

IA(E)| = |Gal(K/E)| =splitting field [K : E]
[E : F] =separable {E : F} =previous part [Gal(K/F) : )\(E)]

Proof of 5:

We have F' < E < K and F is separable over F, so E is normal over F' <= F is a splitting field
over F.

That is, every extension E'/FE maps K to itself, since K is normal.

D]
]

So E is normal over F' <= for all o0 € Gal(K/F),o(a) € E for all « € E.
By a previous property, F' = Kqa)(k/E), and so
ola) e E <= 7(0(a)) = o(a) V1 € Gal(K/E)
— (¢c7'70)(a) = aS V1 € Gal(K/FE)

<« o 70 € Gal(K/E)
< Gal(K/FE) < Gal(K/F).

Now assume FE is a normal extension of F', and let
¢: Gal(K/F) — Gal(E/F)

o olg.

Then ¢ is well-defined precisely because E is normal over F, and we can apply the extension
theorem:

E—"

L

F—4 .5

—
—rm— X

¢ is surjective by the extension theorem, and ¢ is a homomorphism, so consider ker ¢.
Let ¢(0) = 0| = id. Then ¢ fixes elements of £ <= o € Gal(K/FE), and thus ker ¢ = Gal(K/E).
|
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Proof of 6:
Fi < By <— Gal(K/EQ) < Gal(K/El)

ANEp) < A E).

Example: K = Q(V/2,¢3). Then min(¢,Q) = 22 + z + 1 and Gal(K/Q) = S3. There is a
subgroup of order 2, E = Gal(K/Q(V/2)) < Gal(K/Q), but E doesn’t correspond to a normal
extension of F', so this subgroup is not normal. On the other hand, Gal(Q(¢3), Q) < Gal(K/Q).

17 Tuesday October 15th

17.1 Cyclotomic Extensions

Definition: Let K denote the splitting field of 2™ —1 over F'. Then K is called the nth cyclotomic
extension of F.

If we set f(z) = 2™ — 1, then f'(z) = na"" L.

So if char F' does not divide n, then the splitting field is separable. So this splitting field is in fact
normal.

Suppose that char F' doesn’t divide n, then f(x) has n zeros, and let (1,2 be two zeros. Then
(C1¢2)™ = ('¢Y =1, so the product is a zero as well, and the roots of f form a subgroup in K*.

So let’s specialize to F' = Q.

The roots of f are the nth roots of unity, i.e. (,, = 627”/”, and are given by {(n, ,2” (2, e ,(;‘_1}.

The primitive roots of unity are given by {C;L" ’ ged(m,n) = 1}.

Definition: Let

o(n)

®(2) = [] (2 — ),

i=1
where this product runs over all of the primitive nth roots of unity.

Let G be Gal(K/Q). Then any o € G will permute the primitive nth roots of unity. Moreover, it
only permutes primitive roots, so every o fixes ®,(z). But this means that the coefficients must lie

in Q.
Since ¢ generates all of the roots of ®,, we in fact have K = Q({). But what is the group structure
of G?

Since any automorphism is determined by where it sends a generator, we have automorphisms
Tm(¢) = ¢™ for each m such that ged(m,n) = 1.

But then 7, 0 Ty, = Tiny+ms, and so G = G, < Z,, as a ring, where

G = {[m] ] ged(m, n) =1}
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and |G| = ¢(n).
Note that as a set, there are the units Z,:.

Theorem: The Galois group of the nth cyclotomic extension over Q has ¢(n) elements and is
isomorphic to G,.

Special case: n = p where p is a prime.
Then ¢(p) =p — 1, and

P —1
Bp(z) = —— =a 2P b bt L

Note that Z; is in fact cyclic, although this may not always happen. In this case, we have

Gal(K/Q) = 2.

17.2 Construction of n-gons

To construct the vertices of an n-gon, we will need to construct the angle 27 /n, or equivalently, (,.
Note that if [Q(¢,) : Q] # 2° for some £ € N, then the n-gon is not constructible.

Ezample: An 11-gon. Noting that [Q(¢11) : Q] = 10 # 2°, the 11-gon is not constructible.
Since this is only a sufficient condition, we’ll refine this.
Definition: A prime of the form p = 92" + 1 are called Fermat primes.

Theorem: The regular n-gon is constructible <= all odd primes dividing n are Fermat primes p
where p? does not divide n.

FEzample: Consider

Ps(z)=at+ 23+ 22 + 2+ 1.

Then take ¢ = (5; we then obtain the roots as {1, ¢, %, C4} and Q(() is the splitting field.

Any automorphism is of the form o, : ( — (" for r = 1,2,3,4. So |Gal(K/Q)| = 4, and is cyclic
and thus isomorphic to Z4. Corresponding to 0 — Zo — Z4, we have the extensions

Q- Q¢ — Q(¢)
How can we get a basis for the degree 2 extension Q(¢?)/Q? Let

ME) = {0 € Gal(Q(()/Q) | o) = e Ve € E},
A Kp) = H where H is a subgroup of Gal(Q(¢)/Q), and

KH:{.’IJEK‘O'(.Q?):I'VO'EH}.

Note that if Zs = (1)), then Zy < Z, is given by Zs = <¢2>.
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We can compute that if 1(¢) = ¢2, then

W) =¢
W) =¢?
W) =¢7?

Noting that (4 is a linear combination of the other (s, we have a basis {1, ¢, 2 C?’}.

Then you can explicitly compute the fixed field by writing out
ola+b(+c¢>+d¢*) =a+bo(C) +co(CP)+--,

gathering terms, and seeing how this restricts the coefficients.

In this case, it yields Q(¢* 4 ¢?).

17.3 The Frobenius Automorphism
Definition: Let p be a prime and F' be a field of characteristic p > 0. Then

op: = F

op(z) =¥

is denoted the Frobenius map.
Theorem: Let F' be a finite field of characteristic p > 0. Then

1. ¢p is an automorphism, and
2. ¢y fixes Fyy, = Zy.

Proof of part 1: Since oy, is a field homomorphism, we have

op(z+y) = (x+y)P = 2P + 9P and o(zy) = (zy)? = 2Py”

Note that o), is injective, since op(z) =0 = 2P =0 = z = 0 since we are in a field. Since F’ is
finite, 0}, is also surjective, and is thus an automorphism.

Proof of part 2: If o(x) = x, then
=2 —= 2P —2=0,

which implies that z is a root of f(x) = 2 — x. But these are exactly the elements in the prime
ring Zy.
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18 Thursday October 17th

18.1 Example Galois Group Computation
Ezample: What is the Galois group of z% — 2 over Q?

First step: find the roots. We can find directly that there are 4 roots given by

{£V2,4iV2} = {ri}.

The splitting field will then be Q(\‘I/Q, 1), which is separable because we are in characteristic zero.
So this is a normal extension.

We can find some automorphisms:
V2 i, i i
So |G| = 8, and we can see that G can’t be abelian because this would require every subgroup to be
abelian and thus normal, which would force every intermediate extension to be normal.
But the intermediate extension Q(+/2)/Q is not a normal extension since it’s not a splitting field.

