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1. I: Varieties

1.1. I.1: Affine Varieties.

1.1.1. 1.1.
(a) Let Y be the plane curve y = x2 (i.e., Y is the zero set of the polynomial f = y − x2 ).

Show that A(Y ) is isomorphic to a polynomial ring in one variable over k.
(b) Let Z be the plane curve xy = 1. Show that A(Z) is not isomorphic to a polynomial ring

in one variable over k.
(c) * Let f be any irreducible quadratic polynomial in k[x, y], and let W be the conic defined

by f . Show that A(W ) is isomorphic to A(Y ) or A(Z). Which one is it when?

1.1.2. 1.2 The Twisted Cubic Curve. Let Y ⊆ A3 be the set Y =
{

(t, t2, t3)
∣∣∣ t ∈ k

}
.

• Show that Y is an affine variety of dimension 1.
• Find generators for the ideal I (Y ).
• Show that A(Y ) is isomorphic to a polynomial ring in one variable over k.

We say that Y is given by the parametric representation x = t.y = t2, z = t3.
Useful facts:

√
I =

√∏
pai

i = ∏
pi in a UFD when I is a principal ideal factored into

irreducibles. An ideal is also radical iff the quotient is reduced, and ⟨f⟩ is radical
when f is irreducible.

1.1.3. 1.3. Let Y be the algebraic set in A3 defined by the two polynomials x2 − yz and xz − x.
Show that Y is a union of three irreducible components. Describe them and find their prime ideals.

1.1.4. 1.4. If we identify A2 with A1 × A1 in the natural way, show that the Zariski topology on
A2 is not the product topology of the Zariski topologies on the two copies of A1.

1.1.5. 1.5. Show that a k-algebra B is isomorphic to the affine coordinate ring of some algebraic
set in An. for some n, if and only if B is a finitely generated k-algebra with no nilpotent elements.

1.1.6. 1.6. Any nonempty open subset of an irreducible topological space is dense and irreducible.
If Y is a subset of a topological space X, which is irreducible in its induced topology, then the
closure Y is also irreducible.

1.1.7. 1.7.
(a) Show that the following conditions are equivalent for a topological space X :

• X is noetherian:
• Every nonempty family of closed subsets has a minimal element:
• X satisfies the ascending chain condition for open subsets:
• Every nonempty family of open subsets has a maximal element.

(b) A noetherian topological space is quasi-compact, i.e., every open cover has a finite subcover.
(c) Any subset of a noetherian topological space is noetherian in its induced topology.
(d) A noetherian space which is also Hausdorff must be a finite set with the discrete topology.

1.1.8. 1.8. Let Y be an affine variety of dimension r in An. Let H be a hypersurface in An, and
assume that Y ⊈ H. Then every irreducible component of Y ∩H has dimension r − 1.1

1.1.9. 1.9. Let a ⊆ A = k [x1, . . . , xn] be an ideal which can be generated by r elements. Then
every irreducible component of Z(a) has dimension ⩾ n− r.

1Use (b) above.
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1.1.10. 1.10.
(a) If Y is any subset of a topological space X, then dimY ⩽ dimX.
(b) If X is a topological space which is covered by a family of open subsets {L1; , then dimX =

sup dimUi.
(c) Give an example of a topological space X and a dense open subset U with dimL′ < dimX.
(d) If Y is a closed subset of an irreducible finite-dimensional topological space X, and if

dimY = dimX, then Y = X.
(e) Give an example of a noetherian topological space of infinite dimension.

1.1.11. 1.11 *. Let Y ⊆ A3 be the curve given parametrically by x = t3, y = t4, z = t5. Show that
I(Y ) is a prime ideal of height 2 in k[x, y; −] which cannot be generated by 2 elements. We say Y
is not a local complete intersection-cf. (Ex. 2.17).

1.1.12. 1.12. Give an example of an irreducible polynomial f ∈ R[x, y]. whose zero set Z(f) in
A2

R is not irreducible (cf. 1.4.2).

1.2. I.2: Projective Varieties.

1.2.1. 2.1. Prove the “homogeneous Nullstellensatz,” which says if a ⊆ S is a homogeneous ideal,
and if f ∈ S is a homogeneous polynomial with deg f > 0, such that f(P ) = 0 for all P ∈ Z(a) in
Pn, then fu ∈ a for some q > 0. 2

1.2.2. 2.2. For a homogeneous ideal a ⊆ S, show that the following conditions are equivalent:
(i) Z(a) = ∅ (the empty set);
(ii)

√
a = either S or the ideal S+ = ⊕

d>0 Sd;
(iii) a ⊇ Sd for some d > 0.

1.2.3. 2.3.
(a) If T1 ⊆ T2 are subsets of Sh. then Z (T1) ⊇ Z (T2).
(b) If Y1 ⊆ Y2 are subsets of Pn, then I (Y1) ⊇ I (Y2).
(c) For any two subsets Y1, Y2 of Pn, I (Y1 ∪ Y2) = I (Y1) ∩ I (Y2).
(d) If a ⊆ S is a homogeneous ideal with Z(a) ̸= ∅. then I(Z(a)) =

√
a.

(e) For any subset Y ⊆ Pn, Z(I(Y )) = Y .

1.2.4. 2.4.
(a) There is a 1-1 inclusion-reversing correspondence between algebraic sets in Pn. and homo-

geneous radical ideals of S not equal to S+ given by Y 7→ I(Y ) and a 7→ Z(a). 3

(b) An algebraic set Y ⊆ Pn is irreducible if and only if I (Y ′) is a prime ideal.
(c) Show that Pn itself is irreducible.

1.2.5. 2.5.
(a) Pn is a noetherian topological space.
(b) Every algebraic set in Pn can be written uniquely as a finite union of irreducible algebraic

sets. no one containing another. These are called its irreducible components.

2Hint: Interpret the problem in terms of the affine (n + 1)-space whose affine coordinate ring is S, and use the
usual Nullstellensatz, (1.3A).

3Note: Since S+does not occur in this correspondence, it is sometimes called the irrelevant maximal ideal of
S.
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1.2.6. 2.6. If Y is a projective variety with homogeneous coordinate ring S(Y ), show that dimS(Y ) =
dimY + 1.4

1.2.7. 2.7.

(a) dim Pn = n.
(b) If Y ⊆ Pn is a quasi-projective variety, then dimY = dimY .5

1.2.8. 2.8. A projective variety Y ⊆ Pn has dimension n − 1 if and only if it is the zero set of a
single irreducible homogeneous polynomial f of positive degree. Y is called a hypersurface in Pn.

1.2.9. 2.9 Projective Closure of an Affine Variety. If Y ⊆ An is an affine variety, we identify An

with an open set U0 ⊆ Pn by the homeomorphism φ0. Then we can speak of Y , the closure of Y
in Pn, which is called the projective closure of Y .

(a) Show that I(Y ) is the ideal generated by β(I(Y )), using the notation of the proof of (2.2).
(b) Let Y ⊆ A3 be the twisted cubic of (Ex. 1.2). Its projective closure Y ⊆ P3 is called

the twisted cubic curve in P3. Find generators for I(Y ) and I(Y ), and use this example
to show that if f1, . . . , fr generate I(Y ), then β (f1) , . . . , β (fr) do not necessarily generate
I(Y ).

1.2.10. 2.10 The Cone Over a Projective Variety (Fig. 1). Let Y ⊆ Pn be a nonempty algebraic
set, and let θ : An+1 − {(0, . . . , 0)} → Pn be the map which sends the point with affine coordinates
(a0, . . . , an) to the point with homogeneous coordinates (a0, . . . , an). We define the affine cone over
Y to be

(a) Show that C(Y ) is an algebraic set in An+1, whose ideal is equal to I(Y ), considered as an
ordinary ideal in k [x0, . . . , xn].

(b) C(Y ) is irreducible if and only if Y is.
(c) dimC(Y ) = dimY + 1.

Sometimes we consider the projective closure C(Y ) of C(Y ) in Pn+1. This is called the projec-
tive cone over Y .

4Hint: Let φi : Ui → An be the homeomorphism of (2.2), let Yt be the affine variety φt (Y ∩ Ui), and let A (Yi)
be its affine coordinate ring. Show that A (Yt) can be identified with the subring of elements of degree 0 of the
localized ring S(Y )xi . Then show that S(Y )xi

∼= A (Yi) [xi, x
−1
i ]. Now use (1.7), (1.8A), and (Ex 1.10), and look at

transcendence degrees. Conclude also that dimY = dimYi whenever Yi is nonempty.
5Hint: Use (Ex. 2.6) to reduce to (1.10).
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1.2.11. 2.11 Linear Varieties in Pn. A hypersurface defined by a linear polynomial is called a
hyperplane.

(a) Show that the following two conditions are equivalent for a variety Y in Pn :
(i) I(Y ) can be generated by linear polynomials.
(ii) Y can be written as an intersection of hyperplanes.

In this case we say that Y is a linear variety in Pn.
(b) If Y is a linear variety of dimension r in Pn, show that I(Y ) is minimally generated by

n− r linear polynomials.
(c) Let Y,Z be linear varieties in Pn, with dimY = i, dimZ = s. If r + s − n ⩾ 0, then

Y ∩ Z ̸= ∅. Furthermore, if Y ∩ Z ̸= ∅, then Y ∩ Z is a linear variety of dimension
⩾ r + s− n. 6

1.2.12. 2.12 The d-uple Embedding. For given n, d > 0, let M0,M1, . . . ,MN be all the monomials of
degree d in the n+1 variables x0, . . . , xn, where N =

(n+d
n

)
−1. We define a mapping ρd : Pn → PN

by sending the point P = (a0, . . . , an) to the point ρd(P ) = (M0(a), . . . ,MN (a)) obtained by
substituting the at in the monomials MJ . This is called the d-uple embedding of Pn in PN . For
example, if n = 1, d = 2, then N = 2, and the image Y of the 2-uple embedding of P1 in P2 is a
conic.

(a) Let θ : k [y0, . . . , yv] → k [x0, . . . , xn] be the homomorphism defined by sending yi to Mi, and
let a be the kernel of θ. Then a is a homogeneous prime ideal, and so Z (a) is a projective
variety in PN .

6Think of An+1 as a vector space over k, and work with its subspaces.
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(b) Show that the image of ρd is exactly Z(a). 7

(c) Now show that ρd is a homeomorphism of Pn onto the projective variety Z (a).
(d) Show that the twisted cubic curve in P3 (Ex. 2.9) is equal to the 3-uple embedding of P1

in P3, for suitable choice of coordinates.

1.2.13. 2.13. Let Y be the image of the 2-uple embedding of P2 in P5. This is the Veronese
surface. If Z ⊆ Y is a closed curve (a curve is a variety of dimension 1), show that there exists a
hypersurface V ⊆ P5 such that V ∩ Y = Z.

1.2.14. 2.14 The Segre Embedding. Let ψ : Pr × Ps → PN be the map defined by sending the
ordered pair (a0, . . . , ar)×(b0, . . . , bs) to (. . . , aibj , . . .) in lexicographic order. where N = rs+r+s.
Note that ψ is well-defined and injective. It is called the Segre embedding. Show that the image
of ψ is a subvariety of PN . 8

1.2.15. 2.15 The Quadric Surface in P3 (Fig. 2). Consider the surface Q (a surface is a variety of
dimension 2) in P3 defined by the equation xy − zw = 0.

(a) Show that Q is equal to the Segre embedding of P1 × P1 in P3. for suitable choice of
coordinates.

(b) Show that Q contains two families of lines (a line is a linear variety of dimension 1)
{Lt} , {Mt}, each parametrized by t ∈ P1. with the properties that if Lt ̸= Lu. then
Lt ∩ Lu = ∅ : if Mt ̸= Mu,Mt ∩Mu = ∅, and for all t, u, Lt ∩Mu = one point.

(c) Show that Q contains other curves besides these lines, and deduce that the Zariski topology
on Q is not homeomorphic via ψ to the product topology on P1 × P1 (where each P1 has
its Zariski topology).

7One inclusion is easy. The other will require some calculation.
8Hint: Let the homogeneous coordinates of PN be

{
zij

∣∣∣ 0 ≤ i, j ≤ r
}

and let a be the kernel of the homomorphism
k[{zij}] → k[x0, · · · , xr, y0, · · · , ys], which sends zij to xiyj . Then show that imψ = Z(a).
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1.2.16. 2.16.
(a) The intersection of two varieties need not be a variety. For example, let Q1 and Q2 be the

quadric surfaces in P3 given by the equations x2 − yw = 0 and xy − zw = 0, respectively.
Show that Q1 ∩Q2 is the union of a twisted cubic curve and a line.

(b) Even if the intersection of two varieties is a variety, the ideal of the intersection may not
be the sum of the ideals. For example, let C be the conic in P2 given by the equation
xy − zw = 0. Let L be the line given by y = 0. Show that C ∩ L consists of one point P ,
but that I(C) + I(L) ̸= I(P ).

1.2.17. 2.17 Complete intersections. A variety Y of dimension r in Pn is a (strict) complete inter-
section if I(Y ) can be generated by n− r elements. Y is a set-theoretic complete intersection if Y
can be written as the intersection of n− r hypersurfaces.

(a) Let Y be a variety in Pn, let Y = Z(a); and suppose that a can be generated by q elements.
Then show that dimY ⩾ n− q.

(b) Show that a strict complete intersection is a set-theoretic complete intersection.
(c) * The converse of (b) is false. For example let Y be the twisted cubic curve in P3 (Ex.

2.9). Show that I(Y ) cannot be generated by two elements. On the other hand, find
hypersurfaces H1,H2 of degrees 2,3 respectively, such that Y = H1 ∩H2.

(d) ** It is an unsolved problem whether every closed irreducible curve in P3 is a set-theoretic
intersection of two surfaces. See Hartshorne [1] and Hartshorne [5.III, section 5] for com-
mentary.
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1.3. I.3: Morphisms.

1.3.1. 3.1.
1. Show that any conic in A2 is isomorphic either to A1 or A1 \ {0} (cf. Ex.1.1).
2. Show that A1 is not isomorphic to any proper open subset of itself.9
3. Any conic in P2 is isomorphic to P1.
4. We will see later (Ex. 4.8) that any two curves are homeomorphic. But show now that A2

is not even homeomorphic to P2.
5. If an affine variety is isomorphic to a projective variety, then it consists of only one point.

1.3.2. 3.2. A morphism whose underlying map on the topological spaces is a homeomorphism need
not be an isomorphism.

1. For example, let φ : A1 → A2 be defined by t 7→
(
t2, t3

)
. Show that φ defines a bijective

bicontinuous morphism of A1 onto the curve y2 = x3, but that φ is not an isomorphism.
2. For another example. let the characteristic of the base field k be p > 0, and define a map
ρ : A1 → A1 by t 7→ tp. Show that φ is bijective and bicontinuous but not an isomorphism.
This is called the Frobenius morphism.

1.3.3. 3.3.
1. Let φ : X → Y be a morphism. Then for each P ∈ X,φ induces a homomorphism of local

rings φ∗
P : Oφ(P ),Y → OP,Y .

2. Show that a morphism φ is an isomorphism if and only if φ is a homeomorphism, and the
induced map φ∗

P on local rings is an isomorphism, for all P ∈ X.
3. Show that if φ(X) is dense in Y , then the map ρ∗

P is injective for all P ∈ X.

1.3.4. 3.4. Show that the d-uple embedding of Pn(Ex.2.12) is an isomorphism onto its image.

1.3.5. 3.5. By abuse of language, we will say that a variety “is affine” if it is isomorphic to an affine
variety. If H ⊆ Pn is any hypersurface. show that Pn −H is affine.10

1.3.6. 3.6 There are quasi-affine varieties which are not affine. For example, show that I = A2 \
{(0, 0)} is not affine.11

1.3.7. 3.7.
1. Show that any two curves in P2 have a nonempty intersection.
2. More generally, show that if Y ⊆ Pn is a projective variety of dimension ⩾ 1. and if H is a

hypersurface. then Y ∩H ̸= ∅.12

1.3.8. 3.8. Let H1 and H, be the hyperplanes in Pn defined by x1 = 0 and x, = 0, with i ̸= j.
Show that any regular function on Pn − (H1 ∩H1) is constant.13

1.3.9. 3.9. The homogeneous coordinate ring of a projective variety is not invariant under isomor-
phism. For example, let X = P1. and let Y be the 2-uple embedding of P1 in P2. Then X ∼= Y (
Ex. 3.4). But show that S(X) ≡ S(Y ).

9Use (b) above.
10Use (c) above.
11Use induction on dimX.
12Note: We will give another proof of this result using sheaves of ideals later (V.10).
13This gives an alternate proof of (3.4a) in the case Y = Pn.
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1.3.10. 3.10 Subvarieties. A subset of a topological space is locally closed if it is an open subset of
its closure. or. equivalently. if it is the intersection of an open set with a closed set.

If X is a quasi-affine or quasi-projective variety and Y is an irreducible locally closed subset.
then I is also a quasi-affine (respectively, quasi-projective) variety by virtue of being a locally closed
subset of the same affine or projective space. We call this the induced structure on Y. and we call
Y a subvariety of X.

Now let φ : X → Y he a morphism. let X ′ ⊆ X and Y ′ ⊆ Y be irreducible locally closed subsets
such that φ (X ′) ⊆ Y ′. Show that φ|X : X ′ → Y ′ is a morphism.

1.3.11. 3.11. Let X be any variety and let P ∈ X. Show there is a 1-1 correspondence between
the prime ideals of the local ring OP and the closed subvarieties of X containing P .

1.3.12. 3.12. If P is a point on a variety X, then dim OP = dimX.14

1.3.13. 3.13 The Local Ring of a Subvariety. Let Y ⊆ X be a subvariety. Let OY,X be the set of
equivalence classes ⟨L, f⟩ where L ⊆ X is open. L ∩ Y ̸= ∅, and f is a regular function on L. We
say ⟨L, f⟩ is equivalent to ⟨V, g⟩ if f = g on U ∩ V .

Show that OY,X is a local ring, with residue field K(Y ) and dimension = dim X− dimY . It is
the local ring of Y on X. Note if Y = P is a point we get OP . and if Y = X we get K(X). Note
also that if Y is not a point, then K(Y ) is not algebraically closed, so in this way we get local rings
whose residue fields are not algebraically closed.

1.3.14. 3.14 Projection from a Point. Let Pn be a hyperplane in Pn+1 and let P ∈ Pn+1 − Pn.
Define a mapping φ : Pn+1 \ {P} → Pn by φ(Q) = the intersection of the unique line containing P
and Q with Pn.

1. Show that φ is a morphism.
2. Let Y ⊆ P3 be the twisted cubic curve which is the image of the 3-uple embedding of P1

(Ex. 2.12). If t, u are the homogeneous coordinates on P1. we say that Y is the curve
given parametrically by (x, y, z, w) =

(
t3, t2u, tu2, u3)

. Let P = (0, 0, 1, 0), and let P2 be the
hyperplane z = 0. Show that the projection of Y from P is a cuspidal cubic curve in the
plane, and find its equation.

1.3.15. 3.15 Products of Affine Varieties. Let X ⊆ An and Y ⊆ Am be affine varieties.
1. Show that X × Y ⊆ An+m with its induced topology is irreducible.15 The affine variety
X × Y is called the product of X and Y . Note that its topology is in general not equal to
the product topology (Ex. 1.4).

2. Show that A(X × Y ) ∼= A(X) ⊗k A(Y ).
3. Show that X × Y is a product in the category of varieties, i.e., show

• the projections X × Y → X and X × Y → Y are morphisms, and
• given a variety Z, and the morphisms Z → X,Z → Y . there is a unique morphism
Z → X × Y making a commutative diagram

Z X × Y

X Y

Link to Diagram
14Hint: Reduce 10 the affine case and use (3.2c)
15Hint: Suppose that X × Y is a union of two closed subsets Z1 ∪ Z2. Let X1 =

{
x ∈ X

∣∣∣ x× Y ⊆ Z1

}
, i = 1, 2.

Show that X = X1 ∪X2 and X1, X2 are closed. Then X = X1 or X2 so X × Y = Z1 or Z2.

https://q.uiver.app/?q=WzAsNCxbMCwwLCJaIl0sWzIsMCwiWFxcdGltZXMgWSJdLFsxLDIsIlgiXSxbMywyLCJZIl0sWzAsMl0sWzAsM10sWzEsMl0sWzEsM10sWzAsMV1d
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4. Show that dimX × Y = dimX + dim Y .

1.3.16. 3.16 Products of Quasi-Projective Varieties. Use the Segre embedding (Ex. 2.14) to identify
Pn ×Pm with its image and hence give it a structure of projective varieties. Now for any two quasi-
projective varieties X ⊆ Pn and Y ⊆ Pm, consider X × Y ⊆ Pn × Pm.

1. Show that X × Y is a quasi-projective variety.
2. If X,Y are both projective, show that X × Y is projective.
3. Show that X × Y is a product in the category of varieties.

1.3.17. 3.17 Normal Varieties. A variety Y is normal at a point P ∈ Y if OP is an integrally closed
ring. Y is normal if it is normal at every point.

1. Show that every conic in P2 is normal.
2. Show that the quadric surfaces Q1, Q2 in P3 given by equations Q1 : xy = zw; Q2 : xy = z2

are normal. (cf. (II. Ex. 6.4) for the latter.)
3. Show that the cuspidal cubic y2 = x3 in A2 is not normal.
4. If Y is affine, then Y is normal ⇔ A(Y ) is integrally closed.
5. Let Y be an affine variety. Show that there is a normal affine variety Ỹ , and a morphism
π : Ỹ → Y , with the property that whenever Z is a normal variety, and φ : Z → Y is a
dominant morphism (i.e., φ(Z) is dense in Y ), then there is a unique morphism θ : Z → Ỹ
such that φ = π θ. Ỹ is called the normalization of Y . You will need (3.9 A) above.

1.3.18. 3.18 Projectively Normal Varieties. A projective variety Y ⊆ Pn is projectively normal
(with respect to the given embedding) if its homogeneous coordinate ring S (Y ) is integrally closed.

1. If Y is projectively normal, then Y is normal.
2. There are normal varieties in projective space which are not projectively normal. For

example, let Y be the twisted quartic curve in P3 given parametrically by (x, y : z, w) =(
t4, t3u, tu3, u4)

. Then Y is normal but not projectively normal. See (III, Ex. 5.6) for more
examples.

3. Show that the twisted quartic curve Y above is isomorphic to P1. which is projectively
normal. Thus projective normality depends on the embedding.

1.3.19. 3.19 Automorphisms of An. Let φ : An → An be a morphism of An to An given by n

polynomials f1 . . . .fn of n variables x1, . . . xn. Let J = det
[

∂fi
∂xj

]
be the Jacobian polynomial of φ.

1. If φ is an isomorphism (in which case we call φ an automorphism of An ) show that J is a
nonzero constant polynomial.

2. ** The converse of 1.is an unsolved problem, even for n = 2. See, for example, Vitushkin.

1.3.20. 3.20. Let Y be a variety of dimension ⩾ 2, and let P ∈ Y be a normal point. Let f be a
regular function on Y − P .

1. Show that f extends to a regular function on Y .
2. Show this would be false for dimY = 1. See (III. Ex. 3.5) for generalization.

1.3.21. 3.21. Group Varieties. A group variety consists of a variety Y together with a morphism
µ : Y × Y → Y . such that the set of points of Y with the operation given by µ is a group. and
such that the inverse map y−y−1 is also a morphism of Y → Y .

1. The additive group Ga is given by the variety A1 and the morphism µ : A2 → A1 defined
by µ(a, b) = a+ b. Show it is a group variety.

2. The multiplicative croup Gm is given by the variety A1\{0}, and the morphism µ(a, b) = ab.
Show | in a group variety.
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3. If G is a group variety, and X is any variety. show that the set Hom(X,G) has a natural
group structure.

4. For any variety X, show that Hom (X,Ga) is isomorphic to (’ (X) as a group under addition.
5. For any variety X, show that Hom (X,Gm) is isomorphic to the group of units in O(X),

under multiplication.

1.4. I.4: Rational Maps.

1.4.1. 4.1. If f and g are regular functions on open subsets U and V of a variety X, and if f = g
on U ∩ V . show that the function which is f on U and g on V is a regular function on U ∪ V .
Conclude that if f is a rational function on X, then there is a largest open subset U of X on which
f is represented by a regular function. We say that f is defined at the points of U .

1.4.2. 4.2. Same problem for rational maps. If φ is a rational map of X to Y , show there is a
largest open set on which φ is represented by a morphism. We say the rational map is defined at
the points of that open set.

1.4.3. 4.3.
1. Let f be the rational function on P2 given by f = x1/x0. Find the set of points where f is

defined and describe the corresponding regular function.
2. Now think of this function as a rational map from P2 to A1. Embed A1 in P1, and let
φ : P2 → P1 be the resulting rational map. Find the set of points where φ is defined, and
describe the corresponding morphism.

1.4.4. 4.4. A variety Y is rational if it is birationally equivalent to Pn for some n (or, equivalently
by (4.5), if K(Y ) is a pure transcendental extension of k ).

1. Any conic in P2 is a rational curve.
2. The cuspidal cubic y2 = x3 is a rational curve.
3. Let Y be the nodal cubic curve y2z = x2(x + z) in P2. Show that the projection φ from

the point P = (0, 0, 1) to the line z = 0 (Ex. 3.14) induces a birational map from Y to P1.
Thus Y is a rational curve.

1.4.5. 4.5. Show that the quadric surface Q : xy = zw in P3 is birational to P2, but not isomorphic
to P2 (cf. Ex. 2.15).

1.4.6. 4.6. Plane Cremona Transformations. A birational map of P2 into itself is called a plane
Cremona transformation. We give an example, called a quadratic transformation. It is the rational
map φ : P2 → P2 given by (a0, a1, a2) → (a1a2, a0a2, a0a1) when no two of a0, a1, a2 are 0.

1. Show that φ is birational, and is its own inverse.
2. Find open sets U, V ⊆ P2 such that φ : U → V is an isomorphism.
3. Find the open sets where φ and φ−1 are defined. and describe the corresponding morphisms.

See also (Chapter V, 4.2.3).

1.4.7. 4.7. Let X and Y be two varieties. Suppose there are points P ∈ X and Q ∈ Y such that
the local rings OP,X and OQ,Y are isomorphic as k-algebras. Then show that there are open sets
P ∈ U ⊆ X and Q ∈ V ⊆ Y and an isomorphism of U to V which sends P to Q.

1.4.8. 4.8.
1. Show that any variety of positive dimension over k has the same cardinality as k.16

2. Deduce that any two curves over k are homeomorphic (cf. Ex. 3.1).
16Use (b) above.
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1.4.9. 4.9. Let X be a projective variety of dimension r in Pn. with n ⩾ r + 2. Show that for
suitable choice of P /∈ X. and a linear Pn−1 ⊆ Pn. the projection from P to Pn−1 (Ex. 3.14)
induces a birational morphism of X onto its image X ′ ⊆ Pn−1. You will need to use (4.6A). (4.7A).
and (4.8A). This shows in particular that the birational map of (4.9) can be obtained by a finite
number of such projections.

1.4.10. 4.10. Let Y be the cuspidal cubic curve y2 = x3 in A2. Blow up the point O = (0.0). Let
E be the exceptional curve. and let Ỹ be the strict transform of Y . Show that E meets Ỹ in one
point. and that Ỹ ∼= A1. In this case the morphism ρ : Ỹ → Y is bijective and bicontinuous. but
it is not an isomorphism.

1.5. I.5: Nonsingular Varieties.

1.5.1. 5.1. Locate the singular points and sketch the following curves in A2 (assume char k ̸= 2 ).
Which is which in Figure 4 ?

1. x2 = x4 + y4 :
2. xy = x6 + y6 :
3. x3 = y2 + x4 + y4 :
4. x2y + xy2 = x4 + y4.

1.5.2. 5.2. Locate the singular points and describe the singularities of the following surfaces in A3

(assume char k ̸= 2 ). Which is which in Figure 5?

1. xy2 = z2

2. x2 + y2 = z2

3. xy + x3 + y3 = 0.
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1.5.3. 5.3. Multiplicities. Let Y ⊆ A2 be a curve defined by the equation f(x, y) = 0. Let P = (a, b)
be a point of A2. Make a linear change of coordinates so that P becomes the point (0, 0). Then
write f as a sum f = f0 + f1 + . . .+ fd, where fi is a homogeneous polynomial of degree i in x and
y. Then we define the multiplicity of P on Y , denoted µP (Y ), to be the least r such that fr ̸= 0.
(Note that P ∈ Y ⇔ µP (Y ) > 0.) The linear factors of fr are called the tangent directions at P .

