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1 Friday January 10
Recall that C is a field, where

z = x+ iy =⇒ z = x− iy

and if z 6= 0 then

z−1 = z

|z|2

Lemma 1.1(Triangle Inequality).

|z + w| ≤ |z|+ |w|.

Proof .

(|z|+ |w|)2 − |z + w|2 = 2(|zw| − <zw) ≥ 0.

�

Lemma 1.2(Reverse Triangle Inequality).

||z| − |w|| ≤ |z − w|.

Proof .

|z| = |z − w + w| ≤ |z − w|+ |w| =⇒ |w| − |z| ≤ |z − w| = |w − z|.

�

Fact (C, | · |) is a normed space.
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Definition 1.2.1 (Limits of Complex Sequences).

lim zn = z ⇐⇒ |zn − z| −→ 0 ∈ R.

Definition 1.2.2 (Complex Discs).
A disc is defined as Dr(z0) :=

{
z ∈ C

∣∣∣ |z − z0| < r
}
, and a subset is open iff it contains a disc.

By convention, Dr denotes a disc about z0 = 0.

Definition 1.2.3 (Convergence in).∑
k

zk converges iff SN :=
∑
|k|<N

zk converges.

Note that zn −→ z and zn = xn + iyn, and

|zn − z| =
√

(xn − x)2 − (yn − y)2 < ε =⇒ |x− xn|, |y − yn| < ε.

Since R is complete iff every Cauchy sequence converges iff every bounded monotone sequence has a
limit.

Note: This is useful precisely when you don’t know the limiting term.

Note that
∑
k

zk thus converges if
∣∣∣∣∣
n∑

k=m
zk

∣∣∣∣∣ < ε for m,n large enough, so sums converges iff they

have small tails.

Definition 1.2.4 (Absolute Convergence).

SN =
N∑
zk converges absolutely iff S̃ :=

N∑
|zk| converges.

Note that the partial sums
N∑
|zk| are monotone, so S̃N converges iff the partial sums are bounded

above.

Definition 1.2.5 (Power Series).

A sum of the form
∞∑
k=0

akzk is a power series.

Examples:

∑
xk = 1

1− x∑
(−x2)k = 1

1 + x2 .

Note that both of these have a radius of convergence equal to 1, since the first has a pole at x = 1
and the second as a pole at x = i.

1 FRIDAY JANUARY 10 6



2 Monday January 13th

Recall that
∑

zk converges iff sn =
n∑
k=1

zk converges.

Lemma 2.1.
Absolute convergence implies convergence.

The most interesting series: f(z) =
∑

akz
k, i.e. power series.

Lemma 2.2(Divergence).
If
∑

zk converges, then lim zk = 0.

Corollary 2.3.
If
∑

zk converges, {zk} is uniformly bounded by a constant C > 0, i.e. |zk| < C for all k.

Proposition: If
∑

akzk converges at some point z0, then it converges for all |z| < |z|0.

Note that this inequality is necessarily strict. For example,
∑ zn−1

n
converges at z = −1 (alternating

harmonic series) but not at z = 1 (harmonic series).

Proof .
Suppose

∑
akz

k
1 converges. The terms are uniformly bounded, so

∣∣∣akzk1 ∣∣∣ ≤ C for all k. Then
we have

|ak| ≤ C/|z1|k

, so if |z| < |z1| we have ∣∣∣akzk∣∣∣ ≤ |z|k C

|z1|k
= C(|z|/|z1|)k.

So if |z| < |z1|, the parenthesized quantity is less than 1, and the original series is bounded by
a geometric series. Letting r = |z|/|z1|, we have

∑∣∣∣akzk∣∣∣ ≤∑ crk = c

1− r ,

and so we have absolute convergence.
�

Exercise (future problem set) Show that
∑ 1

k
zk−1 converges for all |z| = 1 except for z = 1. (Use

summation by parts.)

Definition 2.3.1 (Radius of Convergence).
The radius of convergence of a series is the real number R such that f(z) =

∑
akz

k converges

2 MONDAY JANUARY 13TH 7



precisely for |z| < R and diverges for |z| > R.
We denote a disc of radius R centered at zero by DR. If R =∞, then f is said to be entire.

Proposition 2.4.
Suppose that

∑
akz

k converges for all |z| < R. Then f(z) =
∑

akz
k is continuous on DR,

i.e. using the sequential definition of continuity, lim
z−→z0

f(z) = f(z0) for all z0 ∈ DR.

Recall that Sn(z) −→ S(z) uniformly on Ω iff ∀ε > 0, there exists a M ∈ N such that

n > M =⇒ |Sn(z)− S(z)| < ε

for all z ∈ Ω

Note that arbitrary limits of continuous functions may not be continuous. Counterexample:
fn(x) = xn on [0, 1]; then fn −→ δ(1). This uniformly converges on [0, 1− ε] for any ε > 0.

Exercise Show that the uniform limit of continuous functions is continuous.

Hint: Use the triangle inequality.

Proof (of proposition).

Write f(z) =
N∑
k=0

akz
k +

∞∑
N+1

akz
k := SN (z) +RN (z). Note that if |z| < R, then there exists a

T such that |z| < T < R where f(z) converges uniformly on DT .
Check!

We need to show that |RN (z)| is uniformly small for |z| < s < T . Note that
∑

akz
k converges

on DT , so we can find a C such that
∣∣∣akzk∣∣∣ ≤ C for all k. Then |ak| ≤ C/T k for all k, and so

∣∣∣∣∣∣
∞∑

k=N+1
akz

k

∣∣∣∣∣∣ ≤
∞∑

k=N+1
|ak||z|k

≤
∞∑

k=N+1
(c/T k)sk

= c
∑
|s/T |k

= c
rN+!

1− r = Cεn −→ 0,

which follows because 0 < r = s/T < 1.
So SN (z) −→ f(z) uniformly on |z| < s and SN (z) are all continuous, so f(z) is continuous.

�

There are two ways to compute the radius of convergence:

• Root test: lim
k
|ak|1/k = L =⇒ R = 1

L
.

•
• Ratio test: lim

k
|ak+1/ak| = L =⇒ R = 1

L
.
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As long as these series converge, we can compute derivatives and integrals term-by-term, and they
have the same radius of convergence.

3 Wednesday January 15th

See references: Taylor’s Complex Analysis, Stein, Barry Simon (5 volume set), Hormander
(technically a PDEs book, but mostly analysis)

Good Paper: Hormander 1955

We’ll mostly be working from Simon Vol. 2A, most problems from from Stein’s Complex.

3.1 Topology and Algebra of C
To do analysis, we’ll need the following notions:

1. Continuity of a complex-valued function f : Ω −→ Ω

2. Complex-differentiability: For Ω ⊂ C open and z0 ∈ Ω, there exists ε > 0 such that
Dε =

{
z
∣∣∣ |z − z0| < ε

}
⊂ Ω, and f is holomorphic (complex-differentiable) at z0 iff

lim
h−→0

1
h

(f(z0 + h)− f(z0))

exists; if so we denote it by f ′(z0).

Example 3.1.
f(z) = z is holomorphic, since f(z + h)− f(z) = z + h− z = h, so f ′(z0) = h

h
= 1 for all z0.

Example 3.2.

Given f(z) = z, we have f(z + h)− f(z) = h, so the ratio is h
h

and the limit doesn’t exist.

Note that if h ∈ R, then h = h and the ratio is identically 1, while if h is purely imaginary, then
h = −h and the limit is identically −1.

We say f is holomorphic on an open set Ω iff it is holomorphic at every point, and is holomorphic
on a closed set C iff there exists an open Ω ⊃ C such that f is holomorphic on Ω.

Fact If f is holomorphic, writing h = h1 + ih2, then the following two limits exist and are equal:

lim
h1−→0

f(x0 + iy0 + h1)− f(x0 + iy0)
h1

= ∂f

∂x
(x0, y0)

lim
h2−→0

f(x0 + iy0 + ih2)− f(x0 + iy0)
ih2

= 1
i

∂f

∂y
(x0, y0)

=⇒ ∂f

∂x
= 1
i

∂f

∂y
.
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3.1 Topology and Algebra of C

So if we write f(z) = u(x, y) + iv(x, y), we have

∂u

∂x
+ i

∂v

∂x

∣∣∣
(x0,y0)

= 1
i

(
∂u

∂y
+ i

∂v

∂y

) ∣∣∣
(x0,y0)

,

and equating real and imaginary parts yields the Cauchy-Riemann equations:

∂u

∂x
+ i

∂v

∂x
= −i∂u

∂y
+ ∂v

∂y

⇐⇒ ∂u

∂x
= ∂v

∂y
and ∂u

∂y
= −∂v

∂x
.

The usual rules of derivatives apply:

1. (
∑

f)′ =
∑

f ′

Proof .
Direct.

�

2. (
∏

f)′ = product rule

Proof .
Consider (f(z + h)g(z + h)− f(z)g(z))/h and use continuity of g at z.

�

3. Quotient rule

Proof .
Nice trick, write

q = f

g

so qg = f , then f ′ = q′g + qg′ and q′ = f ′

g
− fg′

g2 .
�

4. Chain rule

Proof .
Use the fact that if f ′(g(z)) = a, then

f(z + h)− f(z) = ah+ r(z, h), |r(z, h)| = o(|h|) −→ 0.

Write b = g′(z), then

f(g(z + h)) = f(g(z) + bh+ r1) = f(g(z)) + f ′(g(z))bh+ r2
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by considering error terms, and so

1
h

(f(g(z + h))− f(g(z))) −→ f ′(g(z))g′(z)

.
�

4 Friday January 17th
4.1 Antiholomorphic Derivative

Reference: See Lang’s Complex Analysis, there are plenty of solution manuals. Note: look for
13 statements equivalent to holomorphic: Springer GTM Lipman.

Let f ; Ω −→ C be a complex-valued function. Recall that f is complex differentiable iff the usual
ratio/limit exists. Note that h = x+ iy and h −→ 0 ⇐⇒ x, y −→ 0.

We can write

f ′(z) = ∂f

∂x
= 1
i

∂f

∂y
.

This follows from Cauchy-Riemann since ux = vy and uy = −vx.

We want to define ∂, ∂ operators. We have the identities

x = z + z

z
y = z − z

iz
.

We can then write

dz = dx+ idy

dz = dx− idy.

We define the dual operators by
〈
∂

∂z
, dz

〉
= 1 and similarly

〈
∂

∂z
, dz

〉
= 1.

By the chain rule, we can write

fz = ∂f

∂x

∂x

∂z
+ ∂f

∂y

∂y

∂z

= 1
2
∂f

∂x
+ ∂f

∂y

1
2i

= 1
2

(
∂

∂x
+ i

∂

∂y

)
f,
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4.1 Antiholomorphic Derivative

and similarly

fz = ∂f

∂x

∂x

∂z
+ ∂f

∂y

∂z

∂z

= 1
2

(
∂

∂x
− 1

2i
∂

∂y

)
f.

We thus find ∂x = ∂z + ∂z and ∂y = i(∂z − ∂z), so define

∂f := ∂f

∂z
dz

∂f := ∂f

∂z
dz

=⇒ df = ∂f

∂z
dz + ∂f

∂z
dz.

Definition 4.0.1 (Holomorphic and Antiholomorphic Derivatives).

∂f = 1
2

(
∂

∂x
+ i

∂

∂y

)
f

∂f =
(
∂

∂x
− 1

2i
∂

∂y

)
f.

Proposition 4.1(Holomorphic Functions have vanishing antiholomorphic deriva-
tives).
f is holomorphic iff ∂f = 0.

This means that f depends on z alone and not z.

Proof .
∂f = 0 iff 1

2(fx + ify) = 0, so (ux − vy) + i(vx + uy) = 0.
�

Application to PDEs: we can write

uxx = vxy uyy = vyx

and so

uxx + uyy = 0 = vxx + vyy.

Thus ∆f = 0, sp f satisfies Laplace’s equation and is said to be harmonic.

Corollary 4.2(Holomorphic Functions Have Harmonic Components).
If f is analytic, then u, v are both harmonic functions.
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4.1 Antiholomorphic Derivative

Theorem 4.3(Chain Rule).
Let w = f(z) and g(w) = g(f(z)). Then

hz = gwfz + gwfz

hz = gwfz + gwfz.

If f, g are holomorphic, fz = gw = 0, so hz = 0 and h is holomorphic and

hz = gwfz.

Example 4.1.
Given a power series f =

∑
an(z − z0)n. Then

1. There exists a radius of convergence R such that f converges precisely on DR(z0).
2. f is continuous on DR(z0)◦.
3. By the root test, R = (lim sup |an|1/n)−1 = lim inf |an/an+1| = (lim sup |ak+1/ak|)−1.

Recall the ratio test: ∑
|ak| <∞ ⇐⇒ lim sup |ak+1/ak| < 1

Theorem 4.4(Holomorphic series can be differentiated term-by-term).
If f(z) =

∑
n=0

anz
n is holomorphic on |z| < R for R > 0 then

f ′(z) =
∑
n=1

annz
n−1.

Proof .
Given |z| < R, fix r > 0 such that |z| < r < R. Suppose that |w − z| < r − |z|, so |w| < r.

4 FRIDAY JANUARY 17TH 13



4.1 Antiholomorphic Derivative

We want to show

|S| =
∣∣∣∣∣f(w)− f(z)

w − z
−
∑
n=1

annz
n−1

∣∣∣∣∣ −→ 0 as w −→ z.

Idea: write everything in terms of power series. Use the fact that an − bn = (a − b)(an−1 +
an−2b+ · · · ), and so

∣∣∣(wk − zk)/(w − z)∣∣∣ ≤ krk−1.

S =
∑
n=1

an

(
wn − zn

w − z
− nzn−1

)
=
∑

an
(
wn−1 + wn−2z + · · ·+ zn−1 + nzn−1

)
=
∑

an
(
(wn−1 − zn−1) + (wn−2 − zn−2)z + · · ·+ (w − z)zn−2

)
=
∑

an(w − z)
(
· · ·+ zn−2

)
≤
∑
n=2
|an|

1
2n(n− 1)rn−2|z − w|.

�

Exercise Show lim
n
n

1
n = 1.

Also tricky: show lim sin(n) doesn’t exist, and sin(n) is dense in [−1, 1].
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Proof .
Consider lim sup |ann|

1
n .