So the group must be Dy.

|
18.2 Insolubility of the Quintic
18.2.1 Symmetric Functions
Let F' be a field, and let
fyi- - yn)
Fyla"'ayn :{ f»gerla"'7yn}
be the set of rational functions over F'.
Then S, ~ F(y1,- - ,yn) by permuting the y;, i.e.
<f(y17 T 7yn)> _ f(a(yl)v t 7J(yn))
o = .
g(yla"' 7yn) g(U(yl), 70-(yn))
Definition: A function f € F(ay,--- ,ay) is symmetric <= under this action, o0 ~ f = f for
all o € 5,.
Ezxamples:

L. f(yl') 7yn) :Hyl
2. f(yl, ayn) :Zyz
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18.2.2 Elementary Symmetric Functions

Consider f(x) € F(y1,--- ,yn)[z] given by H(SE — ;). Then of = f, so f is a symmetric function.
Moreover, all coefficients are fixed by S,,. So the coefficients themselves are symmetric functions.

Concretely, we have

Coefficient Term

1 X (="
113"_2 “Y1—=Y2 =~ Un
" Y1Yo + y1ysz + -+ yoyz + - -

The coefficient of 2"~ is referred to as the ith elementary symmetric function.

Consider an intermediate extension E given by joining all of the elementary symmetric functions:

Yiy 171 \Yp

/"’ ‘ /

Let K denote the base field with all symmetric functions adjoined; then K is an intermediate
extension, and we have the following results:

Theorem:

1. F < K is a field extension.
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2. E< F(y1,--+ ,yn) is a finite, normal extension since it is the splitting field of f(z) = H(m—yi),
which is separable.

‘We thus have

[F(yi, -+ ,yn) : E] <nl < oo.

Proof:

We’ll show that in fact E = K, so all symmetric functions are generated by the elementary symmetric
functions.

By definition of symmetric functions, K is exactly the fixed field F((y1,--- ,yn)s,, and |S],, = nl.

So we have

n! = |Gal(F(y1,- - ,yn/K))|
<{F(y1,--- ,yn) : K}
<[F(y1,--- »yn) : K.

But now we have

n! <[F(y1, - ,yn): K| <[F(y1, -+ ,yn) : E] <nl!

which forces K = F.

Theorem:

1. Every symmetric function can be written as a combination of sums, products, and possibly
quotients of elementary symmetric functions.

2. F(y1, - ,yn) is a finite normal extension of F'(sy,--- ,s,) of degree n!.
3. Gal(F(y1, -+ ,yn)/F(s1, -+ ,8n)) = Sy.
We know that every group G — S,, by Cayley’s theorem. So there exists an intermediate extension
F(Sla"' 7871) ELSF(ylv 7yn)

such that G = Gal(F(y1, - ,yn)/L).

Open question: which groups can be realized as Galois groups over Q7 Old/classic question,
possibly some results in the other direction (i.e. characterizations of which groups can’t be
realized as such Galois groups).

18.2.3 Extensions by Radicals

Let p(x) = Z a;z' € Q[z] be a polynomial of degree n. Can we find a formula for the roots as a
function of the coefficients, possibly involving radicals?

e For n = 1 this is clear
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For n = 2 we have the quadratic formula.

e For n = 3, there is a formula by work of Cardano.
e For n = 4, this is true by work of Ferrari.

e For n > 5, there can not be a general equation.

Definition: Let K > F be a field extension. Then K is an extension of F' by radicals (or a
radical extension) <= K = aq,--- ,«, for some «; such that

1. Each o"" € F for some m; > 0.
2. For each 1, afi € Flag, -+ ,a;—1) for some ¢; < m; (7).

Definition: A polynomial f(z) € F[xz] is solvable by radicals over F' <= the splitting field of
f is contained in some radical extension.

Ezample: Over Q, the polynomials 2° — 1 and x3 — 2 are solvable by radicals.

Recall that G is solvable if there exists a normal series

1< Hy <Hy--- < H, <G such that H,,/H,_; is abelian Vn.

18.2.4 The Splitting Field of =" — a is Solvable

Lemma: Let char F'=0 and a € F. If K is the splitting field of p(x) = 2™ — a, then Gal(K/F) is
a solvable group.

Ezample: Let p(x) = zt — 2/Q, which had Galois group Dj.

Proof: Suppose that F' contains all nth roots of unity, {1, ¢, 3 - ,C[n — 1]} where ( is a primitive

nth root of unity. If 8 is any root of p(z), then ¢'B is also a root for any 1 < i <n — 1. This in
fact yields n distinct roots, and is thus all of the them. Since the splitting field K is of the form
F(B), then if o € Gal(K/F), then o(3) = (‘3 for some i. Then if 7 € Gal(K/F) is any other
automorphism, then 7(3) = (k [ and thus (exercise) the Galois group is abelian and thus solvable.

Suppose instead that F' does not contain all nth roots of unity. So let F' = F({), so F < F({) =
F' < K. Then F < F(() is a splitting field (of 2" — 1) and separable since we are in characteristic
zero and this is a finite extension. Thus this is a normal extension.

We thus have Gal(K/F)/Gal(K/F(()) = Gal(F(¢)/F). We know that Gal(F'(¢)/F) is abelian since
this is a cyclotomic extension, and so is Gal(K/F(¢)). We thus obtain a normal series

1 < Gal(K/F(¢)) < Gal(K/F)

Thus we have a solvable group.

19 Tuesday October 22nd

19.1 Certain Radical Extensions are Solvable

Recall the definition of an extension being radical (see above).
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We say that a polynomial f(z) € Klz| is solvable by radicals iff its splitting field L is a radical
extension of K.

Lemma: Let F' be a field of characteristic zero.
If K is a splitting field of f(z) = 2" — a € F[z], then Gal(K/F') is a solvable group.

Theorem: Let F be characteristic zero, and suppose F' < E < K < F be algebraic extension
where E/F is normal and K a radical extension of F. Moreover, suppose [K : F] < 0.

Then Gal(E/F) is solvable.

Proof: The claim is that K is contained in some L where F' C L, L is a finite normal radical
extension, and GalL/F is solvable.

Since K is a radical extension of F, we have F' = K(aq, -+ ,op) and o;" € K(aq,--- ,a;—1) for
each 7 and some n; € N.

Let Ly be the splitting field of fi(z) = 2™ — o], then by the previous lemma, L; is a normal
extension and Gal(L;/F) is a solvable group.

Inductively continue this process, and letting
fo(x) = H " — o(ag)™ € Flz].
c€Gal(L1/F)

Note that the action of the Galois group on this polynomial is stable. Let Lo be the splitting field
of fo, then Ls is a finite normal radical extension.

Then

Gal(La/F)

———=— = =2 Gal(ly/F),

Gal(Ly/Ly) - Sl /)
which is solvable, and the denominator in this quotient is solvable, so the total group must be
solvable as well. |

19.2 Proof: Insolubility of the Quintic

Theorem (Insolubility of the quintic): Let y;,--- ,y, be independent transcendental elements
in R, then the polynomial f(x) = H(m — y;) is not solvable by radicals over Q(sy,--- ,s,) where
the s; are the elementary symmetric polynomials in y;.

So there are no polynomial relations between the transcendental elements.
Proof:

Let n > 5 and suppose y; are transcendental over R and linearly independent over Q. Then consider

51 = Zyi
S = Zyiyj

i<y

Sp = Hyz
i
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Then Q(y1,- -+ ,yn)/Q(s1,- -+, sp) would be a normal extension precisely if A,, < S, (by previous
theorem). For n > 5, A, is simple, and thus S, is not solvable in this range.

Thus the polynomial is not solvable by radicals, since the splitting field of f(z) is Q(y1, - ,yn). B

19.3 Rings and Modules
Recall that a ring is given by (R, +, -), where

1. (R,+) is an abelian group,
2. (R,-) is a monoid,
3. The distributive laws hold.