1. Show that µP (Y ) = 1 ⇐⇒ P is a nonsingular point of Y .
2. Find the multiplicity of each of the singular points in (Ex. 5.1) above.

1.5.4. 5.4. Intersection Multiplicity. If Y,Z ⊆ A2 are two distinct curves, given by equations
f = 0, g = 0, and if P ∈ Y ∩ Z, we define the intersection multiplicity (Y · Z)P of Y and Z at P
to be the length of the OP -module OP / ⟨f, g⟩.

1. Show that (Y · Z)P is finite, and (Y · Z)P ⩾ µP (Y ) · µP (Z).
2. If P ∈ Y , show that for almost all lines L through P (i.e., all but a finite number),

(L · Y )P = µP (Y ).
3. If Y is a curve of degree d in P2, and if L is a line in P2, L ̸= Y , show that (L ·Y ) = d. Here

we define (L · Y ) = ∑(L · Y )P taken over all points P ∈ L ∩ Y , where (L · Y )p is defined
using a suitable affine cover of P2.

1.5.5. 5.5. For every degree d > 0, and every p = 0 or a prime number, give the equation of a
nonsingular curve of degree d in P2 over a field k of characteristic p.

1.5.6. 5.6. Blowing Up Curve Singularities.
1. Let Y be the cusp or node of (Ex. 5.1). Show that the curve Ỹ obtained by blowing up Y

at O = (0, 0) is nonsingular (cf. (4.9.1) and (Ex. 4.10)).
2. We define a node (also called ordinary double point) to be a double point (i.e., a point of

multiplicity 2 ) of a plane curve with distinct tangent directions (Ex. 5.3). If P is a node
on a plane curve Y , show that φ−1(P ) consists of two distinct nonsingular points on the
blown-up curve Ỹ . We say that “blowing up P resolves the singularity at P”.

3. Let P ∈ Y be the tacnode of ( Ex. 5.1). If φ : Ỹ → Y is the blowing-up at P . show
that ρ−1(P ) is a node. Using 2. we see that the tacnode can be resolved by two successive
blowings-up.

4. Let Y be the plane curve y3 = x5, which has a “higher order cusp” at O. Show that O is
a triple point: that blowing up O gives rise to a double point (what kind?) and that one
further blowing up resolves the singularity.
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Note: We will see later (V, 3.8) that any singular point of a plane curve can be resolved by a
finite sequence of successive blowings-up.

1.5.7. 5.7. Let Y ⊆ P2 be a nonsingular plane curve of degree > 1, defined by the equation
f(x, y, z) = 0. Let X ⊆ A3 be the affine variety defined by f (this is the cone over Y ; see (Ex. 2.10)
). Let P be the point (0, 0, 0), which is the vertex of the cone. Let φ : X̃ → X be the blowing-up
of X at P .

1. Show that X has just one singular point, namely P .
2. Show that X̃ is nonsingular (cover it with open affines).
3. Show that φ−1(P ) is isomorphic to Y .

1.5.8. 5.8. Let Y ⊆ Pn be a projective variety of dimension r. Let f1, . . . , ft ∈ S = k [x0, . . . , xn] be
homogeneous polynomials which generate the ideal of Y . Let P ∈ Y be a point, with homogeneous
coordinates P = (a0, . . . , an). Show that P is nonsingular on Y if and only if the rank of the matrix[

∂fi
∂xj

(a0, · · · , an)
]

is n− r.17

1.5.9. 5.9. Let f ∈ k[x, y; z] be a homogeneous polynomial, let Y = Z(f) ⊆ P2 be the algebraic set
defined by f , and suppose that for every P ∈ Y , at least one of ∂f

∂x (P ), ∂f
∂y (P ), ∂f

∂z (P ) is nonzero.
Show that f is irreducible (and hence that Y is a nonsingular variety). 18

1.5.10. 5.10. For a point P on a variety X. let m be the maximal ideal of the local ring OP . We
define the Zariski tangent space TP (X) of X at P to be the dual k-vector space of m/m2.

1. For any point P ∈ X. dimTP (X) ⩾ dimX. with equality if and only if P is nonsingular.
2. For any morphism φ : X → Y , there is a natural induced k-linear map TP (φ) : TP (X) →
Tφ(P )(Y )

3. If φ is the vertical projection of the parabola x = y2 onto the x-axis, show that the induced
map T0(φ) of tangent spaces at the origin is the zero map.

1.5.11. 5.11. The Elliptic Quartic Curve in P3. Let Y be the algebraic set in P3 defined by the
equations x2 − xz − yw = 0 and yz − xw − zw = 0. Let P be the point (x, y, z, w) = (0, 0, 0, 1).
and let φ denote the projection from P to the plane w = 0. Show that φ induces an isomorphism
of Y − P with the plane cubic curve y2z − x3 + xz2 = 0 minus the point (1, 0,−1). Then show
that Y is an irreducible nonsingular curve. It is called the elliptic quartic curve in P3. Since it is
defined by two equations it is another example of a complete intersection (Ex. 2.17).

1.5.12. 5.12. Quadric Hypersurfaces. Assume char k ̸= 2. and let f be a homogeneous polynomial
of degree 2 in x0 . . . . . . xn.

1. Show that after a suitable linear change of variables, f can be brought into the form
f = x2

0 + . . .+ x2
r for some 0 ⩽ r ⩽ n.

2. Show that f is irreducible if and only if r ⩾ 2.
3. Assume r ⩾ 2, and let Q be the quadric hypersurface in Pn defined by f . Show that the

singular locus Z = SingQ of Q is a linear variety (Ex. 2.11) of dimension n − r − 1. In
particular, Q is nonsingular if and only if r = n.

4. In case r < n, show that Q is a cone with axis Z over a nonsingular quadric hypersurface
Q′ ⊆ Pr.19

17Use (b) above.
18Use (c) above.
19Use induction on dimX.
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1.5.13. 5.13. It is a fact that any regular local ring is an integrally closed domain (Matsumura
[2.Th.36, p.121]). Thus we see from (5.3) that any variety has a nonempty open subset of normal
points (Ex. 3.17). In this exercise, show directly (without using (5.3)) that the set of nonnormal
points of a variety is a proper closed subset (you will need the finiteness of integral closure: see
(3.9A)).

1.5.14. 5.14. Analytically Isomorphic Singularities.
1. If P ∈ Y and Q ∈ Z are analytically isomorphic plane curve singularities, show that the

multiplicities µP (Y ) and µQ(Z) are the same (Ex. 5.3).
2. Generalize the example in the text (5.6.3) to show that if f = fr +fr+1 + . . . ∈ k[[x, y]], and

if the leading form fr of f factors as fr = gsht, where gs, ht are homogeneous of degrees s
and t respectively, and have no common linear factor, then there are formal power series in
k[[x, y]] such that f = gh.

3. Let Y be defined by the equation f(x, y) = 0 in A2, and let P = (0, 0) be a point of
multiplicity r on Y , so that when f is expanded as a polynomial in x and y, we have
f = fr+ higher terms. We say that P is an ordinary r-fold point if fr is a product
of r distinct linear factors. Show that any two ordinary double points are analytically
isomorphic. Ditto for ordinary triple points. But show that there is a one-parameter family
of mutually nonisomorphic ordinary 4-fold points.

4. * Assume char k ̸= 2. Show that any double point of a plane curve is analytically isomorphic
to the singularity at (0, 0) of the curve y2 = xr, for a uniquely determined r ⩾ 2. If r = 2 it
is a node (Ex. 5.6). If r = 3 we call it a cusp: if r = 4 a tacnode. See (V, 3.9.5) for further
discussion.

1.5.15. 5.15. Families of Plane Curves. A homogeneous polynomial f of degree d in three variables
x, y, z has

(d+2
2

)
coefficients. Let these coefficients represent a point in PN . where N =

(d+2
2

)
− 1 =

1
2d(d+ 3).

1. Show that this gives a correspondence between points of PN and algebraic sets in P2 which
can be defined by an equation of degree d. The correspondence is 1-1 except in some cases
where f has a multiple factor.

2. Show under this correspondence that the (irreducible) nonsingular curves of degree d cor-
respond 1-1 to the points of a nonempty Zariski-open subset of PN . 20

1.6. I.6: Nonsingular Curves.

1.6.1. 6.1. Recall that a curve is rational if it is birationally equivalent to P1(Ex.4.4). Let Y be a
nonsingular rational curve which is not isomorphic to P1.

(a) Show that Y is isomorphic to an open subset of A1.
(b) Show that Y is affine.
(c) Show that A(Y ) is a unique factorization domain.

1.6.2. 6.2. An Elliptic Curve. Let Y be the curve y2 = x3 − x in A2, and assume that the
characteristic of the base field k is ̸= 2. In this exercise we will show that Y is not a rational curve,
and hence K(Y ) is not a pure transcendental extension of k.

(a) Show that Y is nonsingular, and deduce that A = A(Y ) ≃ k[x, y]/
(
y2 − x3 + x

)
is an

integrally closed domain.
(b) Let k[x] be the subring of K = K(Y ) generated by the image of x in A. Show that k[x] is

a polynomial ring, and that A is the integral closure of k[x] in K.

20Note: We will give another proof of this result using sheaves of ideals later (V.10).
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(c) Show that there is an automorphism σ : A → A which sends y to −y and leaves x fixed. For
any a ∈ A, define the norm of a to be N(a) = a · σ(a). Show that N(a) ∈ k[x], N(1) = 1,
and N(ab) = N(a) ·N(b) for any a, b ∈ A.

(d) Using the norm, show that the units in A are precisely the nonzero elements of k. Show that
x and y are irreducible elements of A. Show that A is not a unique factorization domain.

(e) Prove that Y is not a rational curve (Ex. 6.1). See (II, 8.20.3) and (III, Ex. 5.3) for other
proofs of this important result.

1.6.3. 6.3. Show by example that the result of (6.8) is false if either (a) dimX ⩾ 2, or (b) Y is not
projective.

1.6.4. 6.4. Let Y be a nonsingular projective curve. Show that every nonconstant rational function
f on Y defines a surjective morphism φ : Y → P1, and that for every P ∈ P1, φ−1(P ) is a finite
set of points.

1.6.5. 6.5. Let X be a nonsingular projective curve. Suppose that X is a (locally closed) subvariety
of a variety Y (Ex. 3.10). Show that X is in fact a closed subset of Y . See (II, Ex. 4.4) for
generalization.

1.6.6. 6.6. Automorphisms of P1. Think of P1 as A1 ∪ {∞}. Then we define a fractional linear
transformation of P1 by sending x 7→ (ax+ b)/(cx+ d), for a, b, c, d ∈ k, and ad− bc ̸= 0.

(a) Show that a fractional linear transformation induces an automorphism of P1 (i.e., an isomor-
phism of P1 with itself). We denote the group of all these fractional linear transformations
by PGL(1).

(b) Let Aut P1 denote the group of all automorphisms of P1. Show that Aut P1 ≃ Aut k(x),
the group of k-automorphisms of the field k(x).

(c) Now show that every automorphism of k(x) is a fractional linear transformation, and deduce
that PGL(1) → Aut P1 is an isomorphism.

Note: We will see later (II. 7.1.1) that a similar result holds for Pn : every automorphism is
given by a linear transformation of the homogeneous coordinates.

1.6.7. 6.7. Let P1, . . . , Pr, Q1, . . . , Qs be distinct points of A1. If A1 − {P1, . . . , Pr} is isomorphic
to A1 − {Q1, . . . , Q⋄}, show that r = s. Is the converse true? Cf. (Ex. 3.1).

1.7. I.7: Intersections in Projective Space.

1.7.1. 7.1.
1. Find the degree of the d-uple embedding of Pn in PN ( Ex. 2.12).21

2. Find the degree of the Segre embedding of Pr × Ps in P′( Ex. 2.14).22

1.7.2. 7.2. Let Y be a variety of dimension r in Pn, with Hilbert polynomial PY . We define the
arithmetic genus of Y to be pa(Y ) = (−1)r (PY (0) − 1). This is an important invariant which (as
we will see later in (III, Ex. 5.3)) is independent of the projective embedding of Y .

1. Show that pa (Pn) = 0.
2. If Y is a plane curve of degree d, show that pa(Y ) = 1

2(d− 1)(d− 2).
3. More generally, if H is a hypersurface of degree d in Pn, then pa(H) =

(d−1
n

)
.

4. If Y is a complete intersection (Ex. 2.17) of surfaces of degrees a, h in P3, then pa(Y ) =
1
2ab(a+ b− 4) + 1.

21Answer: dn.
22Answer:

(
r+s

s

)
.
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(e) Let Y r ⊆ Pn, Zs ⊆ Pm be projective varieties, and embed Y ×Z ⊆ Pn× Pm → PN by the
Segre embedding. Show that

1.7.3. 7.3. The Dual Curve. Let Y ⊆ P2 be a curve. We regard the set of lines in P2 as another
projective space,

(
P2)∗. by taking (a0, a1, a2) as homogeneous coordinates of the line L : a0x0 +

a1x1 + a2x2 = 0. For each nonsingular point P ∈ Y , show that there is a unique line TP (Y ) whose
intersection multiplicity with Y at P is > 1. This is the tangent line to Y at P .

Show that the mapping P 7→ TP (Y ) defines a morphism of Reg Y (the set of nonsingular points
of Y ) into

(
P2)∗. The closure of the image of this morphism is called the dual curve Y ∗ ⊆

(
P2)∗

of Y .

1.7.4. 7.4. Given a curve Y of degree d in P2, show that there is a nonempty open subset U of(
P2)∗ in its Zariski topology such that for each L ∈ U,L meets Y in exactly d points. 23

This result shows that we could have defined the degree of Y to be the number d such that
almost all lines in P2 meet Y in d points, where “almost all” refers to a nonempty open set of the
set of lines, when this set is identified with the dual projective space

(
P2)∗

1.7.5. 7.5.

1. Show that an irreducible curve Y of degree d > 1 in P2 cannot have a point of multiplicity
⩾ d( Ex. 5.3).

2. If Y is an irreducible curve of degree d > 1 having a point of multiplicity d− 1. then Y is
a rational curve (Ex. 6.1).

1.7.6. 7.6. Linear Varieties. Show that an algebraic set Y of pure dimension r (i.e., every irre-
ducible component of Y has dimension r ) has degree 1 if and only if Y is a linear variety (Ex.
2.11).24

1.7.7. 7.7. Let Y be a variety of dimension r and degree d > 1 in Pn. Let P ∈ Y be a nonsingular
point. Define X to be the closure of the union of all lines PQ, where Q ∈ Y,Q ̸= P .

1. Show that X is a variety of dimension r + 1.
2. Show that degX < d. 25

1.7.8. 7.8. Let Y r ⊆ Pn be a variety of degree 2. Show that Y is contained in a linear subspace L
of dimension r + 1 in Pn. Thus Y is isomorphic to a quadric hypersurface in Pr+1(Ex.5.12)

2. II: Schemes

2.1. II.1: Sheaves.

2.1.1. II.1.1. Let A be an abelian group, and define the constant presheaf associated to A on
the topological space X to be the presheaf U 7→ A for all U ̸= ∅. with restriction maps the identity.
Show that the constant sheaf A defined in the text is the sheaf associated to this presheaf.

23Hint: Show that the set of lines in
(
P2)∗ which are either tangent to Y or pass through a singular point of Y

is contained in a proper closed subset.
24Hint: First, use (7.7) and treat the case dimY = 1. Then do the general case by cutting with a hyperplane and

using induction.
25Hint: Use induction on dimY .
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2.1.2. II.1.2.

a. For any morphism of sheaves φ : F → G , show that for each point P, (kerφ)P = ker (φP )
and (imφ)P = im (φP ).

b. Show that φ is injective (respectively, surjective) if and only if the induced map on the
stalks φP is injective (respectively, surjective) for all P .

c. Show that a sequence of sheaves and morphisms is exact if and only if for each P ∈ X the
corresponding sequence of stalks is exact as a sequence of abelian groups.

2.1.3. II.1.3.

a. Let φ : F → G be a morphism of sheaves on X. Show that φ is surjective if and only if
the following condition holds: for every open set U ⊆ X, and for every s ∈ G (U), there is
a covering {Ui} of U , and there are elements ti ∈ F (Ui), such that φ (ti) = s|Ui

for all i.
b. Give an example of a surjective morphism of sheaves φ : F → G , and an open set U such

that φ(U) : F(U) → G (U) is not surjective.

2.1.4. II.1.4.

a. Let φ : F → G be a morphism of presheaves such that φ(U) : F(U) → G (U) is injective
for each U . Show that the induced map φ+ : F+ → G +of associated sheaves is injective.

b. Use part (a) to show that if φ : F → G is a morphism of sheaves, then imφ can be naturally
identified with a subsheaf of G . as mentioned in the text.

2.1.5. II.1.5. Show that a morphism of sheaves is an isomorphism if and only if it is both injective
and surjective.

2.1.6. II.1.6.

a. Let F ′ be a subsheaf of a sheaf F̃ . Show that the natural map of F̃ to the quotient sheaf
F/F ′ is surjective, and has kernel F ′. Thus there is an exact sequence

b. Conversely, if is an exact sequence, show that F ′ is isomorphic to a subsheaf of F , and that
F ′′ is isomorphic to the quotient of F by this subsheaf.

2.1.7. II.1.7. Let φ : F → G be a morphism of sheaves.

a. Show that imφ ∼= F/ kerφ.
b. Show that cokerφ ∼= G / imφ.

2.1.8. II.1.8. For any open subset U ⊆ X, show that the functor Γ(U.·) from sheaves on X to
abelian groups is a left exact functor, i.e.. if is an exact sequence of sheaves, then is an exact
sequence of groups.

The functor Γ(U,−) need not be exact: see ( Ex. 1.21) below.

2.1.9. II.1.9. Direct Sum. Let F and G be sheaves on X. Show that the presheaf U 7→ F(U)⊕
G (U) is a sheaf. It is called the direct sum of F and G , and is denoted by F ⊕ G .

Show that it plays the role of direct sum and of direct product in the category of sheaves of
abelian groups on X.
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2.1.10. II.1.10. Direct Limit. Let {Fi} be a direct system of sheaves and morphisms on X. We
define the direct limit of the system {Fi}, denoted lim Fi, to be the sheaf associated to the presheaf
U 7→ lim−−→Fi(U).

Show that this is a direct limit in the category of sheaves on X, i.e., that it has the following
universal property: given a sheaf G , and a collection of morphisms Fi → G . compatible with the
maps of the direct system, then there exists a unique map lim−−→Fi → G such that for each i, the
original map F → G is obtained by composing the maps Fi → lim−−→Fi → G .

2.1.11. II.1.11. Let {Fi} be a direct system of sheaves on a noetherian topological space X. In
this case show that the presheaf U 7→ lim−−→Fi(U) is already a sheaf. In particular, Γ (X, lim−−→Fi) =
lim−−→Γ (X,Fi)

2.1.12. II.1.12. Inverse Limit. Let, {Fi} be an inverse system of sheaves on X. Show that the
presheaf U 7→ lim←−−Fi (U) is a sheaf. It is called the inverse limit of the system {Fi}, and is denoted
by lim←−−Fi. Show that it has the universal property of an inverse limit in the category of sheaves.

2.1.13. II.1.13. Espace Etale of a Presheaf. Given a presheaf F on X, we define a topological
space Spe(F), called the espace etale of F , as follows26. As a set, Spe = ⋃

p∈X FP . We define
a projection map π : Spe(F) → X by sending s ∈ Fp to P . For each open set U ⊆ X and each
section s ∈ F (U), we obtain a map s : U → Spe(F) by sending P 7→ sP , its germ at P .

This map has the property that π ◦ s = id, in other words, it is a “section” of π over U . We now
make Spe(F) into a topological space by giving it the strongest topology such that all the maps
s : U → Spe(F) for all U . and all s ∈ F (U), are continuous.

Now show that the sheaf F+associated to F can be described as follows: for any open set
U ⊆ X,F+ (U) is the set of continuous sections of Spe(F) over U .

In particular, the original presheaf F was a sheaf if and only if for each U,F(U) is equal to the
set of all continuous sections of Spe(F) over U .

2.1.14. II.1.14. Support. Let F be a sheaf on X, and let s ∈ F(U) be a section over an open set
U . The support of s, denoted supp s, is defined to be

{
P ∈ U

∣∣∣ sP ̸= 0
}

, where sP denotes the
germ of s in the stalk FP . Show that Supp s is a closed subset of U .

We define the support of F , supp F , to be
{
P ∈ X

∣∣∣ ·FP ̸= 0
}

. It need not be a closed subset.

2.1.15. II.1.15. Sheaf Hom. Let F ,G be sheaves of abelian groups on X. For any open set U ⊆ X,
show that the set Hom(F|U , G |U ) of morphisms of the restricted sheaves has a natural structure
of abelian group. Show that the presheaf U 7→ Hom (F|U , G |U ) is a sheaf. It is called the sheaf
of local morphisms of F into G , “sheaf hom” for short, and is denoted Hom(F ,G ).

2.1.16. II.1.16. Flasque Sheaves. A sheaf F on a topological spaceX is flasque if for every inclusion
V ⊆ U of open sets, the restriction map F(U) → F(V ) is surjective.

a. Show that a constant sheaf on an irreducible topological space is flasque. See (I, §1) for
irreducible topological spaces.

b. If is an exact sequence of sheaves, and if F ′ is flasque, then for any open set L, the sequence
of abelian groups is also exact.

c. If is an exact sequence of sheaves, and if F ′ and F are flasque, then F ′′ is flasque.
d. If f : X → Y is a continuous map, and if F is a flasque sheaf on X, then f∗F is a flasque

sheaf on Y .
26This exercise is included only to establish the connection between our definition of a sheaf and another definition

often found in the literature. See for example Godement (1. Ch. II, 1.2).
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e. Let F be any sheaf on X. We define a new sheaf G , called the sheaf of discontinuous
sections of F as follows. For each open set U ⊆ X,G (U) is the set of maps s : U →⋃

P ∈U FP such that for each P ∈ U, s(P ) ∈ FP . Show that G is a flasque sheaf, and that
there is a natural injective morphism of F to G .

2.1.17. II.1.17. Skyscraper Sheaves. Let X be a topological space, let P be a point, and let A be
an abelian group. Define a sheaf iP (A) on X as follows: iP (A) (U) = A if P ∈ U ′, 0 otherwise.
Verify that the stalk of iP (A) is A at every point Q ∈ {P}−, and 0 elsewhere, where {P}−denotes
the closure of the set consisting of the point P . Hence the name “skyscraper sheaf.”

Show that this sheaf could also be described as i∗(A), where A denotes the constant sheaf A on
the closed subspace {P}−, and i : {P}− → X is the inclusion.

2.1.18. II.1.18. Adjoint Property of f−1. Let f : X → Y be a continuous map of topological spaces.
Show that for any sheaf F on X there is a natural map f−1f∗F → F , and for any sheaf G on Y
there is a natural map G → f∗f

−1G .
Use these maps to show that there is a natural bijection of sets, for any sheaves F on X and G

on Y , Hence we say that f−1 is a left adjoint of f∗, and that f∗ is a right adjoint of f−1.

2.1.19. II.1.19. Extending a Sheaf by Zero. Let X be a topological space, let Z be a closed subset,
let i : Z → X be the inclusion, let U = X−Z be the complementary open subset, and let j : U → X
be its inclusion.

a. Let F be a sheaf on Z. Show that the stalk (i∗F)P of the direct image sheaf on X is
FP if P ∈ Z, 0 if P /∈ Z. Hence we call i∗ · F the sheaf obtained by extending F by
zero outside Z. By abuse of notation we will sometimes write F instead of i∗F , and say
“consider F as a sheaf on X,” when we mean "consider i∗F .

b. Now let F be a sheaf on U . Let j!(F) be the sheaf on X associated to the presheaf
V 7→ F(V ) if V ⊆ U, V 7→ 0 otherwise. Show that the stalk (j!(F))P is equal to FP if
P ∈ U, 0 if P /∈ U , and show that j!F is the only sheaf on X which has this property, and
whose restriction to U is F . We call j!F the sheaf obtained by extending F by zero
outside U .

c. Now let F be a sheaf on X. Show that there is an exact sequence of sheaves on X,

2.1.20. II.1.20. Subsheaf with Supports. Let Z be a closed subset of X, and let F be a sheaf on X.
We define ΓZ(X,F) to be the subgroup of Γ(X,F) consisting of all sections whose support (Ex.
1.14) is contained in Z.

a. Show that the presheaf V 7→ ΓZ∩V (V, F|V ) is a sheaf. It is called the subsheaf of F with
supports in Z, and is denoted by H 0

Z (F).
b. Let U = X − Z, and let j : U → X be the inclusion. Show there is an exact sequence of

sheaves on X Furthermore, if F is flasque, the map F → i∗(F|U ) is surjective.

2.1.21. II.1.21. Some Examples of Sheaves on Varieties. Let X be a variety over an algebraically
closed field k, as in Ch. I. Let OX be the sheaf of regular functions on X (See (1.0 .1)).

a. Let Y be a closed subset of X. For each open set U ⊆ X, let IY (U) be the ideal in the
ring OX(U) consisting of those regular functions which vanish at all points of Y ∩U . Show
that the presheaf U 7→ IY (U) is a sheaf. It is called the sheaf of ideals IY of Y , and it is
a subsheaf of the sheaf of rings OX .

b. If Y is a subvariety, then the quotient sheaf C1T,is isomorphic to i∗ (C1), where i : Y → X
is the inclusion, and OY is the sheaf of regular functions on Y .
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c. Now let X = P1, and let Y be the union of two distinct points P,Q ∈ X. Then there is an
exact sequence of sheaves on X where F = i∗OP ⊕ i∗OQ: Show however that the induced
map on global sections Γ(X; OX) → Γ(X; F) is not surjective. This shows that the global
section functor Γ(X, ·) is not exact (cf. (Ex. 1.8) which shows that it is left exact).

d. Again let X = P1, and let O be the sheaf of regular functions. Let K be the constant
sheaf on X associated to the function field K of X. Show that there is a natural injection
O → K . Show that the quotient sheaf K /O is isomorphic to the direct sum of sheaves∑

P ∈X iP (IP ), where IP is the group K/OP , and iP (IP ) denotes the skyscraper sheaf (Ex.
1.17) given by IP at the point P .

e. Finally show that in the case of (d) the sequence is exact.27

2.1.22. II.1.22. Glueing Sheaves. Let X be a topological space, let U = {Ui} be an open cover of
X, and suppose we are given for each i a sheaf Fi on Ui, and for each i, j an isomorphism such that

1. for each i, φii = id, and
2. for each i, j, k, φik = φjk ◦ φij on Ui ∩ Uj ∩ Uk.

Then there exists a unique sheaf F on X, together with isomorphisms ψi : F|Ui

∼−→ Fi, such that
for each i, j, ψj = φij ◦ψi on Ui ∩Uj . We say loosely that F is obtained by glueing the sheaves Fi

via the isomorphisms φi.

2.2. II.2: Schemes.

2.2.1. II.2.1. Let A be a ring, let X = SpecA, let f ∈ A and let D(f) ⊆ X be the open complement
of V (f). Show that the locally ringed space

(
D(f), OX |D(f)

)
is isomorphic to specAf .

2.2.2. II.2.2. Let (X,OX) be a scheme, and let U ⊆ X be any open subset. Show that (U, OX |U )
is a scheme. We call this the induced scheme structure on the open set U , and we refer to
(U, OX |U ) as an open subscheme of X.

2.2.3. II.2.3 Reduced Schemes. A scheme (X,OX) is reduced if for every open set U ⊆ X, the
ring OX(U) has no nilpotent elements.

a. Show that (X,OX) is reduced if and only if for every P ∈ X, the local ring OX,P has no
nilpotent elements.

b. Let (X,OX) be a scheme. Let (OX)red be the sheaf associated to the presheaf U 7→
OX(U)red , where for any ring A, we denote by Ared the quotient of A by its ideal of
nilpotent elements. Show that (X, (OX)red ) is a scheme. We call it the reduced scheme
associated to X, and denote it by Xred . Show that there is a morphism of schemes Xred →
X, which is a homeomorphism on the underlying topological spaces.

c. Let f : X → Y be a morphism of schemes, and assume that X is reduced. Show that there
is a unique morphism g : X → Yred such that f is obtained by composing g with the natural
map Yred → Y .

2.2.4. II.2.4. Let A be a ring and let (X,OX) be a scheme. Given a morphism f : X → SpecA,
we have an associated map on sheaves f ♯ : USpec(A) → f∗OX . Taking global sections we obtain a
homomorphism A → Γ (X,OX). Thus there is a natural map Show that α is bijective (cf. (I, 3.5)
for an analogous statement about varieties).