�

Note that an analytic function is holomorphic in its domain of convergence, so analytic implies
holomorphic. The converse requires Cauchy’s integral formula.

Next time: trying to prove holomorphic functions are analytic.

5 Wednesday January 22nd
5.1 Parameterized Curves

Note: multiple complex variables, see Hormander or Steven Krantz

Recall from last time that if

f(z) =
∞∑
n=0

anz
n

with z0 6= 0 has radius of convergence

R = (lim sup |an|1/n)−1 > 0

then f ′ exists and is obtained by differentiating term-by-term.

We know that f analytic =⇒ f holomorphic (and smooth), and we want to show the converse.
For this, we need integration.

Definition 5.0.1 (Parameterized Curves).
A parameterized curve is a function z(t) which maps a closed interval [a, b] ⊂ R to C.

Definition 5.0.2 (Smooth Curves).
The curve is said to be smooth iff z′ exists and is continuous on [a, b], and z′(t) 6= 0 for any t.
At the boundary {a, b}, we define the derivative by taking one-sided limits.

Definition 5.0.3 (Piecewise Smooth Curves).
A curve is said to be piecewise smooth iff z(t) is continuous on [a, b] and there are a < a1 <
· · · < an = b with z smooth on each [ak, ak+1].

Note that such a curve may fail to have tangent lines at ai.

Definition 5.0.4 (Equivalent Parameterizations).
Two parameterizations z : [a, b] −→ C, z̃ : [c, d] −→ C are equivalent iff there exists a C1

bijection s : [c, d] −→ [a, b] where s 7→ t(s) such that s′ > 0 and z̃(s) = z(s(t)).

Note that s′ > 0 preserves orientation and s′ < 0 reverses orientation.
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5.2 Definition of the Integral

Definition 5.0.5 (Orientations of Curves).
A curve in reverse orientation is defined by

γ : [a, b] −→ C =⇒ γ− : [a, b] −→ C
t 7→ γ(a+ b− t).

Definition 5.0.6 (Closed Curves).
A curve is closed iff z(a) = z(b), and is simple iff z(t) 6= zt1 for t 6= t1.

Definition 5.0.7 (Positively Oriented Curves).
For Cr(z0) :=

{
z
∣∣∣ |z − z0| = r

}
, the positive orientation is given by z(t) = z0 + re2πit for

t ∈ [0, 1].

5.2 Definition of the Integral

Definition 5.0.8 (The Complex Integral).
The integral of f over γ is defined as

∫
γ
f dz =

∫ b

a
f(z(t))z′(t) dt.

Note: this doesn’t depend on parameterization, since if t = t(s), then a change of variables yields∫
γ
f dz −

∫ d

c
f(z(t(s))) z′(t(s)) t′(s) ds =

∫ d

c
f(z̃(s)) z̃′(s) ds.

Definition 5.0.9 (Length of a Curve).
The length of γ is defined as |γ| =

∫ ∣∣z′(t)∣∣ dt.
Proposition 5.1. 1. We can extend this definition to piecewise smooth curves by∫

γ
f dz =

∑∫ ak+1

ak

f dz

2. This integral is linear and
∫
γ
f = −

∫
γ−
f .

3. We have an inequality

∣∣∣∣∫
γ
f

∣∣∣∣ ≤ max
a≤t≤b

|f(z(t))||γ|.

Definition 5.1.1 (Primitive of a Function).
A function F is a primitive for f on Ω iff F is holomorphic on Ω and F ′(z) = f(z) on Ω.
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Recall that in R, we have

F (x) =
∫ x

a
f(t) dt

as an antiderivative with F ′(x) = f(x), and
∫
f = F (b)− F (a).

Theorem 5.2(Evaluating Integrals with Primitives).
If f is continuous, has a primitive F in Ω, and γ is a curve beginning at w0 and ending at w1,
then

∫
γ
f = F (w1)− F (w0).

Proof .
Use definitions, write z(t) where z(a) = w1, z(b) = w2. Then

∫
γ
f =

∫ b

a
f(z(t))z′(t) dt

=
∫ b

a
F ′(z(t))z′(t) dt

=
∫ b

a
Ft dt

= F (z(b))− F (z(a)) by FTC
= F (w1)− F (w2).

Note that if γ is piecewise smooth, the sum of the integrals telescopes to yield the same
conclusion.

�

Corollary 5.3(Functions with Primitives Integrate to Zero Along Loops).
If f is continuous and γ is a closed curve in Ω, and f has a primitive in Ω, then∮

f = 0.

6 Friday January 24th

Corollary 6.1.
If γ is a closed curve on Ω an open set and f is continuous with a primitive in Ω (i.e. an F
holomorphic in Ω with F ′ = f) then

∫
γ
f dz = 0.

Proof (easy).

∫
γ
f dz =

∫
γ
F ′ = F ′(z)z(t) dt = F (z(b))− F (z(a)) = 0.
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6.1 Integral and Fourier Transform of e−x2

�

Corollary 6.2.
If f is holomorphic with f ′ = 0 on Ω, then f is constant.

Proof (easy).
Pick w0 ∈ Ω; we want to fix w0 ∈ Ω and show f(w) = f(w0) for all w ∈ Ω.
Take any path γ : w0 −→ w, then

0 =
∫
γ
f ′ = f(w)− f(w0).

�

6.1 Integral and Fourier Transform of e−x
2

Example 6.1.
Let f(z) = e−z

2 , this is holomorphic. Write

f(z) =
∑ (−1)nz2n

n! ,

so ∫
f =

∑ (−1)nz2n+1

n!(2n+ 1) .

Since f is entire,
∫
f is entire, and (

∫
f)′ = f so this function has a primitive. Thus

∫
γ
f(z) = 0

for any closed curve. So take γ a rectangle with vertices ±a,±a+ ib.
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6.1 Integral and Fourier Transform of e−x2

So

∫
γ
f =

∫ a

−a
e−x

2
dx+

∫
e−(a+iy)2

i dy −
∫ a

−a
e−(x+ib)2

dx−
∫ b

0
e−(a+iy)2

idy = 0.

We can do some estimates,

e−(a+iy)2 = e−(a2+2iay−y2)

= e−a
2+y2

e2iay

≤ e−a2+y2

≤ e−a2+b2
,

∣∣∣∣∣
∫ b

0
e−(a+ib)2

i dy

∣∣∣∣∣ ≤ e−a2+b2 · b

∫ a

−a
e−(x2+2ibx)−b2 = eb

2
∫ a

−a
e−x

2(cos(2bx)− i sin(2bx))

odd fn= eb
2
∫ a

−a
e−x

2 cos(2bx) dx.
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6.1 Integral and Fourier Transform of e−x2

Now take a −→∞ to obtain

∫
R
e−x

2
dx = eb

2
∫
R
e−x

2 cos(2bx) dx.

We can compute

∫
R
e−x

2 =
[(∫

R
e−x

2
)2
]1/2

=
(∫ 2π

0

∫ ∞
0

er
2
r dr dθ

)
=
√
π.

and then conclude

∫
R
e−x

2 cos(2bx) =
√
πe−b

2
.

Make a change of variables 2b = 2πξ, so b = πξ, then

∫
R
e−x

2 cos(2πξx) dx =
√
πe−π

2ξ2
.

Thus F(e−x2) =
√
πe−π

2ξ2 , allowing computation of the Fourier transform. Note that this can be
used to prove the Fourier inversion formula.

Exercise Show that this is an approximate identity and prove the Fourier inversion formula.

Exercise Show F(e−ax2) =
√
π/ae−π

2/a·ξ2 , and thus taking a = π makes eπx2 is an eigenfunction of
F with eigenvalue 1.

Theorem 6.3(Holomorphic Integrals Vanish).
If f has a primitive on Ω then F (z) is holomorphic and

∫
γ
f = 0. If f is holomorphic, then

∫
γ
f = 0.

Theorem 6.4(Green’s).
Take Ω ∈ R2 bounded with ∂Ω piecewise smooth. If f, g ∈ C1Ω, then

∫
∂Ω
f dx+ g dy =

∫∫
Ω

(gx − fy) dA.
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Proof .
Omitted.

�

Proof (that holomorphic integrals vanish).
Write γ = ∂Γ, and noting that fz = fx = 1

i
fy implies that ∂f

∂z
, so

∫
γ
f dz =

∫
γ
f(z) (dx+ idy)

=
∫
f(z) dx+ if(z) dy

=
∫∫

Γ
(ifx − fy) dA

= i

∫∫
Γ

(
fx −

1
i
fy

)
dA

= i

∫∫
0 dA

= 0.

�

Next up, we’ll prove that this integral over any triangle is zero by a limiting process.

7 Monday January 27th
Open question: does a PDE involving analytic functions always have solutions? Or does this
hold with analytic replaced by smooth?

7.1 Green’s Theorem
Fix a connected domain Ω which is bounded with a piecewise C1 boundary.

Theorem 7.1(Green’s).
Given f, g ∈ C1Ω, we can take a vector field F = 〈f, g〉 and have

∫
∂Ω
f dx+ g dy =

∫∫
Ω

(
∂g

∂x
− ∂f

∂y

)
dA∫

∂Ω
−f dx+ g dy =

∫∫
Ω

(
∂g

∂x
+ ∂f

∂y

)
dA∫

∂Ω
f dy − g dy =

∫∫
Ω

(
∂f

∂x
+ ∂g

∂y

)
dA∫

∂Ω
F · n ds =

∫∫
Ω
∇ · F dA∫

∂Ω
curl(F ) ds =

∫∫
Ω

div(F ) dA,
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7.1 Green’s Theorem

where we take n to be orthogonal to ∂Ω. The quantities appearing on the RHS are referred to
as the flux.

For f(z) ∈ C1(Ω) holomorphic, we can then write

∫
∂Ω
f dz =

∫
∂Ω
f (dx+ idy)

=
∫
∂Ω
f dx+ if dy

=
∫∫

Ω
(ifx − fy) dA

= 0,

which follows since f holomorphic, we can write

f ′(z) = fx = 1
i
fy,

so ifx = fy and thus ∂f
∂z

= 0.

See Taylor’s Introduction to Complex Analysis

Theorem 7.2(Cauchy’s Integral Formula):).
If f ∈ C1(Ω) and f is holomorphic, then for any z ∈ Ω

f(z) = 1
2πi

∫
∂Ω

d(ξ)
ξ − z

dξ.

Proof .
Since z ∈ Ω an open set, we can find some r > 0 such that Dr(z) ⊂ Ω. Then f(ξ)

ξ − z
is

holomorphic on Ω \Dr(z). Let Cr = ∂Dr(z).
Claim: ∫

∂Ω

f(ξ)
ξ − z

dξ =
∫
Cr

f(ξ)
ξ − z

dξ.

If we can differentiate through the integral, we can obtain

∂

∂z
f(z) = 1

2πi

∫
∂Ω

f(ξ)
(ξ − z)2 dξ.

and thus inductively

(Dz)nf(z) = n!
2πi

∫
∂Ω

f(ξ) dξ
(ξ − z)n+1 .

To prove rigorously, need to write
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7.1 Green’s Theorem

∆hf(z) = 1
h

(f(z + h)− f(z))

= 1
2πih

∫
∂Ω
f(ξ)

( 1
ξ − (z + h) −

1
ξ − z

)
dξ = 1

2πih

∫
∂Ω
f(ξ)

( 1
(ξ − z − h)(ξ − z)

)
dξ,

and show the integrand converges uniformly, where

1
(ξ − z − h)(ξ − z)

u−→ 1
(ξ − z)2 .

Continuing inductively yields the integral formula.
�

Proof (of claim used in main proof).
Use the parameterization of Cr given by ξ = z + reiθ. Then

1
2πi

∫
Cr

f(ξ)
ξ − z

dξ = 1
2πi

∫ 2π

0

f(z + reiθ)
reiθ

irdθ

= 1
2π

∫ 2π

0
f(z + reiθ) dθ

r−→0−→ 1
2π

∫
∂Ω

f(ξ)
ξ − z

.

where we use the fact that

f(z + reiθ) = f(z) + f ′(z)reiθ + o(r) r−→0−→ f(z)

Letting

F (ξ) = f(ξ)
ξ − z

,

this is holomorphic on Ω \Dr(z). Let Ωr = ∂Ω
⋃

(−Cr). Take the following path integral:
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7.1 Green’s Theorem

Then

0 =
∫
∂Ωr

F (ξ) dξ =
∫
∂Ω
F (ξ) dξ −

∫
Cr
F (ξ) dξ,

which forces these integrals to be equal.
�

Corollary 7.3(implies smooth).
If f is holomorphic, then f ∈ C1(Ω) implies that f ∈ C∞(Ω).

Theorem 7.4(Holomorphic implies analytic).
If f is holomorphic in Ω, then f is equal to its Taylor series (i.e. f(z0 is analytic.)

Proof .
Fix z0 ∈ Ω and let r = |z − z0|.

1
ξ − z

= 1
ξ − z0 − (z − z0)

= 1
ξ − z0

1
1−

(
z−z0
ξ−z0

)
= 1
ξ − z0

∑
n

(
z − z0
ξ − z0

)n
for |z − z0| < |ξ − z0|.
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Note that
∑

zn converges uniformly for any |z| < δ < 1.
Thus

f(z) = 1
2πi

∫
ξ∈∂Ω

f(ξ)
∑ (z − z0)n

(ξ − z0)n+1 dξ

=
∑( 1

2πi

∫
f(ξ)

(ξ − z0)n+1 dξ

)
(z − z0)n

=
∑ f (n)(z0)

n! (z − z0)n.

�

Corollary 7.5.
f is holomorphic iff f is analytic.

Counterexample to keep in mind:

f(x) =
{
x2 x > 0
0 x ≤ 0

.

In the case of R, smooth and analytic are very different categories of functions.

8 Wednesday January 29th
8.1 Cauchy’s Integral Formula

Theorem 8.1(Cauchy’s Integral Formula).
Let f : Ω −→ C be holomorphic, so f ∈ C1(Ω). Then for any z ∈ Ω,

f(z) = 1
2πi

∫
∂Ω

f(ξ)
ξ − z

dξ.

In general,

f (n)(z) = n!
2πi

∫
∂Ω

f(ξ)
(ξ − z)n+1 dξ.

This implies that f is analytic, i.e.

f(z) =
∑

an(z − z0)n where an = f (n)(z0)
n! .