An ideal is certain type of subring that allows taking quotients, and is defined by I/ < R <— I < R
and RI,IR C I. The quotient is given by R/I = {r + 1 ‘ r e R}, and the ideal property is what
makes this well-defined.

Much like groups, we have some notion of homomorphism ¢ : R — R', where ¢(ax + y) =

¢(a)o(z) + ¢(y).

19.3.1 Modules
We want to combine the following two notions:
e Groups acting on sets, and
e Vector spaces
Definition: Let R be a ring and M an abelian group. Then if there is a map

RxM—M

(r,m) — rm.

such that Vs, 1,79 € R and m1, mo € M we have

o (sr1+72)(my + mg) = srymy + srimeg + remy + rome
e lc R — 1m=m.

then M is said to be an R-module.

Think of R like the group acting by scalar multiplication, and M the set of vectors with vector
addition.

Examples:
1. R =k a field, then a k-module is a vector space.

2. R = (G an abelian group, then R is a Z-module where
n

nmnoa= Z a.
i=1

(In fact, these two notions are equivalent.)
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3. I < R, then M = R/I is an ring, which has an underlying abelian group, so M is an R-module
where

M~R=rn(s+1)=(rs)+1.

4. For M an abelian group, R := End(M) = homapgrp(M, M) is a ring, and M is a left R-module
given by

f~m:= f(m).
Definition: Let M, N be left R-modules. Then f: M — N is an R-module homomorphism <=

f(rma +ma) =rf(m1) + f(ma).
Definition: Monomorphisms are injective maps, epimorphisms are surjections, and isomorphisms
are both.
Definition: A submodule N < M is a subset that is closed under all module operations.

We can consider images, kernels, and inverse images, so we can formulate homomorphism theorems
analogous to what we saw with groups/rings:

Theorem:

1. It M L5 N in R-mod, then
M/ Ker(f) = im (f).

2. Let M,N < L, then M + N < L as well, and

M _M+N
MAN ~ N

3. If M < M < L, then
M L/M

N ~ L/N

Note that we can always quotient, since there’s an underlying abelian group, and thus the
“normality” /ideal condition is always satisfied for submodules. Just consider

M/N::{m—i—N‘meM},

then R ~ (M/N) in a well-defined way that gives M /N the structure of an R-module as well.

20 Thursday October 24

20.1 Conjugates
Let E > F. Then «a, 3 € E are conjugate iff min(«, F') = min(j, F).
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Example: o £ bi € C.
Theorem: Let F' be a field and o, 8 € F with deg min(«, F') = degmin(g, F'), so

Then a, 8 are conjugates <= F(a) = F(f) under the conjugation map,

Y Fa) = F(B)
n—1 n—1
Zala > Zazﬂz
=1 =1
Proof:
—:

Suppose that 1 is an isomorphism. Let min(«, F) = p(x) = Z ¢;xt where each ¢; € F. Then
0=1(0) = $(p(a)) = p(B) = min(3, F) | min(a, F).

Applying the same argument to ¢(z) = min(3, F') yields min(8, F') = min(a, F).
=

Suppose «, § are conjugates.

Ezercise: Check that v is surjective and

Y(x+y) =Y(@) +P(y)
Y(xy) = P(x)(y).

Let z = Z a;o’. Supposing that ¥ (z) =0, we have Z a;3* = 0. By linear independence, this forces
a; = 0 for all 4, and thus z = 0. So ¥ is injective.

[
Corollary: Let a € F be algebraic. Then
1. Any ¢ : F(a) < F such that ¢(f) = f for all f € F must map « to a conjugate.

2. If B € F is a conjugate of a, then there exists an isomorphism ¢ : F(a) — F(3) C F such
that ¢(f) = f for all f € F.

Proof of 1:

Let min(o, F') = p(z) = Z a;z’. Note that 0 = ¢(p(a)) = p(x)(a)), and since p was irreducible, p
must also be the minimal polynomial of ¥(a)). Thus ¥(«) is a conjugate of a.

|
Proof of 2:

F(«) is generated by F' and «, and v is completely determined by where it sends F' and «. This
shows uniquness.
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Corollary: Let f(z) € Rlz] and suppose f(a + bi) = 0. Then f(a — bi) = 0.

Proof: Both i, —i are conjugates and min(i, R) = min(—i,R) = 2> + 1 € R[z]. We then have a map

¥ : R[i] — R[—i]
b(a+bi) = a + b(—i).

So if f(a+bi) =0, then 0 = ¢ (f(a+ bi)) = f(Y(a+ bi)) = f(a — bi).

[
21 Tuesday October 29th
21.1 Exact Sequences
Lemma (Short Five):
Consider a diagram of the following form:
0 M-t iN_9.0 0
a B Y
! f! ! g !
0 M N Q 0
1. «, monomorphisms implies 8 is a monomorphism.
2. «, epimorphisms implies 3 is an epimorphism.
3. «,y isomorphisms implies S is an isomorphism.
Moreover, (1) and (2) together imply (3).
Proof: Exercise.
Ezample proof of (2): Suppose «,~ are monomorphisms.
e Let n € N with B(n) = 0, then ¢’ o 8(n) = 0.
e — ~vog(n)=0.
e — g(n)=0
e — Jm € M such that f(m)=n
o = fof(m)=p(n)
o — fla(m)=p(Mn)=0
e — a(m)=0
e — f’isinjective, so m =0 and n = f(m) = 0.
[

Definition: Two exact sequences are isomorphic iff in the following diagram, f, g, h are all isomor-
phisms:
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0 M N Q 0

0 M N Q 0

Theorem: Let 0 — M, i> Moy EN M3 — 0 be a SES. Then TFAE:
e There exists an R-module homomorphisms h : M3 — Ms such that g o h = idjy,.
e There exists an R-module homomorphisms k : My — M; such that ko f =idyy,.
e The sequence is isomorphic to 0 - M} — M; ® M3 — M3 — 0.

Proof: Define ¢ : My ® M3 — Ma by ¢(mq + ma) = f(m1) + h(mse). We need to show that the
following diagram commutes:

0 M, My & Ms M3 0
id ¢ id
0 My Mo My 0

We can check that

(g0 @)(m1 +ma) = g(f(m1)) + g(h(m2)) = ma = m(m1 + ma).

This yields 1 = 3, and 2 = 3 is similar.

To see that 3 = 1,2, we attempt to define k, h in the following diagram:

™ L2
/\ K_\
0 My M, & M3 M3 0
id ¢ id
0 M1 M2 M3 > 0
&E/ Y’¥h/

So define k = 71 0 ¢! and h = ¢ 0 19. It can then be checked that

goh=gogoiy=mp01y=1idyy.

21.2 Free Modules

Moral: A free module is a module with a basis.

Definition: A subset X = {x;} is linearly independent iff
ZT‘Z‘Q}Z‘:O = T =0 Vi.
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Definition: A subset X spans M iff

n
meM — m:Zrixi for some r; € R, z; € X.
i=1
Definition: A subset X is a basis <= it is a linearly independent spanning set.

Ezample: Zg is an abelian group and thus a Z-module, but not free because 3 ~ [2] = [6] = 0, so
there are torsion elements. This contradicts linear independence for any subset.

Theorem (Characterization of Free Modules): Let R be a unital ring and M a unital
R-module (so 1 ~m =m).

TFAE:
e There exists a nonempty basis of M.
o M = ®;crR for some index set I.

e There exists a non-empty set X and a map ¢ : X < M such that given f: X — N for N any
R- module, 3!f : M — N such that the following diagram commutes.