2.2.5. II.2.5. Describe Spec Z, and show that it is a final object for the category of schemes, i.e.,
each scheme X admits a unique morphism to Spec Z.

27This is an analogue of what is called the first Cousin problem in several complex variables. See Gunning and
Rossi (1, p. 248)
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2.2.6. II.2.6. Describe the spectrum of the zero ring, and show that it is an initial object for the
category of schemes. (According to our conventions, all ring homomorphisms must take 1 to 1 .
Since 0 = 1 in the zero ring, we see that each ring R admits a unique homomorphism to the zero
ring, but that there is no homomorphism from the zero ring to R unless 0 = 1 in R.)

2.2.7. II.2.7. Let X be a scheme. For any x ∈ X, let Ox be the local ring at x, and mx its maximal
ideal. We define the residue field of x on X to be the field k(x) = Ox/mx. Now let K be any
field. Show that to give a morphism of SpecK to X it is equivalent to give a point x ∈ X and an
inclusion map k(x) → K.

2.2.8. II.2.8. Let X be a scheme. For any point x ∈ X, we define the Zariski tangent space Tx

to X at x to be the dual of the k(x)-vector space mx/m
2
x. Now assume that X is a scheme over

a field k, and let k[ε]/ε2 be the ring of dual numbers over k. Show that to give a k-morphism of
Spec k[ε]/ε2 to X is equivalent to giving a point x ∈ X, rational over k (i.e., such that k(x) = k ),
and an element of Tx.

2.2.9. II.2.9. If X is a topological space, and Z an irreducible closed subset of X, a generic point
for Z is a point ζ such that Z = {ζ}−. If X is a scheme, show that every (nonempty) irreducible
closed subset has a unique generic point.

2.2.10. II.2.10. Describe Spec R[x]. How does its topological space compare to the set R ? To C
?

2.2.11. II.2.11. Let k = Fp be the finite field with p elements. Describe Spec k[x]. What are the
residue fields of its points? How many points are there with a given residue field?

2.2.12. II.2.12 Glueing Lemma. Generalize the glueing procedure described in the text (2.3.5) as
follows. Let {Xi} be a family of schemes (possible infinite). For each i ̸= j, suppose given an open
subset Uij ⊆ Xi, and let it have the induced scheme structure (Ex. 2.2). Suppose also given for
each i ̸= j an isomorphism of schemes φij : Uij → Uji such that

(1) for each i, j, φji = φ−1
ij , and

(2) for each i, j, k, φij (Uij ∩ Uik) = Uji ∩ Ujk, and φik = φjk ◦ φij on Uij ∩ Uik.
Then show that there is a scheme X, together with morphisms ψi : Xi → X for each i, such that
(1) ψi is an isomorphism of Xi onto an open subscheme of X
(2) the ψi (Xi) cover X,
(3) ψi (Uij) = ψi (Xi) ∩ ψj (Xj) and (4) ψi = ψj ◦ φij on Uij .

We say that X is obtained by glueing the schemes Xi along the isomorphisms φij . An interesting
special case is when the family Xi is arbitrary, but the Uij and φij are all empty. Then the scheme
X is called the disjoint union of the Xi, and is denoted ∐

Xi.

2.2.13. II.2.13. A topological space is quasi-compact if every open cover has a finite subcover.
a. Show that a topological space is noetherian (I.1) if and only if every open subset is quasi-

compact.
b. If X is an affine scheme, show that sp(X) is quasi-compact, but not in general noetherian.

We say a scheme X is quasi-compact if sp(X) is.
c. If A is a noetherian ring, show that sp(SpecA) is a noetherian topological space.
d. Give an example to show that sp(SpecA) can be noetherian even when A is not.
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2.2.14. II.2.14.
a. Let S be a graded ring. Show that ProjS = ∅ if and only if every element of S+is nilpotent.
b. Let φ : S → T be a graded homomorphism of graded rings (preserving degrees). Let
U = {p ∈ T

∣∣∣ p ⊉ φ (S+)
}

. Show that U is an open subset of ProjT , and show that φ
determines a natural morphism f : U → ProjS.

c. The morphism f can be an isomorphism even when φ is not. For example, suppose that
φd : Sd → Td is an isomorphism for all d ⩾ d0, where d0 is an integer. Then show that
U = ProjT and the morphism f : ProjT → ProjS is an isomorphism.

d. Let V be a projective variety with homogeneous coordinate ring S (See I.2). Show that
t(V ) ∼= ProjS.

2.2.15. II.2.15.
a. Let V be a variety over the algebraically closed field k. Show that a point P ∈ t(V ) is a

closed point if and only if its residue field is k.
b. If f : X → Y is a morphism of schemes over k, and if P ∈ X is a point with residue field
k, then f(P ) ∈ Y also has residue field k.

c. Now show that if V,W are any two varieties over k, then the natural map is bijective.
(Injectivity is easy. The hard part is to show it is surjective.)

2.2.16. II.2.16. Let X be a scheme, let f ∈ Γ (X,OX), and define Xf to be the subset of points
x ∈ X such that the stalk fx of f at x is not contained in the maximal ideal mx of the local ring
Ox.

a. If U = SpecB is an open affine subscheme of X, and if f ∈ B = Γ (U, OX |U ) is the
restriction of f , show that U ∩Xf = D(f). Conclude that Xf is an open subset of X.

b. Assume that X is quasi-compact. Let A = Γ (X,OX), and let a ∈ A be an element whose
restriction to Xf is 0 . Show that for some n > 0, fna = 0.
Hint: Use an open affine cover of X.

c. Now assume that X has a finite cover by open affines Ui such that each intersection Ui ∩Uj

is quasi-compact. (This hypothesis is satisfied, for example, if sp(X) is noetherian.) Let
b ∈ Γ

(
Xf ,OXf

)
. Show that for some n > 0, fnb is the restriction of an element of A.

d. With the hypothesis of (c), conclude that Γ
(
Xf ,OXf

)
∼= Af .

2.2.17. II.2.17 A Criterion for Affineness.
a. Let f : X → Y be a morphism of schemes, and suppose that Y can be covered by open

subsets Ui, such that for each i, the induced map f−1 (Ui) → Ui is an isomorphism. Then
f is an isomorphism.

b. A scheme X is affine if and only if there is a finite set of elements f1, . . . , fr ∈ A = Γ (X,OX),
such that the open subsets Xfi

are affine, and f1, . . . , fr generate the unit ideal in A.28

2.2.18. II.2.18. In this exercise, we compare some properties of a ring homomorphism to the in-
duced morphism of the spectra of the rings.

a. Let A be a ring, X = SpecA, and f ∈ A. Show that f is nilpotent if and only if D(f) is
empty.

28Hint: Use (Ex. 2.4) and (Ex. 2.16d) above.
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b. Let φ : A → B be a homomorphism of rings, and let f : Y = SpecB → X = SpecA be
the induced morphism of affine schemes. Show that φ is injective if and only if the map of
sheaves f ♯ : OX → f∗OY is injective. Show furthermore in that case f is dominant, i.e.,
f(Y ) is dense in X.

c. With the same notation, show that if φ is surjective, then f is a homeomorphism of Y onto
a closed subset of X, and f ♯ : OX → f∗OY is surjective.

d. Prove the converse to (c), namely, if f : Y → X is a homeomorphism onto a closed subset,
and f ♯ : OX → f∗OY is surjective, then φ is surjective.29

2.2.19. II.2.19. Let A be a ring. Show that the following conditions are equivalent:
(i) SpecA is disconnected;
(ii) there exist nonzero elements e1, e2 ∈ A such that e1e2 = 0, e2

1 = e1, e
2
2 = e2, e1 + e2 = 1

(these elements are called orthogonal idempotents);
(iii) A is isomorphic to a direct product A1 ×A2 of two nonzero rings.

2.3. II.3: First Properties of Schemes.

2.3.1. II.3.1. Show that a morphism f : X → Y is locally of finite type if and only if for every
open affine subset V = SpecB of Y, f−1(V ) can be covered by open affine subsets Uj = SpecAj ,
where each Aj is a finitely generated B-algebra.

2.3.2. II.3.2. A morphism f : X → Y of schemes is quasi-compact if there is a cover of Y by
open affines Vi such that f−1 (Vi) is quasi-compact for each i.

Show that f is quasicompact if and only if for every open affine subset V ⊆ Y, f−1(V ) is quasi-
compact.

2.3.3. II.3.3.
a. Show that a morphism f : X → Y is of finite type if and only if it is locally of finite type

and quasi-compact.
b. Conclude from this that f is of finite type if and only if for every open affine subset V =

SpecB of Y, f−1(V ) can be covered by a finite number of open affines Uj = SpecAj , where
each Aj is a finitely generated B-algebra.

c. Show also if f is of finite type, then for every open affine subset V = SpecB ⊆ Y , and for
every open affine subset U = SpecA ⊆ f−1(V ), A is a finitely generated B-algebra.

2.3.4. II.3.4. Show that a morphism f : X → Y is finite if and only if for every open affine subset
V = SpecB of Y, f−1(V ) is affine, equal to SpecA, where A is a finite B-module.

2.3.5. II.3.5. A morphism f : X → Y is quasi-finite if for every point y ∈ Y, f−1(y) is a finite set.
a. Show that a finite morphism is quasi-finite.
b. Show that a finite morphism is closed, i.e., the image of any closed subset is closed.
c. Show by example that a surjective, finite-type, quasi-finite morphism need not be finite.

2.3.6. II.3.6. Let X be an integral scheme. Show that the local ring Oξ of the generic point ξ of
X is a field. It is called the function field of X, and is denoted by K(X).

Show also that if U = SpecA is any open affine subset of X, then K(X) is isomorphic to the
quotient field of A.

29Hint: Consider X ′ = Spec(A/ kerφ) and use (b) and (c).
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2.3.7. II.3.7. A morphism f : X → Y , with Y irreducible, is generically finite if f−1(η) is a finite
set, where η is the generic point of Y . A morphism f : X → Y is dominant if f(X) is dense in Y .

Now let f : X → Y be a dominant, generically finite morphism of finite type of integral schemes.
Show that there is an open dense subset U ⊆ Y such that the induced morphism f−1(U) → U is
finite.30

2.3.8. II.3.8. Normalization. A scheme is normal if all of its local rings are integrally closed
domains. Let X be an integral scheme. For each open affine subset U = SpecA of X, let Ã be the
integral closure of A in its quotient field, and let Ũ = Spec Ã.

Show that one can glue the schemes Ũ to obtain a normal integral scheme X̃, called the nor-
malization of X.

Show also that there is a morphism X̃ → X, having the following universal property: for every
normal integral scheme Z, and for every dominant morphism f : Z → X, f factors uniquely through
X̃. If X is of finite type over a field k, then the morphism X̃ → X is a finite morphism. This
generalizes (I, Ex. 3.17).

2.3.9. II.3.9. The Topological Space of a Product. Recall that in the category of varieties, the
Zariski topology on the product of two varieties is not equal to the product topology (I, Ex. 1.4).
Now we see that in the category of schemes, the underlying point set of a product of schemes is
not even the product set.

a. Let k be a field, and let A1
k = Spec k[x] be the affine line over k. Show that A1

k ×
Spec k

A1
k

∼= A2
k,

and show that the underlying point set of the product is not the product of the underlying
point sets of the factors (even if k is algebraically closed).

b. Let k be a field, let s and t be indeterminates over k. Then Spec k(s), Spec k(t), and Spec k
are all one-point spaces. Describe the product scheme Spec k(s) ×

Spec k
Spec k(t).

2.3.10. II.3.10. Fibres of a Morphism.

a. If f : X → Y is a morphism, and y ∈ Y a point, show that sp (Xy) is homeomorphic to
f−1(y) with the induced topology.

b. Let X = Spec k[s, t]/
(
s− t2

)
, let Y = Spec k[s], and let f : X → Y be the morphism

defined by sending s → s.
• If y ∈ Y is the point a ∈ k with a ̸= 0, show that the fibre Xy consists of two points,

with residue field k.
• If y ∈ Y corresponds to 0 ∈ k, show that the fibre Xy is a nonreduced one-point

scheme.
• If η is the generic point of Y , show that Xη is a one-point scheme, whose residue field

is an extension of degree two of the residue field of η. (Assume k algebraically closed.)

2.3.11. II.3.11. Closed Subschemes.

a. Closed immersions are stable under base extension: if f : Y → X is a closed immersion,
and if X ′ → X is any morphism, then f ′ : Y ×X X ′ → X ′ is also a closed immersion.

30Hint: First show that the function field of X is a finite field extension of the function field of Y .
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(b) * If Y is a closed subscheme of an affine scheme X = SpecA, then Y is also affine, and in
fact Y is the closed subscheme determined by a suitable ideal a ⊆ A as the image of the
closed immersion SpecA/a → SpecA.3132

c. Let Y be a closed subset of a scheme X, and give Y the reduced induced subscheme
structure. If Y ′ is any other closed subscheme of X with the same underlying topological
space, show that the closed immersion Y → X factors through Y ′. We express this property
by saying that the reduced induced structure is the smallest subscheme structure
on a closed subset.

d. Let f : Z → X be a morphism. Then there is a unique closed subscheme Y of X with
the following property: the morphism f factors through Y , and if Y ′ is any other closed
subscheme of X through which f factors, then Y → X factors through Y ′ also. We call Y
the scheme-theoretic image of f . If Z is a reduced scheme, then Y is just the reduced
induced structure on the closure of the image f(Z).

2.3.12. II.3.12. Closed Subschemes of Proj S.
a. Let φ : S → T be a surjective homomorphism of graded rings, preserving degrees. Show

that the open set U of (Ex. 2.14) is equal to ProjT , and the morphism f : ProjT → ProjS
is a closed immersion.

b. If I ⊆ S is a homogeneous ideal, take T = S/I and let Y be the closed subscheme of
X = ProjS defined as image of the closed immersion ProjS/I → X. Show that different
homogeneous ideals can give rise to the same closed subscheme. For example, let d0 be an
integer, and let I ′ = ⊕

d⩾d0 Id. Show that I and I ′ determine the same closed subscheme.33

2.3.13. II.3.13. Properties of Morphisms of Finite Type.
a. A closed immersion is a morphism of finite type.
b. A quasi-compact open immersion (Ex. 3.2) is of finite type.
c. A composition of two morphisms of finite type is of finite type.
d. Morphisms of finite type are stable under base extension.
e. If X and Y are schemes of finite type over S, then X × SY is of finite type over S.

f. If X f→ Y
g→ Z are two morphisms, and if f is quasi-compact, and g ◦ f is of finite type,

then f is of finite type.
g. If f : X → Y is a morphism of finite type, and if Y is noetherian, then X is noetherian.

2.3.14. II.3.14. If X is a scheme of finite type over a field, show that the closed points of X are
dense. Give an example to show that this is not true for arbitrary schemes.

2.3.15. II.3.15. Let X be a scheme of finite type over a field k (not necessarily algebraically closed).
a. Show that the following three conditions are equivalent (in which case we say that X is

geometrically irreducible):

31Hints: First show that Y can be covered by a finite number of open affine subsets of the form D (fi) ∩ Y , with
fi ∈ A. By adding some more fi with D (fi) ∩ Y = ∅, if necessary, show that we may assume that the D (fi) cover
X. Next show that f1, . . . , fr generate the unit ideal of A. Then use (Ex. 2.17b) to show that Y is affine, and (Ex.
2.18d) to show that Y comes from an ideal a ⊆ A.]

32Note: We will give another proof of this result using sheaves of ideals later (V.10).
33We will see later (5.16) that every closed subscheme of X comes from a homogeneous ideal I of S (at least in

the case where S is a polynomial ring over S0 ).
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• i: X ×
k
k is irreducible, where k denotes the algebraic closure of k.34

• ii: X ×
k
ks is irreducible, where ks denotes the separable closure of k.

• iii: X ×
k
K is irreducible for every extension field K of k.

b. Show that the following three conditions are equivalent (in which case we say X is geo-
metrically reduced):

• i: X ×
k
k is reduced.

• ii: X ×
k
kp is reduced, where kp denotes the perfect closure of k.

• iii: X ×
k
K is reduced for all extension fields K of k.

c. We say that X is geometrically integral if X ×
k
k is integral. Give examples of integral

schemes which are neither geometrically irreducible nor geometrically reduced.

2.3.16. II.3.16. Noetherian Induction. Let X be a noetherian topological space, and let P be a
property of closed subsets of X. Assume that for any closed subset Y of X, if P holds for every
proper closed subset of Y , then P holds for Y . (In particular, P must hold for the empty set.)
Then P holds for X.

2.3.17. II.3.17. Zariski Spaces. A topological space X is a Zariski space if it is noetherian and
every (nonempty) closed irreducible subset has a unique generic point (Ex. 2.9).

For example, let R be a discrete valuation ring, and let T = sp(SpecR). Then T consists of two
points t0 = the maximal ideal, t1 = the zero ideal. The open subsets are ∅, {t1}, and T . This is
an irreducible Zariski space with generic point t1.

a. Show that if X is a noetherian scheme, then sp(X) is a Zariski space.
b. Show that any minimal nonempty closed subset of a Zariski space consists of one point. We

call these closed points.
c. Show that a Zariski space X satisfies the axiom T0 :given any two distinct points of X,

there is an open set containing one but not the other.
d. If X is an irreducible Zariski space, then its generic point is contained in every nonempty

open subset of X of x1, or that x1 is a generization of x0. Now let X be a Zariski space.
• Show that the minimal points, for the partial ordering determined by x1 > x0 if
x1 ↔ x0, are the closed points, and the maximal points are the generic points of the
irreducible components of X.

• Show also that a closed subset contains every specialization of any of its points. (We
say closed subsets are stable under specialization.) Similarly, open subsets are
stable under generization.

e. Let t be the functor on topological spaces introduced in the proof of (2.6). If X is a
noetherian topological space, show that t(X) is a Zariski space. Furthermore X itself is a
Zariski space if and only if the map α : X → t(X) is a homeomorphism.

2.3.18. II.3.18 Constructible Sets. Let X be a Zariski topological space. A constructible subset of
X is a subset which belongs to the smallest family F of subsets such that (1) every open subset is
in F , (2) a finite intersection of elements of F is in F , and (3) the complement of an element of
F is in F.

34By abuse of notation, we write X ×
k

k to denote X ×
Spec k

Spec k.



JUST DO IT: A COLLECTION OF HARTSHORNE PROBLEMS 29

a. A subset of X is locally closed if it is the intersection of an open subset with a closed subset.
Show that a subset of X is constructible if and only if it can be written as a finite disjoint
union of locally closed subsets.

b. Show that a constructible subset of an irreducible Zariski space X is dense if and only if it
contains the generic point. Furthermore, in that case it contains a nonempty open subset.

c. A subset S of X is closed if and only if it is constructible and stable under specializa-
tion. Similarly, a subset T of X is open if and only if it is constructible and stable under
generization.

d. If f : X → Y is a continuous map of Zariski spaces, then the inverse image of any con-
structible subset of Y is a constructible subset of X.

2.3.19. II.3.19. Let f : X → Y be a morphism of finite type of noetherian schemes. Then the
image of any constructible subset of X is a constructible subset of Y . In particular, f(X), which
need not be either open or closed, is a constructible subset of Y .35

Prove this theorem in the following steps.

a. Reduce to showing that f(X) itself is constructible, in the case where X and Y are affine,
integral noetherian schemes, and f is a dominant morphism.

b. * In that case, show that f(X) contains a nonempty open subset of Y by using the following
result from commutative algebra: let A ⊆ B be an inclusion of noetherian integral domains,
such that B is a finitely generated A-algebra. Then given a nonzero element b ∈ B, there is
a nonzero element a ∈ A with the following property: if φ : A → K is any homomorphism of
A to an algebraically closed field K, such that φ(a) ̸= 0, then φ extends to a homomorphism
φ′ of B into K, such that φ′(b) ̸= 0.36

c. Now use noetherian induction on Y to complete the proof.
d. Give some examples of morphisms f : X → Y of varieties over an algebraically closed field
k, to show that f(X) need not be either open or closed.

2.3.20. II.3.20. Dimension. Let X be an integral scheme of finite type over a field k (not necessarily
algebraically closed). Use appropriate results from I.1 to prove the following.

a. For any closed point P ∈ X,dimX = dim OP , where for rings, we always mean the Krull
dimension.

b. Let K(X) be the function field of X (Ex. 3.6). Then
c. If Y is a closed subset of X, then
d. If Y is a closed subset of X, then
e. If U is a nonempty open subset of X, then dimU = dimX.
f. If k ⊆ k′ is a field extension, then every irreducible component of X ′ = X×

k
k′ has dimension

= dimX.

2.3.21. II.3.21. Let R be a discrete valuation ring containing its residue field k. Let X = Spec R[t]
be the affine line over Spec R. Show that statements (a), (d), (e) of (Ex. 3.20) are false for X.

35The real importance of the notion of constructible subsets derives from the following theorem of Chevalley-see
Cartan and Chevalley (1, exposé 7) and see also Matsumura (2, Ch. 2, 6).

36Hint: Prove this algebraic result by induction on the number of generators of B over A. For the case of one
generator, prove the result directly. In the application, take b = 1.
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2.3.22. 3.22. * Dimension of the Fibres of a Morphism. Let f : X → Y be a dominant morphism
of integral schemes of finite type over a field k.

a. Let Y ′ be a closed irreducible subset of Y , whose generic point η′ is contained in f(X).
Let Z be any irreducible component of f−1 (Y ′), such that η′ ∈ f(Z), and show that
codim(Z,X) ⩽ codim (Y ′, Y ).

b. Let e = dimX − dimY be the relative dimension of X over Y . For any point y ∈ f(X),
show that every irreducible component of the fibre Xy has dimension ⩾ e.37

c. Show that there is a dense open subset U ⊆ X, such that for any y ∈ f(U), dimUy = e.38

d. Going back to our original morphism f : X → Y , for any integer h, let Eh be the set of
points x ∈ X such that, letting y = f(x), there is an irreducible component Z of the fibre
Xy, containing x, and having dimZ ⩾ h. Show that

• 1) Ee = X39;
• 2) if h > e, then Eh is not dense in X40; and
• 3) Eh is closed, for all h41.

e. Prove the following theorem of Chevalley-see Cartan and Chevalley (1, exposé 8): For each
integer h, let Ch be the set of points y ∈ Y such that dim Xy = h. Then the subsets Ch

are constructible, and Ce contains an open dense subset of Y .

2.3.23. II.3.23. If V,W are two varieties over an algebraically closed field k, and if V × W is
their product, as defined in (I, Ex. 3.15, 3.16), and if t is the functor of (2.6), then t(V × W ) =
t(V ) ×

Spec k
t(W ).

2.4. II.4: Separated and Proper Morphisms.

2.4.1. II.4.1. Show that a finite morphism is proper.

2.4.2. II.4.2. Let S be a scheme, let X be a reduced scheme over S, and let Y be a separated
scheme over S. Let f and g be two S-morphisms of X to Y which agree on an open dense subset
of X. Show that f = g. Give examples to show that this result fails if either

a. X is nonreduced, or
b. Y is nonseparated.42

2.4.3. II.4.3. Let X be a separated scheme over an affine scheme S. Let U and V be open affine
subsets of X. Then U ∩ V is also affine. Give an example to show that this fails if X is not
separated.

37Hint: Let Y ′ = {y}−, and use (a) and (Ex. 3.20b).
38Hint: First reduce to the case where X and Y are affine, say X = SpecA and Y = SpecB. Then A is a

finitely generated B-algebra. Take t1, . . . , te ∈ A which form a transcendence base of K(X) over K(Y ), and let
X1 = SpecB [t1, . . . , te]. Then X1 is isomorphic to affine e-space over Y , and the morphism X → X1 is generically
finite. Now use (Ex. 3.7) above.

39Use (b) above.
40Use (c) above.
41Use induction on dimX.
42Hint: Consider the map h : X → Y × sY obtained from f and g.
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2.4.4. II.4.4. The image of a proper scheme is proper. Let f : X → Y be a morphism of separated
schemes of finite type over a noetherian scheme S. Let Z be a closed subscheme of X which is
proper over S. Show that f(Z) is closed in Y , and that f(Z) with its image subscheme structure
(Ex. 3.11d) is proper over S.43

2.4.5. II.4.5. Let X be an integral scheme of finite type over a field k, having function field K. We
say that a valuation of K/k (see I, §6 ) has center x on X if its valuation ring R dominates the
local ring Ox,X .

a. If X is separated over k, then the center of any valuation of K/k on X (if it exists) is
unique.

b. If X is proper over k, then every valuation of K/k has a unique center on X.44

c. * Prove the converses of (a) and (b).45

d. If X is proper over k, and if k is algebraically closed, show that Γ (X,OX) = k. This result
generalizes (I, 3.4a).46

2.4.6. II.4.6. Let f : X → Y be a proper morphism of affine varieties over k. Then f is a finite
morphism.47

2.4.7. II.4.7. Schemes Over R. For any scheme X0 over R, let X = X0 ×R C. Let α : C → C be
complex conjugation, and let σ : X → X be the automorphism obtained by keeping X0 fixed and
applying α to C. Then X is a scheme over C, and σ is a semi-linear automorphism, in the sense
that we have a commutative diagram:

X X

Spec C Spec C

σ

α

Link to Diagram
Since σ2 = id, we call σ an involution.

a. Now let X be a separated scheme of finite type over C, let σ be a semilinear involution on
X, and assume that for any two points x1, x2 ∈ X, there is an open affine subset containing
both of them. (This last condition is satisfied for example if X is quasi-projective.) Show
that there is a unique separated scheme X0 of finite type over R, such that X0 ×R C ∼= X,
and such that this isomorphism identifies the given involution of X with the one on X0×R C
described above.

For the following statements, X0 will denote a separated scheme of finite type over R,
and X,σ will denote the corresponding scheme with involution over C.

b. Show that X0 is affine if and only if X is.
c. If X0, Y0 are two such schemes over R, then to give a morphism f0 : X0 → Y0 is equivalent

to giving a morphism f : X → Y which commutes with the involutions, i.e., f ◦σX = σY ◦f .

43Hint: Factor f into the graph morphism Γf : X → X ×s Y followed by the second projection p2, and show that
Γf is a closed immersion.

44Note: if X is a variety over k, the criterion of (b) is sometimes taken as the definition of a complete variety.
45Hint: While parts (a) and (b) follow quite easily from (4.3) and (4.7), their converses will require some comparison

of valuations in different fields.
46Hint: Let a ∈ Γ (X,OX), with a /∈ k. Show that there is a valuation ring R of K/k with a−1 ∈ mR. Then use

(b) to get a contradiction.
47Hint: Use (4.11A).

https://q.uiver.app/?q=WzAsNCxbMCwwLCJYIl0sWzIsMCwiWCJdLFswLDIsIlxcc3BlYyBcXENDIl0sWzIsMiwiXFxzcGVjIFxcQ0MiXSxbMCwxLCJcXHNpZ21hIl0sWzIsMywiXFxhbHBoYSJdLFswLDJdLFsxLDNdXQ==
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d. If X ∼= A1
C, then X0 ∼= A1

R.
e. If X ∼= P1

C, then either X0 ∼= P1
R, or X0 is isomorphic to the conic in P2

R given by the
homogeneous equation x2

0 + x2
1 + x2

2 = 0.

2.4.8. II.4.8. Let P be a property of morphisms of schemes such that:
a. a closed immersion has P;
b. a composition of two morphisms having P has P;
c. P is stable under base extension.

Then show that:
d. a product of morphisms having P has P;
e. if f : X → Y and g : Y → Z are two morphisms, and if g ◦ f has P and g is separated,

then f has P;48

f. If f : X → Y has P, then fred : Xred → Yred has P.

2.4.9. II.4.9. Show that a composition of projective morphisms is projective.49 Conclude that
projective morphisms have properties (a)-(f) of (Ex. 4.8) above.

2.4.10. II.4.10 * Chow’s Lemma. This result says that proper morphisms are fairly close to pro-
jective morphisms.

Let X be proper over a noetherian scheme S. Then there is a scheme X ′ and a morphism
g : X ′ → X such that X ′ is projective over S, and there is an open dense subset U ⊆ X such that
g induces an isomorphism of g−1(U) to U . Prove this result in the following steps.

a. Reduce to the case X irreducible.
b. Show that X can be covered by a finite number of open subsets Ui, i = 1, . . . , n, each of

which is quasi-projective over S. Let Ui → Pi be an open immersion of Ui into a scheme Pi

which is projective over S.
c. Let U = ⋂

Ui, and consider the map deduced from the given maps U → X and U → Pi.
Let X ′ be the closed image subscheme structure50 f(U)−. Let g : X ′ → X be the projection
onto the first factor, and let be the projection onto the product of the remaining factors.
Show that h is a closed immersion, hence X ′ is projective over S.

d. Show that g−1(U) → U is an isomorphism, thus completing the proof.