Thus f is holomorphic iff f is analytic,

and
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8.1 Cauchy’s Integral Formula

∫
∂Ω
f = 0 =⇒

∫
∂Ωγ

f(ξ)
ξ − z

dξ = 0.

where Ωr = Ω \Dr(z), and ∂Ωr = ∂Ω
⋃

(−∂Dr).

We can thus shrink integrals:

∫
∂Ω

f(ξ)
ξ − z

dξ =
∫
Cr

f(ξ)
ξ − z

dξ.

Proposition 8.2(Homotopy Invariance).
Let f ∈ C1(Ω) be holomorphic on Ω. Let γs(t) be a family of smooth curves in Ω; then

∫
γs
f

is independent of s.

Proof .
Write

γs(t) = γ(s, t) : [a, b]× [0, 1] −→ Ω.

We have γs(0) = γs(1) so ∂γ

∂s
(s, 0) = ∂γ

∂s
(s, 1). Then

∂γ

∂s
=
∫ 1

0

(
f ′(r(s, t))∂r

∂s

∂r

∂t
+ f(r(s, t)) ∂

2γ

∂s∂t

)
dt

=
∫ 1

0

(
f ′(r(s, t))∂r

∂s

∂r

∂t
+ f(r(s, t)) ∂

2γ

∂t∂s

)
dt

=
∫ 1

0

∂

∂t
(f(γ(s, t))γs)

= f(γ(s, 1))γs(s, 1)− f(γ(s, 0))γs(s, 0)
= 0.

where we can just take the paths γ(s, t) = z0 ∈ Ω for all s, t.
�

Proposition 8.3(Pointwise Limit of Locally Uniform is Locally Uniform).
Let Ω ⊂ C be open and fv : Ω −→ C. Suppose that each fv is holomorphic, fv −→ f pointwise,
and locally uniform, i.e. fv −→ f uniformly on every compact K ⊂ Ω. Then f is holomorphic
in Ω and f is locally uniform.

Proof .
Given a compact set K ⊂ Ω, pick an O with smooth boundary such that K ⊂ O ⊂ O ⊂ Ω.
We have
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8.1 Cauchy’s Integral Formula

fv(z) = 1
2πi

∫
∂O

fv(ξ)
ξ − z

dξ

f (n)
v (z) = n!

2πi

∫
∂O

fv(ξ)
(ξ − z)n+1 dξ

.

Then on ∂O, we have uniform convergence

fv(ξ)
(ξ − z)n+1

u−→ f(ξ)
(ξ − z)n+1 .

By moving the limits inside, we obtain

f(z) = 1
2πi

∫
∂O

f(ξ)
ξ − z

dξ

f (n)(z) = n!
2πi

∫
∂O

f(ξ)
(ξ − z)n+1 dξ

.

�

Theorem 8.4(Cauchy’s Inequality).
Given z0 ∈ Ω, pick the largest disc DR(z0) ⊂ Ω and let CR = ∂DR. Using the integral formula,
defining ‖f‖CR = max

|z−z0|=R
|f(z)|

∣∣∣f (n)(z0)
∣∣∣ ≤ n!

2π

∫ 2π

0

‖f‖CR
Rn+1 R dθ =

n!‖f‖CR
Rn

.

Corollary 8.5(Liouville’s Theorem).
If f is entire and bounded, then f is constant.

Proof .
For all z0 ∈ C, there exists an M such that |f(z)| ≤ M . Then

∣∣f ′(z0)
∣∣ ≤ M

R
for any R > 0.

Taking R −→∞ yields f ′(z0) = 0, so f is constant.
�

Corollary 8.6(Weak Fundamental Theorem of Algebra).
Every non-constant polynomial p(z) = a0 + a1z + · · · anzn has a root in C.

Remark: A general proof technique is when proving something for f(z), consider 1
f(z) and f(1

z
).
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Proof .
Suppose p is nonconstant and does not have a root, 1

p
is entire. Assume that an 6= 0, then

p(z)
zn

= an

(
an−1
z

+ · · ·+ a0
zn

)
:= an + y

We can note that lim
z−→∞

an−k
zk
−→ 0, so there exists an R > 0 such that

∣∣∣∣p(z)zn

∣∣∣∣ ≥ 1
2 |an| for |z| > R

=⇒ |p(z)| ≥ 1
2 |an||z|

n ≥ 1
2 |an|R

n.

Since p(z) is continuous and has no root in the disc |z| ≤ R, |p(z)| is bounded from below
in this disc. Since p(z) is continuous on a compact set, it attains a minimum, and so
|p(z)| ≥ min

|z|≤R
|p(z)| = c2 6= 0. Then |p(z)| ≥ A = min(C2,

1
2 |an|R

n), so 1
p
is bounded. Then f

is constant, a contradiction.
�

9 Friday January 31st
9.1 Fundamental Theorem of Algebra
Recall that if f is holomorphic, we have Cauchy’s integral formula.

Corollary 9.1(Weak Fundamental Theorem of Algebra).
If P (z) is a polynomial in C then P has a root in C.

Proof .
See previous notes.

�

Corollary 9.2(Fundamental Theorem of Algebra).
Every polynomial of degree n has precisely n roots in C.

Proof .
By induction on the degree of P . From the first corollary, P has a root w1, so write z =
z − w1 + w1. Then
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9.1 Fundamental Theorem of Algebra

p(z) = p(z − w1 + w1)

=
n∑
k

ak(z − w1 + w1)k

=
n∑
k

ak

k∑
j

(
k

j

)
w1k − j(z − w1)j

=
n∑
k

k∑
j

ak

(
k

j

)
wk−j1 (z − w1)j

=
n∑
j

∑
k≥j

ak

(
k

j

)(z − w1)j

= b0 + b1(z − w1) + · · ·+ bn(z − w1)n.

Since P (w1) = 0, we must have b0 = 0, and thus this equals

b1(z − w1) + · · ·+ bn(z − w1)n = (z − w1)
(
b1 + · · ·+ bn(z − w1)n−1

)
:= (z − w1)φ(z),

where φ(z) is degree n− 1, which has n− 1 roots by induction.
�

Definition 9.2.1 (Characterizations of Limit Points).
For a sequence {zn}, TFAE

1. z is a limit point.
2. There exists a subsequence {znk} converging to z.
3. For every ε > 0, there are infinitely many zi in Dε(z).

Theorem 9.3(Only the zero function vanishes on a sequence in a domain (Stein
4.8)).
Suppose f is holomorphic on a bounded connected region Ω and f vanishes on a sequence of
distinct points with a limit point in Ω. Then f is identically zero.

Proof .
WLOG by restricting to a subsequence, suppose that {wk} ∈ Ω with f(wi) = 0 for all i and z0

is a limit point of {wi}. Let U =
{
z ∈ Ω

∣∣∣ f(z) = 0
}
. Then

1. U is nonempty since f(wk) = f(z0) = 0.
2. Since holomorphic functions are continuous, if wk −→ z then z ∈ U , so U is closed.
3. (To prove) U is open.

Since U is closed and open, U = Ω.
We will first show that f(z) ≡ 0 in a disk containing z0. Choose a disc D containing z0 and
contained in Ω. Since f is holomorphic on D, we can write

f(z) =
∑

ann(z − z0)n.

9 FRIDAY JANUARY 31ST 29



9.1 Fundamental Theorem of Algebra

Since f(z0) = 0, we have a0 = 0.
Suppose f 6≡ 0. Then there exists a smallest n ∈ Z+ such that an 6= 0, so f(z) = an(z−z0)n+· · ·.
Since an 6= 0, we can factor this as an(z − z0)n(1 + g(z − z0)) where

g(z − z0) =
∞∑

k=n+1

ak
an

(z − z0)k−n.

Note that g is holomorphic, and g(z0 − z0) = 0.
Choose some wk such that f(wk) = 0 and |g(wk − z0)| ≤ 1

2 by continuity of g. Then

|1 + g(wk − z0)| > 1− 1
2 = 1

2 .

So

|f(wk)| = |an(wk − z0)n(1 + g(wk − z0))| > |an||wk − z0|n
1
2 > 0,

a contradiction. So U is open, closed, and nonempty, so U = Ω.
�

Corollary 9.4.
Suppose f, g are holomorphic in a region Ω with f(zk) = g(zk) where {zk} has a limit point.
Then f(z) ≡ g(z).

Theorem 9.5(Mean Value).
Let z0 be a point in Ω and Cγ the boundary of Dr(z0). Then

f(z0) = 1
2πi

∫
Cγ
f(z)/(z − z0)dz

= 1
2πi

∫ 2π

0
f(z0 + reiθ)/reiθrieiθ dθ by z = z0 + reiθ

= 1
2π

∫ 2π

0
f(z0 + reiθ) dθ

= 1
2πr

∫ 2π

0
f(z0 + reiθ) rdθ

= 1
|Cγ |

∫ 2π

0
f(z) ds,

which is the average value of f on the circle.

Note that there is another formula that averages over the disc (see book for derivation?)

f(z0) = 1
Ds(z0)

∫
Ps

∫
Ds
f(z) dA.

These imply the maximum modulus principle, since the average can not be the max or min unless f
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is constant. Note that |f(z)| is continuous!

Next time: maximum modulus principle.

10 Monday February 3rd
10.1 Mean Value Theorem

Theorem 10.1(Mean Value for Holomorphic functions).

f(z0) = 1
πr2

∫∫
Dr(z0)

f(z) dA

Proof (of MVT?).
Let f : Ω −→ C be holomorphic where Ω is open and connected. Then by Cauchy’s integral

formula, we have f(z0) = 1
2π

∫ 2π

0
f(z0 + reiθ) dθ for any z0 ∈ Ω.

We can consider Dr(z0), in which case we have for all 0 < s < r,
�

f(z0) = 1
2π

∫ 2π

0
f(z0 + seiθ) dθ

=⇒ s · f(z0) = 1
2π

∫ 2π

0
s · f(z0 + seiθ) dθ

=⇒ ·f(z0)
∫ r

0
s ds = 1

2π

∫ 2π

0

∫ r

0
f(z0 + seiθ) · s ds dθ

=⇒ 1
2r

2f(z0) = 1
2π

∫∫
Dr(z0)

f(z) dA

=⇒ f(z0) = 1
πr2

∫∫
Dr(z0)

f(z) dA

=⇒ f(z0) = 1
2π

∫ 2π

0
f(z0 + reiθ) dθ.

Proposition 10.2(Maximum in Interior Implies Constant).
Let f be holomorphic on Ω be open and connected, and suppose that there is a z0 ∈ Ω such
that

|f(z0)| = sup
z∈Ω
|f(z)|,

i.e. z0 is a maximal point of f . Then f is constant on Ω.
If Ω is additionally bounded, then f is continuous on Ω, then

sup
z∈Ω
|f(z)| = max

z∈Ω
|f(z)|.
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10.2 Biholomorphisms of the Open Disc

Proof .
Since |f | is continuous and Ω is compact, |f | attains a maximum at some point in Ω. We want
to show that if |f(z0)| = sup

z∈Ω
|f(z)|, then f is constant.

Assume that there exists a z0 ∈ Ω such that f(z) = f(z0). Let O =
{
ξ ∈ Ω

∣∣∣ f(ξ) = f(z0)
}
.

Claim 10.3. 1. O is not empty, since z0 ∈ O.
2. O is closed, since if ξn −→ ξ then f(ξn) = f(z0) implies f(ξ) = f(z0) since f is

continuous.
3. (Claim) O is open.

Suppose ξ0 ∈ O, then there exists a disc Dρ(ξ0) ⊂ Ω such that

f(ξ0) = 1
πρ2

∫
Dρ(ξ0)

f(z)dA.

Then (claim) |f(ξ0)| ≥ |f(z)| for all z ∈ Dρ(ξ0), which forces f(z) = f(ξ0) for all z ∈ Dρ(ξ0).
�

Proof (of the claim):).
Suppose that sup

a∈Ω
|f(z)| = |f(ξ0)| and write f(ξ0) = Beiα for B > 0 and α ∈ R. Then define

g(z) = f(z)e−iα; then g(ξ0) = B is real, and thus

0 = g(ξ0)−B = 1
πρ2

∫∫
Dρ(ξ0)

<(g(z)−B) dA.

Note that <(g(z) − B) ≤ 0 implies that <(g(z) − B) ≡ 0 on Dρ(z0), so we can write
g(z) = B + iI(z) for some real-valued function I.
But then |g(z)|2 = B2 + I(z)2 = B2 by the previous statement, and so I(z) = 0, forcing
g(z) = B and thus f(z) = Beiα. This shows that O is open, and thus O = Ω.

�

10.2 Biholomorphisms of the Open Disc

Proposition 10.4(Biholomorphisms of the Open Disc are Contractions (Stein
2.1)).
Suppose f is holomorphic on D1(0) and |f(z)| ≤ 1 for all |z| < 1 with f(0) = 0. Then
|f(z)| ≤ |z| for all |z| < 1.
Moreover, there is a point z0 ∈ D1(0) such that |f(z0)| = |z0| iff f(z) = c(z) for some c ∈ S1.

Proof .
Define

g(z) =


f(z)
z

z 6= 0

f ′(0) z = 0
.
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10.3 Morera

Then g is holomorphic on D1(0) and |g(z)| ≤ 1
ρ
for all |z| < ρ < 1. Now apply the maximum

principle: since this is true for all ρ < 1, consider the limit ρ −→ 1−.
Then |g(z)| ≤ 1, so

∣∣∣∣f(z)
z

∣∣∣∣ ≤ 1 and |f(z)| ≤ |z|. If |f(z0)| = |z0| for any point, then |g(z0)| = 1

implies g(z0) = c and c ∈ S1.
Thus f(z) = cz for some c ∈ S1.

�

Corollary 10.5(Characterization of Biholomorphisms of the Disc).
Recall that

Φa(z) := z − a
1− az .

If f : D1(0) −→ D1(0) is a biholomorphism, then

f(z) = cΦa(z) = eiθΦa(z)

So every such function is a rotated form of Φa.

Let Ω be a connected open domain and f : Ω −→ C holomorphic with f ∈ C1. Then∫
γ
f(z) dz = 0

for every closed curve γ ⊂ Ω, which implies that f (k)(z) exists for all k ∈ N and f is smooth/holomorphic.