M .

X — N

Definition: An R-module is free iff any of 1,2, or 3 hold.
Proof of 1 = 2:
Let X be a basis for M, then define M — @,cx Rx by ¢(m) = Z TiT;.
It can be checked that
e This is an R-module homomorphism,
e p(m)=0 = 1, =0Vj = m =0, so ¢ is injective,
e ¢ is surjective, since X is a spanning set.

So M = @ Rz, so it only remains to show that Rz = R. We can define the map
zeX

m,: R— Rx

= Tre.

Then 7, is onto, and is injective exactly because X is a linearly independent set. Thus M = &R.

|
Proof of 1 = 3:

Let X be a basis, and suppose there are two maps X — M and X i> M. Then define
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f:M—>N

This is clearly an R-module homomorphism, and the diagram commutes because (f o ¢)(x) = f(x).

This is unique because f is determined precisely by f (X).

|
Proof of 3 — 2:
We use the usual “2 diagram” trick to produce maps
FiMo @R
zeX
j: P R— M.
zeX
Then commutativity forces
fog=gof=id
|

Proof of 2 = 1:
We have M = @;c;R by (2). So there exists a map

'lp : @ie[R%M,

so let X = {1/)(1i)

1el }, which we claim is a basis.

To see that X is a basis, suppose Zmzﬁ(li) = 0. Then w(z r;1;) = 0 and thus Zrili =0 and
r; = 0 for all 7.

Checking that it’s a spanning set: Exercise.

Corollary: Every R-module is the homomorphic image of a free module.

Proof: Let M be an R-module, and let X be any set of generators of R. Then we can make a map

M- @R
reX

and there is a map X — M, so the universal property provides a map

@ RrR— M.
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Moreover, @ R is free.
rzeX

Examples:
e 7, is not a free Z-module for any n.
o If V is a vector space over a field k, then V is a free k-module (even if V is infinite dimensional).
e Every nonzero submodule of a free module over a PID is free.
Some facts:
Let R = k be a field (or potentially a division ring).
1. Every maximal linearly independent subset is a basis for V.
2. Every vector space has a basis.
3. Every linearly independent set is contained in a basis
4. Every spanning set contains a basis.
5. Any two bases of a vector space have the same cardinality.
Theorem (Invariant Dimension): Let R be a commutative ring and M a free R-module.
If X, X5 are bases for R, then |X;| = |Xa|.
Any ring satisfying this condition is said to have the invariant dimension property.

Note that it’s difficult to say much more about generic modules. For example, even a finitely
generated module may mot have an invariant number of generators.

22 Tuesday November 5th

22.1 Free vs Projective Modules

Let R be a PID. Then any nonzero submodule of a free module over a PID is free, and any projective
module over R is free.

Recall that a module M is projective <= M is a direct summand of a free module.
In general,
e Free = projective, but
e Projective =~ free.
Example:
Consider Zg = Zo ® Z3 as a Z-module. Is this free as a Z-module?

Note that Zs is a submodule and thus projective, but Zs is not free since it is not a free module
over Z. What fails here is that Zg is not a PID, since it is not a domain.
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22.2 Annihilators

Definition: Let m € M a module, then define
Ann,, = {’FER ‘ T.m:O} < R.

We can then define a map

¢:R— Rm

= r.m.

Then ker ¢ = Ann,,, and R/Ann = R.m.

We can also define

Mt::{meM‘Annm#O}SM.

Lemma: Let R be a PID and p a prime element. Then

o If pim =0 then Ann,, = (p’) where 0 < j < i.
e If Ann,, = (p), then p’m # 0 for any j < m.

Proof of (1): Since we are in a PID and the annihilator is an ideal, we have Ann,, := (r) for some
r € M. Then p' € (r), sor ‘ p'. But p was prime, to up to scaling by units, we have r = P’ for
some j < 4.

Proof of (2): Towards a contradiction, suppose that Ann,, = (pz) and p’m = 0 for some j < 7. Then
p’ € Ann,y,, so p’ ’ p'. But this forces j < 4, a contradiction.

|

Some terminology:

e Ann,, is the order ideal of m.

e M, is the torsion submodule of M.

e M is torsion iff M = M;.

e M is torsion free iff M; = 0.

e Ann,, = (r) is said to have order r.

e Rm is the cyclic module generated by m.
Theorem: A finitely generated torsion-free module over a PID is free.
Proof: Let M = (X) for some finite generating set.
We can assume M # (0). If m # 0 € M, with rm = 0 iff »r = 0.
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So choose S = {z1, -+ ,z,} C X to be a maximal linearly independent subset of generators, so

ZT’,‘CE@‘:O — T’i:OVi.

Consider the submodule F := (1, ,z,) < M; then S is a basis for F' and thus F' is free.

The claim is that M = F. Supposing otherwise, let y € X \ S. Then S U {y} can not be linearly
independent, so there exists ry,r; € R such that

ryY + Zrixi =0.

Thus ryy = — Zrixi, where 7, # 0.

Since | X| < oo, let

r= H Ty
yeX\S
Thean:{rx ‘ xEX}QF, and rM < F.
Now using the particular r we’ve just defined, define a map

fM—-M

mt— rm.

Then im f = r.M, and since M is torsion-free, ker f = (0). So M =rM C F and M is free.
[ |

Theorem: Let M be a finitely generated module over a PID R. Then M can be decomposed as
MZMoF
where M, is torsion and F' is free of finite rank, and F = M /M,.
Note: we also have M/F = F; since this is a direct sum.
Proof:
Part 1: M /M, is torsion free.

Suppose that r(m + M;) = My, so that r acting on a coset is the zero coset. Then rm + My = M,
so rm € My, so there exists some r’ such that r’'(rm) = 0 by definition of M;. But then (r'r)m = 0,
so in fact m € M; and thus m + M; = M, making M /M, torsion free.

Part 2: F = M/M;.
We thus have a SES
0— My —M— M/M;, =F — 0,
and since we’ve shown that F' is torsion-free, by the previous theorem F' is free. Moreover, every

SES with a free module in the right-hand slot splits:
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0 M, 0

For X = {z;} a generating set of F, we can choose elements {y;} € 7' (:(X)) to construct a set
map f: X — M. By the universal property of free modules, we get a map h: F — M.

It remains to check that this is actually a splitting, but we have

mo h(z;) = w(h(c(z;))) = n(f(z;)) = 7(y;) = z;.
Lemma: Let R be a PID, and r € R factor as r = prl as a prime factorization. Then
R/(r) = D R/ ().
Since R is a UFD, suppose that ged(s,t) = 1. Then the claim is that
R/(st) = R/(s) & R/(t),

which will prove the lemma by induction.

Define a map
a:R/(s)® R/(t) — R/(st)
(4 (s),y + (1)) = tx + sy + (st).
FEzercise: Show that this map is well-defined.
Since ged(s,t) = 1, there exist u,v such that su + vt = 1. Then for any r € R, we have
rsu+rvt =r,

so for any given r € R we can pick x = tv and y = su so that this holds. As a result, the map « is
onto.

Now suppose tx + sy € (st); then tx + sy = stz. We have su + vt = 1, and thus

utr + usy = ustz = utx + (y — tvy) = ustz.

‘We can thus write

y = ustv — utx + tvy € (t).

Similarly, z € (t), so ker a = 0.
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22.3 Classification of Finitely Generated Modules Over a PID
Theorem (Classification of Finitely Generated Modules over a PID):
Let M be a finitely generated R-module where R is a PID. Then

1.