2.4.11. II.4.11. If you are willing to do some harder commutative algebra, and stick to noetherian
schemes, then we can express the valuative criteria of separatedness and properness using only
discrete valuation rings.

a. If O,m is a noetherian local domain with quotient field K, and if L is a finitely generated
field extension of K, then there exists a discrete valuation ring R of L dominating O.

Prove this in the following steps.
• By taking a polynomial ring over O, reduce to the case where L is a finite extension

field of K.
• Then show that for a suitable choice of generators x1, . . . , xn of m, the ideal a = (x1)

in O′ = C [x2/x1, . . . , xn/x1] is not equal to the unit ideal.

48Hint: For (e), consider the graph morphism Γf : X → X × ZY and note that it is obtained by base extension
from the diagonal morphism ∆ : Y → Y ×Z Y .

49Hint: Use the Segre embedding defined in (I, Ex. 2.14) and show that it gives a closed immersion
Pr × Ps → Pr+r+s. .

50See Ex. 3.11d.
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• Then let p be a minimal prime ideal of a, and let O′
p be the localization of O′ at p.

This is a noetherian local domain of dimension 1 dominating O.
• Let Õ ′

p be the integral closure of O′
p in L. Use the theorem of Krull-Akizuki51 to show

that Ũ ′
p is noetherian of dimension 1.

• Finally, take R to be a localization of Õ′
p at one of its maximal ideals.

b. Let f : X → Y be a morphism of finite type of noetherian schemes. Show that f is separated
(respectively, proper) if and only if the criterion of (4.3) (respectively, (4.7)) holds for all
discrete valuation rings.

2.4.12. II.4.12 Examples of Valuation Rings. Let k be an algebraically closed field.
a. If K is a function field of dimension 1 over k then every valuation ring of K/k (except for
K itself) is discrete. Thus the set of all of them is just the abstract nonsingular curve CK

of (I, §6).
b. If K/k is a function field of dimension two, there are several different kinds of valuations.

Suppose that X is a complete nonsingular surface with function field K.
• If Y is an irreducible curve on X, with generic point x1, then the local ring R = Ox1,X is a

discrete valuation ring of K/k with center at the (nonclosed) point x1 on X.
• If f : X ′ → X is a birational morphism, and if Y ′ is an irreducible curve in X ′ whose image

in X is a single closed point x0, then the local ring R of the generic point of Y ′ on X ′ is a
discrete valuation ring of K/k with center at the closed point x0 on X.

• Let x0 ∈ X be a closed point. Let f : X1 → X be the blowing-up of x0 (I, §4) and let
E1 = f−1 (x0) be the exceptional curve. Choose a closed point x1 ∈ E1, let f2 : X2 → X1
be the blowing-up of x1, and let E2 = f−1

2 (x1) be the exceptional curve. Repeat.
In this manner we obtain a sequence of varieties Xi with closed points xi chosen on them,

and for each i, the local ring Oxi+1,Xi+1 dominates Oxi,Xi . Let R0 = ⋃∞
i=0 Oxi,Xi . Then R0

is a local ring, so it is dominated by some valuation ring R of K/k by (I, 6.1A).
Show that R is a valuation ring of K/k, and that it has center x0 on X. When is R a

discrete valuation ring?52

2.5. II.5: Sheaves of Modules.

2.5.1. II.5.1. Let (X,OX) be a ringed space, and let E be a locally free OX -module of finite rank.
We define the dual of E , denoted E∨, to be the sheaf HomOX

(E ,OX).
a. Show that (E∨)∨ ∼= E .
b. For any OX -module F ,
c. (Projection Formula). If f : (X,OX) → (Y,OY ) is a morphism of ringed spaces, if F is

an OX -module, and if E is a locally free OY -module of finite rank, then there is a natural
isomorphism

2.5.2. II.5.2. Let R be a discrete valuation ring with quotient field K, and let X = SpecR.
a. To give an OX -module is equivalent to giving an R-module M , a K-vector space L, and a

homomorphism ρ : M ⊗R K → L.
b. That OX -module is quasi-coherent if and only if ρ is an isomorphism.

51See Nagata 7, p. 115.
52Note. We will see later (V, Ex. 5.6) that in fact the R0 of (3) is already a valuation ring itself, so R0 = R.

Furthermore, every valuation ring of K/k (except for K itself) is one of the three kinds just described.
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2.5.3. II.5.3. Let X = SpecA be an affine scheme. Show that the functors ∼ and Γ are adjoint, in
the following sense: for any A-module M , and for any sheaf of OX -modules F , there is a natural
isomorphism

2.5.4. II.5.4. Show that a sheaf of OX -modules F on a scheme X is quasi-coherent if and only if
every point of X has a neighborhood U , such that F|U is isomorphic to a cokernel of a morphism
of free sheaves on U . If X is noetherian, then F is coherent if and only if it is locally a cokernel
of a morphism of free sheaves of finite rank. (These properties were originally the definition of
quasi-coherent and coherent sheaves.)

2.5.5. II.5.5. Let f : X → Y be a morphism of schemes.
a. Show by example that if F is coherent on X, then f∗F need not be coherent on Y , even if
X and Y are varieties over a field k.

b. Show that a closed immersion is a finite morphism (§3).
c. If f is a finite morphism of noetherian schemes, and if F is coherent on X, then f∗F is

coherent on Y .

2.5.6. II.5.6. Support. Recall the notions of support of a section of a sheaf, support of a sheaf, and
subsheaf with supports from (Ex. 1.14) and (Ex. 1.20).

a. Let A be a ring, let M be an A-module, let X = SpecA, and let F = M̃ . For any
m ∈ M = Γ(X,F), show that suppm = V (Annm), where Annm is the annihilator of
m = {a ∈ A

∣∣∣ am = 0}.

b. Now suppose thatA is noetherian, andM finitely generated. Show that supp F = V (AnnM).
c. The support of a coherent sheaf on a noetherian scheme is closed.
d. For any ideal a ⊆ A, we define a submodule Γa(M) of M by Assume that A is noetherian,

and M any A-module. Show that Γa(M)∼ ∼= H0
Z(F), where Z = V (a) and F = M̃ .53

e. Let X be a noetherian scheme, and let Z be a closed subset. If F is a quasicoherent (respec-
tively, coherent) OX -module, then H0

Z(F) is also quasicoherent (respectively, coherent).

2.5.7. II.5.7. Let X be a noetherian scheme, and let F be a coherent sheaf.
a. If the stalk Fx is a free Ox-module for some point x ∈ X, then there is a neighborhood U

of x such that F|U is free.
b. F is locally free if and only if its stalks Fx are free Ox-modules for all x ∈ X.
c. F is invertible (i.e., locally free of rank 1) if and only if there is a coherent sheaf G such

that F ⊗ G ∼= OX .54

2.5.8. II.5.8. Again let X be a noetherian scheme, and F a coherent sheaf on X. We will consider
the function where k(x) = Ox/mx is the residue field at the point x. Use Nakayama’s lemma to
prove the following results.

a. The function φ is upper semi-continuous, i.e., for any n ∈ Z, the set {x ∈ X
∣∣∣ φ(x) ⩾ n} is

closed.
b. If F is locally free, and X is connected, then φ is a constant function.
c. Conversely, if X is reduced, and φ is constant, then F is locally free.

53Hint: Use (Ex. 1.20) and (5.8) to show a priori that H0
Z(F) is quasi-coherent. Then show that Γa(M) ∼= ΓZ(F).

54This justifies the terminology invertible: it means that F is an invertible element of the monoid of coherent
sheaves under the operation ⊗.
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2.5.9. II.5.9. Let S be a graded ring, generated by S1 as an S0-algebra, let M be a graded S
module, and let X = Proj S.

a. Show that there is a natural homomorphism α : M → Γ∗(M̃).
b. Assume now that S0 = A is a finitely generated k-algebra for some field k, that S1 is a

finitely generated A-module, and that M is a finitely generated S-module. Show that the
map α is an isomorphism in all large enough degrees, i.e., there is a d0 ∈ Z such that for
all d ⩾ d0, αd : Md → Γ(X, M̃(d)) is an isomorphism.55

c. With the same hypotheses, we define an equivalence relation ≈ on graded S-modules by
saying M ≈ M ′ if there is an integer d such that M⩾d

∼= M ′
⩾d. Here M⩾d = ⊕

n⩾dMn.
We will say that a graded S-module M is quasifinitely generated if it is equivalent to a
finitely generated module.

Now show that the functors ∼ and Γ∗ induce an equivalence of categories between the
category of quasi-finitely generated graded S-modules modulo the equivalence relation ≈,
and the category of coherent OX -modules.

2.5.10. II.5.10. Let A be a ring, let S = A [x0, . . . , xr] and let X = ProjS. We have seen that a
homogeneous ideal I in S defines a closed subscheme of X (Ex. 3.12), and that conversely every
closed subscheme of X arises in this way (5.16).

a. For any homogeneous ideal I ⊆ S, we define the saturation I of I to be
{
s ∈ S

∣∣∣ for each
i = 0, . . . , r, there is an n such that xn

i s ∈ I}. We say that I is saturated if I = I. Show
that I is a homogeneous ideal of S.

b. Two homogeneous ideals I1 and I2 of S define the same closed subscheme of X if and only
if they have the same saturation.

c. If Y is any closed subscheme of X, then the ideal Γ∗ (IY ) is saturated. Hence it is the
largest homogeneous ideal defining the subscheme Y .

d. There is a 1-1 correspondence between saturated ideals of S and closed subschemes of X.

2.5.11. II.5.11. Let S and T be two graded rings with S0 = T0 = A. We define the Cartesian
product S ×

A
T to be the graded ring ⊕

d⩾0 Sd ⊗A Td. If X = ProjS and Y = ProjT , show that
Proj (S × AT ) ∼= X×AY , and show that the sheaf O(1) on Proj (S × AT ) is isomorphic to the sheaf
p∗

1 (OX(1)) ⊗ p∗
2 (OY (1)) on X × Y .

The Cartesian product of rings is related to the Segre embedding of projective spaces (I, Ex.
2.14) in the following way. If x0, . . . , xr is a set of generators for S1 over A, corresponding to a
projective embedding X ↪→ Pr

A, and if y0, . . . , ys is a set of generators for T1, corresponding to
a projective embedding Y ↪→ P s

A, then {xi ⊗ yj} is a set of generators for (S × AT )1, and hence
defines a projective embedding Proj(S ×

A
T ) ↪→ PN

A , with N = rs+ r+ s. This is just the image of
X × Y ⊆ Pr × Ps in its Segre embedding.

2.5.12. II.5.12.
a. Let X be a scheme over a scheme Y , and let L,M be two very ample invertible sheaves on
X. Show that L ⊗ M is also very ample.56

b. Let f : X → Y and g : Y → Z be two morphisms of schemes. Let L be a very ample
invertible sheaf on X relative to Y , and let M be a very ample invertible sheaf on Y
relative to Z. Show that L ⊗ f∗M is a very ample invertible sheaf on X relative to Z.

55Hint: Use the methods of the proof of (5.19).
56Hint: Use a Segre embedding.
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2.5.13. II.5.13. Let S be a graded ring, generated by S1 as an S0-algebra. For any integer d > 0,
let S(d) be the graded ring ⊕

n⩾0 S
(d)
n where S(d)

n = Snd. Let X = Proj S. Show that Proj S(d) ∼= X,
and that the sheaf O(1) on Proj S(d) corresponds via this isomorphism to OX(d).

This construction is related to the d-uple embedding (I, Ex. 2.12) in the following way. If
x0, . . . , xr is a set of generators for S1, corresponding to an embedding X ↪→ Pr

A, then the set of
monomials of degree d in the xi is a set of generators for S(d)

1 = Sd. These define a projective
embedding of Proj S(d) which is none other than the image of X under the d-uple embedding of
Pr

A.

2.5.14. II.5.14. Let A be a ring, and let X be a closed subscheme of Pr
A. We define the homo-

geneous coordinate ring S(X) of X for the given embedding to be A [x0, . . . , xr] /I, where I is
the ideal Γ∗ (IX) constructed in the proof of (5.16). Of course if A is a field and X a variety, this
coincides with the definition given in (I, §2)! Recall that a scheme X is normal if its local rings
are integrally closed domains.

A closed subscheme X ⊆ Pr
A is projectively normal for the given embedding, if its homoge-

neous coordinate ring S(X) is an integrally closed domain (cf. (I, Ex. 3.18)).
Now assume that k is an algebraically closed field, and that X is a connected, normal closed

subscheme of Pr
k. Show that for some d > 0, the d-uple embedding of X is projectively normal, as

follows.
a. Let S be the homogeneous coordinate ring of X, and let S′ = ⊕

n⩾0 Γ (X,OX(n)). Show
that S is a domain, and that S′ is its integral closure.57

b. Use (Ex. 5.9) to show that Sd = S′
d for all sufficiently large d.

c. Show that S(d) is integrally closed for sufficiently large d, and hence conclude that the d-uple
embedding of X is projectively normal.

d. As a corollary of (a), show that a closed subscheme X ⊆ Pr
A is projectively normal if and

only if it is normal, and for every n ⩾ 0 the natural map Γ (Pr,OPr (n)) → Γ (X,OX(n)) is
surjective.

2.5.15. II.5.15. Extension of Coherent Sheaves. We will prove the following theorem in several
steps: Let X be a noetherian scheme, let U be an open subset, and let F be a coherent sheaf on
U . Then there is a coherent sheaf F ′ on X such that F ′|U ∼= F .

a. On a noetherian affine scheme, every quasi-coherent sheaf is the union of its coherent
subsheaves. We say a sheaf F is the union of its subsheaves F if for every open set U , the
group F(U) is the union of the subgroups Fα(U).

b. Let X be an affine noetherian scheme, U an open subset, and F coherent on U . Then there
exists a coherent sheaf F ′ on X with F ′|U ∼= F .58

c. With X,U,F as in (b), suppose furthermore we are given a quasi-coherent sheaf G on X
such that F ⊆ G|U . Show that we can find F ′ a coherent subsheaf of G, with F ′|U ∼= F .59

d. Now let X be any noetherian scheme, U an open subset, F a coherent sheaf on U , and G
a quasi-coherent sheaf on X such that F ⊆ G|U . Show that there is a coherent subsheaf
F ′ ⊆ G on X with F ′|U ∼= F . Taking G = i∗F proves the result announced at the
beginning.60

57Hint: First show that X is integral. Then regard S′ as the global sections of the sheaf of rings S =
⊕

n≥0 OX(n)
on X, and show that S is a sheaf of integrally closed domains.

58Hint: Let i : U → X be the inclusion map. Show that i∗F is quasi-coherent, then use (a).
59Hint: Use the same method, but replace i∗F by ρ−1 (i∗F), where ρ is the natural map G → i∗

(
G|U

)
.

60Hint: Cover X with open affines, and extend over one of them at a time.
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e. As an extra corollary, show that on a noetherian scheme, any quasi-coherent sheaf F is the
union of its coherent subsheaves.61

2.5.16. II.5.16. Tensor Operations on Sheaves. First we recall the definitions of various tensor
operations on a module. Let A be a ring, and let M be an A-module.

• Let Tn(M) be the tensor product M ⊗ . . . ⊗ M of M with itself n times, for n ⩾ 1. For
n = 0 we put T 0(M) = A. Then T (M) = ⊕

n⩾0 T
n(M) is a (noncommutative) A-algebra,

which we call the tensor algebra of M .
• We define the symmetric algebra S(M) = ⊕

n⩾0 S
n(M) of M to be the quotient of

T (M) by the two-sided ideal generated by all expressions x ⊗ y − y ⊗ x, for all x, y ∈ M .
Then S(M) is a commutative A-algebra. Its component Sn(M) in degree n is called the
nth symmetric product of M . We denote the image of x ⊗ y in S(M) by xy, for any
x, y ∈ M . As an example, note that if M is a free A-module of rank r, then S(M) ∼=
A [x1, . . . , xr]

• We define the exterior algebra
∧(M) = ⊕

n⩾0
∧n(M) of M to be the quotient of T (M)

by the two-sided ideal generated by all expressions x ⊗ x for x ∈ M . Note that this ideal
contains all expressions of the form x ⊗ y + y ⊗ x, so that ∧(M) is a skew commutative
graded A-algebra. This means that if u ∈

∧r(M) and v ∈
∧s(M), then u∧ v = (−1)rsv ∧u

(here we denote by ∧ the multiplication in this algebra; so the image of x⊗ y in ∧2(M) is
denoted by x ∧ y ). The nth component ∧n(M) is called the nth exterior power of M .

Now let (X,OX) be a ringed space, and let F be a sheaf of OX -modules. We define the tensor
algebra, symmetric algebra, and exterior algebra of F by taking the sheaves associated to the
presheaf, which to each open ’set U assigns the corresponding tensor operation applied to F(U)
as an OX(U)-module. The results are Ox-algebras, and their components in each degree are Ox-
modules.

a. Suppose that F is locally free of rank n. Then T r(F), Sr(F), and ∧r(F) are also locally

free, of ranks nr,

(
n+ r − 1
n− 1

)
, and

(
r
r

)
respectively.

b. Again let F be locally free of rank n. Then the multiplication map ∧r F⊗
∧n−r F →

∧n ·F
is a perfect pairing for any r, i.c., it induces an isomorphism of ∧r F with

(∧n−r F
)⌜

⊗
∧n F .

As a special case, note if F has rank 2 , then F ∼= F⊤ ⊗
∧2 F .

c. Let 0 → F ′ → F → F ′′ → 0 be an exact sequence of locally free sheaves. Then for any r
there is a finite filtration of Sr(F), with quotients for each p.

d. Same statement as (c), with exterior powers instead of symmetric powers. In particular, if
F ′,F ,F ′′ have ranks n′, n, n′′ respectively, there is an isomorphism

e. Let f : X → Y be a morphism of ringed spaces, and let F be an OY -module. Then f∗

commutes with all the tensor operations on F , i.e., f∗ (Sn(F)) = Sn (f∗F) etc.

2.5.17. II.5.17. Affine Morphisms. A morphism f : X → Y of schemes is affine if there is an open
affine cover {Vi} of Y such that f−1 (Vi) is affine for each i.

a. Show that f : X → Y is an affine morphism if and only if for every open affine V ⊆ Y, f−1(V )
is affine62

b. An affine morphism is quasi-compact and separated. Any finite morphism is affine.
c. Let Y be a scheme, and let A be a quasi-coherent sheaf of OY -algebras (i.e., a sheaf of

rings which is at the same time a quasi-coherent sheaf of OY -modules). Show that there
61Hint: If s is a section of F over an open set U , apply (d) to the subsheaf of F|U generated by s.
62Hint: Reduce to the case Y affine, and use (Ex. 2.17).
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is a unique scheme X, and a morphism f : X → Y , such that for every open affine
V ⊆ Y, f−1(V ) ∼= Spec A(V ), and for every inclusion U ↪→ V of open affines of Y , the
morphism f−1(U) ↪→ f−1(V ) corresponds to the restriction homomorphism A(V ) → A(U).
The scheme X is called Spec A.63

d. If A is a quasi-coherent OY -algebra, then f : X = Spec A → Y is an affine morphism,
and A ∼= f∗OX . Conversely, if f : X → Y is an affine morphism, then A = f∗OX is a
quasi-coherent sheaf of OY -algebras, and X ∼= Spec A.

e. Let f : X → Y be an affine morphism, and let A = f∗OX . Show that f∗ induces an
equivalence of categories from the category of quasi-coherent OX -modules to the category
of quasi-coherent A-modules (i.e., quasi-coherent OY -modules having a structure of A-
module).64

2.5.18. II.5.18. Vector Bundles. Let Y be a scheme. A (geometric) vector bundle of rank n over
Y is a scheme X and a morphism f : X → Y , together with additional data consisting of an open
covering {Ui} of Y , and isomorphisms ψi : f−1 (Ui) → An

Ui
, such that for any i, j, and for any open

affine subset V = SpecA ⊆ Ui ∩ Uj , the automorphism ψ = ψj ◦ ψ−1
i of An

V = SpecA [x1, . . . , xn]
is given by a linear automorphism θ of A [x1, . . . , xn], i.e., θ(a) = a for any a ∈ A, and θ (xi) =∑
aijxj for suitable aij ∈ A.
An isomorphism of one vector bundle of rank n to another one is an isomorphism g : X → X ′

of the underlying schemes, such that f = f ′ ◦ g, and such that X, f , together with the covering
of Y consisting of all the Ui and U ′

i , and the isomorphisms ψi and ψ′
i ◦ g, is also a vector bundle

structure on X.
a. Let E be a locally free sheaf of rank n on a scheme Y . Let S(E) be the symmetric algebra

on E , and let X = SpecS(E), with projection morphism f : X → Y . For each open affine
subset U ⊆ Y for which E|U is free, choose a basis of E , and let ψ : f−1(U) → An

U be the
isomorphism resulting from the identification of S(E(U)) with O(U) [x1, . . . , xn].

Then (X, f, {U}, {ψ}) is a vector bundle of rank n over Y , which (up to isomorphism)
does not depend on the bases of EU chosen. We call it the geometric vector bundle associated
to E , and denote it by V(E).

b. For any morphism f : X → Y , a section of f over an open set U ⊆ Y is a morphism
s : U → X such that f ◦ s = idU . It is clear how to restrict sections to smaller open sets,
or how to glue them together, so we see that the presheaf U 7→ { set of sections of f over
U} is a sheaf of sets on Y , which we denote by S(X/Y ).

Show that if f : X → Y is a vector bundle of rank n, then the sheaf of sections S(X/Y )
has a natural structure of OY -module, which makes it a locally free OY -module of rank n.65

c. Again let E be a locally free sheaf of rank n on Y , let X = V(E), and let S = S(X/Y ) be the
sheaf of sections of X over Y . Show that S ∼= E2, as follows. Given a section s ∈ Γ (V, E⋎)
over any open set V , we think of s as an element of Hom (E|V ,OV ). So s determines an
OV -algebra homomorphism S (E|V ) → OV .

This determines a morphism of spectra V = Spec OV → SpecS (E|V ) = f−1(V ), which
is a section of X/Y . Show that this construction gives an isomorphism of E2 to S.

63Hint: Construct X by glueing together the schemes Spec A(V ), for V open affine in Y .
64Hint: For any quasi-coherent A-module M, construct a quasi-coherent OX -module M̃, and show that the

functors f∗ and ∼ are inverse to each other.
65Hint: It is enough to define the module structure locally, so we can assume Y = SpecA is affine, and X = An

Y .
Then a section s : Y → X comes from an A-algebra homomorphism θ : A [x1, . . . , xn] → A, which in turn determines
an ordered n-tuple ⟨θ (x1) , . . . , θ (xn)⟩ of elements of A. Use this correspondence between sections s and ordered
n-tuples of elements of A to define the module structure.]
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d. Summing up, show that we have established a one-to-one correspondence between isomor-
phism classes of locally free sheaves of rank n on Y , and isomorphism classes of vector
bundles of rank n over Y . Because of this, we sometimes use the words “locally free sheaf”
and “vector bundle” interchangeably, if no confusion seems likely to result.

2.6. II.6: Divisors. In this section we will consider schemes satisfying the following condition:
(∗)X is a noetherian integral separated scheme which is regular in codimension one.

2.6.1. II.6.1. Let X be a scheme satisfying (∗). Then X× Pn also satisfies (∗), and Cl (X × Pn) ∼=
(ClX) × Z

2.6.2. II.6.2. * Varieties in Projective Space. Let k be an algebraically closed field, and let X be
a closed subvariety of Pn

k which is nonsingular in codimension one (hence satisfies (∗) ). For any
divisor D = ∑

niYi on X, we define the degree of D to be ∑
ni deg Yi, where deg Yi is the degree

of Yi, considered as a projective variety itself (I, §7).
a. Let V be an irreducible hypersurface in Pn which does not contain X, and let Yi be the

irreducible components of V ∩X. They all have codimension 1 by (I, Ex. 1.8). For each i,
let fi be a local equation for V on some open set Ui of Pn for which Yi ∩ Ui ̸= ∅, and let
ni = vYi(fi), where f i is the restriction of fi to Ui ∩X.

Then we define the divisor V.X to be ∑
niYi. Extend by linearity, and show that this

gives a well-defined homomorphism from the subgroup of Div Pn consisting of divisors,
none of whose components contain X, to DivX.

b. If D is a principal divisor on Pn, for which D.X is defined as in (a), show that D.X is
principal on X. Thus we get a homomorphism Cl Pn → ClX.

c. Show that the integer ni defined in (a) is the same as the intersection multiplicity i (X,V ;Yi)
defined in (I, §7). Then use the generalized Bézout theorem (I, 7.7) to show that for any
divisor D on Pn, none of whose components contain X,

d. If D is a principal divisor on X, show that there is a rational function f on Pn such that
D = (f).X. Conclude that degD = 0. Thus the degree function defines a homomorphism
deg: ClX → Z.66 Finally, there is a commutative diagram

Cl Pn ClX

Z Z· deg(X)

degdeg,∼=

Link to Diagram
and in particular, we see that the map Cl Pn → ClX is injective.

2.6.3. II.6.3. * Cones. In this exercise we compare the class group of a projective variety V to the
class group of its cone (I, Ex. 2.10). So let V be a projective variety in Pn, which is of dimension
⩾ 1 and nonsingular in codimension 1 . Let X = C(V ) be the affine cone over V in An+1, and let
X be its projective closure in Pn+1. Let P ∈ X be the vertex of the cone.

a. Let π : X−P → V be the projection map. Show that V can be covered by open subsets Ui

such that π−1 (Ui) ∼= Ui×A1 for each i, and then show as in (6.6) that π∗ : ClV → Cl(X−P )
is an isomorphism. Since ClX ∼= Cl(X − P ), we have also ClV ∼= ClX.

66This gives another proof of (6.10), since any complete nonsingular curve is projective.

https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXENsIFxcUFBebiJdLFsyLDAsIlxcQ2wgWCJdLFswLDIsIlxcWloiXSxbMiwyLCJcXFpaIl0sWzIsMywiXFxjZG90IFxcZGVnKFgpIl0sWzAsMV0sWzEsMywiXFxkZWciXSxbMCwyLCJcXGRlZywgXFxjb25nIiwyXV0=
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b. We have V ⊆ X as the hyperplane section at infinity. Show that the class of the divisor
V in ClX is equal to π∗ (class of V.H ) where H is any hyperplane of Pn not containing
V . Thus conclude using (6.5) that there is an exact sequence where the first arrow sends
1 7→ V.H, and the second is π∗ followed by the restriction to X − P and inclusion in X.
(The injectivity of the first arrow follows from the previous exercise.)

c. Let S(V ) be the homogeneous coordinate ring of V (which is also the affine coordinate ring
of X ). Show that S(V ) is a unique factorization domain if and only if

• V is projectively normal (Ex. 5.14), and
• ClV ∼= Z and is generated by the class of V.H.

d. Let OP be the local ring of P on X. Show that the natural restriction map induces an
isomorphism ClX → Cl (Spec OP ).

2.6.4. II.6.4. Let k be a field of characteristic ̸= 2. Let f ∈ k [x1, . . . , xn] be a square-free noncon-
stant polynomial, i.e., in the unique factorization of f into irreducible polynomials, there are no
repeated factors. Let A = k [x1, . . . , xn, z] /

(
z2 − f

)
. Show that A is an integrally closed ring.67

Conclude that A is the integral closure of k [x1, . . . , xn] in K.

2.6.5. II.6.5. * Quadric Hypersurfaces. Let char k ̸= 2, and let X be the affine quadric hypersur-
face68

a. Show that X is normal if r ⩾ 2 (use (Ex. 6.4)).
b. Show by a suitable linear change of coordinates that the equation of X could be written as
x0x1 = x2

2 + . . .+ x2
r . Now imitate the method of (6.5.2) to show that:

(1) If r = 2, then ClX ∼= Z/2Z;
(2) If r = 3, then ClX ∼= Z (use (6.6.1) and (Ex. 6.3) above);
(3) If r ⩾ 4 then ClX = 0.

c. Now let Q be the projective quadric hypersurface in Pn defined by the same equation. Show
that:
(1) If r = 2,ClQ ∼= Z, and the class of a hyperplane section Q.H is twice the generator;
(2) If r = 3,ClQ ∼= Z ⊕ Z;
(3) If r ⩾ 4,ClQ ∼= Z, generated by Q.H.

d. Prove Klein’s theorem, which says that if r ⩾ 4, and if Y is an irreducible subvariety of
codimension 1 on Q, then there is an irreducible hypersurface V ⊆ Pn such that V ∩Q = Y ,
with multiplicity one. In other words, Y is a complete intersection.