10.3 Morera

Theorem 10.6(Morera, Partial Converse to Cauchy’s Integral Theorem).
Suppose g : Ω −→ C is continuous and

∫
γ
g(z) dz = 0 whenever γ = ∂R for some rectangle

R ⊂ Ω with sides parallel to the axes:
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10.3 Morera

Then g(z) is holomorphic in Ω.

Proof .
Fix a point α = a+ ib and given z = x+ iy, construct a rectangle R containing z. Then by
assumption,

∫
∂R
g(z) dz = 0. Let γaz be the path given by traversing the bottom edge of R,

and σaz by the top path.
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10.3 Morera

Let

f(z) =
∫
γaz

g(z) dz

=
∫ x

a
g(s+ ib) ds+ i

∫ y

b
g(x+ it) dt.

Since ∫
∂R
g(z) dz = 0 =

∫
γaz
· · · −

∫
σaz
· · · ,

we have

f(z) =
∫
σaz

g(z) dz

= i

∫ y

b
g(a+ it) dt+

∫ a

x
g(s+ iy) ds.

Exercise: Apply ∂

∂y
to the first identity and ∂

∂x
to the second.

This yields

∂f

∂x
= g(z) and ∂f

∂y
= ig(z) = i

∂f

∂x

by applying the FTC, which are precisely the Cauchy-Riemann equations for f . So f is
holomorphic, and thus f(z) = g(z).

�
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11 Wednesday February 5th
11.1 Cauchy/Morera Theorems
Recall last time: We have Cauchy’s theorem, which says that if f : Ω −→ C is holomorphic then∫

γ
f dz = 0.

We have a partial converse:

Theorem 11.1(Morera).
If g : Ω −→ C is continuous and

∫
R
g dz = 0 for every rectangle R ⊂ Ω with sides parallel to

the axes, then g is holomorphic.

Proof (Morera).
Fix a point a ∈ Ω, then for any z ∈ Ω define f(z) =

∫
γa,z

g(ξ)dξ =
∫
σa,z

g(ξ)dξ.

Then ∂f

∂z
= ∂f

∂x
= 1
i

∂f

∂y
= g(z), making g holomorphic.

�
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11.2 Schwarz Reflection

11.2 Schwarz Reflection

Theorem 11.2(Schwarz Reflection, Extending Holomorphic Functions Across Re-
flected Regions).
Let Ω = Ω+⋃L

⋃
Ω− be a region of the following form:

I.e., L =
{
z ∈ Ω

∣∣∣ im z = 0
}
, Ω± = {±im z > 0} where Ω is symmetric about the real axis,

i.e. z ∈ Ω =⇒ z ∈ Ω.
Assume that f : Ω+⋃L −→ C is continuous and holomorphic in Ω+ and real-valued on L.
Define

g(z) =
{
f(z) z ∈ Ω+⋃L

f(z) z ∈ Ω−
.

Then g(z) is defined and holomorphic on Ω.
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11.3 Goursat’s Theorem

Proof (Schwarz Reflection).
Since g is C1 in Ω−, check that g satisfies the Cauchy-Riemann equations on Ω− and thus
holomorphic there. To see that g is holomorphic on all of Ω, we’ll show the integral over every
rectangle is zero.
It’s clear that if R ⊂ Ω±,

∫
R
g = 0 since g is holomorphic there, so it suffices to check rectangles

intersecting the real axis. Write R = R+⋃R−:

We then have R+ = lim
ε−→0

Rε and R− = lim
ε−→0

R−ε, and
∫
R±ε

g = 0 for all ε > 0. By continuity

of f on L, we have lim
∫
Rε
g(z) dz = 0.

�

11.3 Goursat’s Theorem

Theorem 11.3(Goursat, implies smooth).
If f : Ω −→ C is complex differentiable at each point of Ω, then f is holomorphic. I.e.,

f ∈ C1(Ω) =⇒ f ∈ C∞(Ω).

Proof (Goursat).
We have

∫
R
f dz = 0 for all rectangles R. Write I =

∫
R
f dz. Break R into 4 sub-rectangles:
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11.3 Goursat’s Theorem

Then rewriting the integral and applying the triangle inequality yields

I =
∫
R
f =

4∑
j=1

∫
Rj

f =
4∑
j=1

Ij =⇒ |I| ≤
∑
j

|Ij |.

So for at least one j, we have |Ij | ≥
1
4 |I|; wlog call it R1. By continuing to subdivide, we can

write

|I| ≤ 4|Ik| = 4
∣∣∣∣∫
R1
f

∣∣∣∣ ≤ 4
(

4
∣∣∣∣∫
R2
f

∣∣∣∣) · · · ≤ 4k
∣∣∣∣∫
Rk

f

∣∣∣∣.
This is a sequence of nested compact intervals, so there is some z0 ∈

⋂
Rk.

Write f(z) = f(z0) + f ′(z0)(z − z0) + δ(z, z0), and since

lim
z−→z0

|δ(z, z0)|
z − z0

= 0,

we have δ(z, z0) = o(z − z0). Then |I| ≤ 4k 1
2k |R|. We then try to estimate the integral using

the fact that |δ(z, z0)| ≤ δk|z − z0| for some constant δk −→ 0 as k −→∞.
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11.3 Goursat’s Theorem

∫
Rk

fi =
∫
f(z0) + f ′(z0)(z − z0) + δ(z, z0)

=
∫
Rk

δ(z, z0) since the first two terms are holomorphic

≤ 1
2k |R|δk

C

2k |R|

= c/4k|R|2δk
k−→∞−→ 0,

where we use the fact that in Rk we have
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Rk = 2(x+ y) =⇒ R2/4 = x2 + y2 + x+ y ≤CS x2 + y2 + x2 + y2 = 2(x2 + y2)

=⇒ x2 + y2 ≤ R2/8 =⇒ L =
√
x2 + y2 ≤ R8/2

√
2

=⇒ |z − z0| ≤
√
x2 + y2 ≤ Rk/2

√
2 and Rk = 1

2k |R|.

Note that triangles implies rectangles, but think about how to use triangles to prove it
for rectangles (note that sides should be parallel to axes!)

�

12 Friday February 7th
12.1 Sequences of Holomorphic Functions

Theorem 12.1(The Uniform Limit of Holomorphic Functions is Holomorphic).
Suppose {fn} −→ f is a sequence of holomorphic functions converging uniformly on any
compact subset K ⊂ Ω. Then f is holomorphic.

Proof .
Let D be any disc such that D ⊂ Ω. For any rectangle R ⊂ D, we have∫

R
fn dz = 0.

Since fn −→ f uniformly,
∫
R
f dz = 0 and thus f is holomorphic in D.

�
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12.1 Sequences of Holomorphic Functions

Theorem 12.2(Uniform Convergence of Derivatives).
Under the same hypotheses, f ′n −→ f uniformly on any compact subset K ⊂ Ω.

Proof .
See Stein.

�

Corollary 12.3(When Functions Defined by Integrals are Holomorphic).
Suppose F (z, s) : Ω× [a, b] −→ C and

1. F (z, s) is holomorphic in z for each fixed s ∈ [a, b].
2. F (z, s) is continuous in Ω× [a, b].

Then f(z) =
∫ b

a
F (z, s) ds is holomorphic on Ω.

Proof .

Define fn(z) =
(

n∑
k=1

F (z, sk)
)
b− a
n

where each sk = a+ b− a
n

k ∈ [a, b]. Need to show fn(z)

converges uniformly on any compact K ⊂ Ω, i.e. it’s uniformly Cauchy. Fix K compact, then
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12.2 Uniform Approximation

by a theorem in topology K × [a, b] is again compact.
Using the fact that F is continuous on a compact set and thus uniformly continuous, fix ε > 0
and find δ > 0 such that max

z∈K
|F (z, s)− F (z, t)| < ε for all s, t ∈ [a, b] with |t− s| < δ.

Thus if b− a
n

< δ and z ∈ K, we have an estimate

|fn(z)− f(z)| =
∣∣∣∣∣
n∑
k=1

∫ sk

sk−1
F (z, sk)− F (z, s) ds

∣∣∣∣∣
=

n∑
k=1

∫ sk

sk−1
|F (z, sk)− F (z, s)| ds

≤ ε(b− a).

Thus fn
u−→ f .

�

Remark: this is useful for showing

Γ(z) =
∫ ∞

0
e−ssz−1 ds

is holomorphic for <z > 0.

12.2 Uniform Approximation
Question: can every function be uniformly approximated by polynomials?

Answer: in general, no. Take f(z) = 1
z
, which is holomorphic on C \ 0, but

∫
γ
PN (z) = 0 for any

polynomial (since )hey are entire) for any loop γ around 0, but
∫
γ

1
z

= 2πi.

Theorem 12.4(Uniform Approximation by Polynomials (Stein 5.2)).
If fn is a sequence of holomorphic functions converging uniformly on any compact subset K of

Ω then f is holomorphic in Ω and if f(z) =
∑

an(z − z0)n then PN (z) =
N∑
an(z − z0)n.

Theorem 12.5(Uniform Approximation by Rational Functions (Stein 5.7)).
Any holomorphic function in a neighborhood of a compact set K can be approximated by a
rational function with singularities only in Kc. If Kc is connected, it can be approximated by
a polynomial.

Lemma 12.6(5.8, ???).
Suppose f is holomorphic in an open set Ω with K ⊂ Ω compact. Then there exist finitely
many segments {γi}Ni=1 in Ω \K such that for all z ∈ K, ???.

Proof (of Lemma, Idea).
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12.2 Uniform Approximation

Divide region into squares, take γi to be line segments such that they enclose K.

f(z) = 1
2πi

N∑
n=1

∫
ωn

f(ξ)
z − ξ

dξ

= 1
2πi

∫
Γ

f(ξ)
z − ξ

dξ.

where we can rewrite ∫
γn
· · · =

∫ 1

0

f(γn(t))
γn(t)− z0

γ′n(t) dt =
∫ 1

0
F (z, s) ds

The idea is that we can then write 1
ξ − z

= 1
ξ

1
1− z

ξ

= ξ−1∑
k

(
z

ξ

)k
, which allows uniform

approximation by polynomials.
�
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13 Wednesday February 12th
13.1 Singularities
Let f(z) be holomorphic on Ω, then we have Cauchy’s integral formula:

f(z) = 1
2πi

∫
γ

f(ξ)
ξ − z

dξ.

Example: Note that f(z) = 1
z
is holomorphic on C \ 0.

Let Ω be an open set containing a disk D and Ω \ p be a punctured domain.

Definition 13.0.1 (Isolated Singularities).
We say f has an isolated singularity at p iff f is defined and holomorphic on some deleted
neighborhood of p.
Classification of singularities:

1. Removable: |f(z)| is bounded on some Dr(p) \ p.
Example: f(z) = sin(z)/z.

2. Poles: lim
z−→p

|f(z)| =∞.

Example: fn(z) = 1
zn

at p = 0
3. Essential: neither 1 nor 2.

Example: f(z) = e
1
z at z = 0.

Note that for singularities at ∞, we can just make the change of variables z 7→ 1
z
. Defining

F (z) = f(1
z

), the singularities at 0 of f correspond to singularities at infinity for F .

13.2 Spherical Projection
We can solve for a spherical projection map S2 −→ C. Let (0, 0, 1) be the North pole of the sphere;
then to map to (x, y, 0) on the plane we can take the parameterization ` : (tx, ty, 1− t). This yields

t 7→
(

2<(z)
1 + |z|2

,
2=(z)

1 + |z|2
, 1− 2

1 + |z|2

)
.
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13.2 Spherical Projection

From this we can induce a spherical metric:

φ(z1, z2) = z|z1 − z2|√
|z|21 + 1

√
|z|22 + 1

.

Proposition 13.1(Continuous Extension Over Removable Singularities).
Let p be a removable singularity of f . Then

1. lim
z−→p

f(z) exists.
2. The function

f̃(x) =

f(z) z 6= p

lim
z−→p

f(z) z = p
.

is holomorphic on Dr(p).

Example 13.1.
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13.2 Spherical Projection

Consider

sin(z)
z

z−→0−→ 1.

Proof (of Proposition).
Take p = 0 and consider g(z) = z2f(z). We can verify directly that g satisfies the Cauchy-
Riemann equations on Dr(0). Then g is holomorphic on Dr(0) and vanishes to order 2 at
z = 0, and

f(z) = g(z)
z2

is holomorphic on Dr(0).
If f(z) has a pole at z0, then lim

z−→z0
|f(z)| −→ ∞ by definition, iff lim

z−→z0

1
|f(z)| = 0 and thus

the reciprocal has a zero at z = z + 0. If z0 is a zero of a nontrivial holomorphic function f ,
then z0 is isolated, i.e. there exists a punctured disc Dr(z0) \ z0 on which f is nonzero.

�

Theorem 13.2(???).
If f is holomorphic in a connected domain Ω with a zero z0, then there exists a non-vanishing
holomorphic function g(z) and some n ∈ N such that

f(z) = (z − z0)ng(z)

.

Proof .
Since f is holomorphic, expand its power series f(z) =

∑
ak(z − z0)k. Since f(z0) = 0, we

have a0 = 0. Choose the smallest n such that an 6= 0, so

f(z) = an(z − z0)n + an+1(z − z0)n+1 + · · ·
= (z − z0)n(an + · · ·)
:= (z − z0)ng(z).

Then g(z0) 6= 0, so by continuity there exists an r such that |g(z)| ≥ |an|/2.
�

Definition 13.2.1 (Pole).
A function f defined on a deleted neighborhood of z0 has a pole at z0 if the function F = 1

f
with F (z0) := 0 is holomorphic in a full neighborhood of z0.
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14 Friday February 14th
14.1 Defining Residues

Interesting open problems: dynamical systems on C2.

If f is holomorphic in Ω with f(z0) = 0 then there exists a disc on which f(z) =
∑

an(z − z0)n

where a0 = f(z0) = 0. There is then a minimal k such that f(z) = (z − z0)kg(z) where g(z0) 6= 0;
this k is the order of the zero a0.

Recall the definition of a pole: A function defined in a deleted neighborhood of z0 has a pole at z0

iff F = 1
f

with F (z0) := 0 is holomorphic in a full neighborhood of z0.

Theorem 14.1(Extraction of Holomorphic Part).
If f has a pole at z0, then there exists a holomorphic function h and a unique k such that
f(z) = (z − z0)−kh(z).