M= F@R/(r:)

=1

where I is free of finite rank and r ‘ 9 ’ ‘ r¢. The rank and list of ideals occurring is

uniquely determined by M. The r; are referred to as the invariant factors.

k
M= FE R/}

where F' is free of finite rank and p; are primes that need not be distinct. The rank and ideals
are uniquely determined by M. The p;* are referred to as elementary divisors.

23 Thursday November 7th

23.1 Projective Modules

Definition: A projective module P over a ring R is an R-module such that the following diagram

commutes:
P
f
73 l
K
g N

M ——

i.e. for every surjective map g : M — N and every map f : P — N there exists a lift ¢ : P - M
such that that go ¢ = f.

Theorem: Every free module is projective.

Proof: Suppose M - N — 0 and F i> N, so we have the following situation:

x
F
=) /
Lz// g
M ———» N » 0

For every x € X, there exists an m, € M such that g(m,) = f(i(x)). By freeness, there exists a
¢ : ' — M such that this diagram commutes.
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Corollary: Every R-module is the homomorphic image of a projective module.

Proof: If M is an R-module, then F' — M where F' is free, but free modules are surjective.

|
Theorem: Let P be an R-module. Then TFAE:
a. P is projective.
b. Every SES 0 - M — N — P — 0 splits.
c. There exists a free module F' such that F' = P @ K for some other module K.
Proof:
a = b
We set up the following situation, where s is produced by the universal property:
P
A [ia
0 M N P 0
|

b —= ¢

Suppose we have 0 - M — N — P — 0 a SES which splits, then N =2 M @ P by a previous
theorem.

|
c = a
We have the following situation:
F=PaoK
m™ v
<" 3n P
. "’(ﬁ‘:LOh f
ot
M N
By the previous argument, there exists an h : F' — M such that goh = fow. Set ¢ = ho..
Ezercise: Check that go ¢ = f.
|

Theorem: @PZ is projective <= each P; is projective.
Proof:
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= : Suppose ®PF; is projective.

Then there exists some F' = K @ @ P; where F is free. But then P, is a direct summand of F', and
is thus projective.

<= Suppose each P; is projective.

Then there exists F; = P, @ K;, so F = @FZ = @(PZ o K;) = @Pi @ @KZ So @B is a
direct summand of a free module, and thus projective.

Note that a direct sum has finitely many nonzero terms. Can use the fact that a direct sum of
free modules is still free by taking a union of bases.

FEzxzample of a projective module that is not free:

Take R = Zg, which is not a PID and not a domain. Then Zg = Zo @ Zs, and Zs, Z3 are projective
R-modules. By previous statements, we know these are torsion as Z-modules, and thus not free.

23.2 Endomorphisms as Matrices
See section 7.1 in Hungerford

Let M, »(R) denote m x n matrices with coefficients in R. This is an R-R bimodule, and since R
is not necessarily a commutative ring, these two module actions may not be equivalent.

If m = n, then M, ,,(R) is a ring under the usual notions of matrix addition and multiplication.

Theorem: Let V, W be vector spaces where dim V' = m and dim W = n. Let homy(V, W) be the
set of linear transformations between them.

Then homy(V, W) = My, (k) as k-vector spaces.
Proof: Choose bases of V, W. Then consider

T:V W

n
V1 > Zau wj
=1
n

V9 > Zagﬂ' wj
=1

This produces a map

£ homy (VW) = My ()
T~ (aij),

which is a matrix.

Ezercise: Check that this is bijective.
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Theorem: Let M, N be free left R-modules of rank m,n respectively. Then homp(M,N) =
My, n(R) as R-R bimodules.

Notation: Suppose M, N are free R-modules, then denote (,,, 3, be fixed respective bases. We then
write [Tg,, 5, = (ai;) to be its matriz representation.

Theorem: Let R be a ring and let V, W, Z be three free left R-modules with bases By, B, 5:
respectively. If T : V — W, S : W — Z are R-module homomorphisms, then SoT : V — Z exists
and

[SoTlg, 8. = [T]8,,8,[5)8u.5-

Proof: Exercise.

Show that

(S (o] T)(Ul) = aikbkaj.

Q.M“
wM3

23.3 Matrices and Opposite Rings

Suppose I' : homg(V,V) — M,(R) and V is a free left R-module. By the theorem, we have
(T oS)=T(S)I'(T). We say that I is an anti-homomorphism.

To address this mixup, given a ring R we can define R°? which has the same underlying set of R
but with the modified multiplication

-y =yzr € R.

If R is commutative, then R & RP.

Theorem: Let R be a unital ring and V' an R-module.
Then homp(V, V) = M, (R) as rings.
Proof: Since I'(S o T') = I'(T")I'(S), define a map
© : My n(R) — My n(RP)

A AL

Then
O(AB) = (AB)" = B'A' = 6(B)©(A),

so O is an anti-isomorphism.

Thus © o I' is an anti-anti-homomorphism, i.e. a usual homomorphism.
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Definition: A matrix A is invertible iff there exists a B such that AB = BA = id,,.
Proposition: Let R be a unital ring and V, W free R-modules with dim V' = n,dim W = m. Then

1. T € hompg(V, W) is an isomorphisms iff [T]g, g, is invertible.

2- [T71]5v7,8w = [T]/g’vlvﬁw'

Definition: We’ll say that two matrices A, B are equivalent iff there exist P, Q invertible such
that PAQ = B.

24 Tuesday November 12th

24.1 Equivalence and Similarity
Recall from last time:

If V,W are free left R-modules of ranks m, n respectively with bases 3,, B, respectively, then

homp(V, W) = My, n(R).

Definition: Two matrices A, B € M,,«x,(R) are equivalent iff

JP € GL(m, R), 3Q € GL(n,R) such that A= PBQ.

Definition: Two matrices A, B € M,,(R) are similar iff

3P € GL(m,R) such that A= P 'BP.

Theorem: Let T : V — W be an R-module homomorphism.

Then T has an m X n matrix relative to other bases for V,W <—-

B = P[T]g,5,Q-

Proof: =—:

Let f3,, B,, be other bases. Then we want B = [T']g g , so just let

P=1lidlg s Q=I[idg,s,-

—:
Suppose B = P[T)3, 3, @ for some P, Q.
Let g : V — V be the transformation associated to P, and h : W — W associated to Q~!.
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Then

[id]g(.),8,

= Q' = lidln.),5,

= Q = [id]g, n(8.)
= B =[Tly5.)h(8u)

Corollary: Let V be a free R-module and (3, a basis of size n.

Then T : V — V has an n X n matrix relative to 3, relative to another basis <=

B = P[Tg,3,P "

Note how this specializes to the case of linear transformations, particularly when B is diago-
nalizable.

24.2 Review of Linear Algebra:

Let D be a division ring. Recall the notions of rank and nullity, and the statement of the rank-nullity
theorem.

Note that we can always factor a linear transformation ¢ : E — F' as the following short exact
sequence:

0—>ker¢—>E£>im¢%O,

and since every module over a division ring is free, this sequence splits and F = ker ¢ ®im ¢. Taking
dimensions yields the rank-nullity theorem.

Let A € M, ,(D) and define
e R(A) € D" is the span of the rows of A, and
e C(A) € D™ is the span of the columns of A.

Recall that finding a basis of the row space involves doing Gaussian Elimination and taking the
rows which have nonzero pivots.