(First show that for r ⩾ 4, the homogeneous coordinate ring S(Q) = k [x0, . . . , xn] /
(
x2

0 + . . .+ x2
r

)
is a UFD.)

2.6.6. II.6.6. Let X be the nonsingular plane cubic curve y2z = x3 − xz2 of (6.10.2).
a. Show that three points P,Q,R of X are collinear if and only if P +Q+R = 0 in the group

law on X.
Note that the point P0 = (0, 1, 0) is the zero element in the group structure on X.

b. A point P ∈ X has order 2 in the group law on X if and only if the tangent line at P passes
through P0.

67Hint: The quotient field K of A is just k (x1, . . . , xn) [z]/
(
z2 − f

)
. It is a Galois extension of k (x1, . . . , xn)

with Galois group Z/2Z generated by z 7→ −z. If α = g + hz ∈ K, where g, h ∈ k (x1, . . . , xn), then the minimal
polynomial of α is Now show that α is integral over k [x1, . . . , xn] if and only if g, h ∈ k [x1, . . . , xn].

68cf. (I, Ex. 5.12).
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c. A point P ∈ X has order 3 in the group law on X if and only if P is an inflection point.69

d. Let k = C. Show that the points of X with coordinates in Q form a subgroup of the group
X. Can you determine the structure of this subgroup explicitly?

2.6.7. II.6.7. *. Let X be the nodal cubic curve y2z = x3 + x2z in P2. Imitate (6.11.4) and show
that the group of Cartier divisors of degree 0,CaCl◦X, is naturally isomorphic to the multiplicative
group Gm.

2.6.8. II.6.8.

a. Let f : X → Y be a morphism of schemes. Show that L 7→ f∗L induces a homomorphism
of Picard groups, f∗ : PicY → PicX.

b. If f is a finite morphism of nonsingular curves, show that this homomorphism corresponds
to the homomorphism f∗ : ClY → ClX defined in the text, via the isomorphisms of (6.16).

c. If X is a locally factorial integral closed subscheme of Pn
k , and if f : X → Pn is the inclusion

map, then f∗ on Pic agrees with the homomorphism on divisor class groups defined in (Ex.
6.2) via the isomorphisms of (6.16).

2.6.9. II.6.9. * Singular Curves. Here we give another method of calculating the Picard group of a
singular curve. Let X be a projective curve over k, let X̃ be its normalization, and let π : X̃ → X
be the projection map (Ex. 3.8). For each point P ∈ X, let OP be its local ring, and let ÕP be
the integral closure of OP . We use a ∗ to denote the group of units in a ring.

a. Show there is an exact sequence70

b. Use (a) to give another proof of the fact that if X is a plane cuspidal cubic curve, then
there is an exact sequence and if X is a plane nodal cubic curve, there is an exact sequence

2.6.10. II.6.10. The Grothendieck Group K(X). Let X be a noetherian scheme. We define K(X)
to be the quotient of the free abelian group generated by all the coherent sheaves on X, by the
subgroup generated by all expressions F − F ′ − F ′′, whenever there is an exact sequence 0 → F ′ →
F → F ′′ → 0 of coherent sheaves on X. If F is a coherent sheaf, we denote by γ(F) its image in
K(X).

a. If X = A1
k, then K(X) ∼= Z.

b. If X is any integral scheme, and F a coherent sheaf, we define the rank of F to be dimK Fξ,
where ξ is the generic point of X, and K = Oξ is the function field of X.

Show that the rank function defines a surjective homomorphism rank: K(X) → Z.
c. If Y is a closed subscheme of X, there is an exact sequence where the first map is extension

by zero, and the second map is restriction.71

69An inflection point of a plane curve is a nonsingular point P of the curve, whose tangent line (I, Ex. 7.3) has
intersection multiplicity ⩾ 3 with the curve at P .

70Hint: Represent PicX and Pic X̃ as the groups of Cartier divisors modulo principal divisors, and use the exact
sequence of sheaves on X

71Hint: For exactness in the middle, show that if F is a coherent sheaf on X, whose support is contained in Y ,
then there is a finite filtration F = F0 ⊇ F1 ⊇ . . . ⊇ Fn = 0, such that each Fi/Fi+1 is an OY -module. To show
surjectivity on the right, use (Ex. 5.15).
For further information about K(X), and its applications to the generalized Riemann-Roch theorem, see Borel-Serre
[1], Manin [1], and Appendix A.
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2.6.11. II.6.11. *The Grothendieck Group of a Nonsingular Curve. Let X be a nonsingular curve
over an algebraically closed field k. We will show that K(X) ∼= PicX ⊕ Z, in several steps.

a. For any divisor D = ∑
niPi on X, let ψ(D) = ∑

niγ (k (Pi)) ∈ K(X), where k (Pi) is the
skyscraper sheaf k at Pi and 0 elsewhere. If D is an effective divisor, let OD be the structure
sheaf of the associated subscheme of codimension 1, and show that ψ(D) = γ (OD). Then
use (6.18) to show that for any D,ψ(D) depends only on the linear equivalence class of D,
so ψ defines a homomorphism ψ : ClX → K(X)

b. For any coherent sheaf F on X, show that there exist locally free sheaves E0 and E1 and an
exact sequence 0 → E1 → E0 → F → 0. Let r0 = rank E0, r1 = rank E1, and define Here∧ denotes the exterior power (Ex. 5.16). Show that det F is independent of the resolution
chosen, and that it gives a homomorphism det: K(X) → PicX. Finally show that if D is
a divisor, then det(ψ(D)) = L(D).

c. If F is any coherent sheaf of rank r, show that there is a divisor D on X and an exact
sequence where T is a torsion sheaf. Conclude that if F is a sheaf of rank r, then

d. Using the maps ψ,det, rank, and 1 7→ γ (OX) from Z → K(X), show that K(X) ∼= PicX⊕
Z.

2.6.12. II.6.12. Let X be a complete nonsingular curve. Show that there is a unique way to define
the degree of any coherent sheaf on X, deg F ∈ Z, such that:

a. If D is a divisor, deg L(D) = degD;
b. If F is a torsion sheaf(meaning a sheaf whose stalk at the generic point is zero), then

deg F = ∑
P ∈X length (FP ); and

c. If 0 → F ′ → F → F ′′ → 0 is an exact sequence, then deg F = deg F ′+ deg F ′′.

2.7. II.7: Projective Morphisms.

2.7.1. II.7.1. Let (X,OX) be a locally ringed space, and let f : L → M be a surjective map of
invertible sheaves on X. Show that f is an isomorphism.72

2.7.2. II.7.2. Let X be a scheme over a field k. Let L be an invertible sheaf on X, and let
{s0, . . . , sn} and {t0, . . . , tm} be two sets of sections of L, which generate the same subspace V ⊆
Γ(X,L), and which generate the sheaf L at every point. Suppose n ⩽ m.

Show that the corresponding morphisms φ : X → Pn
k and ψ : X → Pm

k differ by a suitable
linear projection Pm − L → Pn and an automorphism of Pn, where L is a linear subspace of Pm

of dimension m− n− 1.

2.7.3. II.7.3. Let φ : Pn
k → Pm

k be a morphism. Then:

a. Either φ (Pn) = pt or m ⩾ n and dimφ (Pn) = n;
b. In the second case, φ can be obtained as the composition of

(1) a d-uple embedding Pn → PN for a uniquely determined d ⩾ 1,
(2) a linear projection PN − L → Pm, and
(3) an automorphism of Pm.

Also, φ has finite fibres.

72Hint: Reduce to a question of modules over a local ring by looking at the stalks.
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2.7.4. II.7.4.

a. Use (7.6) to show that if X is a scheme of finite type over a noetherian ringA, and if X
admits an ample invertible sheaf, then X is separated.

b. Let X be the affine line over a field k with the origin doubled (4.0.1). Calculate PicX,
determine which invertible sheaves are generated by global sections, and then show directly
(without using (a)) that there is no ample invertible sheaf on X.

2.7.5. II.7.5. Establish the following properties of ample and very ample invertible sheaves on a
noetherian scheme X. L,M will denote invertible sheaves, and for (d), (e) we assume furthermore
that X is of finite type over a noetherian ring A.

a. If L is ample and M is generated by global sections, then L ⊗ M is ample.
b. If L is ample and M is arbitrary, then M ⊗ Ln is ample for sufficiently large n.
c. If L,M are both ample, so is L ⊗ M.
d. If L is very ample and M is generated by global sections, then L ⊗ M is very ample.
e. If L is ample, then there is an n0 > 0 such that Ln is very ample for all n ⩾ n0.

2.7.6. II.7.6. The Riemann-Roch Problem. Let X be a nonsingular projective variety over an
algebraically closed field, and let D be a divisor on X. For any n > 0 we consider the complete
linear system |nD|. Then the Riemann-Roch problem is to determine dim |nD| as a function of n,
and, in particular, its behavior for large n.

If L is the corresponding invertible sheaf, then dim |nD| = dim Γ (X,Ln) − 1, so an equivalent
problem is to determine dim Γ (X,Ln) as a function of n.

a. Show that if D is very ample, and if X ↪→ Pn
k is the corresponding embedding in projective

space, then for all n sufficiently large, dim |nD| = PX(n) − 1, where PX is the Hilbert
polynomial of X(I, §7). Thus in this case dim |nD| is a polynomial function of n, for n
large.

b. If D corresponds to a torsion element of PicX, of order r, then dim |nD| = 0 if r
∣∣∣ n and

−1 otherwise. In this case the function is periodic of period r. It follows from the general
Riemann-Roch theorem that dim |nD| is a polynomial function for n large, whenever D is
an ample divisor.73

In the case of algebraic surfaces, Zariski [7] has shown for any effective divisor D, that
there is a finite set of polynomials P1, . . . , Pr, such that for all n sufficiently large, dim |nD| =
Pi(n)(n), where i(n) ∈ {1, 2, . . . , r} is a function of n.

2.7.7. II.7.7. Some Rational Surfaces. Let X = P2
k, and let |D| be the complete linear system of

all divisors of degree 2 on X (conics). D corresponds to the invertible sheaf O(2), whose space of
global sections has a basis x2, y2, z2, xy, xz, yz, where x, y, z are the homogeneous coordinates of
X.

a. The complete linear system |D| gives an embedding of P2 in P5, whose image is the Veronese
surface.74

b. Show that the subsystem defined by x2, y2, z2, y(x − z), (x − y)z gives a closed immersion
of X into P4. The image is called the Veronese surface in P4. Cf. (IV, Ex. 3.11).

73See (IV, 1.3.2), (V, 1.6), and Appendix A.
74I, Ex. 2.13.
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c. Let ν ⊆ |D| be the linear system of all conics passing through a fixed point P . Then ν gives
an immersion of U = X − P into P4. Furthermore, if we blow up P , to get a surface X̃,
then this map extends to give a closed immersion of X̃ in P4.

Show that X̃ is a surface of degree 3 in P4, and that the lines in X through P are
transformed into straight lines in X̃ which do not meet. X̃ is the union of all these lines,
so we say X̃ is a ruled surface (V, 2.19.1).

2.7.8. II.7.8. Let X be a noetherian scheme, let E be a coherent locally free sheaf on X, and let
π : P(E) → X be the corresponding projective space bundle. Show that there is a natural 1 − 1
correspondence between sections of π (i.e., morphisms σ : X → P(E) such that π ◦ σ = idX) and
quotient invertible sheaves E → L → 0 of E .

2.7.9. II.7.9. Let X be a regular noetherian scheme, and E a locally free coherent sheaf of rank
⩾ 2 on X.

a. Show that Pic P(E) ∼= PicX × Z.
b. If E ′ is another locally free coherent sheaf on X, show that P(E) ∼= P (E ′) (over X ) if and

only if there is an invertible sheaf L on X such that E ′ ∼= E ⊗ L.

2.7.10. II.7.10. Pn-Bundles Over a Scheme. Let X be a noetherian scheme.
a. By analogy with the definition of a vector bundle (Ex. 5.18), define the notion of a projective
n-space bundle over X, as a scheme P with a morphism π : P → X such that P is locally
isomorphic to U × Pn, U ⊆ X open, and the transition automorphisms on SpecA× Pn are
given by A-linear automorphisms of the homogeneous coordinate ring A [x0, . . . , xn]

E.g., x′
i = ∑

aijxj , aij ∈ A.
b. If E is a locally free sheaf of rankof rank n+ 1 on X then P(E) is a Pn-bundle over X.
c. * Assume that X is regular, and show that every Pn-bundle P over X is isomorphic to

P(E) for some locally free sheaf E on X.75

d. Conclude (in the case X regular) that we have a 1-1 correspondence between Pn-bundles
over X, and equivalence classes of locally free sheaves E of rank n+1 under the equivalence
relation E ∼ E ′ if and only if E ′ ∼= E ⊗ M for some invertible sheaf M on X.

2.7.11. II.7.11. On a noetherian scheme X, different sheaves of ideals can give rise to isomorphic
blown up schemes.

a. If I is any coherent sheaf of ideals on X, show that blowing up Id for any d ⩾ 1 gives a
scheme isomorphic to the blowing up of I (cf. Ex. 5.13).

b. If I is any coherent sheaf of ideals, and if J is an invertible sheaf of ideals, then I and I ·J
give isomorphic blowings-up.

c. If X is regular, show that (7.17) can be strengthened as follows. Let U ⊆ X be the largest
open set such that f : f−1U → U is an isomorphism. Then I can be chosen such that the
corresponding closed subscheme Y has support equal to X − U

2.7.12. II.7.12. Let X be a noetherian scheme, and let Y, Z be two closed subschemes, neither one
containing the other. Let X̃ be obtained by blowing up Y ∩ Z (defined by the ideal sheaf IY + IZ

). Show that the strict transforms Ỹ and Z̃ of Y and Z in X̃ do not meet.

75Hint: Let U ⊆ X be an open set such that π−1(U) ∼= U × Pn, and let L0 be the invertible sheaf C(1) on U × Pn.
Show that L0 extends to an invertible sheaf L on P . Then show that π∗L = E is a locally free sheaf on X and that
P ∼= P(E).] Can you weaken the hypothesis " X regular"?
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2.7.13. II.7.13. * A Complete Nonprojective Variety. Let k be an algebraically closed field of char
̸= 2. Let C ⊆ P2

k be the nodal cubic curve If P0 = (0, 0, 1) is the singular point, then C − P0
is isomorphic to the multiplicative group Gm = Spec k

[
t, t−1]

(Ex. 6.7). For each a ∈ k, a ̸= 0,
consider the translation of Gm given by t 7→ at. This induces an automorphism of C which we
denote by φa. Now consider C ×

(
P1 − {0}

)
and C ×

(
P1 − {∞}

)
. We glue their open subsets

C ×
(
P1 − {0,∞}

)
by the isomorphism Thus we obtain a scheme X, which is our example. The

projections to the second factor are compatible with φ, so there is a natural morphism π : X → P1.

a. Show that π is a proper morphism, and hence that X is a complete variety over k.
b. Use the method of (Ex. 6.9) to show that76

c. Now show that the restriction map is of the form ⟨t, n⟩ 7→ ⟨t, 0, n⟩, and that the automor-
phism φ of C ×

(
A1 − {0}

)
induces a map of the form ⟨t, d, n⟩ 7→ ⟨t, d+ n, n⟩ on its Picard

group.
d. Conclude that the image of the restriction map consists entirely of divisors of degree 0 on
C. Hence X is not projective over k and π is not a projective morphism.

2.7.14. II.7.14.

a. Give an example of a noetherian scheme X and a locally free coherent sheaf E , such that
the invertible sheaf O(1) on P(E) is not very ample relative to X.

b. Let f : X → Y be a morphism of finite type, let L be an ample invertible sheaf on X, and
let S be a sheaf of graded OX -algebras satisfying (†). Let P = Proj S, let π : P → X be
the projection, and let OP (1) be the associated invertible sheaf. Show that for all n ≫ 0,
the sheaf OP (1) ⊗ π∗Ln is very ample on P relative to Y .77

2.8. II.8: Differentials.

2.8.1. II.8.1. Here we will strengthen the results of the text to include information about the sheaf
of differentials at a not necessarily closed point of a scheme X.

a. Generalize (8.7) as follows. Let B be a local ring containing a field k, and assume that the
residue field k(B) = B/m of B is a separably generated extension of k. Then the exact
sequence of (8.4A), is exact on the left also.78

b. Generalize (8.8) as follows. With B, k as above, assume furthermore that k is perfect, and
that B is a localization of an algebra of finite type over k. Then show that B is a regular
local ring if and only if ΩB/k is free of rank = dimB+ tr.d. k(B)/k.

c. Strengthen (8.15) as follows. Let X be an irreducible scheme of finite type over a perfect
field k, and let dimX = n. For any point x ∈ X, not necessarily closed, show that the local
ring Ox,X is a regular local ring if and only if the stalk

(
ΩX/k

)
x

of the sheaf of differentials
at x is free of rank n.

d. Strengthen (8.16) as follows. If X is a variety over an algebraically closed field k, then
U =

{
x ∈ X

∣∣∣ Ox is a regular local ring } is an open dense subset of X.

76Hint: If A is a domain and if ∗ denotes the group of units, then (A[u])∗ ∼= A∗ and
(
A

[
u, u−1])∗ ∼= A∗ × Z.

77Hint: Use (7.10) and (Ex. 5.12)
78Hint: In copying the proof of (8.7), first pass to B/m2, which is a complete local ring, and then use (8.25A) to

choose a field of representatives for B/m2.
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2.8.2. II.8.2. Let X be a variety of dimension n over k. Let E be a locally free sheaf of rank > n
on X, and let V ⊆ Γ(X, E) be a vector space of global sections which generate E . Then show that
there is an element s ∈ V , such that for each x ∈ X, we have sx /∈ mxEx. Conclude that there is a
morphism OX → E giving rise to an exact sequence where E ′ is also locally free.79

2.8.3. II.8.3. Product Schemes.
a. Let X and Y be schemes over another scheme S. Use (8.10) and (8.11) to show that
b. If X and Y are nonsingular varieties over a field k, show that
c. Let Y be a nonsingular plane cubic curve, and let X be the surface Y × Y . Show that
pg(X) = 1 but pa(X) = −1 (I, Ex. 7.2). This shows that the arithmetic genus and the
geometric genus of a nonsingular projective variety may be different.

2.8.4. II.8.4. Complete Intersections in Pn. A closed subscheme Y of Pn
k is called a (strict,

global) complete intersection if the homogeneous ideal I of Y in S = k [x0, . . . , xn] can be
generated by r = codim (Y,Pn) elements (I, Ex. 2.17).

a. Let Y be a closed subscheme of codimension r in Pn. Then Y is a complete intersection
if and only if there are hypersurfaces (i.e., locally principal subschemes of codimension 1)
H1, . . . ,Hr, such that Y = H1 ∩ . . . ∩Hr as schemes, i.e., IY = IH1 + . . .+ IHr .80

b. If Y is a complete intersection of dimension ⩾ 1 in Pn, and if Y is normal, then Y is
projectively normal (Ex. 5.14).81

c. With the same hypotheses as (b), conclude that for all l ⩾ 0, the natural map Γ (Pn,OPn(l)) →
Γ (Y,OY (l)) is surjective. In particular, taking l = 0, show that Y is connected.

d. Now suppose given integers d1, . . . , dr ⩾ 1, with r < n. Use Bertini’s theorem (8.18) to
show that there exist nonsingular hypersurfaces H1, . . . ,Hr in Pn, with deg Hi = di, such
that the scheme Y = H1 ∩ . . . ∩Hr is irreducible and nonsingular of codimension r in Pn.

e. If Y is a nonsingular complete intersection as in (d), show that
f. If Y is a nonsingular hypersurface of degree d in Pn, use (c) and (e) above to show that
pg(Y ) =

(d−1
n

)
. Thus pg(Y ) = pa(Y ) (I, Ex. 7.2). In particular, if Y is a nonsingular plane

curve of degree d, then
g. If Y is a nonsingular curve in P3, which is a complete intersection of nonsingular surfaces

of degrees d, e, then Again the geometric genus is the same as the arithmetic genus (I, Ex.
7.2).

2.8.5. II.8.5. Blowing up a Nonsingular Subvariety. As in (8.24), let X be a nonsingular variety,
let Y be a nonsingular subvariety of codimension r ⩾ 2, let π : X̃ → X be the blowing-up of X
along Y , and let Y ′ = π−1(Y ).

a. Show that the maps π∗ : PicX → Pic X̃, and Z → PicX defined by n 7→ class of nY ′, give
rise to an isomorphism Pic X̃ ∼= PicX ⊕ Z.

b. Show that82

79Hint: Use a method similar to the proof of Bertini’s theorem (8.18).]
80Hint: Use the fact that the uniqueness theorem holds in S (Matsumura [2, p.107]).
81Hint: Apply (8.23) to the affine cone over Y .
82Hint: By (a) we can write in any case for some invertible sheaf M on X, and some integer q. By restricting to

X̃ − Y ′ ∼= X − Y , show that M ∼= ωX . To determine q, proceed as follows.
• First show that ωY ′ ∼= f∗ωX ⊗ OY ′ (−q − 1).
• Then take a closed point y ∈ Y and let Z be the fibre of Y ′ over y.
• Then show that ωZ

∼= OZ(−q − 1). But since Z ∼= Pr−1, we have ωZ
∼= OZ(−r), so q = r − 1.
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2.8.6. II.8.6. The Infinitesimal Lifting Property. The following result is very important in studying
deformations of nonsingular varieties. Let k be an algebraically closed field, let A be a finitely gen-
erated k-algebra such that SpecA is a nonsingular variety over k. Let be an exact sequence, where
B′ is a k-algebra, and I is an ideal with I2 = 0. Finally suppose given a k-algebra homomorphism
f : A → B. Then there exists a k-algebra homomorphism g : A → B′ making a commutative
diagram

I

B′

A B
f

g

Link to Diagram
We call this result the infinitesimal lifting property for A. We prove this result in several

steps.
a. First suppose that g : A → B′ is a given homomorphism lifting f . If g′ : A → B′ is another

such homomorphism, show that θ = g−g′ is a k-derivation of A into I, which we can consider
as an element of HomA

(
ΩA/k, I

)
. Note that since I2 = 0, I has a natural structure of B-

module and hence also of A-module. Conversely, for any θ ∈ HomA

(
ΩA/k, I

)
, g′ = g + θ

is another homomorphism lifting f . (For this step, you do not need the hypothesis about
Spec A being nonsingular.)

b. Now let P = k [x1, . . . , xn] be a polynomial ring over k of which A is a quotient, and let J be
the kernel. Show that there does exist a homomorphism h : P → B′ making a commutative
diagram,

J I

P B

A B′
f

h

Link to Diagram
and show that h induces an A-linear map h : J/J2 → I.

c. Now use the hypothesis Spec A nonsingular and (8.17) to obtain an exact sequence Show fur-
thermore that applying the functor HomA(·, I) gives an exact sequence Let θ ∈ HomP

(
ΩP/k, I

)
be an element whose image gives h ∈ HomA

(
J/J2, I

)
. Consider θ as a derivation of P to B′.

Then let h′ = h− θ, and show that h′ is a homomorphism of P → B′ such that h′(J) = 0.
Thus h′ induces the desired homomorphism g : A → B′.

2.8.7. II.8.7. As an application of the infinitesimal lifting property, we consider the following gen-
eral problem. Let X be a scheme of finite type over k, and let F be a coherent sheaf on X.
We seek to classify schemes X ′ over k, which have a sheaf of ideals I such that I2 = 0 and
(X ′,OX/I) ∼= (X,OX), and such that I with its resulting structure of OX -module is isomorphic

https://q.uiver.app/?q=WzAsNSxbMCw0LCJBIl0sWzIsNCwiQiJdLFsyLDIsIkkiXSxbMiwwXSxbMiwzLCJCJyJdLFswLDEsImYiXSxbMCw0LCJnIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzIsNCwiIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNCwxLCIiLDIseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XV0=
https://q.uiver.app/?q=WzAsNixbMCwwLCJKIl0sWzAsMSwiUCJdLFswLDIsIkEiXSxbMiwwLCJJIl0sWzIsMSwiQiJdLFsyLDIsIkInIl0sWzIsNSwiZiIsMl0sWzEsNCwiaCIsMl0sWzAsMSwiIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMyw0LCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFsxLDIsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dLFs0LDUsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6ImVwaSJ9fX1dXQ==
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to the given sheaf F . Such a pair X ′, I we call an infinitesimal extension of the scheme X
by the sheaf F .

One such extension, the trivial one, is obtained as follows. Take OX′ = OX ⊕ F as sheaves of
abelian groups, and define multiplication by Then the topological space X with the sheaf of rings
OX′ is an infinitesimal extension of X by F .

The general problem of classifying extensions of X by F can be quite complicated. So for now,
just prove the following special case: if X is affine and nonsingular, then any extension of X by a
coherent sheaf F is isomorphic to the trivial one. See (III, Ex. 4.10) for another case.

2.8.8. II.8.8. Plurigenus and (some) Hodge numbers are birational invariants. Let X be a projec-
tive nonsingular variety over k. For any n > 0 we define the nth plurigenus of X to be Thus
in particular P1 = pg. Also, for any q, 0 ⩽ q ⩽ dimX we define an integer is the sheaf of regular
q-forms on X. In particular, for q = dimX, we recover the geometric genus again. The integers
hq,0 are called Hodge numbers.

Using the method of (8.19), show that Pn and hq,0 are birational invariants of X, i.e., if X
and X ′ are birationally equivalent nonsingular projective varieties, then Pn(X) = Pn (X ′) and
hq,0(X) = hq,0 (X ′).

2.9. II.9: Formal Schemes.

2.9.1. II.9.1. Let X be a noetherian scheme, Y a closed subscheme, and X̂ the completion of X
along Y . We call the ring Γ

(
X̂,O

X̂

)
the ring of formal-regular functions on X along Y . In this

exercise we show that if Y is a connected, nonsingular, positive dimensional subvariety of X = Pn
k

over an algebraically closed field k, then Γ
(
X̂,O

X̂

)
= k

a. Let I be the ideal sheaf of Y . Use (8.13) and (8.17) to show that there is an inclusion of
sheaves on Y, I/I2 ↪→ OY (−1)n+1.

b. Show that for any r ⩾ 1,Γ
(
Y, Ir/Ir+1)

= 0.
c. Use the exact sequences and induction on r to show that Γ (Y,OX/Ir) = k for all r ⩾ 1.83

d. Conclude that Γ
(
X̂,O

X̂

)
= k.84

2.9.2. II.9.2. Use the result of (Ex. 9.1) to prove the following geometric result. Let Y ⊆ X = Pn
k

be as above, and let f : X → Z be a morphism of k-varieties. Suppose that f(Y ) is a single closed
point P ∈ Z. Then f(X) = P also.

2.9.3. II.9.3. Prove the analogue of (5.6) for formal schemes, which says, if X is an affine formal
scheme, and if is an exact sequence of Ox-modules, and if F′ is coherent, then the sequence of global
sections is exact. For the proof, proceed in the following steps.

a. Let I be an ideal of definition for X, and for each n > 0 consider the exact sequence Use
(5.6), slightly modified, to show that for every open affine subset U ⊆ X, the sequence is
exact.

b. Now pass to the limit, using (9.1), (9.2), and (9.6). Conclude that F ∼= lim F/JnF′ and that
the sequence of global sections above is exact.

2.9.4. II.9.4. Use (Ex. 9.3) to prove that if is an exact sequence of Ox-modules on a noetherian
formal scheme X, and if F′,F′′ are coherent, then F is coherent also.

83Use 8.21Ae.
84Actually, the same result holds without the hypothesis Y nonsingular, but the proof is more difficult-see

Hartshorne [3, (7.3)].
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2.9.5. II.9.5. If F is a coherent sheaf on a noetherian formal scheme X, which can be generated by
global sections, show in fact that it can be generated by a finite number of its global sections.

2.9.6. II.9.6. Let X be a noetherian formal scheme, let I be an ideal of definition, and for each n,
let Yn be the scheme (X,Ox/Jn). Assume that the inverse system of groups (Γ (Yn,OYn)) satisfies
the Mittag-Leffler condition. Then prove that Pic X = lim PicYn.