Proof .
Write

1
f

= (z − z0)kg(z)

with g(z0) 6= 0. Then there is an r such that |g(z)| ≥ 1
2 |g(z0)| in a disc about z0. Then

f(z) = 1
(z − z0)g(z)

:= (z − z0)−kh(z)

where h = 1/g.
We can then write

f(z) =
(
k−1∑
i=0

bk(z − z0)−k
)

+ bk +
∞∑
i=1

bk+i(z − z0)i

for some fixed k, where
∑

bi(z − z0)i is the power series expansion of h. Write this as

P (z) + G(z) where G(z) =
∞∑
i=0

bi+k(z − z0)i. Denote P the principal part of f at the pole

z = z0.
Note that ∫

Dr(z0)
f =

∫
Dr(z0)

P (z) = 2πi a−1.

�

Definition 14.1.1 (Residue).
The coefficient a−1 is referred to as the residue of f at z = z0.
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14.2 Residues

14.2 Residues
Note that ∫ 1

(z − z0)k
=
{

2πi k = 1
0 else

.

Residues can be computed using the following formula:

a−1 = 1
2πi

∫
Dr(z0)

f. (1)

Theorem (Residue Formula) :

Resz=z0 f = lim
z−→z0

1
(k − 1)!

(
∂

∂z

)k−1
(z − z0)kf(z).

Proof .
Expand in power series, direct check.

�

A useful special case: if z0 is a pole of order 1, then

Resz=z0 f = lim
z−→z0

(z − z0)f(z).

A useful formula:

1
2πi

∫
Γ(z0)

f = Resz=z0 f.

Theorem 14.2(Integral Residue Theorem).
Suppose that f is holomorphic in an open set containing a toy contour γ and its interior except
for finitely many poles {zi}. Then

1
2πi

∫
γ
f =

∑
Resz=zi f(z).

Proof .
Omitted to cover some material needed for homework.

�

Note that if f has a pole of order k, we can expand it in Laurent series as
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1∑
n=−k

an(z − z0)n +
∞∑
n=0

an(z − z0)k.

How to determine the radius of convergence of a Laurent series:

∞∑
−∞

anzn =
∑
n∈N

cnz
n +

∑
n∈N

dnz
−n.

Applying the root test,

lim sup
n
|cn(z − a)|1/n < 1

⇐⇒ lim sup
n
|cn|1/n|z − z0|n < 1

⇐⇒ |z − a| ≤ 1
lim supn |cn|

1/n := ρ1.

Similarly, we need

ρ2 := lim sup
n
|dn|1/n < |z − a|.

If ρ1 > ρ2, this will converge on an annulus.

15 Monday February 17th
See Hans Lewy 1957 Annals, Folland and Stein 1973. Does a linear system of PDEs with
analytic functions have an analytic solution? What about just C∞?

15.1 Getting a Holomorphic Function from a Laurent Series
We can write a formal series

f(z) =
∑
n∈Z

an(z − a)n

=
∑
n≥0

an(z − z0)n +
∑

n ≤ −1an(z − z0)n

:= A(z) +B(z).

Part A converges for

|z − a| < R1 =
(
lim sup |xn|1/n

)−1
.
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15.2 Obtaining a Laurent Series from a Holomorphic Function

Part B converges for

|z − a| > R2 = lim sup |c−n|1/n.

If R1 < R2, this does not converge. Note that if R1 > R2, then f converges and defines a holomorphic
function on the annulus R2 < |z − a| < R1. Moreover, f converges uniformly on any compact subset
of this annulus, so it can be differentiated term-by-term, and the derivative has the same region of
convergence.

Note that if f equals its Laurent expansion, then

cn = f (n)(a)
n! = 1

2πi

∫
γ

f(ξ)
(ξ − a)n+1 dz

where γ is contained in the annulus of convergence, and cn≤−10.

We also have

1
2πi

∫
γ

f(z)
(z − a)m dz =

∑
n∈Z

cn
2πi

∫
γ

1
(z − a)m−n dz

= cm−1,

since ∫
γ

1
(z − a)k

dz =
{

2πi k = 1
0 else

,

we have the following formula for the coefficients:

cm = 1
2πi

∫
γ

f(z)
(z − a)m+1 dz. (2)

So we can start with a series and get a holomorphic function on some region.

15.2 Obtaining a Laurent Series from a Holomorphic Function
We can also start with a holomorphic function and get a Laurent series. Suppose f is holomorphic
on an annulus R2 < |z| < R1. We can then write

f(z) = 1
2πi

∫
|w−a|=R1

f(w)
w − z

dw −
∫
|w−z|=R2

f(w)
w − z

dw
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15.2 Obtaining a Laurent Series from a Holomorphic Function

Since |z − a|/|w − a| < 1, we have

1
2πi

∫
|w−a|=R1

f(w)
w − z

dz = 1
2πi

∫
|w−a|=R1

f(w)
(w − a)− (z − a) dz

= 1
2πi

∫
|w−a|=R1

f(w)
(w − a)

∑
n∈N

(z − a)n

(w − a)n dz

=
∑
n∈N

(z − a)n 1
2πi

∫
|w−a|=R1

f(w)
(w − a)n+1 dw

=
∑
n∈N

cn(z − a)n.

Similarly,
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15.2 Obtaining a Laurent Series from a Holomorphic Function

− 1
2πi

∫
|w−a|=R2

f(w)
w − z

dw = − 1
2πi

∫
|w−a|=R2

f(w)
(w − a)− (z − a) dw

= − 1
2πi

1
z − a

∫
|w−a|=R2

f(w)
w−a
z−a − 1

dw

= 1
2πi

1
z − a

∫
|w−a|=R2

f(w)
1− w−a

z−a
dw

= 1
2πi

1
z − a

∫
|w−a|=R2

f(w)
∑
n∈N

(w − a)n

(z − a)n dw

=
∑
n∈N

1
2πi

1
(z − a)n+1

∫
|w−a|=R2

f(w)(w − a)n dw

=
−1∑

n=−∞
cn(z − a)n.

This yields a formula

cm = 1
2πi

∫
γ

f(z)
(z − a)m+1 dz. (3)

In practice, we don’t use this formula for extracting coefficients.

Example 15.1.
Let f(z) = 1

z(z − 1) . This has four Laurent series.

Let C(a,R1, R2) be the annulus centered at a. Then at C(0, 0, 1) = D \ {0}, we have

f(z) = 1
z

1
1− z = −1

z

∑
k∈N

zk.

In C(1, 1, 0) = D(1, 1) \ {1}, we have

f(z) = 1
z − 1

1
z

= 1
z − 1

1
1 + (z − 1)

= 1
z − 1

∑
k∈N

(−1)k(z − 1)k.

In C(0, 1,∞), we can write
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f(z) = 1
z2

1
1− 1

z

= 1
z2

∑
k∈N

1
zk
.

And in C(1, 1,∞) we have

f(z) = 1
z − 1

1
z − 1 + 1 .

16 Friday February 21st
16.1 Singularities
Recall that there are three types of singularities:

• Removable
• Poles
• Essential

Recall that a function g is holomorphic at z0 iff

lim
z−→z0

(z − z0)g(z) = 0

Theorem 16.1(3.2).
An isolated singularity z0 of f is a pole ⇐⇒ lim

z−→z0
f(z) =∞.

Theorem 16.2(3.3, Casorati-Weierstrass).
If f is holomorphic in Dr(z0) \ {z0} and has an essential singularity z0, then there exists a
radius r such that f(Dr({z0}) \ {z0}) is dense in C.

Proof .
Proceed by contradiction. Suppose there exists a w ∈ C and a δ > 0 such that

Dδ(w)
⋂
f(Dr({z0}) \ {z0}) = ∅.

If z ∈ Dr(w) \ z0, then |f(z)− w| > δ. Define g(z) = 1
f(z)− w on Dr(z0) \ {z0}; then

|g(z)| < 1
δ
.

Note that this implies that g(z) is holomorphic on Dr(z0) \ {z0}. g(z) being holomorphic
here follows from f being holomorphic here.

Then g(z) has a removable singularity at z = z0 by theorem 3.1.
If g(z0) 6= 0, then f(z)− w is holmorphic at z0, contradicting the fact that z0 is an essential
singularity.
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16.2 Singularities at Infinity

If instead g(z0) = 0, then z0 is a pole, again a contradiction.
�

Note: revisit why this is a contradiction.

16.2 Singularities at Infinity
The point z =∞ can be one of three types of singularities:

1. Removable ⇐⇒ f(z) =
∞∑

k=−1
ck

1
zk

.

• I.e. only one positive exponent.

2. Pole ⇐⇒ f(z) =
n∑

k=−∞
ckz

k

• I.e. there are finitely many positive exponents.

3. Essential ⇐⇒ f(z) =
∞∑

k=−∞
ckz

k

• There are infinitely many positive exponents.

Definition 16.2.1 (Meromorphic).
A function f is meromorphic on Ω iff there exists a sequence {zi} ⊂ Ω with no limit point in
Ω such that

1. f is holomorphic on Ω \ {zi}, and
2. f has poles at each zi.

Theorem 16.3(3.4, Meromorphic Functions are Rational).
f is meromorphic on CP1 iff f is a rational function.

Proof .

=⇒ : By part 1 of the definition above, the point z = 0 is either a pole or a removable
singularity of the function F (z) = f

(1
z

)
. By part 2, F has finitely many poles {zk}Nk=1. So

for each k, write
f(z) = fk(z) + gk(z)

where fk is the principal part and gk is holomorphic in a neighborhood of zk. Then fk(z) is a
polynomial in

( 1
z − zk

)
, say of degree mk. But then

F (z) := f

(1
z

)
= f̃∞(z) + g̃∞(z)

where f̃∞(z) is a polynomial in z, and g̃∞(z) is holomorphic near zero. Thus f̃∞
(1
z

)
is a

polynomial in 1
z
.
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Define f∞(z) = f̃∞

(1
z

)
and

H(z) = f(z)− f∞(z)−
∑
k

fk(z).

Then H is entire and bounded and thus constant, and since lim
z−→∞

H(z) = 0, H is identically
zero. Thus

f(z) = f∞(z) +
∑
k

fk(z)

⇐= : To be continued, uses the argument principle, Rouche’s theorem, and Jordan’s lemma.
�

17 Wednesday February 26th
17.1 Argument Principle and Application
Let f be holomorphic in Ω which is open, simple, and connected. Then f(z0) = 0 implies there
exists an integer m such that f(z) = (z − z0)mg(z) where g(z0) 6= 0.

Let NΩ(f) be the number of zeros of f inside Ω, and NΩ(f, a) be the number of zeros of f − a in Ω.
Writing f = f1f2 where f1 = (z − z0)m and f2 = g(z), we have

f ′

f
= f ′1
f1

+ f ′2
f2

= m

z − z0
+ g′

g
.

Now integrating both sides yields

1
2πi

∫
Dr(z0)

f ′(z)
f(z) dz = m,

so the integral of this function counts the number of zeros of f in Dr(z0).

Proposition 17.1(Argument Principle).
Let f be holomorphic in a neighborhood of Dr(z0) and suppose that f is non-vanishing on all
of ∂Dr(z0). Then

1
2πi

∫
Dr(z0)

f ′(z)
f(z) dz = NDr(z0)(f).
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17.1 Argument Principle and Application

More generally, if q(z) is another holomorphic function in a neighborhood of Dr(z0) and z1, · · · , zk
are the distinct zeros of f in Dr(z0) with orders m1, · · · ,mk, then

1
2πi

∫
Dr(z0)

q(z)f
′(z)
f(z) dz =

k∑
j=1

q(zk)mk.

Proof .

Write f(z) =
k∏
j=1

(z − zj)mjg(z). By Leibniz’s rule, if h = f1 · · · f`, then

�

h′

h
=
∑̀
j=1

f ′j
fj

=⇒ q
f ′

f
= 1g

′

g
+

k∑
j=1

mjq

z − zj
.

Since g
′

g
is holomorphic in the closed disc, integrating both sides yields the desired formula.

Note that if we replace f by a family ft of continuous functions, an integer-valued continuous
function must be constant.

Corollary 17.2.
Let ft(z) for 0 ≤ t ≤ 1 be a family of holomorphic functions on Dr+ε(z0) for some ε > 0.)
Suppose ft(z) is continuous for all z in this disc, uniformly in z, and for all t, ft(z) is
nonvanishing on the boundary.

Then the following integral is independent of t:

1
2πi

∫
Dr(z0)

f ′t(z)
ft(z)

dz.

Theorem 17.3(Rouché’s Theorem).
Let f, g be holomorphic in a neighborhood of Dr(z0) and suppose that on ∂Dr(z0) we have

|f(z)− g(z)| < |f(z)|+ |g(z)|.

Then f and g are nonvanishing on ∂Dr(z0) and

NDr(z0)(f) = NDr(z0)(g). (4)
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17.1 Argument Principle and Application

Proof .
If f(w) = 0 for some w ∈ ∂Dr(z0), then |−g(w)| = |g(w)|, but this contradicts condition ??.

�

So let t ∈ [0, 1] with ft(z) = (1− t)f(z) + tg(z). Then (claim) ft is nonvanishing on the boundary,
so we can apply the previous corollary.

Suppose otherwise that there exists w on the boundary such that ft(w) = 0 for some t, so
(1− t)f(w) + tg(w) = 0. Then rearranging terms yields

f(w) = t(g(w)− f(w))
g(w) = (1− t)(g(w)− f(w)).

But then

|f(w) + g(w)| = t|g(w)− f(w)|+ (1− t)|g(w)− f(w)|
= |g(w)− f(w)|,

which contradicts condition ??

By the corollary, the integral is continuous in t and integer-valued, and thus constant.

Corollary 17.4(Fundamental Theorem of Algebra).

Let p(z) =
n∑
j=1

ajz
j be a polynomial of degree n, so an 6= 0. Let f(z) = anz

n and g(z) = p(z).

If

|z| > |a|0 + · · ·+ |a|m
|a|n

> 1

then

|f(z)− g(z)| =
∣∣∣a0 + · · ·+ an−1z

n−1
∣∣∣

≤ |z|n−1
(
|a|0 + · · ·+ |a|n−1

)
< |an||z|n

= |f |
≤ |f |+ |g|.

Note that this is useful because it tells you where the zeros are, namely in the disc |z| <
∑
|a|i
|a|n

.

Example 17.1.
Let p(z) = 9− 8z + 20z2, then all of the zeros are in a disc of radius r = 7

4.