For a basis of the column space, you take the corresponding columns in the original matrix.
Note that in this case, dim R(A) = dim C(A), and in fact these are always equal.

Theorem (Rank and Equivalence): Let ¢ : V. — W be a linear transformation and A be the
matrix of ¢ relative to 3,, 3.,

Then dimim 7 = dim C(A) = dim R(A).
Proof: Construct the matrix A = [¢]g, 3, -
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Then ¢ : V — W descends to a map A : D™ — D". Writing the matrix A out and letting v € D™
a row vector act on A from the left yields a column vector Av € D".

But then im ¢ corresponds to R(A), and so

dimim ¢ = dim R(A) = dim C(A).

24.3 Canonical Forms

Let 1 < r < min(m,n), and define E, to be the m x n matrix with the r x r identity matrix in the
top-left block.

Theorem: Let A, B € My, (D). Then
1. A is equivalent to F, <= rank A =r
e That is, 9P, Q) such that F, = PAQ
2. A is equivalent to B iff rank A = rank B.

3. E, forr=0,1,--- ,min(m,n) is a complete set of representatives for the relation of matrix
equivalence on My, »(D).

Let X = M, (D) and G = GL,(D) x GL, (D), then

G~ X by (P,Q) ~ A:=PAQ "

Then the orbits under this action are exactly {ET 0 < r < min(m, n)}
Proof: Note that 2 and 3 follow from 1, so we’ll show 1.
=

Let A be an m x n matrix for some linear transformation ¢ : D™ — D" relative to some basis.
Assume rank A = dimim ¢ = r. We can find a basis such that ¢(u;) = v; for 1 < i < r, and
¢(u;) = 0 otherwise. Relative to this basis, [¢] = E,. But then A is equivalent to E,.

—:
If A= PE.Q with P,Q invertible, then dimim A = dimim F,, and thus rank A = rank E. = r.
How do we do this? Recall the row operations:

e Interchange rows

e Multiply a row by a unit

e Add one row to another

But each corresponds to left-multiplication by an elementary matrix, each of which is invertible. If
you proceed this way until the matrix is in RREF, you produce P H P;A. You can now multiply on
the right by elementary matrices to do column operations and move all pivots to the top-left block,
which yields E,.
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Theorem: Let A € M, ,,(R) where R is a PID.

Then A is equivalent to a matrix with L, in the top-left block, where L, is a diagonal matrix with
Li; = d; such that d, ] ds ’ ] d,. Each (d;) is uniquely determined by A.

25 Thursday November 14th

25.1 Equivalence to Canonical Forms
Let D be a division ring and k a field.

Recall that a matrix A is equivalent to B <= 4P, such that PBQ = A. From a previous
theorem, if rank(A) = r, then A is equivalent to a matrix with I, in the top-left block.

Theorem: Let A be a matrix over a PID R. Then A is equivalent to a matrix with L, in the top-left
corner, where L, = diag(dy,da,--- ,d,) and d; ‘ do ’ e ‘ d,, and the d; are uniquely determined.

Theorem: Let A be an n X n matrix over a division ring D. TFAE:
1. rank A = n.
2. A is equivalent to I,,.
3. A is invertible.
1 = 2: Use Gaussian elimination.
2 = 3: A= PI,QQ = PQ where P,(Q are invertible, so PQ = A is invertible.
3 = 1: If A is invertible, then A : D™ — D" is bijective and thus surjective, so dimim A = n.

Note: the image is now row space because we are taking left actions.

25.2 Determinants
Definition: Let My, -- , M,, be R-modules, and then f : H M; — R is n-linear iff

f(m17m27"' 7rmk+sm;cv"' 7mn) =
rf(mlv... ’mk,mk)+sf(ml, ’m§€7... 7mn)'

Ezxample: The inner product is a 2-linear form.

Definition: f is symmetric iff

flmy, - ,my,) = f(mo'(l)7 e ,mg(n)) Yo € 5,.

Definition: f is skew-symmetric iff

f(ma, -+ my) = sgn(o) (M), s Mo(n)) Yo € Sh,
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where

( ) 1 o is even
sgn(o) = .
& —1 o is odd

Definition: f is alternating iff

m; = mj; for some pair (i,7) = f(mi,---,my) =0.

Theorem: Let f be an n-linear form. If f is alternating, then f is skew-symmetric.

Proof: 1t suffices to show the n = 2 case. We have

0

fim 41+ mg,my + mo)

f(ma,my) + f(mi,ma) + f(ma, m1) + f(mz, m2)
f(ma,ma) + f(ma,m)

= f(my,mq) = —f(ma, my).

Theorem: Let R be a unital commutative ring and let » € R be arbitrary.

Then

Nf:EPR"— R,

=1

where f is an alternating R-form such that f(e;) = r for all 4, where e; = [0,0,---,0,1,0,---

R"™ is a free module, so f can be identified with a matrix once a basis is chosen.

Proof:
Ezistence: Let x; = [ai1, a2, -+ ,ain) and define
[l an) = sgn(o)r [ aiow)-
oESy %
Ezercise: Check that f(e1, -+ ,e,) =r and f is n-linear.
Moreover, f is alternating. Consider f(x1,--- ,xy) where z; = x; for some i # j.

Letting ¢ = (i,7), we can write S, = AnHAnp.

If o is even, then the summand is

(+1)Ta10(1) * Qpo(n)-
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Since z; = x;, we'll have Haik = H a;i. Then consider applying op. We have
k

-r H Aig(i) = —TA1o(1) """ Ajo(5) " Rig(i) " An,o(n)

=-r H Qig(i) = —TA1o(1) """ Rio(i) """ Ajo(§) " " An,o(n)>

which permutes the 4, j terms. So these two terms cancel, the remaining terms are untouched.

Uniqueness: Let x; = Zaijej. Then
J

f(:l:la"' 73371) = f(za]lejv aza;‘lej)
J Jn
= Z"'Zf(ejv e e),)aty A,
Ji Jn

= Z Sgn(o-)f(ela T >en)a1,o(1) © Ay o(n)
0ESH

— Z SgN(0)7Ta1 o(1) " " Un,o(n)-

oESy

Definition: Let R be a commutative unital ring and define det : M,(R) — R is the unique
n-alternating form with det(/) = 1, and is called the determinant.

Theorem: Let A, B € M,(R). Then

a. |AB| = |A||B|

b. A is invertible <= |A] € R*

c. A~ B = |A|=|B]|.

d. ‘At‘ =A].

e. If A is triangular, then |A| is the product of the diagonal entries.
Proof of a: Let B be fixed.

Let Ap : M,(R) — R be defined as C — |CB|. Then this is an alternating form, so by the theorem,
Ap = rdet. But then Ag(C) = r|C]|, so r|C| = |CB]|. So pick C = I, then r = |B|.

Proof of b: Suppose A is invertible.
Then AA™' =1, so0 ‘AA*I‘ = |A|‘A*1‘ = 1, which shows that |A| is a unit.

Proof of ¢: Let A= PBP™!. Then

Al = |PBP~!| = |P||B||P~!| = |P||P~!||B| = |BI.