As in the case of a scheme, we define Pic X to be the group of locally free Ox-modules of rank 1
under the operation ⊗. Proceed in the following steps.

a. Use the fact that ker
(
Γ

(
Yn+1,OYn+1

)
→ Γ (Yn,OYn)

)
is a nilpotent ideal to show that the

inverse system
(
Γ

(
Yn,O∗

Yn

))
of units in the respective rings also satisfies (ML).

b. Let F be a coherent sheaf of Ox-modules, and assume that for each n, there is some iso-
morphism φn : F̃/JnF ∼= OYn . Then show that there is an isomorphism F̃ ∼= Ox.85

Conclude that the natural map Pic X → lim←−−PicYn is injective.
c. Given an invertible sheaf Ln on Yn for each n, and given isomorphisms Ln+1⊗ OYn

∼= Ln,
construct maps Ln′ → Ln for each n′ ⩾ n so as to make an inverse system, and show that
L = lim Ln is a coherent sheaf on X.

Then show that L is locally free of rank 1, and thus conclude that the map Pic X →
lim PicYn is surjective.86

d. Show that the hypothesis “(Γ (Yn,OYn)) satisfies (ML)” is satisfied if either X is affine, or
each Yn is projective over a field k.87

3. III: Cohomology

3.1. III.1: Derived Functors. Amazing! No exercises in this section.

3.2. III.2: Cohomology of Sheaves.

3.2.1. V.2.1.
a. Let X = A1

k be the affine line over an infinite field k. Let P,Q be distinct closed points of
X, and let U = X − {P,Q}. Show that H1 (X,ZU ) ̸= 0.

b. * More generally, let Y ⊆ X = An
k be the union of n + 1 hyperplanes in suitably general

position, and let U = X − Y . Show that Hn (X,ZU ) ̸= 0. Thus the result of (2.7) is the
best possible.

3.2.2. V.2.2. Let X = P1
k be the projective line over an algebraically closed field k. Show that the

exact sequence of (II, Ex. 1.21d) is a flasque resolution of O. Conclude from (II, Ex. 1.21e) that
H i(X,O) = 0 for all i > 0.

3.2.3. V.2.3. Cohomology with Supports. Let X be a topological space, let Y be a closed subset,
and let F be a sheaf of abelian groups. Let ΓY (X,F) denote the group of sections of F with
support in Y (II, Ex. 1.20).

a. Show that ΓY (X, ·) is a left exact functor from Ab(X) to Ab. We denote the right derived
functors of ΓY (X, ·) by H i

Y (X, ·). They are the cohomology groups of X with supports in
Y , and coefficients in a given sheaf.

b. If 0 → F ′ → F → Ḟ ′′ → 0 is an exact sequence of sheaves, with F ′ flasque, show that is
exact.

85Be careful, because the φn may not be compatible with the maps in the two inverse systems (F/JnF) and (OYn )!
86Again be careful, because even though each Ln is locally free of rank 1, the open sets needed to make them free

might get smaller and smaller with n.
87See (III, Ex. 11.5-11.7) for further examples and applications.
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c. Show that if F is flasque, then H i
Y (X,F) = 0 for all i > 0.

d. If F is flasque, show that the sequence is exact.
e. Let U = X −Y . Show that for any F , there is a long exact sequence of cohomology groups
f. Excision. Let V be an open subset of X containing Y . Then there are natural functorial

isomorphisms, for all i and F ,

3.2.4. V.2.4. Mayer-Vietoris Sequence. Let Y1, Y2 be two closed subsets of X. Then there is a long
exact sequence of cohomology with supports

3.2.5. V.2.5. Let X be a Zariski space (II, Ex. 3.17). Let P ∈ X be a closed point, and let XP be
the subset of X consisting of all points Q ∈ X such that P ∈ {Q}−. We call XP the local space
of X at P , and give it the induced topology.

Let j : XP → X be the inclusion, and for any sheaf F on X, let FP = j∗F . Show that for all
i,F , we have

3.2.6. V.2.6. Let X be a noetherian topological space, and let {Iα}α∈A be a direct system of
injective sheaves of abelian groups on X. Then colim−−−−−→ Iα is also injective.88

3.2.7. V.2.7. Let S1 be the circle (with its usual topology), and let Z be the constant sheaf Z.
a. Show that H1 (

S1,Z
) ∼= Z, using our definition of cohomology.

b. Now let R be the sheaf of germs of continuous real-valued functions on S1. Show that
H1 (

S1,R
)

= 0.

3.3. III.3: Cohomology of a Noetherian Affine Scheme.

3.3.1. V.3.1. Let X be a noetherian scheme. Show that X is affine if and only if Xred (II, Ex. 2.3)
is affine.89

3.3.2. V.3.2. Let X be a reduced noetherian scheme. Show that X is affine if and only if each
irreducible component is affine.

3.3.3. V.3.3. Let A be a noetherian ring, and let a be an ideal of A.
a. Show that Γa(·) (II, Ex. 5.6) is a left-exact functor from the category of A-modules to itself.

We denote its right derived functors, calculated in Mod(A), by H i
a(·).

b. Now let X = SpecA, Y = V (a). Show that for any A-module M , where H i
Y (X, ·) denotes

cohomology with supports in Y ( Ex. 2.3).
c. For any i, show that Γa

(
H i

a(M)
)

= H i
a(M).

3.3.4. V.3.4. Cohomological Interpretation of Depth. If A is a ring, a an ideal, and M an A module,
then depthaM is the maximum length of an M -regular sequence x1, . . . , xr, with all xi ∈ a. This
generalizes the notion of depth introduced in (II, §8).

a. Assume that A is noetherian. Show that if depthaM ⩾ 1, then Γa(M) = 0, and the converse
is true if M is finitely generated.90

88Hints: First show that a sheaf I is injective if and only if for every open set U ⊆ X, and for every subsheaf
R ⊆ ZU , and for every map f : R → I, there exists an extension of f to a map of ZU → I. Secondly, show that any
such sheaf R is finitely generated, so any map R → colim−−−−−→ Iα factors through one of the Iα.

89Hint: Use (3.7), and for any coherent sheaf F on X, consider the filtration F ⊇ N · F ⊇ N 2 · F ⊇ . . ., where N
is the sheaf of nilpotent elements on X.

90Hint: When M is finitely generated, both conditions are equivalent to saying that a is not contained in any
associated prime of M .
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b. Show inductively, for M finitely generated, that for any n ⩾ 0, the following conditions are
equivalent:
(i) depthaM ⩾ n;
(ii) H i

a(M) = 0 for all i < n.

3.3.5. V.3.5. Let X be a noetherian scheme, and let P be a closed point of X. Show that the
following conditions are equivalent:

(i) depth OP ⩾ 2;
(ii) if U is any open neighborhood of P , then every section of OX over U −P extends uniquely

to a section of OX over U .
This generalizes (I, Ex. 3.20), in view of (II, 8.22A).

3.3.6. V.3.6. Let X be a noetherian scheme.
a. Show that the sheaf G constructed in the proof of (3.6) is an injective object in the category

QCoh(X) of quasi-coherent sheaves on X. Thus QCoh(X) has enough injectives.
b. * Show that any injective object of QCoh(X) is flasque.91

c. Conclude that one can compute cohomology as the derived functors of Γ(X, ·), considered
as a functor from QCoh(X) to Ab.

3.3.7. V.3.7. Let A be a noetherian ring, let X = SpecA, let a ⊆ A be an ideal, and let U ⊆ X be
the open set X − V (a).

a. For any A-module M , establish the following formula of Deligne:
b. Apply this in the case of an injective A-module I, to give another proof of (3.4).

3.3.8. V.3.8. Without the noetherian hypothesis, (3.3) and (3.4) are false. Let A = k [x0, x1, x2, . . .]
with the relations xn

0xn = 0 for n = 1, 2, . . .. Let I be an injective A-module containing A. Show
that I → Ix0 is not surjective.

3.4. III.4: Čech Cohomology.

3.4.1. V.4.1. Let f : X → Y be an affine morphism of noetherian separated schemes (II, Ex. 5.17).
Show that for any quasi-coherent sheaf F on X, there are natural isomorphisms for all i ⩾ 0,92

3.4.2. V.4.2. Prove Chevalley’s theorem: Let f : X → Y be a finite surjective morphism of noe-
therian separated schemes, with X affine. Then Y is affine.

a. Let f : X → Y be a finite surjective morphism of integral noetherian schemes. Show that
there is a coherent sheaf M on X, and a morphism of sheaves α : Or

Y → f∗M for some
r > 0, such that α is an isomorphism at the generic point of Y .

b. For any coherent sheaf F on Y , show that there is a coherent sheaf G on X, and a morphism
β : f∗G → Fr which is an isomorphism at the generic point of Y .93

c. Now prove Chevalley’s theorem. First use (Ex. 3.1) and (Ex. 3.2) to reduce to the case X
and Y integral. Then use (3.7), (Ex. 4.1), consider kerβ and coker β, and use noetherian
induction on Y .

91Hints: The method of proof of (2.4) will not work, because OU is not quasi-coherent on X in general. Instead,
use (II, Ex. 5.15) to show that if I ∈ Qco(X) is injective, and if U ⊆ X is an open subset, then I|U is an injective
object of Qco(U). Then cover X with open affines · · ·.

92Hint: Use (II, 5.8).
93Hint: Apply Hom(·,F) to α and use (II, Ex. 5.17e).
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3.4.3. V.4.3. Let X = A2
k = Spec k[x, y], and let U = X − {(0, 0)}. Using a suitable cover of

U by open affine subsets, show that H1 (U,OU ) is isomorphic to the k-vector space spanned by{
xiyj

∣∣∣ i, j < 0
}

. In particular, it is infinite-dimensional.94

3.4.4. V.4.4. On an arbitrary topological space X with an arbitrary abelian sheaf F , Čech coho-
mology may not give the same result as the derived functor cohomology. But here we show that
for H1, there is an isomorphism if one takes the limit over all coverings.

a. Let U = (Ui)i∈I be an open covering of the topological space X. A refinement of U is a
covering B = (Vj)j∈J , together with a map λ : J → I of the index sets, such that for each
j ∈ J, Vj ⊆ Uλ(j). If B is a refinement of X, show that there is a natural induced map
on Čech cohomology, for any abelian sheaf F , and for each i, The coverings of X form a
partially ordered set under refinement, so we can consider the Ceech cohomology in the
limit

b. For any abelian sheaf F on X, show that the natural maps (4.4) for each covering are
compatible with the refinement maps above.

c. Now prove the following theorem. Let X be a topological space, F a sheaf of abelian groups.
Then the natural map is an isomorphism.95

3.4.5. V.4.5. For any ringed space (X,OX), let PicX be the group of isomorphism classes of
invertible sheaves (II, §6). Show that PicX ∼= H1 (X,O∗

X), where O∗
X denotes the sheaf whose

sections over an open set U are the units in the ring Γ (U,OX), with multiplication as the group
operation.96

3.4.6. V.4.6. Let (X,OX) be a ringed space, let I be a sheaf of ideals with I2 = 0, and let X0 be
the ringed space (X,OX/I). Show that there is an exact sequence of sheaves of abelian groups on
X, where O∗

X (respectively, O∗
X0

) denotes the sheaf of (multiplicative) groups of units in the sheaf
of rings OX (respectively, OX0 ) the map I → O∗

X is defined by a 7→ 1 + a, and I has its usual
(additive) group structure. Conclude there is an exact sequence of abelian groups

3.4.7. V.4.7. Let X be a subscheme of P2
k defined by a single homogeneous equation f (x0, x1, x2) =

0 of degree d. (Do not assume f is irreducible.) Assume that (1, 0, 0) is not on X. Then show that
X can be covered by the two open affine subsets U = X ∩ {x1 ̸= 0} and V = X ∩ {x2 ̸= 0}. Now
calculate the Čech complex explicitly, and thus show that

3.4.8. V.4.8. Cohomological Dimension. Let X be a noetherian separated scheme. We define the
cohomological dimension of X, denoted cd(X), to be the least integer n such that H i(X,F) = 0
for all quasi-coherent sheaves F and all i > n.

Thus for example, Serre’s theorem (3.7) says that cd(X) = 0 if and only ifX is affine. Grothendieck’s
theorem (2.7) implies that cd(X) ⩽ dimX.

a. In the definition of cd(X), show that it is sufficient to consider only coherent sheaves on X.
Use (II, Ex. 5.15) and (2.9).

b. If X is quasi-projective over a field k, then it is even sufficient to consider only locally free
coherent sheaves on X. Use (II, 5.18).

94Using (3.5), this provides another proof that U is not affine-cf. (I, Ex. 3.6).
95Hint: Embed F in a flasque sheaf G, and let R = G/F , so that we have an exact sequence Define a complex

D·(U) by Then use the exact cohomology sequence of this sequence of complexes, and the natural map of complexes
and see what happens under refinement.

96Hint: For any invertible sheaf L on X, cover X by open sets Ui on which L is free, and fix isomorphisms
φi : OUi

∼−→ L|Ui
. Then on Ui ∩ Uj , we get an isomorphism φ−1

i ◦ φj of OUi∩Uj with itself. These isomorphisms give
an element of Ȟ1 (U,O∗X). Now use (Ex. 4.4).
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c. Suppose X has a covering by r+ 1 open affine subsets. Use Čech cohomology to show that
cd(X) ⩽ r.

d. * If X is a quasi-projective scheme of dimension r over a field k, then X can be covered by
r + 1 open affine subsets. Conclude (independently of (2.7)) that cd(X) ⩽ dimX.

e. Let Y be a set-theoretic complete intersection (I, Ex. 2.17) of codimension r in X = Pn
k .

Show that cd(X − Y ) ⩽ r − 1.

3.4.9. V.4.9. Let X = Spec k [x1, x2, x3, x4] be affine four-space over a field k. Let Y1 be the plane
x1 = x2 = 0 and let Y2 be the plane x3 = x4 = 0. Show that Y = Y1 ∪ Y2 is not a set-theoretic
complete intersection in X. Therefore the projective closure Y in P4

k is also not a set-theoretic
complete intersection.97

3.4.10. V.4.10. * Let X be a nonsingular variety over an algebraically closed field k, and let F
be a coherent sheaf on X. Show that there is a one-to-one correspondence between the set of
infinitesimal extensions of X by F (II, Ex. 8.7) up to isomorphism, and the group H1(X,F ⊗ T ),
where T is the tangent sheaf of X, see (II§8).98

3.4.11. V.4.11. This exercise shows that Cech cohomology will agree with the usual cohomology
whenever the sheaf has no cohomology on any of the open sets. More precisely, letX be a topological
space, F a sheaf of abelian groups, and U = (Ui) an open cover. Assume for any finite intersection
V = Ui0 ∩ . . . ∩ Uip of open sets of the covering, and for any k > 0, that Hk (V, F|V ) = 0. Then
prove that for all p ⩾ 0, the natural maps of (4.4) are isomorphisms. Show also that one can recover
(4.5) as a corollary of this more general result.

3.5. III.5: The Cohomology of Projective Space.

3.5.1. III.5.1. Let X be a projective scheme over a field k, and let F be a coherent sheaf on X.
We define the Euler characteristic of F by If is a short exact sequence of coherent sheaves on X,
show that χ(F) = χ (F ′) + χ (F ′′).

3.5.2. III.5.2.
a. Let X be a projective scheme over a field k, let OX(1) be a very ample invertible sheaf on X

over k, and let F be a coherent sheaf on X. Show that there is a polynomial P (z) ∈ Q[z],
such that χ(F(n)) = P (n) for all n ∈ Z. We call P the Hilbert polynomial of F with
respect to the sheaf OX(1).99

b. Now let X = Pr
k, and let M = Γ∗(F), considered as a graded S = k [x0, . . . , xr] − module.

Use (5.2) to show that the Hilbert polynomial of F just defined is the same as the Hilbert
polynomial of M defined in (I, §7).

3.5.3. III.5.3. Arithmetic Genus. Let X be a projective scheme of dimension r over a field k. We
define the arithmetic genus pa of X by Note that it depends only on X, not on any projective
embedding.

a. If X is integral, and k algebraically closed, show that H0 (X,OX) ∼= k, so that In particular,
if X is a curve, we have100

97Hints: Use an affine analogue of (Ex. 4.8e). Then show that H2 (X − Y,OX) ̸= 0, by using (Ex. 2.3) and (Ex.
2.4). If P = Y1 ∩ Y2, imitate (Ex. 4.3) to show H3 (X − P,OX) ̸= 0.

98Hint: Use (II, Ex. 8.6) and (4.5).
99Hints: Use induction on dim Supp F , general properties of numerical polynomials (I, 7.3), and suitable exact

sequences
100Hint: Use (I, 3.4).
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b. If X is a closed subvariety of Pr
k, show that this pa(X) coincides with the one defined in (I,

Ex. 7.2), which apparently depended on the projective embedding.
c. If X is a nonsingular projective curve over an algebraically closed field k, show that pa(X)

is in fact a birational invariant. Conclude that a nonsingular plane curve of degree d ⩾ 3 is
not rational.101

3.5.4. III.5.4. Recall from (II, Ex. 6.10) the definition of the Grothendieck group K(X) of a
noetherian scheme X.

a. Let X be a projective scheme over a field k, and let OX(1) be a very ample invertible sheaf
on X. Show that there is a (unique) additive homomorphism such that for each coherent
sheaf F on X,P (γ(F)) is the Hilbert polynomial of F (Ex. 5.2).

b. Now let X = Pr
k. For each i = 0, 1, . . . , r, let Li be a linear space of dimension i in X.

Then show that
(1) K(X) is the free abelian group generated by

{
γ (OLi)

∣∣∣ i = 0, . . . , r
}

, and
(2) the map P : K(X) → Q[z] is injective.102

3.5.5. III.5.5. Let k be a field, let X = Pr
k, and let Y be a closed subscheme of dimension q ⩾ 1,

which is a complete intersection (II, Ex. 8.4). Then:
a. for all n ∈ Z, the natural map is surjective.103

b. Y is connected;
c. H i (Y,OY (n)) = 0 for 0 < i < q and all n ∈ Z;
d. pa(Y ) = dimk H

q (Y,OY ).104

3.5.6. III.5.6. Curves on a Nonsingular Quadric Surface. Let Q be the nonsingular quadric surface
xy = zw in X = P3

k over a field k. We will consider locally principal closed subschemes Y of Q.
These correspond to Cartier divisors on Q by (II, 6.17.1). On the other hand, we know that
PicQ ∼= Z ⊕ Z, so we can talk about the type (a, b) of Y ( II, 6.16) and (II, 6.6.1).

Let us denote the invertible sheaf L(Y ) by OQ(a, b). Thus for any n ∈ Z,OQ(n) = OQ(n, n).
a. Use the special cases (q, 0) and (0, q), with q > 0, when Y is a disjoint union of q lines P1

in Q, to show:
(1) if |a− b| ⩽ 1, then H1 (Q,OQ(a, b)) = 0;
(2) if a, b < 0, then H1 (QOQ(a, b)) = 0
(3) If a ⩽ −2, then H1 (Q,OQ(a, 0)) ̸= 0.

b. Now use these results to show:
(1) if Y is a locally principal closed subscheme of type (a, b), with a, b > 0, then Y is

connected;
(2) now assume k is algebraically closed. Then for any a, b > 0, there exists an irreducible

nonsingular curve Y of type (a,b). Use (II, 7.6.2) and (II, 8.18).
(3) an irreducible nonsingular curve Y of type (a, b), a, b > 0 on Q is projectively normal

(II, Ex. 5.14) if and only if |a − b| ⩽ 1. In particular, this gives lots of examples of
nonsingular, but not projectively normal curves in P3. The simplest is the one of type
(1, 3), which is just the rational quartic curve (I, Ex. 3.18).

101This gives another proof of (II, 8.20.3) where we used the geometric genus.
102Hint: Show that (1) ⇒ (2). Then prove (1) and (2) simultaneously, by induction on r, using (II, Ex. 6.10c).
103This gives a generalization and another proof of (II, Ex. 8.4c), where we assumed Y was normal.
104Hint: Use exact sequences and induction on the codimension, starting from the case Y = X which is (5.1).
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c. If Y is a locally principal subscheme of type (a, b) in Q, show that105

3.5.7. III.5.7. Let X (respectively, Y ) be proper schemes over a noetherian ring A. We denote by
L an invertible sheaf.

a. If L is ample on X, and Y is any closed subscheme of X, then i∗L is ample on Y , where
i : Y → X is the inclusion.

b. L is ample on X if and only if Lred = L ⊗ OXred is ample on Xred .
c. Suppose X is reduced. Then L is ample on X if and only if L ⊗ OXi is ample on Xi, for

each irreducible component Xi of X.
d. Let f : X → Y be a finite surjective morphism, and let L be an invertible sheaf on Y . Then

L is ample on Y if and only if f∗L is ample on X.106

3.5.8. III.5.8. Prove that every one-dimensional proper scheme X over an algebraically closed field
k is projective.

a. If X is irreducible and nonsingular, then X is projective by (II, 6.7).
b. If X is integral, let X̃ be its normalization (II, Ex. 3.8). Show that X̃ is complete and

nonsingular, hence projective by (a).
Let f : X̃ → X be the projection. Let L be a very ample invertible sheaf on X̃. Show

there is an effective divisor D = ∑
Pi on X̃ with L(D) ∼= L, and such that f (Pi) is a

nonsingular point of X, for each i.
Conclude that there is an invertible sheaf L0 on X with f∗L0 ∼= L. Then use (Ex. 5.7d),

(II, 7.6) and (II, 5.16.1) to show that X is projective.
c. If X is reduced, but not necessarily irreducible, let X1, . . . , Xr be the irreducible components

of X. Use (Ex. 4.5) to show PicX →
⊕ PicXi is surjective. Then use (Ex. 5.7c) to show

X is projective.
d. Finally, if X is any one-dimensional proper scheme over k, use (2.7) and (Ex. 4.6) to show

that PicX → PicXred is surjective. Then use (Ex. 5.7b) to show X is projective.

3.5.9. III.5.9. A Nonprojective Scheme. We show the result of (Ex. 5.8) is false in dimension 2.
Let k be an algebraically closed field of characteristic 0 , and let X = P2

k. Let ω be the sheaf of
differential 2-forms (II, §8). Define an infinitesimal extension X ′ of X by ω by giving the element
ξ ∈ H1(X,ω ⊗ T ) defined as follows (Ex. 4.10).

Let x0, x1, x2 be the homogeneous coordinates of X, let U0, U1, U2 be the standard open covering,
and let ξij = (xj/xi) d (xi/xj). This gives a Čech 1-cocycle with values in Ω1

X , and since dimX = 2,
we have ω⊗T ∼= Ω1 (II, Ex. 5.16b). Now use the exact sequence of (Ex. 4.6) and show δ is injective.
We have ω ∼= OX(−3) by (II, 8.20.1), so H2(X,ω) ∼= k. Since char k = 0, you need only show that
δ(O(1)) ̸= 0, which can be done by calculating in Čech cohomology.

Since H1(X,ω) = 0, we see that PicX ′ = 0. In particular, X ′ has no ample invertible sheaves,
so it is not projective.107

105Hint: Calculate Hilbert polynomials of suitable sheaves, and again use the special case (q, 0) which is a disjoint
union of q copies of P1. See (V, 1.5.2) for another method.

106Hints: Use (5.3) and compare (Ex. 3.1, Ex. 3.2, Ex. 4.1, Ex. 4.2). See also Hartshorne [5, Ch.I§4] for more
details.

107Note. In fact, this result can be generalized to show that for any nonsingular projective surface X over an
algebraically closed field k of characteristic 0 , there is an infinitesimal extension X ′ of X by ω, such that X ′ is not
projective over k.
Indeed, let D be an ample divisor on X. Then D determines an element c1(D) ∈ H1 (

X,Ω1)
which we use to define

X ′, as above. Then for any divisor E on X one can show that δ(L(E)) = (D.E), where (D.E) is the intersection
number (Chapter V), considered as an element of k. Hence if E is ample, δ(L(E)) ̸= 0. Therefore X ′ has no ample
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3.5.10. III.5.10. Let X be a projective scheme over a noetherian ring A, and let F1 → F2 → . . . →
Fr be an exact sequence of coherent sheaves on X. Show that there is an integer n0, such that for
all n ⩾ n0, the sequence of global sections is exact.

3.6. III.6: Ext Groups and Sheaves.

3.6.1. III.6.1. Let (X,OX) be a ringed space, and let F ′,F ′′ ∈ Mod(X). An extension of F ′′ by
F ′ is a short exact sequence in Mod(X). Two extensions are isomorphic if there is an isomorphism
of the short exact sequences, inducing the identity maps on F ′ and F ′′. Given an extension as
above consider the long exact sequence arising from Hom (F ′′, ·), in particular the map and let
ξ ∈ Ext1 (F ′′,F ′) be δ (1F ′′). Show that this process gives a one-to-one correspondence between
isomorphism classes of extensions of F ′′ by F ′, and elements of the group Ext1 (F ′′,F ′).

3.6.2. III.6.2. Let X = P1
k, with k an infinite field.

a. Show that there does not exist a projective object P ∈ Mod(X), together with a surjective
map P → OX → 0.108

b. Show that there does not exist a projective object P in either QCoh(X) or Coh(X) together
with a surjection P → OX → 0.109

3.6.3. III.6.3. Let X be a noetherian scheme, and let F ,G ∈ Mod(X).
a. If F ,G are both coherent, then E§⊔(F ,G) is coherent, for all i ⩾ 0.
b. If F is coherent and G is quasi-coherent, then Exti(F ,G) is quasi-coherent, for all i ⩾ 0.

3.6.4. III.6.4. Let X be a noetherian scheme, and suppose that every coherent sheaf on X is a
quotient of a locally free sheaf. In this case we say Coh(X) has enough locally frees. Then for
any G ∈ Mod(X), show that the δ-functor

(
Exti(·,G)

)
, from Coh(X) to Mod(X) is a contravariant

universal δ-functor.110

3.6.5. III.6.5. Let X be a noetherian scheme, and assume that Coh(X) has enough locally frees
(Ex. 6.4). Then for any coherent sheaf F we define the homological dimension of F , denoted
hd(F), to be the least length of a locally free resolution of F (or +∞ if there is no finite one).
Show:

a. F is locally free ⇔ Ext1(F ,G) = 0 for all G ∈ Mod(X);
b. hd(F) ⩽ n ⇔ E§⊔(F ,G) = 0 for all i > n and all G ∈ Mod(X);
c. hd(F) = supx pdOx

Fx.

3.6.6. III.6.6. Let A be a regular local ring, and let M be a finitely generated A-module. In this
case, strengthen the result (6.10 A) as follows.

a. M is projective if and only if Exti(M,A) = 0 for all i > 0.111

b. Use (a) to show that for any n, pd M ⩽ n if and only if Exti(M,A) = 0 for all i > n.

divisors.
On the other hand, over a field of characteristic p > 0, a proper scheme X is projective if and only if Xred is!

108Hint: Consider surjections of the form OV → k(x) → 0, where x ∈ X is a closed point, V is an open
neighborhood of x, and OV = j!

(
OX |V

)
, where j : V → X is the inclusion.

109Hint: Consider surjections of the form L → L ⊗k(x) → 0, where x ∈ X is a closed point, and L is an invertible
sheaf on X.

110Hint: Show Exti(·,G) is coeffaceable for i > 0.
111Hint: Use (6.11A) and descending induction on i to show that Exti(M,N) = 0 for all i > 0 and all finitely

generated A-modules N . Then show M is a direct summand of a free A-module (Matsumura [2, p.129]).
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3.6.7. III.6.7. Let X = SpecA be an affine noetherian scheme. Let M,N be A-modules, with M
finitely generated. Then and

3.6.8. III.6.8. Prove the following theorem of Kleiman (see Borelli [1]): if X is a noetherian, inte-
gral, separated, locally factorial scheme, then every coherent sheaf on X is a quotient of a locally
free sheaf (of finite rank).

a. First show that open sets of the form Xs, for various s ∈ Γ(X,L), and various invertible
sheaves L on X, form a base for the topology of X.112

b. Now use (II, 5.14) to show that any coherent sheaf is a quotient of a direct sum ⊕
Lni

i for
various invertible sheaves Li and various integers ni.

3.6.9. III.6.9. Let X be a noetherian, integral, separated, regular scheme. (We say a scheme is
regular if all of its local rings are regular local rings.) Recall the definition of the Grothendieck
group K(X) from (II, Ex. 6.10).

We define similarly another group K1(X) using locally free sheaves: it is the quotient of the free
abelian group generated by all locally free (coherent) sheaves, by the subgroup generated by all
expressions of the form E − E ′ − E ′′, whenever 0 → E ′ → E → E ′′ → 0 is a short exact sequence of
locally free sheaves.