Qual alert: problems about power series, Rouché’s, linear mapping, integration.
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Example 17.2.
Let f(z) = z9 − 2z6 + z2 − 8z − 2.

How many zeros are in the unit disc? Take g(z) = −8z, the largest term. Then |f(z)− g(z)| ≤
1 + 2 + 1 + 2 = 6 < |f |+ |g| = 8, so condition ?? is satisfied. Thus they both have the same number
of zeros, but g has exactly one zero.

What about |z| = 2? Then set g(z) = z9, then check
∣∣∣f(z)− z9

∣∣∣ ≤ 150 < 152, so all 9 zeros lie in
this disc.

Exercise Let g(z) = z4 − 4z − 5, how many zeros are in |z| ≤ 1? Note the root on the boundary.

18 Friday February 28th
18.1 Rouche, Open Mapping, and Maximum Modulus

Theorem 18.1(Rouche’s Theorem).
Suppose f, g are holomorphic in Dr(z0) and |f(z)| > |g(z)| on ∂Dr(z0). Then f and f + g have
the same number of zeros in Dr(z0).

Proof .
Let ft(z) = f(z) + tg(z) and use the argument principle.

�

Theorem 18.2(Open Mapping Theorem (Stein 4.4)).
If f is holomorphic and nonconstant then f is an open map.

Proof .
Let w0 ∈ im (f) and say f(z0) = w0. We want to show that all w near w0 are also in im (f).
Define g(z) = f(z)− w = f(z)− w0 + w0 − w := F (z) +G(z).

�

Now choose δ > 0 such that Dδ(z0) ⊂ Ω and f(z) 6= w0 on ∂Dδ(z0). We then select δ such that
|f(z)− w0| ≥ ε > 0 on ∂Dδ(z0). We have |F (z)| = |f(z)− w0| ≥ ε.

Now choose w such that |G(z)| = |w − w0| < ε, nothing that G(z) is a constant function (?).
Then |F (z)| ≥ ε > |w − w0| = |G(z)|. So apply Rouche’s theorem and conclude that there exists
z ∈ Dδ(z0) such that f(z) = w.

Qual alert, some questions related to the Open Mapping Theorem.

Theorem 18.3(Stein 4.5: Maximum Modulus).
If f is holomorphic and nonconstant on Ω, then |f | can not attain a maximum in Ω.

Proof .
Suppose toward a contradiction that |f | attains a maximum in Ω, say at z0. Since f is
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18.2 The Complex Logarithm

holomorphic, it is an open mapping, and therefore if Dδ(z0) ⊂ Ω then f(Dδ(z0)) contains a disc.
Thus there exists a z ∈ Dδ(z0) such that |f(z)| > |f(z0)|. But this contradicts maximality of
f at z0.

�

Corollary 18.4.
If |f(z)| = 0 on ∂U and is nonconstant, then f has a zero in U .

Proof .
Let c = |f(z)| for z ∈ ∂U . Suppose that f(z) has no zeros in U . Then g(z) = 1

f(z) is

continuous and holomorphic in U . Then for all z0 ∈ U , |g(z)| = 1
|f(z)| = 1

|f(z0)| >
1
c
, since

c = |f(z)| for z ∈ ∂U implies |f(z0)| < C. But this contradicts the maximum principle.
�

Proof technique: use the fact that the reciprocal is holomorphic. Note that this is stronger
than f just being smaller in the interior, the modulus actually takes on the smallest value.

18.2 The Complex Logarithm

For x > 0, we define log(x) =
∫ x

1

1
t
dt, which is the inverse of ex. For z 6= 0, we’d like to define

log(z) = log(reiθ) = log(r) + iθ, but the argument θ is not uniquely defined.

Theorem 18.5(Existence of Logarithm).
Suppose Ω is simply connected with 1 ∈ Ω and 0 6∈ Ω. Thin in Ω, there is a branch of the
logarithm F (z) = logΩ(z) such that

1. F (z) is holomorphic on Ω.
2. eF (z) = z for all z ∈ Ω
3. F (r) = log(r) for all r > 0 ∈ R near 1.

Proof .
Part 1:
We define F (z) as a primitive of the function

F (z) =
∫
γ

1
w
dw.

where γ is any curve in Ω connecting 1 and z. We have

dF

dz
= 1
z

= lim
h−→0

F (z + h)− F (z)
h

.

Noting that F (z+h)−F (z) =
∫
η

1
w
dw, we can parameterize η as w = (1−s)z+s(z+h) = z+sh.

Then
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∫
η

1
w
dw =

∫ 1

0

1
z + sh

hds

=⇒ 1
h

∫ 1

0

1
w
dw =

∫ 1

0

1
z + sh

ds

=
∫ 1

0

(1
z

+ 1
z + sh

− 1
z

)
ds

= 1
z
− h

z

∫ 1

0

d

z + sh
ds

h−→0−→ 1
z
.

Part 2:
Note that

(
zeF (z)

)′
= eF (z) + ze−F (z)

(
−1
z

)
= 0.

Part 3:
To do.

�

Next time: once we have the log we can say more about the argument principle.

19 Friday March 6th
19.1 The Fourier Transform

Recall f̂(ξ) =
∫
R
f(x)e2πix cdotξ dx. Define Fa =??.

Definition 19.0.1 (Decay).
f ∈ Fa iff 1. f is holomorphic in the strip Sa =

{
z = x+ iy

∣∣∣ |y| < a
}
. 2. There exists an

A > 0 such that |f(x+ iy)| < A

1 + x2 .

Examples:

• e−z2 ∈ Fa for all a
• 1
c2 + z2 ∈ Fa for all a > c

• 1
cosh(πz) ∈ Fa for a < 1

2.

Lemma 19.1.
If f ∈ Fa, then f (n)(z) ∈ Fb for all b < a.

Theorem 19.2(Boundedness of ?? Functions).
If f ∈ Fa, then

∣∣∣f̂(ξ)
∣∣∣ ≤ Be−2πb|ξ| for some constants b, B.
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19.1 The Fourier Transform

Proof .
If ξ = 0, ∣∣∣f̂(ξ)

∣∣∣ =
∣∣∣∣∫

R
f(x)e2πix·ξ

∣∣∣∣
≤
∫
R
|f(x)| dx

≤ A
∫
R

1
1 + x2 dx

= Aπ.

For ξ > 0, integrate over the box [−R,R]× i[−b, 0]:

−R R

R − ib−R − ib

C

Define g(z) = f(z)e−2πiz·ξ. The integral over the rectangle is zero, since g is holomorphic, so
we can equate ∫ R−ib

R
f(z)e−2πiz·ξ dz =

∫ b

0
f(R− it)e−2πi(R−it)·ξ(−i) dt

We can use the estimate in Fa to obtain∫ b

0
· · · ≤

∫ b

0

A

1 +R2 e
−2πsξ ds

≤ O(R−2).

Then

∫
R
f(x)e−2πix·ξ dξ =

∫ ∞−ib
−∞−ib

· · · dz

=
∫
R
f(x− ib)e2πi(x−ib)·ξ dx

≤
∫
R

A

1 + x2 e
−2πbξ dx

= Aπe−2πbξ,

so we can take B = Aπ.
For ξ > 0, the same argument works with the rectangle above the axis.

�
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19.2 Fourier Inversion

19.2 Fourier Inversion

Theorem 19.3(Fourier Inversion).
If f ∈ Fa, then f(x) =

∫
f̂(ξ)e2πix·ξ dξ.

Proof .
Letting L1 = {x− ib} and L2 = {x+ ib}

I =
∫ ∞

0
f̂ · · ·+

∫ 0

−∞
f̂ · · ·

=
∫ ∞

0
e2πix·ξ

(∫
L1
f(z) + e−2πiz·ξ dz

)
dξ +

∫ 0

∞
e2πix·ξ

(∫
L1
f(z) + e−2πiz·ξ dz

)
dξ

=
∫
L1

∫ ∞
0

e2πixξ−2πi(s−ib)ξ dξ ds+
∫
L2
f(z)

∫ 0

−∞
e2πix·ξ−2πi(s+ib)ξ dξds

by absolute convergence, where z = s− ib

=
∫
L1
f(z)

∫ ∞
0

e2πi(x−s+ib)ξ dξ ds+
∫
L2
f(z)

∫ 0

−∞
e2πi(x−s+ib)ξ dξ ds

=
∫
L1
f(z) 1

2πi(x− i+ ib) ds+
∫
L2
f(z) 1

2πi(x− s− ib)

= 1
2πi

∫
f(z)
z − x

dz

= f(x),

noting that

∫ ∞
0

eas ds = 1
a

for <(a) > 0.

�

Note the similar trick: for ξ < 0, move up, and ξ > 0 move down to form a rectangle. Use the fact
that integration along the vertical edges is zero.

20 Monday March 30th
20.1 Conformal Equivalence
We’ll be following Stein, around Chapter 8 currently but skip section 4. We’ll discuss Kobe’s proof
of the Riemann Mapping Theorem.

Definition 20.0.1.
A bijective holomorphic function f : U −→ V is called a conformal map or biholomorphism.
Given such a map, we say that U and V are conformally equivalent or biholomorphic.

Note that this gives an equivalence relation on subsets of C.
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20.1 Conformal Equivalence

Proposition 20.1(1.1).
If f : U −→ V is holomorphic and injective, then for every z ∈ U , f ′(z) 6= 0. In particular, the
inverse of f defined on its image is holomorphic, and thus the inverse of a conformal map is
holomorphic.

This is not an iff, take f(z) = z2, then 2z 6= 0 on C \ 0 but
√
z has two values for every z, failing to

be injective.

Proof .
Toward a contradiction, suppose f ′(z0) = 0 for some z0 ∈ U . Then since f is holomorphic, we
can expand about z0 to obtain

f(z)− f(z0) = ak(z − z0)j +G(z), ak 6= 0, k ≥ 2

for all z near z0, where G(z) vanishes to order k + 1 at z0.
For sufficiently small w, we write

f(z)− f(z0)− w = F (z) +G(z) where F (z) = ak(z − z0)k − w

Because |G(z)| < |F (z)| on a small disc centered at z0 and G(z) vanishes to order k + 1 at
z0 (where k > 1), we can conclude that F (z) h as at least two distinct zeros inside this disc.
Applying Rouche’s theorem, we conclude that f(z)− f(z0)− w has at least two zeros as well.
But this contradicts the injectivity of f .
Now let g = f−1 on the range of f , which we can assume is V . For w close to w0, write
w = f(z) and w0 = f(z0), yielding
????? See notes

�

Example 20.1 (Cayley Transform, Important).
The unit disc and upper half plane are mapped to each other via F (z) = i− z

i+ z
with inverse

G(w) = i
1− w
1 + w

.

Note that this is a fractional linear transformation.

Theorem 20.2(1.2).
The map F : H −→ D is a conformal map with inverse D.

Proof .
Both maps are holomorphic on their domains. Any point in H is closer to i than −i, and we
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20.1 Conformal Equivalence

want to show that |F (z)| < 1 for every z ∈ H. We also need to show <G(z) > 0.

im G(w) = <
(1 + u− iv

1 + u+ iv

)
= · · ·

= 1− v2 − u2

(1 + u)2 + v2

> 0 if u2 + v2 < 1.

This also shows that u2 + v2 = 1 =⇒ G(w) = 0.
�

Definition 20.2.1 (Fractional Linear Transform).
A function of the form f(z) = az + b

cz + d
where ad− bc 6= 0 is called afractional linear trans-

formation. The determinant condition here is to insure injectivity; otherwise this just yields
the constant map. Note that d = bc

a

Example 20.2.
GL(2,C), SL(2,C), etc

Fact Fractional linear transformations are determined by their values on 0, 1,∞. Thus they form a
group SL(2,C)/ {±1} = PSL(2,C).

We can define PC1 by taking (u, v) ∈ C2 \ 0 and setting u ∼ v iff u = λv for λ 6= 0. In this case,
FLTs are linear maps PC1	 where we send f(z) to [a, b; c, d] · [z, 1]. Note that f(−d

c)=∞=[1,0] .

The four basic types of FLT are

• Translation: T (z) = z + b
• Rotation: T (z) = eiθz
• Dilation T (z) = az for a > 0.
• Inversion T (z) = 1

z
.

In the special case that c = 0, we have T (z) = a

d
z + b

d
which is a rotation followed by a translation.

If c = 0, ???

Proposition 20.3.
LFTs form a group under function composition.

Proof .
Just need to check that w−1 = aw − b

−cw + a
.

�

Qual alert.
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Theorem 20.4.
If f is holomorphic on C \ {z0} and injective, then f is an FLT.

Proof .
Up to a translation, we can assume that z0 = 0. Then f has a Laurent series expansion

f(z) =
∞∑
−∞

anz
n.

If f has an essential singularity at zero, then by Casorati-Weierstrass implies that the image
of over punctured disc is dense in C. In particular, B :=

{
z
∣∣∣ |z − 1| < 1

2

}
and there exists

a ζ 6∈ B such that f(ζ) in f(B). But then there exists a z ∈ B such that f(z) = f(ζ),
contradicting injectivity of f .
If f has a pole, it must be order at most 1, otherwise the reciprocal will have a zero of order 2
and fail injectivity, and f is injective iff 1/f is injective. Then the Laurent series has at most 3
terms, az−1 + b+ cz. But a = 0, otherwise solving by the quadratic formula yields two roots.

�

21 Wednesday April 1st
We call f : U −→ V biholomorphic if it admits a bijective holomorphic inverse.

Proposition 21.1.
If f : U −→ V is holomorphic and injective, then f ′(z) 6= 0, f is biholomorphic onto its image,
and thus the inverse of a conformal map is also holomorphic.

Proof .
We argue by contradiction and suppose f ′(z0) = 0 for some z0 ∈ U . Then f(z) − f(z0) =
a(z − z0)k +G(z) for all z near z0, with a 6= 0, k ≥ 2, and G v anishing to order k + 1 at z0.
For w small enough, we write f(z)− f(z0)− w = F (z) +G(z) where F (z) = a(z − z0)k − w.

Since |G| < |F | on the boundary of a small disc Dε(z0) and F has at least two zeros in Dε(z0),
Rouche’s theorem implies that f(z)− f(z0)− w has at least two zeros in this disc.

Since f ′(z) 6= 0 for all z in a small punctured neighborhood of z0, it follows that that roots of
f(z)− f(z0)− w are distinct. But then f is not injective, a contradiction.