94



Proof of e: Let A be upper-triangular. Then

Al = ngn(o) Haka(k) =aja---
k

o

Next time:

e Calculate determinants
— Gaussian elimination
— Cofactors

e Formulas for A~}

e Cramer’s rule

26 Tuesday November 19th

26.1 Determinants
Let A € M, (R), where R is a commutative unital ring.

Given A = (a;j), recall that

det A=Y sgn(o) [ [ ai00)-

oc€Sh

This satisfies a number of properties:
e det(AB) = det Adet B
e A invertible = det A is a unit in R
e A~ B = det(A) = det(B)
o det A =det A

A is triangular = det A = H Q.
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26.1.1 Calculating Determinants
1. Gaussian Elimination
a. B is obtained from A by interchanging rows: det B = —det A
b. B is obtained from A by multiplying det B = r det A
c. B is obtained from A by adding a scalar multiple of one row to another: det B = det A.
2. Cofactors Let A;; be the (n — 1) x (n — 1) minor obtained by deleting row i and column j,
and Cj; = (—1)""7 det A;;.
Then (theorem) det A = z": a;;C;; by expanding along either a row or column.
j=1

Theorem:
AAdj(A) = det(A)I,,

where Adj = (Cj;)".
If A7!is a unit, then A™' = Adj(A)/ det(A).

26.1.2 Decomposition of a Linear Transformation:
Let ¢ : V — V be a linear transformation of vector spaces. and R = homy(V, V). Then R is a ring.

Let f(z) = Z aj:Ej € k[z] be an arbitrary polynomial. Then for ¢ € R, it makes sense to evaluate
f(¢) where ¢" denotes an n-fold composition, and f(¢) : V — V.

Lemma:

e There exists a unique monic polynomial g4(x) € k[z] such that g4(¢) = 0 and f(¢) =0 =

44 ‘ f. qg is referred to as the minimal polynomial of ¢.

e The exact same conclusion holds with ¢ replaced by a matrix A, yielding g4.
o If A is the matrix of ¢ relative to a fixed basis, then ¢4 = ga.
Proof of a and b: Fix ¢, and define

I': k[x] — homg(V,V)
[ f(o).

Since dimy V¥ = dimy V < oo and dimy, k[z] = oo, we must have ker I # 0.

Since k[z] is a PID, we have kerI" = (¢) for some ¢ € k[z]. Then if f(¢) = 0, we have f(z) €

kerI' = ¢ } f. We can then rescale ¢ to be monic, which makes it unique.

Note: for (b), just replace ¢ with A everywhere.
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Proof of c: Suppose A = [¢]|g for some fixed basis B.

Then homy(V, V) = M, (k), so we have the following commutative diagram:

k2] —— s homy(V, V)

Ta

14

26.1.3 Finitely Generated Modules over a PID
Let M be a finitely generated module over R a PID. Then

M%F@éR/(m) 7‘1’7“2‘ ceery,

i=1
n
M=>=F® ED R/(pj") pi not necessarily distinct primes. .

i=1

Letting R = k[x] and ¢ : V — V with dimy V' < oo, V becomes a k[z]-module by defining

Note that W is a k[z]-submodule iff ¢ : W — W.

Let v € V, and (v) = {qﬁi(’u) ‘ 1=0,1,2,-- } is the cyclic submodule generated by v, and we
write (v) = k[z].v.
Theorem: Let ¢ : V — V be a linear transformation. Then

t

1. There exist cyclic k[z]-submodules V; such that V = @ Vi, where for each ¢ there exists a
i=1
q; : V; — V; such that ¢1 ‘ Q2 ‘ ’qt.

v
2. There exist cyclic k[z]-submodules V; such that V' = @ and p;nj is the minimal polynomial
j=1
of p:V; = Vj.
Proof: Apply the classification theorem to write V = @ R/(r;) as an invariant factor decomposition.

Then R/(q;) = V;, some vector space, and since there is a direct sum decomposition, the invariant
factors are minimal polynomials for ¢; : V; — V;, and thus k[z]/(g;).
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26.1.4 Canonical Forms for Matrices
We'll look at

e Rational Canonical Form

e Jordan Canonical Form

Theorem: Let ¢ : V — V be linear, then V' is a cyclic k[z]-module and ¢ : V' — V has minimal
polynomial ¢(x) = Z a;x’ iff dim V' =n and V has an ordered basis of the form

0 1 0 0
0 0 1 0
[l = :
—ap —ap —a2 —Qan—1

with ones on the super-diagonal.
Proof:
<

Let V = k[x].v = <v, o(v),- - ,d)"_l(v)> where deg g(x) = n. The claim is that this is a linearly
independent spanning set.
n—1
Linear independence: suppose Z k:jgbj(v) = 0 with some k; # 0. Then f(z) = Zk‘]wj is a
j=0
polynomial where f(¢) = 0, but this contradicts the minimality of ¢(x).

But then we have n linearly independent vectors in V' which is dimension n, so this is a spanning
set.

-

We can just check where basis elements are sent. Set B = {v, o(v),- - ,gb”_l(v)}. Then

v = ¢(v)
d(v) = ¢°(v)

on —1(v) = ¢"(v) = — Zaigbi(v)
<= Fix a basis B = {vy,--- ,v,} and A = [¢]p, then

vy — vg = ¢(v1)
V1 — v3 = ¢2(1}1)

Up_g > Up1 = ¢ (v1).
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and

¢"(v) = —apv1 £ —a1p(v1), - - — an_16" " (01).

Thus V = k[z].v1, since dim V' = n with {vl, d(v1), - ,qﬁ"*l(vl)} as a basis.

27 Thursday November 21

27.1 Cyclic Decomposition
Let ¢ : V — V be a linear transformation; then V is a k[z] module under f(z) ~ v = f(¢)(v).

By the structure theorem, since k[x] is a PID, we have an invariant factor decomposition V' = @ Vi

where each V; is a cyclic k[z]-module. If ¢; is the minimal polynomial for ¢; : V; — Vi, then ¢; | gi+1

for all 4.
We also have an elementary divisor decomposition where p;"* are the minimal polynomials for ¢;.
Note: one is only for the restriction to the subspaces? Check.

Recall that if ¢ has minimal polynomial ¢(z). Then if dim V = n, there exists a basis of B if V
such that [¢]p is given by the companion matrix of ¢(z). This is the rational canonical form.

Corollary: Let ¢ : V' — V be a linear transformation. Then V is a cyclic k[z]-module and ¢ has
minimal polynomial (z —b)" <= dim V = n and there exists a basis such that

b 10 --- 0 00
0b 1 -~ 0 00
Pls=149 0 p 1 .0 0
000 0 --- b1

This is the Jordan Canonical form.

Note that if k£ is not algebraically closed, we can only reduce to RCF. If k is closed, we can
reduce to JCF, which is slightly nicer.

Proof:

Let § = ¢ —b-idy. Then
e ¢(x) is the minimal polynomial for ¢ <= z" is the minimal polynomial for §.
e A priori, V has two k[x] structures — one given by ¢, and one by 0.

e FEzercise: V is cyclic with respect to the ¢ structure <= V is cyclic with respect to the the
0 structure.

Then the matrix [§]p relative to an ordered basis for § is with only zeros on the diagonal and 1s on
the super-diagonal, and [¢]p is the same but with b on the diagonal.
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t
Lemma: Let ¢ : V — V with V = @ Vi as k[z]-modules. Then M; is a matrix of ¢|Vi Vi = Vi

i
relative to some basis for V; <= the matrix of ¢ wrt some ordered basis is given by

My
My

M,

Proof:
= : Suppose B; is a basis for V; and [¢]|p, = M;. Then let B = U B;; then B is a basis for V' and
i

the matrix is of the desired form.