Clearly there is a natural group homomorphism ε : K1(X) → K(X). Show that ε is an isomor-
phism (Borel and Serre [1, §4]) as follows.

a. Given a coherent sheaf F , use (Ex. 6.8) to show that it has a locally free resolution
E . → F → 0. Then use (6.11A) and (Ex. 6.5) to show that it has a finite locally free
resolution

b. For each F , choose a finite locally free resolution E . → F → 0, and let δ(F) = ∑(−1)iγ (Ei)
in K1(X). Show that δ(F) is independent of the resolution chosen, that it defines a homo-
morphism of K(X) to K1(X), and finally, that it is an inverse to ε.

3.6.10. III.6.10. Duality for a Finite Flat Morphism.
a. Let f : X → Y be a finite morphism of noetherian schemes. For any quasicoherent OY -

module G,HomY (f∗OX ,G) is a quasi-coherent f∗OX -module, hence corresponds to a quasi-
coherent OX -module, which we call f !G (II, Ex. 5.17e).

b. Show that for any coherent F on X and any quasi-coherent G on Y , there is a natural
isomorphism

c. For each i ⩾ 0, there is a natural map113

d. Now assume that X and Y are separated, Coh(X) has enough locally frees, and assume
that f∗OX is locally free on Y (this is equivalent to saying f flat-see §9). Show that φi is
an isomorphism for all i, all F coherent on X, and all G quasi-coherent on Y .114

3.7. III.7: Serre Duality.

3.7.1. III.7.1. Special case of Kodaira vanishing. Let X be an integral projective scheme of dimen-
sion ⩾ 1 over a field k, and let L be an ample invertible sheaf on X. Then

112Hint: Given a closed point x ∈ X and an open neighborhood U of x, to show there is an L, s such that
x ∈ Xs ⊆ U , first reduce to the case that Z = X − U is irreducible. Then let ζ be the generic point of Z. Let
f ∈ K(X) be a rational function with f ∈ Ox, f /∈ Oζ . Let D = (f)∞, and let L = L(D), s ∈ Γ(X,L(D)) correspond
to D (II, §6).

113Hint: First construct a map Then compose with a suitable map from f∗f
!G to G.

114Hints: First do i = 0. Then do F = OX , using (Ex. 4.1). Then do F locally free. Do the general case by
induction on i, writing F as a quotient of a locally free sheaf.
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3.7.2. III.7.2. Let f : X → Y be a finite morphism of projective schemes of the same dimension
over a field k, and let ω◦

Y be a dualizing sheaf for Y .
a. Show that f ′ω◦

Y is a dualizing sheaf for X, where f ′ is defined as in (Ex. 6.10).
b. If X and Y are both nonsingular, and k algebraically closed, conclude that there is a natural

trace map t : f∗ωX → ωY .

3.7.3. III.7.3. Let X = Pn
k . Show that Hq (X,Ωp

X) = 0 for p ̸= q, k for p = q, 0 ⩽ p, q ⩽ n.

3.7.4. III.7.4. * The Cohomology Class of a Subvariety. Let X be a nonsingular projective variety
of dimension n over an algebraically closed field k. Let Y be a nonsingular subvariety of codimension
p (hence dimension n− p ). From the natural map ΩX⊗ OY → ΩY of (II, 8.12) we deduce a map
Ωn−p

X → Ωn−p
Y . This induces a map on cohomology Now Ωn−p

Y = ωY is a dualizing sheaf for Y , so
we have the trace map Composing, we obtain a linear map Hn−p

(
X,Ωn−p

X

)
→ k. By (7.13) this

corresponds to an element η(Y ) ∈ Hp (X,Ωp
X), which we call the cohomology class of Y .

a. If P ∈ X is a closed point, show that tX(η(P )) = 1, where η(P ) ∈ Hn (X,Ωn) and tX is
the trace map.

b. If X = Pn, identify Hp (X,Ωp) with k by (Ex. 7.3), and show that η(Y ) = (deg Y ) · 1,
where deg Y is its degree as a projective variety (I, § 7).115

c. For any scheme X of finite type over k, we define a homomorphism of sheaves of abelian
groups d log : O∗

X → ΩX by d log(f) = f−1 df . Here O∗ is a group under multiplication,
and ΩX is a group under addition. This induces a map on cohomology which we denote by
c. See (Ex. 4.5).

d. Returning to the hypotheses above, suppose p = 1. Show that η(Y ) = c(L(Y )), where L(Y )
is the invertible sheaf corresponding to the divisor Y .

3.8. III.8: Higher Direct Images of Sheaves.

3.8.1. III.8.1. Let f : X → Y be a continuous map of topological spaces. Let F be a sheaf of
abelian groups on X, and assume that Rif∗(F) = 0 for all i > 0. Show that there are natural
isomorphisms, for each i ⩾ 0,116

3.8.2. III.8.2. Let f : X → Y be an affine morphism of schemes (II, Ex. 5.17) with X noetherian,
and let F be a quasi-coherent sheaf on X. Show that the hypotheses of (Ex. 8.1) are satisfied, and
hence that H i(X,F) ∼= H i (Y, f∗F) for each i ⩾ 0.

3.8.3. III.8.3. The Projection Formula. Let f : X → Y be a morphism of ringed spaces, let F be
an OX -module, and let E be a locally free OY -module of finite rank. Prove the projection formula
(cf. (II, Ex. 5.1))

3.8.4. III.8.4. Let Y be a noetherian scheme, and let E be a locally free OY -module of rank n+ 1,
n ⩾ 1. Let X = P(E) (II, § ), with the invertible sheaf OX(1) and the projection morphism
π : X → Y .

a. Then
• π∗(O(l)) ∼= Sl(E) for l ⩾ 0, π∗(O(l)) = 0 for l < 0 (II, 7.11);
• Riπ∗(O(l)) = 0 for 0 < i < n and all l ∈ Z; and
• Rnπ∗(O(l)) = 0 for l > −n− 1.

115Hint: Cut with a hyperplane H ⊆ X, and use Bertini’s theorem (II, 8.18) to reduce to the case Y is a finite
set of points.

116This is a degenerate case of the Leray spectral sequence-see Godement [1, II, 4.17.1].
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b. Show there is a natural exact sequence cf. (II, 8.13), and conclude that the relative canon-
ical sheaf ωX/Y = ∧nΩX/Y is isomorphic to

(
π∗ ∧n+1 E

)
(−n− 1). Show furthermore that

there is a natural isomorphism Rnπ∗
(
ωX/Y

)
∼= OY (cf. (7.1.1)).

c. Now show, for any l ∈ Z, that
d. Show that pa(X) = (−1)npa(Y ) (use (Ex. 8.1)) and pg(X) = 0 (use (II, 8.11)).
e. In particular, if Y is a nonsingular projective curve of genus g, and E a locally free sheaf

of rank 2 , then X is a projective surface with pa = −g, pg = 0, and irregularity g (7.12.3).
This kind of surface is called a geometrically ruled surface (V, §2).

3.9. III.9: Flat Morphisms.

3.9.1. III.9.1. A flat morphism f : X → Y of finite type of noetherian schemes is open, i.e, for
every open subset U ⊆ X, f(U) is open in Y.117

3.9.2. III.9.2. Do the calculation of (9.8.4) for the curve of (I, Ex. 3.14). Show that you get an
embedded point at the cusp of the plane cubic curve.

3.9.3. III.9.3. Some examples of flatness and nonflatness.
a. If f : X → Y is a finite surjective morphism of nonsingular varieties over an algebraically

closed field k, then f is flat.
b. Let X be a union of two planes meeting at a point, each of which maps isomorphically to

a plane Y . Show that f is not flat. For example, let Y = Spec k[x, y] and
c. Again let Y = Spec k[x, y], but take X = Spec k[x, y, z, w]/

(
z2, zw,w2, xz − yw

)
. Show

that Xred ∼= Y,X has no embedded points, but that f is not flat.

3.9.4. III.9.4. Open Nature of Flatness. Let f : X → Y be a morphism of finite type of noetherian
schemes. Then {x ∈ X

∣∣∣ f is flat at x} is an open subset of X (possibly empty).118

3.9.5. III.9.5. Very Flat Families. For any closed subscheme X ⊆ Pn, we denote by C(X) ⊆ Pn+1

the projective cone over X (I, Ex. 2.10). If I ⊆ k [x0, . . . , xn] is the (largest) homogeneous ideal of
X, then C(X) is defined by the ideal generated by I in k [x0, . . . , xn+1].

a. Give an example to show that if {Xt} is a flat family of closed subschemes of Pn, then
{C (Xt)} need not be a flat family in Pn+1.

b. To remedy this situation, we make the following definition. Let X ⊆ Pn
T be a closed

subscheme, where T is a noetherian integral scheme. For each t ∈ T , let It ⊆ St =
k(t) [x0, . . . , xn] be the homogeneous ideal of Xt in Pn

k(t). We say that the family {Xt} is
very flat if for all d ⩾ 0, is independent of t. Here ( )d means the homogeneous part of
degree d.

c. If {Xt} is a very flat family in Pn, show that it is flat. Show also that {C (Xt)} is a very
flat family in Pn+1, and hence flat.

d. If
{
X(t)

}
is an algebraic family of projectively normal varieties in Pn

k , parametrized by a
nonsingular curve T over an algebraically closed field k, then

{
X(t)

}
is a very flat family of

schemes.

117Hint: Show that f(U) is constructible and stable under generization (II, Ex. 3.18) and (II, Ex. 3.19).
118See Grothendieck EGA IV3, 11.1.1.
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3.9.6. III.9.6. Let Y ⊆ Pn be a nonsingular variety of dimension ⩾ 2 over an algebraically closed
field k. Suppose Pn−1 is a hyperplane in Pn which does not contain Y , and such that the scheme
Y ′ = Y ∩ Pn−1 is also nonsingular. Prove that Y is a complete intersection in Pn if and only if Y ′

is a complete intersection in Pn−1.119

3.9.7. III.9.7. Let Y ⊆ X be a closed subscheme, where X is a scheme of finite type over a field
k. Let D = k[t]/t2 be the ring of dual numbers, and define an infinitesimal deformation of Y as
a closed subscheme of X, to be a closed subscheme Y ′ ⊆ X ×

k
D, which is flat over D, and whose

closed fibre is Y .
Show that these Y ′ are classified by H0

(
Y,NY/X

)
, where

3.9.8. III.9.8. *. Let A be a finitely generated k-algebra. Write A as a quotient of a polynomial
ring P over k, and let J be the kernel: Consider the exact sequence of (II, 8.4A) Apply the functor
HomA(·, A), and let T 1(A) be the cokernel: Now use the construction of (II, Ex. 8.6) to show
that T 1(A) classifies infinitesimal deformations of A, i.e., algebras A′ flat over D = k[t]/t2, with
A′ ⊗D k ∼= A. It follows that T 1(A) is independent of the given representation of A as a quotient
of a polynomial ring P .

3.9.9. III.9.9. A k-algebra A is said to be rigid if it has no infinitesimal deformations, or equiv-
alently, by (Ex. 9.8) if T 1(A) = 0. Let A = k[x, y, z, w]/(x, y) ∩ (z, w), and show that A is rigid.
This corresponds to two planes in A4 which meet at a point.

3.9.10. III.9.10. A scheme X0 over a field k is rigid if it has no infinitesimal deformations.
a. Show that P1

k is rigid, using (9.13.2).
b. One might think that if X0 is rigid over k, then every global deformation of X0 is locally

trivial. Show that this is not so, by constructing a proper, flat morphism f : X → A2 over
k algebraically closed, such that X0 ∼= P1

k, but there is no open neighborhood U of 0 in A2

for which f−1(U) ∼= U × P1.
c. * Show, however, that one can trivialize a global deformation of P1 after a flat base ex-

tension, in the following sense: let f : X → T be a flat projective morphism, where T is
a nonsingular curve over k algebraically closed. Assume there is a closed point t ∈ T such
that Xt

∼= P1
k. Then there exists a nonsingular curve T ′, and a flat morphism g : T ′ → T ,

whose image contains t, such that if X ′ = X ×T T ′ is the base extension, then the new
family f ′ : X ′ → T ′ is isomorphic to P1

T ′ → T ′.

3.9.11. III.9.11. Let Y be a nonsingular curve of degree d in Pn
k , over an algebraically closed field

k. Show that120

3.10. III.10: Smooth Morphisms.

3.10.1. III.10.1. Smooth ̸= Regular. Over a nonperfect field, smooth and regular are not equivalent.
For example, let k0 be a field of characteristic p > 0, let k = k0(t), and let X ⊆ A2

k be the curve
defined by y2 = xp − t. Show that every local ring of X is a regular local ring, but X is not smooth
over k.

3.10.2. III.10.2. Let f : X → Y be a proper, flat morphism of varieties over k. Suppose for some
point y ∈ Y that the fibre Xy is smooth over k(y). Then show that there is an open neighborhood
U of y in Y such that f : f−1(U) → U is smooth.

119Hint: See (II, Ex. 8.4) and use (9.12) applied to the affine cones over Y and Y ′.
120Hint: Compare Y to a suitable projection of Y into P2, as in (9.8.3) and (9.8.4).
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3.10.3. III.10.3. Tale Morphisms. A morphism f : X → Y of schemes of finite type over k is
étaleif it is smooth of relative dimension 0 . It is unramified if for every x ∈ X, letting y = f(x),
we have my · Ox = mx, and k(x) is a separable algebraic extension of k(y).

Show that the following conditions are equivalent:
(i) f is étale;
(ii) f is flat, and ΩX/Y = 0;
(iii) f is flat and unramified.

3.10.4. III.10.4. Show that a morphism f : X → Y of schemes of finite type over k is étale if and
only if the following condition is satisfied: for each x ∈ X, let y = f(x). Let Ôx and Ôy be the
completions of the local rings at x and y. Choose fields of representatives (II, 8.25A) k(x) ⊆ Ôx

and k(y) ⊆ Ôy so that k(y) ⊆ k(x) via the natural map Ôy → Ôx.
Then our condition is that for every x ∈ X, k(x) is a separable algebraic extension of k(y), and

the natural map is an isomorphism.

3.10.5. III.10.5. Étale Neighborhoods. If x is a point of a scheme X, we define an étale neigh-
borhood of x to be an étale morphism f : U → X, together with a point x′ ∈ U such that
f (x′) = x.

As an example of the use of étale neighborhoods, prove the following: if F is a coherent sheaf
on X, and if every point of X has an étale neighborhood f : U → X for which f∗F is a free
OU -module, then F is locally free on X.

3.10.6. III.10.6. Let Y be the plane nodal cubic curve y2 = x2(x + 1). Show that Y has a finite
étale covering X of degree 2, where X is a union of two irreducible components, each one isomorphic
to the normalization of Y (Fig. 12).

3.10.7. III.10.7. (Serre). A linear system with moving singularities. Let k be an algebraically
closed field of characteristic 2. Let P1, . . . , P7 ∈ P2

k be the seven points of the projective plane
over the prime field F2 ⊆ k. Let D be the linear system of all cubic curves in X passing through
P1, . . . , P7.

a. D is a linear system of dimension 2 with base points P1, . . . , P7, which determines an
inseparable morphism of degree 2 from X − {Pi} to P2.

b. Every curve C ∈ D is singular.
More precisely, either C consists of 3 lines all passing through one of the Pi, or C is an

irreducible cuspidal cubic with cusp P ̸= any Pi.
Furthermore, the correspondence C 7→ the singular point of C is a 1 − 1 correspondence

between D and P2. Thus the singular points of elements of D move all over.
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3.10.8. III.10.8. A linear system with moving singularities contained in the base locus (any char-
acteristic). In affine 3 -space with coordinates x, y, z, let C be the conic (x − 1)2+ y2 = 1 in the
xy-plane, and let P be the point (0, 0, t) on the z-axis. Let Yt be the closure in P3 of the cone over
C with vertex P .

Show that as t varies, the surfaces {Yt} form a linear system of dimension 1, with a moving
singularity at P . The base locus of this linear system is the conic C plus the z-axis.

3.10.9. III.10.9. Let f : X → Y be a morphism of varieties over k. Assume that Y is regular, X
is Cohen-Macaulay, and that every fibre of f has dimension equal to dimX − dimY . Then f is
flat.121

3.11. III.11: The Theorem on Formal Functions.

3.11.1. III.11.1. Show that the result of (11.2) is false without the projective hypothesis. For
example, let X = An

k , let P = (0, . . . , 0), let U = X−P , and let f : U → X be the inclusion. Then
the fibres of f all have dimension 0 , but Rn−1f∗OU ̸= 0.

3.11.2. III.11.2. Show that a projective morphism with finite fibres (= quasi-finite (II, Ex. 3.5)) is
a finite morphism.

3.11.3. III.11.3. Improved Bertini’s Theorem. Let X be a normal, projective variety over an alge-
braically closed field k. Let D be a linear system (of effective Cartier divisors) without base points,
and assume that D is not composite with a pencil, which means that if f : X → Pn

k is the
morphism determined by D, then dim f(X) ⩾ 2.

Then show that every divisor in D is connected.122

3.11.4. III.11.4. Principle of Connectedness. Let {Xt} be a flat family of closed subschemes of Pn
k

parametrized by an irreducible curve T of finite type over k. Suppose there is a nonempty open
set U ⊆ T , such that for all closed points t ∈ U,Xt is connected. Then prove that Xt is connected
for all t ∈ T .

3.11.5. III.11.5. *. Let Y be a hypersurface in X = PN
k with N ⩾ 4. Let X̂ be the formal

completion of X along Y (II, § ). Prove that the natural map Pic X̂ → PicY is an isomorphism.123

3.11.6. III.11.6. Again let Y be a hypersurface in X = PN
k , this time with N ⩾ 2.

a. If F is a locally free sheaf on X, show that the natural map is an isomorphism.
b. Show that the following conditions are equivalent:

(i) For each locally free sheaf F on X̂, there exists a coherent sheaf F on X such that
F ∼= F̂ (i.e., F is algebraizable);

(ii) For each locally free sheaf F on X̂, there is an integer n0 such that F(n) is generated
by global sections for all n ⩾ n0.124

c. Show that the conditions (i) and (ii) of (b) imply that the natural map PicX → Pic X̂ is
an isomorphism.125

121Hint: Imitate the proof of (10.4), using (II, 8.21A).
122See (10.9.1). Hints: Use (11.5), (Ex. 5.7) and (7.9).
123Hint: Use (II, Ex. 9.6), and then study the maps PicXn+1 → PicXn for each n using (Ex. 4.6) and (Ex. 5.5).
124Hint: For (ii) ⇒ (i), show that one can find sheaves E0, E1 on X, which are direct sums of sheaves of the form

O (−qi), and an exact sequence Ê1 → Ê0 → F̃ → 0 on X̂. Then apply (a) to the sheaf Hom (E1, E0).
125Note. In fact, (i) and (ii) always hold if N ⩾ 3. This fact, coupled with (Ex. 11.5) leads to Grothendieck’s

proof [SGA 2] of the Lefschetz theorem which says that if Y is a hypersurface in PN
k with N ⩾ 4, then PicY ∼= Z,

and it. is generated by OY (1). See Hartshorne [5, Ch.IV ] for more details.
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3.11.7. III.11.7. Now let Y be a curve in X = P2
k.

a. Use the method of (Ex. 11.5) to show that Pic X̂ → Pic Y is surjective, and its kernel is
an infinite-dimensional vector space over k.

b. Conclude that there is an invertible sheaf L on X̂ which is not algebraizable.
c. Conclude also that there is a locally free sheaf F on X̂ so that no twist F(n) is generated

by global sections. Cf. (II, 9.9.1)

3.11.8. III.11.8. Let f : X → Y be a projective morphism, let F be a coherent sheaf on X which is
flat over Y , and assume that H i (Xy,Fy) = 0 for some i and some y ∈ Y . Then show that Rif∗(F)
is 0 in a neighborhood of y.

3.12. III.12: The Semicontinuity Theorem.

3.12.1. III.12.1. Let Y be a scheme of finite type over an algebraically closed field k. Show that
the function is upper semicontinuous of the set of closed points Y .

3.12.2. III.12.2. Let {Xt} be a family of hypersurfaces of the same degree in Pn
k . Show that for

each i, the function hi (Xt,OXt) is a constant function of t.

3.12.3. III.12.3. Let X1 ⊆ P4
k be the rational normal quartic curve (which is the 4-uple em-

bedding of P1 in P4 ). Let X0 ⊆ P3
k be a nonsingular rational quartic curve, such as the one in (I,

Ex. 3.18b).
Use (9.8.3) to construct a flat family {Xt} of curves in P4, parametrized by T = A1, with the

given fibres X1 and X0 for t = 1 and t = 0.
Let I ⊆ OP4×T be the ideal sheaf of the total family X ⊆ P4 × T . Show that I is flat over T .
Then show that and also This gives another example of cohomology groups jumping at a special

point.

3.12.4. III.12.4. Let Y be an integral scheme of finite type over an algebraically closed field k.
Let f : X → Y be a flat projective morphism whose fibres are all integral schemes. Let L,M be
invertible sheaves on X, and assume for each y ∈ Y that Ly

∼= My on the fibre Xy.
Then show that there is an invertible sheaf N on Y such that L ∼= M ⊗ f∗N .126

3.12.5. III.12.5. Let Y be an integral scheme of finite type over an algebraically closed field k. Let
E be a locally free sheaf on Y , and let X = P(E) – see (II, §7).

Then show that PicX ∼= (PicY ) × Z. This strengthens (II, Ex. 7.9).

3.12.6. III.12.6. *. Let X be an integral projective scheme over an algebraically closed field k, and
assume that H1 (X,OX) = 0. Let T be a connected scheme of finite type over k.

a. If L is an invertible sheaf on X × T , show that the invertible sheaves Lt on X = X × {t}
are isomorphic, for all closed points t ∈ T .

b. Show that Pic(X × T ) = Pic X× Pic T . (Do not assume that T is reduced!)127

Cf. (IV, Ex. 4.10) and (V, Ex. 1.6) for examples where Pic(X × T ) ̸= PicX× Pic T.

4. IV: Curves

4.1. IV.1: Riemann-Roch.

4.1.1. 1.1. Let X be a curve, and let P ∈ X be a point. Then there exists a nonconstant rational
function f ∈ K(X), which is regular everywhere except at P .

126Hint: Use the results of this section to show that f∗
(
L ⊗ M−1)

is locally free of rank 1 on Y .
127Hint: Apply (12.11) with i = 0, 1 for suitable invertible sheaves on X × T .
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4.1.2. 1.2. Again let X be a curve, and let P1, . . . Pr ∈ X be points. Then there is a rational
function f ∈ K(X) having poles (of some order) at each of the P1, and regular elsewhere.

4.1.3. 1.3. Let X be an integral, separated, regular, one-dimensional scheme of finite type over k,
which is not proper over k. Then X is affine.128

4.1.4. 1.4. Show that a separated, one-dimensional scheme of finite type over k, none of whose
irreducible components is proper over k, is affine.129

4.1.5. 1.5. For an effective divisor D on a curve X of genus g, show that dim |D| ⩽ degD. Fur-
thermore, equality holds if and only if D = 0 or g = 0.

4.1.6. 1.6. Let X be a curve of genus g. Show that there is a finite morphism f : X → P1 of
degree130 ⩽ g + 1.

4.1.7. 1.7. A curve X is called hyperelliptic if g ⩾ 2 and there exists a finite morphism f : X →
P1 of degree 2.

a. If X is a curve of genus g = 2, show that the canonical divisor defines a complete linear
system |K| of degree 2 and dimension 1, without base points. Use (II, 7.8.1) to conclude
that X is hyperelliptic.

b. Show that the curves constructed in (1.1.1) all admit a morphism of degree 2 to P1. Thus
there exist hyperelliptic curves of any genus g ⩾ 2.131

4.1.8. 1.8. pa of a Singular Curve. Let X be an integral projective scheme of dimension 1 over k,
and let X̃ be its normalization (II, Ex. 3.8). Then there is an exact sequence of sheaves on X,
where ÕP is the integral closure of OP . For each P ∈ X, let δP = length(ÕP /OP ).

a. Show that pa(X) = pa(X̃) + ∑
p∈X δp.132

b. If pa(X) = 0, show that X is already nonsingular and in fact isomorphic to P1.133

c. * If P is a node or an ordinary cusp (I, Ex. 5.6, Ex. 5.14), show that δP = 1.134

4.1.9. 1.9. * Riemann-Roch for Singular Curves. Let X be an integral projective scheme of dimen-
sion 1 over k. Let Xreg be the set of regular points of X.

a. Let D = ∑
niPi be a divisor with support in Xreg, i.e., all Pi ∈ Xreg. Then define deg

D = ∑
ni. Let L (D) be the associated invertible sheaf on X, and show that

b. Show that any Cartier divisor on X is the difference of two very ample Cartier divisors. 135

c. Conclude that every invertible sheaf L on X is isomorphic to L (D) for some divisor D
with support in Xreg.

128Hint: Embed X in a (proper) curve X over k, and use (Ex. 1.2) to construct a morphism f : X → P1 such
that f−1 (

A1)
= X

129Hint: Combine (Ex. 1.3) with (III, Ex. 3.1, Ex. 3.2, Ex. 4.2).
130Recall that the degree of a finite morphism of curves f : X → Y is defined as the degree of the field extension

[K(X) : K(Y )] (II.6).
131Note: we will see later (Ex. 3.2) that there exist non-hyperelliptic curves. See also (V, Ex. 2.10).
132Hint: Use (III, Ex. 4.1) and (III, Ex. 5.3).
133This strengthens (1.3.5).
134Hint: Show first that δP depends only on the analytic isomorphism class of the singularity at P . Then compute

δP for the node and cusp of suitable plane cubic curves. See (V, 3.9.3) for another method.
135Use (II, Ex. 7.5).
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d. Assume furthermore that X is a locally complete intersection in some projective space.
Then by (III, 7.11) the dualizing sheaf ωX is an invertible sheaf on X, so we can define the
canonical divisor K to be a divisor with support in Xreg corresponding to ωX . Then the
formula of a. becomes

4.1.10. 1.10. Let X be an integral projective scheme of dimension 1 over k, which is locally complete
intersection, and has pa = 1. Fix a point P0 ∈ Xreg. . Imitate (1.3.7) to show that the map
P → L (P − P0) gives a one-to-one correspondence between the points of Xreg and the elements
of the group PicX.136

4.2. IV.2: Hurwitz.

4.2.1. 2.1. Use (2.5.3) to show that Pn is simply connected.

4.2.2. 2.2 Classification of Curves of Genus 2 . Fix an algebraically closed field k of characteristic
̸= 2.

a. If X is a curve of genus 2 over k, the canonical linear system |K| determines a finite
morphism f : X → P1 of degree 2 (Ex. 1.7). Show that it is ramified at exactly 6
points, with ramification index 2 at each one. Note that f is uniquely determined, up to
an automorphism of P1, so X determines an (unordered) set of 6 points of P1, up to an
automorphism of P1.

b. Conversely, given six distinct elements α1, . . . , α6 ∈ k, let K be the extension of k(x) de-
termined by the equation z2 = (x− α1) · · · (x− α6). Let f : X → P1 be the corresponding
morphism of curves. Show that g(X) = 2, the map f is the same as the one determined by
the canonical linear system, and f is ramified over the six points x = αi of P1, and nowhere
else. (Cf. (II, Ex. 6.4).)

c. Using (I, Ex. 6.6), show that if P1, P2, P3 are three distinct points of P1, then there exists
a unique φ ∈ Aut P1 such that φ (P1) = 0, φ (P2) = 1, φ (P3) = ∞. Thus in (a), if we order
the six points of P1, and then normalize by sending the first three to 0, 1, x, respectively,
we may assume that X is ramified over 0, 1,∞, β1, β2, β3, where β1, β2, β3 are three distinct
elements of k, ̸= 0, 1.

d. Let Σ6 be the symmetric group on 6 letters. Define an action of Σ6 on sets of three distinct
elements β1, β2, β3 of k, ̸= 0, 1, as follows: reorder the set 0, 1,∞, β1, β2, β3 according to
a given element σ ∈ Σ6, then renormalise as in (c) so that the first three become 0, 1,∞
again. Then the last three are the new β′

1, β
′
2, β

′
3.

e. Summing up, conclude that there is a one-to-one correspondence between the set of iso-
morphism classes of curves of genus 2 over k, and triples of distinct elements β1, β2, β3 of
k, ̸= 0, 1, modulo the action of Σ6 described in (d). In particular, there are many non-
isomorphic curves of genus 2 . We say that curves of genus 2 depend on three parameters,
since they correspond to the points of an open subset of A3

k modulo a finite group.