Now let g = f−1 be the inverse of f on its range, which we can assume is V . The second part
of the proof follows from a Calculus argument, see slides.

�

Definition 21.1.1.
Two open sets are conformally equivalent iff there exist biholomorphic functions composing to
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the identity.

Recall the Cayley transform w = F (z) = i− z
i+ z

with inverse z = G(w) = i
1− w
1 + w

.

Theorem 21.2.
The map F : H −→ D is a conformal map with inverse G.

Proof (Sketch).
Use the fact that any point in H is closer to i than −i, so |F | < 1. Then show =G(w) > 0 by
expanding w = u+ iv and using that fact that u2 + v2 < 1.

�

The Cayley transform is a special case of a FLT f(z) = az + b

cz + d
. Note that f(−d

c
) =∞ is a pole, so

f should be defined with values in Ĉ ∼= CP1. Since lim
|z|−→∞

exists, the domain is naturally Ĉ as well.

Identify CP1 as the space of lines through 0 in Cn+1. Explicitly, take v,w ∈ (Cn+1)• and set
v ∼ w ⇐⇒ v = λw for some λ ∈ C×. Define open sets using the quotient topology, and this yields
a metric defined by

d([u], [v]) =
(
q − |〈u, v〉|
‖u‖ · ‖v‖

)
.

Let ∞ denote the point (1, 0)t ∈ CP1, then every other point corresponds uniquely to an element of
the form (z, 1)t. For any A ∈ GL(2,C), then A acts on such an element by LA(a) = (az+b, cz+d)t =
az + b

cz + d
∈ C (by dividing through the second term).

Under function composition, these are Lie groups, and the map A 7→ LA is a group morphism.
For any s ∈ C, LsA = LA, and LA = LA1 for some matrix A1 of determinant 1, so A1 ∈ SL(2,C).
Finally, LA1 = LA2 ⇐⇒ A2 = ±A1, so the group of FLTs is given by PSL(2,C) = SL(2,C)/ {±I}.

Now consider taking a, b, c, d ∈ R, yielding the subgroup SL(2,R). Then for any A ∈ GL(2,R), we
have LA = LA1 iff A1 ∈ SL(2,R) and detA > 0. Moreover, each such A preserves H.

In particular,

az + b

cz + d
= (az + b)(zz + d)

(cz + d)(cz + d) = R

P
+ iy

ad− bc
P

.

with

R = ac|z|2 + bd+ (ad+ bc)x ∈ R, P = |cz + d|2 > 0, if y > 0.

Thus z ∈ H =⇒ f(z) ∈ H, and AutC(H) = SL(2,R). What is AutC(D)?

We single out the transform φ(z) = z − i
z + i

represented by A0 :=
[
1 −i 1 i

]
Conjugating the

SL(2,R) action on H by φ yields a map MA : D −→ D.

Letting A ∈ SL(2,R) and computing A0AA
−1
0 , we find that
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A0SL(2,R)A−1
0 =

{(
α β
β α

)
∈ GL(2,C) : |α|2 − |β|2 = 1

}
= SU(1, 1).

It turns out that this is AutC(D). It can be checked directly that for any matrix B in this group, it
in fact send ∂D −→ ∂D by computing the modulus.

Recall that there are four basic types of FLT:

• Translation
• Rotation
• Dilation
• Inversion

Moreover, any FLT can be decomposed as a composition of these 4 types:

• If c = 0, then T (z) = a

d
z + b

d
which is a dilation, a rotation, then a translation

• If c 6= 0, then long division yields T (z) = bc− ad
c2 · 1

z + d
c

+ a

c
.

Theorem 21.3.
If f is holomorphic on C \ {z0} and injective, then f is a FLT.

Proof .

Up to translation, assume z0 = 0. Then f has a Laurent series expansion f(z) =
∞∑

n=i∞
anz

n.

Case 1: If f has an essential singularity at 0, then by Casorati-Weierstrauss, the image of
every punctured neighborhood of 0 is dense in C.

In particular, then if B :=
{
z
∣∣∣ |z − 1| < 1

2

}
, there exists a ζ 6∈ B with f(ζ) ∈ f(B). But then

there is a z ∈ B such that f(z) = f(ζ), contradicting injectivity.

Case 2: Suppose f has a pole of order n at 0, then 1
f

has a zero of order n at 0. Since 1
f is

injective, we must have n ≤ 1 by a previous proposition showing that the derivative can not
be zero.

Applying the same argument to f(1/z) we conclude that f(z) = a

z
+ b+ cz for some constants

a, b, c ∈ C. If both a 6= 0, c 6= 0 then cz2 + (b− w)z + a = 0 has two roots (up to multiplicity),
contradicting injectivity.

So either a = 0 or c = 0, but not both since f is not constant. But in either case, f is an FLT.
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�

Proposition 21.4.

Suppose f is holomorphic at z0. Then f(z)− f(z0) =
∞∑
m=n

am(z− z0)m with an 6= 0 ⇐⇒ for ε

small enough, there exists δ > 0 such that f(z)−w has distinct roots in
{
z
∣∣∣ 0 < |z − z0| < ε

}
whenever 0 < |w − f(z0)| < δ.

This states that f(dε(z0)) covers Dδ(w0) \ {w0} exactly n times. In particular, f is injective in a
neighborhood of z0 ⇐⇒ f ′(z0) 6= 0.

22 Friday April 3rd
22.1 Conformal Mappings

Qual Alert: basically everything today. E.g. Show that the conformal maps C −→ C are linear.

The three basic types are translation, dilations, and rotation.

For any n ∈ N, the map z 7→ zn is conformal in the sector S =
{
z
∣∣∣ 0 < arg(z) < π

n

}
. For 0 < α < 2,

the map takes H to {0 < arg z < απ}.

The map z 7→ 1 + z

1− z takes the upper half-disc D+ to the first quadrant H+. The inverse is w − 1
w+1

which is clearly holomorphic for w 6= 1, and its image is contained in the unit disc since the distance
from w to −1 is always greater than the distance from w to 1.

Note that

f
(
eiθ
)

= 1 + eiθ

1− eiθ = e−iθ/2 + eiθ/2

e−iθ/2 − eiθ/2
=

2 cos θ2
−2i sin θ

2
= i cot θ2

and thus as θ travels from 0 to π along S1, f(eiθ) travels from i∞ to 0.

The logarithm z 7→ log z (taking the branch cut along the negative imaginary axis) maps H to the
strip

{
z
∣∣∣ x ∈ R, 0 < y < π

}
. The inverse is given by w 7→ ew, and as x travels from −∞ to 0, f(x)

travels from ∞+ iπ to −∞+ iπ. When x travels from 0 −→∞, f(x) travels from −∞R −→∞R.

The map z 7→ log z also defined as map from the half disc D+ to the half-strip S = {x < 0, 0 < y < π}.
We have [1,−1]R 7→ [−∞, 0] and S1

+ 7→ i[0, π].

The map z 7→ −1
2

(
z + 1

z

)
takes D+ −→ H. We have [0, 1] 7→ [1,∞] and S1

+ 7→ [−1, 1] ⊂ R, and
[0,−1] 7→ [−1,−∞] ⊂ R.

The map z 7→ sin z takes {−π/2 < x < π/2, y > 0} onto H. Then [−π/2 + i∞,−π/2 + 0] 7→ [−∞, 1]
and [−π/2, π/2] 7→ [−1, 1], and [π/2 + 0i, π/2 + o∞] 7→ [1,∞].

Just need to know these 8 examples of conformal mappings.

22 FRIDAY APRIL 3RD 69



23 Monday April 6th
23.1 Automorphisms of the Disc

Lemma 23.1(Schwarz).
Let f : D −→ D be holomorphic with f(0) = 0, then

1. |f(z)| ≤ |z| for all z ∈ D.
2. If for some z0 6= 0 we have |f(z0)| = |z0|, then f is a rotation (i.e. f(z) = eiθz)
3.
∣∣f ′(0)

∣∣ ≤ 1 and is equality holds, f is a rotation.

Proof .

1. Expand f(z) = a1z+ a2z
2 + · · · using f(0) = 0 =⇒ a0 = 0. Then f(z)/z is holomorphic

in D and bounded in modulus by 1/r for r = |z| < 1. By the maximum modulus principle,
this is true for any |z| < r, so letting r −→ 1 yields (1).

2. Since |f(z)| < 1, the modulus of f(z)/z attains its maximum in D◦ and thus is constant.
So f(z) = cz and at z0 we have |f(z)/(z − 0)| = 1, so |c| = 1 and f(z) is a rotation.

3. If g(z) = f(z)/z then |g(z)| < 1 for all z ∈ D and g(0) = lim
z−→0

f(z)f(0)
z

= f ′(0). If∣∣f ′(0)
∣∣ = 1 then |g(0)| = 1, ???.

�

We proved that AutD = SU(1, 1), which preserves a certain Hermitian form and is a non-compact
group. We also showed that AutH = SL(2,R).

Note that the rotations rθ : z 7→ eiθz ∈ AutD. There are also functions of the form ψα : z 7→ α− z
1− αz

where α ∈ D. It is holomorphic in D with a simple pole at z = 1/α.

Writing z = eiθ yields

ψα
(
eiθ
)

= α− eiθ

1− αeiθ = −e−iθ α− e
iθ

α− e−iθ
=⇒

∣∣∣ψα (eiθ)∣∣∣ = 1.

By the MMP, |ψα(z)| < 1 for all z ∈ D. The inverse can be solved for, and it turns out that
ψ−1
α = ψα where 0 � α.

Theorem 23.2.

Aut(D) =
{
f(z) = eiθ

α− z
1− αz : θ ∈ R, |α| < 1

}
.

Note that this group is not compact, since it’s homeomorphic to R× D.

Proof .
Given f ∈ Aut(D), there must be some α such that f(α) = 0. Consider g = f ◦ ψα, then
g(0) = 0 and applying the Schwarz lemma yields |g(z)| ≤ |z| for all z ∈ D. Since g−1(0) = 0,
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applying this lemma again to g−1 shows
∣∣∣g−1(w)

∣∣∣ ≤ |w| for all w ∈ D. Letting w = g(z) we
obtain |g(z)| = |z| for all z ∈ D, so by Schwarz g(z) = eiθz is a rotation. Thus f(z) = eiθψα(z).

�

Recall that F (z) = i− z
i+ z

: H −→ D has inverse i1− w1 + w
, so we can define a map Γ : Aut(D) −→

Aut(H) where φ 7→ F−1φF . This can be shown directly using algebra

24 Wednesday April 8th
What are the necessary conditions on Γ to ensure a conformal map F to D?

1. Ω 6= C, because this would force F to be constant.
2. Since D is connected, Ω must be connected.
3. Since D is simply-connected, Ω must be simply connected.

Theorem 24.1.
If Ω ( C is simply connected and z0 ∈ Ω, there exists a unique conformal map F : Ω −→ D
such that F (z0) = 0 and F ′(z0) > 0.

Corollary 24.2.
Any two proper simply connected open subsets in C are conformally equivalent.

Proof .
Produce Fi : Ωi −→ D and define F = F−1

2 ◦ F1 : Ω1 −→ Ω2.
�

To show uniqueness in the theorem, suppose F,G : Ω −→ D satisfy the hypotheses. Then
H := F ◦G−1 : D −→ D satisfies H(0) = 0. By a previous theorem, we must have H(z) = eiθ

α− z
? ,

and the previous statement forces α = 0. By the chain rule, H ′(z) > 0. This implies H(z) = eiθz
and H ′(z) = eiθ > 0 (?), this eiθ = 1 and H = id.

To show existence, consider all injective maps f : Ω −→ D with f(z0) = 0, and search for a surjective
such f . This can be achieved by maximizing f ′(z0) > 0. We’ll extract f as a limit of a given
sequence of functions.

We define a family f(Ω) by the following conditions:

a. f(Ω) 6= g : Ω −→ D is holomorphic and injective.
b. |g(z)| < 1 for all z ∈ Ω.
c. g(z0) = 0 and g′(z0) > 0.

We need to show:

1. f(Ω) is not empty.
2. There exists a maximal f ∈ f in the sense that g ∈ f =⇒ g′(z0) ≤ f ′(z0).
3. The above f is a Riemann mapping, i.e. f(Ω) = D, f(z0) = 0, f ′(z0) > 0.

The difficult part is proving part 2.
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Proof (of (a)).
Choose a 6∈ Ω and let g(z) :=

√
z − a be a branch of the square root of z − 1 6= 0 for z ∈ Ω.

Then g is holomorphic and injective on Ω. Moreover, g is single-valued: if g(z) = w, g does
not take on the value −w on Ω. Since g(Ω) is open, there exists a radius r such that

Dr (g (z0)) = {w : |w − g (z0)| < r} ⊂ g(Ω).

Thus

Dr (−g (z0)) = {w : |w + g (z0)| < r} ∩ g(Ω) = ∅

�

and hence $\abs{g(z) + g(z_0)} \geq r$ for all $z\in \Omega$.
Then the function $g_1(z) \definedas {\eps \over g(z) + g(z_0)}$ is holomorphic and injective in $\Omega$, for $\abs{\eps} < r$ satisfies $\abs{g_1(z)} < 1$.
So $g_1$ satisfies properties (a) and (b).

\

We now take $g_0 \definedas \psi \circ g_1$ where $\psi \in \Aut \DD$; we want $g_0(z_0) = 0$ with positive derivative.
Choosing $\alpha = g_1(z_0)$ forces $g_0(z_0) = 0$, and using the chain rule to compute the derivative explicitly shows
\begin{align*}
g_{0}^{\prime}\left(z_{0}\right)=\frac{\left|g_{1}^{\prime}\left(z_{0}\right)\right|}{1-\left|g_{1}\left(z_{0}\right)\right|^{2}}>0
.\end{align*}
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25 Friday April 10th
Continuing the proof from last time. Existence involved

• The square root function
• Reciprocal functions
• Automorphisms of the disc

Definition 25.0.1.
Let Ω ⊂ C be open. A family F(Ω) of holomorphic functions on Ω if every sequence has a
subsequence that converges uniformly on every compact subset of Ω, where the limit need not
be in F(Ω).