<= : Suppose that we have a basis B and [¢]|p is given by a block diagonal matrix filled with
blocks M;. Suppose dim M; = n;. If B = {vy,va,--- ,v,}, then take By = {v1, -+ ,v,, } and so on.
Then [¢;|p, = M; as desired.

|
Application: Let V = @ Vi with ¢; the minimal polynomials of ¢ : V; — V; with g¢;

qi+1-

Then there exists a basis where [¢]p is block diagonal with blocks M;, where each M; is in rational
canonical form with minimal polynomial ¢;(x). If k is algebraically closed, we can obtain elementary
divisors p;(x) = (z — b;)™. Then there exists a similar basis where now each M; is a Jordan block
with b; on the diagonals and ones on the super-diagonal.

Moreover, in each case, there is a basis such that A = P[M;]P~" (where M; are the block matrices
obtained). When A is diagonalizable, P contains the eigenvectors of A.

Corollary: Two matrices are similar <= they have the same invariant factors and elementary
divisors.

Ezample: Let ¢ : V' — V have invariant factors ¢;(z) = (x — 1) and ¢2(x) = (x — 1)(x — 2).
Then dimV =3, V =V; & V5 where dimV; = 1 and dim Vo = 2. We thus have

W = O

Moreover, we have

~ Kl] k[x] ~ K] k[x] k[x]
Ve e w2 G- e-D " @2

so the elementary divisors are x — 1,2z — 1,z — 2.
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Invariant factor decompositions should correspond to rational canonical form blocks, and
elementary divisors should correspond to Jordan blocks.

Theorem: Let A be an n x n matrix over k. Then the matrix xI,, — A € M, (k[x]) is equivalent in
k[x] to a diagonal matrix D with non-zero entries fi, fo,- - fi € k[x] such that the f; are monic and

fi

Proof (Sketch): Let V = k™ and ¢ : k" — k" correspond to A under the fixed standard basis {e;}.
Then V has a k[z]-module structure induced by ¢.

fi+1. The non-constant polynomials among the f; are the invariant factors of A.

Let F be the free k[z] module with basis {u;};_;, and define the maps

T F— k"

U; —r €;

and

W:F > F

Ui = TU; — E AUy .
J

Then v relative to the basis {u;} is zI,, — A.

Then (ezxercise) the sequence
w K n
F—=F=k"—=0

is exact, im m = k", and im ¢ = ker .

We then have k" = F//ker m = F/im v, and since k[z] is a PID,

L. 0O
:z:In—AND._[ 0 O]'

where L, is diagonal with f;s where f; | fiy1.

However, det(zI, — A) # 0 because xI, — A is a monic polynomial of degree n.

But det z1,, — A = det(D), so this means that L, must take up the entire matrix of D, so there is
no zero in the bottom-right corner. So L, = D, and D is the matrix of ¢ with respect to By = {v;}
and By = {U)Z} with T/J(’UZ) = fiw;.

Thus

im w = @k[m]fﬂuz

=1
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But then

klzjwi & - - @ k[z]wy
kel frws @ - - & k7] fuw,

= (P kll/(fi)
i=1

V =k" 2 F/im ¢

28 Tuesday November 26th

28.1 Minimal and Characteristic Polynomials

Theorem

? (Todo)

b. (Cayley Hamilton) If p is the minimal polynomial of a linear transformation ¢, then p(¢) = 0

c. For any f(x) € k[x] that is irreducible, f(x ‘ p(x) <= f(z ‘ gs(

Proof of (a): ?

Proof of (b):

If gy (= \ po(z) and gy(¢) = 0, then py(¢) = 0 as well.

Proof of (c): We have f(x ‘ 9p(r) = f(x ‘ pg(x) and f(x ‘ ps(r) = f(x ‘ qi(x

and so f(x ’ qp(x

28.2 Eigenvalues and Eigenvectors

Definition: Let ¢ : V — V be a linear transformation. Then
1. An eigenvector is a vector v = 0 such that ¢(v) = Av for some \ € k.
2. If such a v exists, then A is called an eigenvalue of ¢.

Theorem: The eigenvalues of ¢ are the roots of pg(x) in k.

Proof: Let [¢]p = A, then

102

) for some 1,



PA(A) = py(A) = det(AM — A) =0
<= 3v # 0 such that (Al — A)v=0
< AMv=Av
— Av=)\v

<= A is an eigenvalue and v is an eigenvector.

29 Tuesday December 3rd

29.1 Similarity and Diagonalizability
Recall that A~ B <= A= PBP™'.

Fact: If T : V — V is a linear transformation and B, B are bases where [Tz = A and [Tz, then
A~ B.

Theorem: Let A be an n x n matrix. Then

1. A is similar to a diagonal matrix / diagonalizable <= A has n linearly independent
eigenvectors.

2. A= PDP~! where D is diagonal and P = [v1,Vva,- -+, vy] with the v; linearly independent.
Proof: Consider AP = PD, then AP has columns Av; and PD has columns \;v;. [ |

Corollary: If A has distinct eigenvalues, then A is diagonalizable.

Examples:
1. Let

4 00

A= -1 4 0

0 0 5

A has eigenvalues 4,5, and it turns out that A is defective.

Note that dim A4 + dim A5 = 2 < 3, so the eigenvectors can’t form a basis of R?.

A=

N DN &~
N =~ DN
=N N

A has eigenvalues 2,8. Ay = spang {[—1, 1,0]%,[~1,0, l]t} and Ag = spanp {[1, 1, 1]t}. These
vectors become the columns of P, which is (by no coincidence!) an orthogonal matrix, since A
was symmetric.

103



FEzercise:

0o 4 2
-1 -4 -1
0o 0 -2

Find J = JCF(A) (so A= PJP™') and compute P.
Definition: Let A = (a;;), then define that trace of A by Tr(A) = Z Q.

The trace satisfies several properties:
e Tr(A+ B) =Tr(A) + Tr(B),
o Tr(kA) = EkTr(A),
e Tr(AB)=Tr(BA).

Theorem: Let T': V — V be a linear transformation with dim V' < oo, A = [T|g with respect to
some basis, and pr(z) be the characteristic polynomial of A.

Then
pr(z) = 2" +cp12" - ez + oo,

co = (—1)" det(A),
Cpn—1 — —Tr(A).

Proof: We have pr(0) = det(01, — A) = det(—A) = (—1)" det(A).
Compute pr(z) by expanding det I — A along the first row. The first term looks like H(ac - a),

and no other term contributes to the coefficient of z" 1.
|

Definition: A Lie Algebra is a vector space with an operation |-, -] : V x V — V satisfying

1. Bilinearity,

2. [z,x2] =0,

3. The Jacobi identity [z, [y, 2]] = [y, [z, z]] + [z, [z, y]] = 0.
Examples:

1. L = gl(n,C) = n x n invertible matrices over C with [A, B] = AB — BA.

2. L =s5l(n,C) = {A € gl(n,C) ‘ Tr(A) = 0} with the same operation, and it can be checked
that

Tr([A, B]) = Tr(AB — BA) = Tr(AB) — Tr(BA) = 0.

This turns out to be a simple algebra, and simple algebras over C can be classified using root
systems and Dynkin diagrams — this is given by type A,_1.
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30 Summary

Groups and rings, including Sylow theorems,
Classifying small groups,

Finitely generated abelian groups,
Jordan-Holder theorem,

Solvable groups,

Simplicity of the alternating group,
Euclidean domains,

Principal ideal domains,

Unique factorization domains,

Noetherian rings,

Hilbert basis theorem,

Zorn’s lemma, and

Existence of maximal ideals and vector space bases.

Previous course web pages:

e Fall 2017, Asilata Bapat
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