Proving that a family of functions is normal is a consequence of

• Uniform boundedness
• Equicontinuity

Definition 25.0.2.
A family F is said to be uniformly bounded on compact subset iff for each compact K ⊂ Ω
there exists BK > 0 such that

|f(z)| ≤ Bk for all z ∈ K, f ∈ F .

Definition 25.0.3.
A family F is equicontinuous if for every ε > 0 there exists δ > 0 (not depending on the point)
such that for all z, w ∈ K,

|z − w| < δ =⇒ |f(z)− f(w)| < ε ∀f ∈ F .

Examples:

1. The family fn : I −→ C with
∣∣f ′n∣∣ ≤ M for some fixed constant is uniformly bounded and

equicontinuous (by the MVT).
2. The family fn(x) := xn for x ∈ I is uniformly bounded but not equicontinuous since

lim
n−→∞

|fn(1)− fn(x0)| = 1 for any xo ∈ I◦.

Theorem 25.1(Montel).
Suppose F(Ω) is uniformly bounded on compact subsets, then

1. F is equicontinuous on every compact subset,
2. F is a normal family.

The proof of the theorem consists of two parts:

1.Apply the Cauchy integral formula and use that F is comprised of holomorphic functions.

Note the contrast to R, where fn(x) = sin(nx), |fn(x)| ≤ 1 is uniformly bounded but not
equicontinuous and has no convergent subsequences on any compact subinterval of I◦.

2. Use the fact that uniform bounded + equicontinuous implies existence of convergent subse-
quences by Arzela-Ascoli (which uses diagonalization).
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Not complex-analytic, works in R.

Definition 25.1.1.
A sequence {K`} of compact subsets is called an exhaustion of Ω iff

1. K` ⊂ (K`+1)◦ for all `,
2. Any compact K ⊂ Ω is contained in some K`, and

⋃
`

K` = Ω

Lemma 25.2.
Any open Ω ⊂ C admits an exhaustion.

Proof .
If Ω is bounded, take K` =

{
dist(z, ∂Ω) > 1

`

}
. Otherwise, take K̃` = K`

⋂
B`(0).

�

25.0.1 Proof of Montel’s Theorem

Proving part 1.

Let K ⊂ Ω be compact, choose r > 0 such that D3r(z) ⊂ Ω for all z ∈ K, e.g. 3r < dist(K, ∂Ω).
Let z, w ∈ K with |z − w| < r and let γ = ∂D2r(w).

Then Cauchy’s integral formula yields

f(z)− f(w) = 1
2πi

∫
γ
f(ζ)

[ 1
ζ − z

− 1
ζ − w

]
dζ.

Then since ξ ∈ γ and |z − w| < r, we have

∣∣∣∣ 1
ζ − z

− 1
ζ − w

∣∣∣∣ = |z − w|
|ζ − z||ζ − w|

≤ |z − w|
r2 .

Letting B be the uniform bound on F and using |γ| = 4πr, we can apply this estimate to obtain

|f(z)− f(w)| ≤ 1
2π

2πr
r2 B|z − w|.

Then f is uniformly Lipschitz with the constant given above, and the family is equicontinuous.

Application: show that derivative uniformly bounded implies function uniformly bounded by
applying Cauchy’s integral formula.

Proving part 2.

Let {fn} be a sequence in F and K ⊂ Ω compact. Choose a dense sequence {wj}, and use uniform
boundedness to obtain a subsequence {fn,1} such that {fn,1(w1)} converges. Repeat these to get
{fn,j(wj)} all converge, and set gn = fn,n. The claim is that equicontinuity implies gn converges
uniformly on K.
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Given ε > 0, choose δ from equicontinuity and note that K ⊂ Dδ(w1)
⋃
· · ·
⋃
Dδ(wJ) for some J

by density of {wi} and compactness of K. Pick N � 0 such that

|gm(wj)− gn(wj)| < ε∀j = 1, 2, · · · , J.

Then any z ∈ K is in some Dδ(wj), then

|gn(z)− gm(z)| ≤ |gn(z)− gn (wj)|+ |gn (wj)− gm (wj)|+ |gm (wj)− gm(z)| <3ε ,

so {gn} converges uniformly on K.

26 Monday April 13th
Goal: put together pieces for the Riemann mapping theorem.

Today: normal families. Recall that normal families on Ω are holomorphic functions for which every
sequence uniformly on every compact subset of Ω. The family is uniformly bounded iff for every K
there exists a BK bounding f in K, and is equicontinuous iff they are continuous with a parameter
δ uniform for the family.

We had Montel’s theorem: families that are uniformly bounded on compact subsets are equicontinuous
and normal. This used Arzela-Ascoli and a diagonalization argument.

Theorem 26.1(Hurwitz).
Suppose gn are holomorphic and nonzero on Ω, then if gn −→ g uniformly on compact subset,
then either g ≡ 0 or g is nonzero on Ω.

Proof .
The limit function g is holomorphic on Ω by the Weierstrass theorem. If g 6≡ 0, then the zeros
of g are isolated. If γ ∼ 0 is a simply curve on which g 6= 0, g′n −→ g′ and hence g′n/gn −→ g′/g
uniformly on γ. By the argument principle, for n� 0 the number of zeros of gn, g enclosed by
γ are equal. Since gn 6= 0, the theorem follows.

�

Corollary 26.2(Hurwitz).
If gn are holomorphic and injective, then either g is injective or constant.

Proof .
Fix w ∈ Ω and apply Hurwitz to g − g(w) on Ω \ {w}.

�

Proof (of part (B).
of Riemann Mapping)
By Montel’s theorem, F(Ω) is normal since |f | < 1 for all f ∈ F . LetM = sup g′(z0)

∣∣∣ g ∈ F ≤
M . By definition, we can find a sequence gn such that lim g′n(z0) = M . By normality, there
exists a subsequence uniformly convergent on compact subsets to some function f .
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In particular,M <∞ since otherwise this would yield a simple pole for f (which is holomorphic)
and f ′(z0) = M . By Hurwitz, f is either injective or constant because the subsequence is
injective. But since f ′ = M > 0, f is not constant.

Moreover, since f(z0) = lim gn(z0) = 0 and f ′(z0) = M > 0, f injective implies f ∈ F . This
gives the existence of f ∈ F such that g′ ≤ f ′ at z0 for all g ∈ F .

�

Proof (of part (C).
in Riemann Mapping)
We want to show that f(Ω) = D. Toward a contradiction, suppose not, then there exists a
w0 ∈ D\f(Ω). We will construct a function g1 ∈ F with g′1 > f ′ at z0, which is a contradiction.

The function −ψw0(f(z)) = f(z)− w0
1− w0f(z) : Ω −→ D is holomorphic, injective (since all such ψ

are), and nonvanishing since w0 6∈ f(Ω). Thus there is a branch of the square root for which
g(z) :=

√
−ψw0(f(z)) : Ω −→ D is injective.

Finally, normalize g so that its derivative at z0 is positive and real by setting

g1(z) = |g
′(z0)|
g′(z0)

(
g(z)− g(z0)
1− g(z0)g(z)

)
.

Then g1 has the same properties as g with g1 = 0, g′1 > 0 at z0. The first claim is easy to check,

and the second follows from using ∂

∂z

(
z − α
1− αz

)
= 1− |alpha|2

(1− αz)2 and applying the chain rule.

We now compare f ′ and g′ at z0. Note that f = 0, f ′ > 0, g2 = −w0 at z0. Take ∂

∂z
g2 to

obtain

2g(z)g′(z) = 1− |w0|2

(1− w0f(z))2 · f
′(z).

Evaluate at z = z0 to obtain

2g (z0) g′ (z0) =
(
1− |w0|2

)
f ′ (z0)⇒

∣∣g′ (z0)
∣∣ = 1− |w0|2

2 |g (z0)| f
′ (z0) .

Combining this with the previous formula obtained from the chain rule

g′1 (z0) = |g′ (z0)|
1− |g (z0)|2

= 1− |w0|2

2 |g (z0)| ·
f ′ (z0)

1− |g (z0)|2

= 1− |w0|2

2
√
|w0|

· f
′ (z0)

1− |w0|
using g2(z0) = −w0

= 1 + |w0|
2
√
|w0|

f ′ (z0)

> f ′ (z0) .
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Where we’ve used the Schwarz inequality,

1 + |w0|
2
√
|w0|

> 1.

But then g′1 > f ′, a contradiction.
�

Note that this is a long proof in the book – seven pages!

27 Wednesday April 15th
Last time: finished proof of Riemann mapping theorem. Needed concept of normal families, the
rest was computations.

Proposition 27.1.
Suppose f : Ω −→ D is a holomorphic diffeomorphism. Then z −→ ∂Ω =⇒ |f(z)| −→ 1.

Proof .
For each ε > 0, D1−ε = {|z| < 1− ε} ⊂ D is compact and Kε := f−1(D1−ε) ⊂ Ω is compact
by continuity of f . If z 6∈ Kε, then |f(z)| > 1− ε by definition.

�

Definition 27.1.1.
For I = (a, b) ⊂ R an interval, a function f : I −→ C is real analytic iff for each x0 ∈ I there
exists a δ > 0 such that in a δ neighborhood of x0, f(x) =

∑
ak(x0)(x − x0)k is given by a

convergent power series.

In this case, ak(x0) is given by the kth Taylor coefficient.

Lemma 27.2.
For f real analytic, there is a neighborhood U such that ?.

Proof .
Fix x0 ∈ I, let Ux0 be a disc of radius δ(x0) centered at x0 in C such that f equals its power
series on Dδ(x0)

⋂
R. Set F (z) =

∑
ak(x0)(z − x0)k for z ∈ Dδ(x0). Take U =

⋃
x0∈I

Dδ(x0)

Then F : U −→ C extends Fx0 for each x0, need to show it is well-defined. This follows from
Theorem 4.5, Chapter 2 – we have two functions taking the same values on a sequence with
an accumulation point, namely their common restrictions to R, and the function is defined as
every accumulation point in R.

�

Theorem 27.3.
Assume γ : I −→ C is a simple real analytic curve with γ′(t) 6= 0 for all t and bounds a region
Ω such that
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• Points to the left of γ are in Ω
• Points to the right of γ are in C \ Ω

So γ separates C. Then there is a neighborhood V of γ and a holomorphic extension F of f to
Ω
⋃
V −→ C with F (γ) ⊂ ∂D and F ′(γ) 6= 0.
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Proof

• Use the lemma to get a neighborhood O of (a, b) in C and a univalent holomorphic extension
Γ; set V = Γ(O)
• Assume O is symmetric about R, say O+ is the part in H.
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• Extend to G.
• ?

Theorem 27.4.
Assume Ω is bounded and ∂Ω is simple, closed, a finite union of real analytic curves. Then the
Riemann mapping function f extends to a homeomorphism f : Ω −→ D.

28 Friday April 17th
Last time: extending a real-analytic function into C.
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Theorem 28.1.
Assume Ω is bounded and ∂Ω is a finite union of simple closed curves. Then the Riemann
mappying function f extends to a homeomorphism f : Ω −→ D.
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Proof: Apply the previous theorem to the real analytic part of ∂Ω, then map these diffeomorphically
onto open arcs in ∂D. Let J1, J2 be real analytic curves in ∂Ω meeting at p and let I1, I2 denote
their images in ∂D:

We want to show that I1 meets I2 and their endpoints q1, q2 coincide. We have `(r) =
∫
γr

∣∣f ′∣∣, where
γr is as in the figure, and applying Cauchy-Schwarz yields

|`(r)|2 ≤CS
∫

12 ·
∫ ∣∣f ′∣∣2

≤ 2πr
∫ ∣∣f ′∣∣2

=⇒ `(r)2

r
≤ 2π

∫ ∣∣f ′∣∣2.
Then taking `(r) ≥ δ for ε ≤ r ≤ R and integrating over r ∈ (ε,R) yields

δ2 log
(
R

ε

)
≤ 2π

∫∫
Ω(ε,R)

∣∣f ′∣∣2 = 2π Area(f(Ω(ε,R))) ≤ 2π

where Ω(ε,R) = Ω
⋂
{ε ≤ |z − p| ≤ R}.

Since log
(
R

ε

)
ε−→0−→ ? 0 there exists a small r > 0 such that `(r) < δ. Then |q1 − q2| < δ, so q1 = q2.
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Note that the classification of domains is nontrivial in higher dimension.

Next goal: Picard’s theorem. Best proof is Picard’s original, which comes from Ahlfors.

Recall the notion of covering maps from topology: for π : E −→ X is a covering map iff for every
p ∈ X there is a Ux such that π−1(U) =

∐
Sj ⊂ E, where π(Sj) = U is a homeomorphism.

Proposition 28.2.
If E,X, Y are connected and locally path-connected and E π−→ X is a covering map, then if Y
is simply connected then any f : Y −→ X lifts to f̃ : Y −→ E.

Proposition 28.3.
Any continuous lift of a holomorphic map is also continuous.

Proof .
Take q ∈ U, p = f(q) ∈ O. Let V 3 p be a neighborhood such that π−1(V ) satisfies the covering
condition with the projections holomorphic homeomorphisms. Then f̃(q) ∈ Sk for some k, and
f̃−1(Sk) = f−1V = U1 is a neighborhood of q ∈ U . So the restrictions of f̃ , π−1 ◦ f to Uq are
equal and thus f̃ is holomorphic on each Uq.

�

Example: ez and zn.

Proposition 28.4.
There exists a holomorphic covering map Φ : D −→ C \ {0, 1}.
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Let ω = exp (()2πi
3 ), then define the LFT

φ(z) = ω
1− z
z − w2 : D −→ H

which satisfies

φ(1) = 0
φ(ω) = 1φ(ω2) =∞.

and the image of the above disc is

28 FRIDAY APRIL 17TH 84



Then by the Riemann mapping theore, there is a holomorphic diffeomorphism ψ : Ω −→ D and by
the previous theorem, this lifts to ψ : Ω −→ D, and ψ can be chosen to fix 1, ω. Conjugating by φ
gives a holomorphic diffeomorphism Ψ : Ω] −→ H which extends to a map ∂Ω] onto R which fixes
0, 1.

Idea: continue on a fractal-like manner to cover the unit disc.
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29 Monday April 20th
Goal: Picard’s theorem,

30 Monday April 27th
See Simon’s book and Donald for examples on definite integrals. See also problem book, contains
problems from many qual areas, although these are more difficult.

Springer link, Ponnusamy, complex variables and applications

Stein, page 79, example 2
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