4.2.3. 2.3 Plane Curves. Let X be a curve of degree d in P2. For each point P ∈ X, let TP (X) be
the tangent line to X at P (I, Ex. 7.3). Considering TP (X) as a point of the dual projective plane(
P2)∗, the map P → TP (X) gives a morphism of X to its dual curve X∗ in

(
P2)∗ (I, Ex. 7.3).

Note that even though X is nonsingular, X∗ in general will have singularities. We assume char
k = 0 below.

a. Fix a line L ⊆ P2 which is not tangent to X. Define a morphism φ : X → L by φ(P ) =
TP (X) ∩ L, for each point P ∈ X. Show that φ is ramified at P if and only if either
(1) P ∈ L, or

136This generalizes (II, 6.11.4) and (II, Ex. 6.7).
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(2) P is an inflection point of X, which means that the intersection multiplicity (I, Ex.
5.4) of TP (X) with X at P is ⩾ 3. Conclude that X has only finitely many inflection
points.

b. A line of P2 is a multiple tangent of X if it is tangent to X at more than one point. It
is a bitangent if it is tangent to X at exactly two points. If L is a multiple tangent of
X, tangent to X at the points P1, . . . , Pr, and if none of the Pi is an inflection point, show
that the corresponding point of the dual curve X∗ is an ordinary r-fold point, which means
a point of multiplicity r with distinct tangent directions (I, Ex. 5.3). Conclude that X has
only finitely many multiple tangents.

c. Let O ∈ P2 be a point which is not on X, nor on any inflectional or multiple tangent of X.
Let L be a line not containing O. Let ψ : X → L be the morphism defined by projection
from O. Show that ψ is ramified at a point P ∈ X if and only if the line OP is tangent to
X at P , and in that case the ramification index is 2. Use Hurwitz’s theorem and (I, Ex.
7.2) to conclude that there are exactly d(d − 1) tangents of X passing through O. Hence
the degree of the dual curve (sometimes called the class of X) is d(d− 1).

d. Show that for all but a finite number of points of X, a point O of X lies on exactly
(d+ 1)(d− 2) tangents of X, not counting the tangent at O.

e. Show that the degree of the morphism φ of a. is d(d− 1). Conclude that if d ⩾ 2, then X
has 3d(d− 2) inflection points, properly counted. (If TP (X) has intersection multiplicity r
with X at P , then P should be counted r − 2 times as an inflection point. If r = 3 we call
it an ordinary inflection point.) Show that an ordinary inflection point of X corresponds
to an ordinary cusp of the dual curve X∗.

f. Now let X be a plane curve of degree d ⩾ 2, and assume that the dual curve X∗ has only
nodes and ordinary cusps as singularities (which should be true for sufficiently general X).
Then show that X has exactly 1

2d(d− 2)(d− 3)(d+ 3) bitangents.137

g. For example, a plane cubic curve has exactly 9 inflection points, all ordinary. The line
joining any two of them intersects the curve in a third one.

h. A plane quartic curve has exactly 28 bitangents. (This holds even if the curve has a tangent
with four-fold contact, in which case the dual curve X∗ has a tacnode.)

4.2.4. 2.4 A Funny Curve in Characteristic p. Let X be the plane quartic curve x3y+y3z+z3x = 0
over a field of characteristic 3 . Show that X is nonsingular, every point of X is an inflection point,
the dual curve X∗ is isomorphic to X, but the natural map X → X∗ is purely inseparable.

4.2.5. 2.5 Automorphisms of a Curve of Genus ⩾ 2. Prove the theorem of Hurwitz that a curve X
of genus g ⩾ 2 over a field of characteristic 0 has at most 84(g − 1) automorphisms.

We will see later (Ex. 5.2) or (V, Ex. 1.11) that the group G = Aut X is finite. So let G have
order n. Then G acts on the function field K(X). Let L be the fixed field. Then the field extension
L ⊆ K(X) corresponds to a finite morphism of curves f : X → Y of degree n.

a. If P ∈ X is a ramification point, and eP = r, show that f−1f(P ) consists of exactly n/r
points, each having ramification index r. Let P1, . . . , Ps be a maximal set of ramification
points of X lying over distinct points of Y , and let eP1 = ri. Then show that Hurwitz’s
theorem implies that

137Hint: Show that X is the normalization of X∗. Then calculate pa (X∗) two ways: once as a plane curve of
degree d(d− 1), and once using (Ex. 1.8).
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b. Since g ⩾ 2, the left hand side of the equation is > 0. Show that if g(Y ) ⩾ 0, s ⩾ 0, ri ⩾
2, i = 1, . . . , s are integers such that then the minimum value of this expression is 1/42.
Conclude that n ⩽ 84(g − 1).138

4.2.6. 2.6 f∗ for Divisors. Let f : X → Y be a finite morphism of curves of degree n. We define
a homomorphism f∗ : DivX → Div Y by f∗ (∑niPi) = ∑

nif (Pi) for any divisor D = ∑
niPi on

X.
a. For any locally free sheaf E on Y , of rank r, we define det E = ∧rE ∈ PicY (II, Ex. 6.11).

In particular, for any invertible sheaf M on X, f∗M is locally free of rank n on Y , so we
can consider det f∗M ∈ PicY . Show that for any divisor D on X,139 Note in particular
that det (f∗L (D)) ̸= L (f∗D) in general!

b. Conclude that f∗D depends only on the linear equivalence class of D, so there is an induced
homomorphism f∗ : PicX → PicY . Show that f∗f

∗ : PicY → PicY is just multiplication
by n.

c. Use duality for a finite flat morphism (III, Ex. 6.10) and (III, Ex. 7.2) to show that
d. Now assume that f is separable, so we have the ramification divisor R. We define the

branch divisor B to be the divisor f∗R on Y . Show that

4.2.7. 2.7 Etale Covers of Degree 2. Let Y be a curve over a field k of characteristic ̸= 2. We show
there is a one-to-one correspondence between finite étale morphisms f : X → Y of degree 2, and
2-torsion elements of PicY , i.e., invertible sheaves L on Y with L 2 ∼= OY .

a. Given an étale morphism f : X → Y of degree 2, there is a natural map OY → f∗OX . Let
L be the cokernel. Then L is an invertible sheaf on Y,L ∼= det f∗OX , and so L 2 ∼= OY

by (Ex. 2.6). Thus an étale cover of degree 2 determines a 2-torsion element in PicY .
b. Conversely, given a 2-torsion element L in PicY , define an OY -algebra structure on OY ⊕L

by ⟨a, b⟩ · ⟨a′, b′⟩ = ⟨aa′ + φ (b⊗ b′) , ab′ + a′b⟩, where φ is an isomorphism of L ⊗L → OY .
Then take X = Spec (OY ⊕ L ) (II, Ex. 5.17). Show that X is an étale cover of Y .

c. Show that these two processes are inverse to each other.140141

4.3. IV.3: Embeddings in Projective Space.

4.3.1. II.3.1. If X is a curve of genus 2 , show that a divisor D is very ample ⇔ degD ⩾ 5. This
strengthens (3.3.4).

138See (Ex. 5.7) for an example where this maximum is achieved. Note: It is known that this maximum is achieved
for infinitely many values of g (Macbeath

1
). Over a field of characteristic p > 0, the same bound holds, provided p > g + 1, with one exception, namely the
hyperelliptic curve y2 = xp − x, which has p = 2g + 1 and 2p

(
p2 − 1

)
automorphisms (Roquette). For other bounds

on the order of the group of automorphisms in characteristic p, see Singh and Stichtenoth.
139Hint: First consider an effective divisor D, apply f∗ to the exact sequence 0 → L (−D) → OX → OD → 0,

and use (II, Ex. 6.11).]
140Note. This is a special case of the more general fact that for (n, char k) = 1, the étale Galois covers of Y

with group Z/nZ are classified by the étale cohomology group H1
et(Y,Z/nZ), which is equal to the group of n-torsion

points of PicY . See Serre
6

.
141Hint: Let τ : X → X be the involution which interchanges the points of each fibre of f . Use the trace map

a 7→ a+ τ(a) from f∗OX → OY to show that the sequence of OY − modules in a. is split exact.
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4.3.2. II.3.2. Let X be a plane curve of degree 4 .
a. Show that the effective canonical divisors on X are exactly the divisors X.L, where L is a

line in P2.
b. If D is any effective divisor of degree 2 on X, show that dim |D| = 0.
c. Conclude that X is not hyperelliptic (Ex. 1.7).

4.3.3. II.3.3. If X is a curve of genus ⩾ 2 which is a complete intersection (II, Ex. 8.4) in some
Pn, show that the canonical divisor K is very ample. Conclude that a curve of genus 2 can never
be a complete intersection in any Pn. Cf. (Ex. 5.1).

4.3.4. II.3.4. The Rational Normal Curve. Let X be the d-uple embedding (I, Ex. 2.12) of P1 in
Pd, for any d ⩾ 1. We call X the rational normal curve of degree d in Pd.

a. Show that X is projectively normal, and that its homogeneous ideal can be generated by
forms of degree 2 .

b. If X is any curve of degree d in Pn, with d ⩽ n, which is not contained in any Pn−1, show
that in fact d = n, g(X) = 0, and X differs from the rational normal curve of degree d only
by an automorphism of Pd. Cf. (II. 7.8.5).

c. In particular, any curve of degree 2 in any Pn is a conic in some P2.
d. A curve of degree 3 in any Pn must be either a plane cubic curve, or the twisted cubic curve

in P3.

4.3.5. II.3.5. Let X be a curve in P3, which is not contained in any plane.
a. If O /∈ X is a point, such that the projection from O induces a birational morphism φ from
X to its image in P2, show that φ(X) must be singular.142

b. If X has degree d and genus g, conclude that g < 1
2(d− 1)(d− 2). (Use (Ex. 1.8).)

c. Now let {Xt} be the flat family of curves induced by the projection (III, 9.8.3) whose fibre
over t = 1 is X, and whose fibre X0 over t = 0 is a scheme with support φ(X). Show that
X0 always has nilpotent elements. Thus the example (III, 9.8.4) is typical.

4.3.6. II.3.6. Curves of Degree 4.
a. If X is a curve of degree 4 in some Pn, show that either

(1) g = 0, in which case X is either the rational normal quartic in P4 (Ex. 3.4) or the
rational quartic curve in P3 (II, 7.8.6), or

(2) X ⊆ P2, in which case g = 3, or
(3) X ⊆ P3 and g = 1.

b. In the case g = 1, show that X is a complete intersection of two irreducible quadric surfaces
in P3 (I, Ex. 5.11).143

4.3.7. II.3.7. In view of (3.10), one might ask conversely, is every plane curve with nodes a projec-
tion of a nonsingular curve in P3 ? Show that the curve xy + x4 + y4 = 0 (assume char k ̸= 2 )
gives a counterexample.

142Hint: Calculate dimH0 (X,OX(1)) two ways.
143Hint: Use the exact sequence 0 → IX → OP3 → OX → 0 to compute dimH0 (

P3, IX(2)
)
, and thus conclude

that X is contained in at least two irreducible quadric surfaces.
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4.3.8. II.3.8. We say a (singular) integral curve in Pn is strange if there is a point which lies on
all the tangent lines at nonsingular points of the curve.

a. There are many singular strange curves, e.g., the curve given parametrically by x = t, y =
tp, z = t2p over a field of characteristic p > 0.

b. Show, however, that if char k = 0, there aren’t even any singular strange curves besides P1.

4.3.9. II.3.9. Bertini’s Lemma. Prove the following lemma of Bertini: if X is a curve of degree d in
P3, not contained in any plane, then for almost all planes H ⊆ P3 (meaning a Zariski open subset
of the dual projective space

(
P3)∗)

, the intersection X ∩ H consists of exactly d distinct points,
no three of which are collinear.

4.3.10. II.3.10. Not every secant is a multisecant. Generalize the statement that “not every secant
is a multisecant” as follows. If X is a curve in Pn, not contained in any Pn−1, and if char k = 0,
show that for almost all choices of n− 1 points P1, . . . , Pn−1 on X, the linear space Ln−2 spanned
by the Pi does not contain any further points of X.

4.3.11. II.3.11.
a. If X is a nonsingular variety of dimension r in Pn, and if n > 2r + 1, show that there is a

point O /∈ X, such that the projection from O induces a closed immersion of X into Pn−1.
b. If X is the Veronese surface in P5, which is the 2-uple embedding of P2 (I, Ex. 2.13), show

that each point of every secant line of X lies on infinitely many secant lines. Therefore, the
secant variety of X has dimension 4, and so in this case there is a projection which gives a
closed immersion of X into P4 (II, Ex. 7.7).144

4.3.12. II.3.12. For each value of d = 2, 3, 4, 5 and r satisfying 0 ⩽ r ⩽ 1
2(d− 1)(d− 2), show that

there exists an irreducible plane curve of degree d with r nodes and no other singularities.

4.4. IV.4: Elliptic Curves.

4.4.1. II.4.1. Let X be an elliptic curve over k, with char k ̸= 2, let P ∈ X be a point, and let R
be the graded ring R = ⊕

n⩾0H
0 (X,OX(nP )). Show that for suitable choice of t, x, y as a graded

ring, where k[t, x, y] is graded by setting deg t = 1, deg x = 2, deg y = 3.

4.4.2. II.4.2. If D is any divisor of degree ⩾ 3 on the elliptic curve X, and if we embed X in Pn

by the complete linear system |D|, show that the image of X in Pn is projectively normal.145

4.4.3. II.4.3. Let the elliptic curveX be embedded in P2 so as to have the equation y2 = x(x−1)(x−
λ). Show that any automorphism of X leaving P0 = (0, 1, 0) fixed is induced by an automorphism
of P2 coming from the automorphism of the affine (x, y)-plane given by In each of the four cases
of (4.7), describe these automorphisms of P2 explicitly, and hence determine the structure of the
group G = Aut (X,P0).

4.4.4. II.4.4. Let X be an elliptic curve in P2 given by an equation of the form Show that the
j-invariant is a rational function of the ai, with coefficients in Q. In particular, if the ai are all in
some field k0 ⊆ k, then j ∈ k0 also. Furthermore, for every α ∈ k0, there exists an elliptic curve
defined over k0 with j-invariant equal to α.

144A theorem of Severi [1] states that the Veronese surface is the only surface in P5 for which there is a projection
giving a closed immersion into P4. Usually one obtains a finite number of double points with transversal tangent
planes.

145Note. It is true more generally that if D is a divisor of degree ⩾ 2g + 1 on a curve of genus g, then the
embedding of X by |D| is projectively normal (Mumford [4, p. 55])
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4.4.5. II.4.5. Let X,P0 be an elliptic curve having an endomorphism f : X → X of degree 2 .
a. If we represent X as a 2-1 covering of P1 by a morphism π : X → P1 ramified at P0, then as

in (4.4), show that there is another morphism π′ : X → P1 and a morphism g : P1 → P1,
also of degree 2 , such that π ◦ f = g ◦ π′.

b. For suitable choices of coordinates in the two copies of P1, show that g can be taken to be
the morphism x → x2.

c. Now show that g is branched over two of the branch points of π, and that g−1 of the other
two branch points of π consists of the four branch points of π′. Deduce a relation involving
the invariant λ of X.

d. Solving the above, show that there are just three values of j corresponding to elliptic curves
with an endomorphism of degree 2 , and find the corresponding values of λ and j.146

4.4.6. II.4.6.
a. Let X be a curve of genus g embedded birationally in P2 as a curve of degree d with r

nodes. Generalize the method of (Ex. 2.3) to show that X has inflection points. A node
does not count as an inflection point. Assume char k = 0.

b. Now let X be a curve of genus g embedded as a curve of degree d in Pn, n ⩾ 3, not contained
in any Pn−1. For each point P ∈ X, there is a hyperplane H containing P , such that P
counts at least n times in the intersection H ∩X. This is called an osculating hyperplane
at P . It generalizes the notion of tangent line for curves in P2.

If P counts at least n+ 1 times in H ∩X, we say H is a hyperosculating hyperplane,
and that P is a hyperosculation point. Use Hurwitz’s theorem as above, and induction
on n, to show that X has hyperosculation points.

c. If X is an elliptic curve, for any d ⩾ 3, embed X as a curve of degree d in Pd−1, and
conclude that X has exactly d2 points of order d in its group law.

4.4.7. II.4.7. The Dual of a Morphism. Let X and X ′ be elliptic curves over k, with base points
P0, P

′
0.
a. If f : X → X ′ is any morphism, use (4.11) to show that f∗ : Pic X ′ → Pic X induces a

homomorphism f̂ : (X ′, P ′
0) → (X,P0). We call this the dual of f .

b. If f : X → X ′ and g : X ′ → X ′′ are two morphisms, then (g ◦ f )̂ = f̂ ◦ ĝ.
c. Assume f (P0) = P ′

0, and let n = deg f . Show that if Q ∈ X is any point, and f(Q) = Q′,
then f̂ (Q′) = nX(Q). (Do the separable and purely inseparable cases separately, then
combine.) Conclude that f ◦ f̂ = nX′ and f̂ ◦ f = nX .

d. * If f, g : X → X ′ are two morphisms preserving the base points P0, P
′
0, then (f + g)̂ =

f̂ + ĝ.147

e. Using (d), show that for any n ∈ Z, n̂X = nX . Conclude that deg nX = n2.

146Answers: j = 26 · 33; j = 26 · 53; j = −33 · 53.
147Hints: It is enough to show for any L ∈ Pic X ′, that (f + g)∗L ∼= f∗L ⊗ g∗L. For any f , let Γf : X → X ×X ′

be the graph morphism. Then it is enough to show (for L′ = p∗2L ) that Let σ : X → X × X ′ be the section
x → (x, P ′0). Define a subgroup of Pic (X ×X ′) as follows: Note that this subgroup is isomorphic to the group
Pic◦ (X ′/X) used in the definition of the Jacobian variety. Hence there is a 1-1 correspondence between morphisms
f : X → X ′ and elements Lf ∈ Pic σ (this defines Lf ). Now compute explicitly to show that Γ∗g (Lf ) = Γ∗f (Lg) for
any f, g.

Use the fact that Lf+g = Lf ⊗ Lg, and the fact that for any L on X ′, p∗2L ∈ Pic◦σ to prove the result.
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f. Show for any f that deg f̂ = deg f .

4.4.8. II.4.8. The Algebraic Fundamental Group. For any curve X, the algebraic fundamental
group π1(X) is defined as lim←−−Gal (K ′/K), where K is the function field of X, and K ′ runs over
all Galois extensions of K such that the corresponding curve X ′ is étale over X (III, Ex. 10.3).

Thus, for example, π1
(
P1)

= 1. (See 2.5.3)
Show that for an elliptic curve X, where Zl = lim Z/ln is the l-adic integers.148149

4.4.9. II.4.9. Isogenies. We say two elliptic curves X,X ′ are isogenous if there is a finite morphism
f : X → X ′.

a. Show that isogeny is an equivalence relation.
b. For any elliptic curve X, show that the set of elliptic curves X ′ isogenous to X, up to

isomorphism, is countable.150

4.4.10. II.4.10. IfX is an elliptic curve, show that there is an exact sequence whereR = End (X,P0).
In particular, we see that Pic(X×X) is bigger than the sum of the Picard groups of the factors.151

4.4.11. II.4.11. Let X be an elliptic curve over C, defined by the elliptic functions with periods
1, τ . Let R be the ring of endomorphisms of X.

a. If f ∈ R is a nonzero endomorphism corresponding to complex multiplication by α, as in
(4.18), show that deg f = |α|2.

b. If f ∈ R corresponds to α ∈ C again, show that the dual f̂ of (Ex. 4.7) corresponds to the
complex conjugate α of α.

c. If τ ∈ Q(
√

−d) happens to be integral over Z, show that R = Z[τ ].

4.4.12. II.4.12. Again let X be an elliptic curve over C determined by the elliptic functions with
periods 1, τ , and assume that τ lies in the region G of (4.15B).

a. If X has any automorphisms leaving P0 fixed other than ±1, show that either τ = i or
τ = ω, as in (4.20.1) and (4.20.2). This gives another proof of the fact (4.7) that there are
only two curves, up to isomorphism, having automorphisms other than ±1.

b. Now show that there are exactly three values of τ for which X admits an endomorphism of
degree 2. Can you match these with the three values of j determined in (Ex. 4.5)?152

4.4.13. II.4.13. If p = 13, there is just one value of j for which the Hasse invariant of the corre-
sponding curve is 0 . Find it.153

4.4.14. II.4.14. The Fermat curve X : x3 + y3 = z3 gives a nonsingular curve in characteristic p
for every p ̸= 3. Determine the set P =

{
p ̸= 3

∣∣∣ X(p) has Hasse invariant 0}, and observe (modulo
Dirichlet’s theorem) that it is a set of primes of density 1

2 .

148Hints: Any Galois étale cover X ′ of an elliptic curve is again an elliptic curve. If the degree of X ′ over X
is relatively prime to p, then X ′ can be dominated by the cover nX : X → X for some integer n with (n, p) = 1.
The Galois group of the covering nX is Z/n× Z/n. Étale covers of degree divisible by p can occur only if the Hasse
invariant of X is not zero.

149Note: More generally, Grothendieck has shown [SGA1, X, 2.6, p.272] that the algebraic fundamental group of
any curve of genus g is isomorphic to a quotient of the completion, with respect to subgroups of finite index, of the
ordinary topological fundamental group of a compact Riemann surface of genus g, i.e., a group with 2g generators
a1, . . . , ag, b1, . . . , bg and the relation

(
a1b1a

−1
1 b−1

1
)

· · ·
(
agbga

−1
g b−1

g

)
= 1.

150Hint: X ′ is uniquely determined by X and ker f .
151Cf. (III, Ex. 12.6), (V, Ex. 1.6).
152Answers: τ = i; τ =

√
−2; τ = 1

2 (−1 +
√

−7).
153Answer: j = 5(mod13).
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4.4.15. II.4.15. Let X be an elliptic curve over a field k of characteristic p. Let F ′ : Xp → X be the
k-linear Frobenius morphism (2.4.1). Use (4.10.7) to show that the dual morphism F̂ ′ : X → Xp is
separable if and only if the Hasse invariant of X is 1 .

Now use (Ex. 4.7) to show that if the Hasse invariant is 1, then the subgroup of points of order
p on X is isomorphic to Z/p; if the Hasse invariant is 0 , it is 0 .

4.4.16. II.4.16. Again let X be an elliptic curve over k of characteristic p, and suppose X is defined
over the field Fq of q = pr elements, i.e., X ⊆ P2 can be defined by an equation with coefficients in
Fq. Assume also that X has a rational point over Fq. Let F ′ : Xq → X be the k-linear Frobenius
with respect to q.

a. Show that Xq
∼= X as schemes over k, and that under this identification, F ′ : X → X is

the map obtained by the q th-power map on the coordinates of points of X, embedded in
P2.

b. Show that 1X − F ′ is a separable morphism and its kernel is just the set X (Fq) of points
of X with coordinates in Fq.

c. Using (Ex. 4.7), show that F ′ + F̂ ′ = aX for some integer a, and that N = q− a+ 1, where
N = ♯X (Fq).

d. Use the fact that deg (m+ nF ′) > 0 for all m,n ∈ Z to show that |a| ⩽ 2√
q. This is

Hasse’s proof of the analogue of the Riemann hypothesis for elliptic curves (App. C, Ex.
5.6).

e. Now assume q = p, and show that the Hasse invariant of X is 0 if and only if a ≡ 0( modp).
Conclude for p ⩾ 5 that X has Hasse invariant 0 if and only if N = p+ 1.

4.4.17. II.4.17. Let X be the curve y2 + y = x3 − x of (4.23.8).

a. If Q = (a, b) is a point on the curve, compute the coordinates of the point P+Q, where P =
(0, 0), as a function of a, b. Use this formula to find the coordinates of nP, n = 1, 2, . . . , 10.154

b. This equation defines a nonsingular curve over Fp for all p ̸= 37.

4.4.18. II.4.18. Let X be the curve y2 = x3 −7x+10. This curve has at least 26 points with integer
coordinates. Find them (use a calculator), and verify that they are all contained in the subgroup
(maybe equal to all of X(Q)?) generated by P = (1, 2) and Q = (2, 2).

4.4.19. II.4.19. Let X,P0 be an elliptic curve defined over Q, represented as a curve in P2 defined
by an equation with integer coefficients. Then X can be considered as the fibre over the generic
point of a scheme X over Spec Z. Let T ⊆ Spec Z be the open subset consisting of all primes p ̸= 2
such that the fibre X(p) of X over p is nonsingular.

• For any n, show that nX : X → X is defined over T , and is a flat morphism.
• Show that the kernel of nX is also flat over T .
• Conclude that for any p ∈ T , the natural map X(Q) → X(p) (Fp) induced on the groups of

rational points, maps the n-torsion points of X(Q) injectively into the torsion subgroup of
X(p) (Fp), for any (n, p) = 1.

By this method one can show easily that the groups X(Q) in (Ex. 4.17) and (Ex. 4.18) are
torsion-free.

154Check: 6P = (6, 14)
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4.4.20. II.4.20. Let X be an elliptic curve over a field k of characteristic p > 0, and let R =
End (X,P0) be its ring of endomorphisms.

a. Let Xp be the curve over k defined by changing the k-structure of X (2.4.1). Show that
j (Xp) = j(X)1/p. Thus X ∼= Xp over k if and only if j ∈ Fp.

b. Show that pX in R factors into a product ππ̂ of two elements of degree p if and only if
X ∼= Xp. In this case, the Hasse invariant of X is 0 if and only if π and π̂ are associates in
R (i.e., differ by a unit). (Use (2.5).)

c. If Hasse(X) = 0 show in any case j ∈ Fp2 .
d. For any f ∈ R, there is an induced map f∗ : H1 (OX) → H1 (OX). This must be multipli-

cation by an element λf ∈ k. So we obtain a ring homomorphism φ : R → k by sending f to
λf . Show that any f ∈ R commutes with the (nonlinear) Frobenius morphism F : X → X,
and conclude that if Hasse (X) ̸= 0, then the image of φ is Fp. Therefore, R contains a
prime ideal p with R/p ∼= Fp.

4.4.21. II.4.21. Let O be the ring of integers in a quadratic number field Q(
√

−d). Show that any
subring R ⊆ O,R ̸= Z, is of the form R = Z + f ·O, for a uniquely determined integer f ⩾ 1. This
integer f is called the conductor of the ring R.

4.4.22. II.4.22 *. If X → A1
C is a family of elliptic curves having a section, show that the family

is trivial.155

4.5. IV.5: The Canonical Embedding.

4.5.1. IV.5.1. Show that a hyperelliptic curve can never be a complete intersection in any projective
space. Cf. (Ex. 3.3).

4.5.2. IV.5.2. If X is a curve of genus ⩾ 2 over a field of characteristic 0 , show that the group
AutX of automorphisms of X is finite.156

4.5.3. IV.5.3. Moduli of Curves of Genus 4. The hyperelliptic curves of genus 4 form an irreducible
family of dimension 7 . The nonhyperelliptic ones form an irreducible family of dimension 9. The
subset of those having only one g1

3 is an irreducible family of dimension 8.157

4.5.4. IV.5.4. Another way of distinguishing curves of genus g is to ask, what is the least degree
of a birational plane model with only nodes as singularities (3.11)? Let X be nonhyperelliptic of
genus 4 . Then:

a. if X has two g1
3,s, it can be represented as a plane quintic with two nodes, and conversely;

b. if X has one g1
3, then it can be represented as a plane quintic with a tacnode (I, Ex. 5.14d),

but the least degree of a plane representation with only nodes is 6 .

155Hints: Use the section to fix the group structure on the fibres. Show that the points of order 2 on the fibres
form an étale cover of A1

C, which must be trivial, since A1
C is simply connected. This implies that λ can be defined

on the family, so it gives a map A1
C → A1

C − {0, 1}. Any such map is constant, so λ is constant, so the family is
trivial.

156Hint: If X is hyperelliptic, use the unique g1
2 and show that AutX permutes the ramification points of the 2

-fold covering X → P1. If X is not hyperelliptic, show that AutX permutes the hyperosculation points (Ex. 4.6) of
the canonical embedding. Cf. (Ex. 2.5).

157Hint: Use (5.2.2) to count how many complete intersections Q ∩ F3 there are.
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4.5.5. IV.5.5. Curves of Genus 5. Assume X is not hyperelliptic.
a. The curves of genus 5 whose canonical model in P4 is a complete intersection F2.F2.F2 form

a family of dimension 12 .
b. X has a g1

3 if and only if it can be represented as a plane quintic with one node. These
form an irreducible family of dimension 11.158

c. * In that case, the conics through the node cut out the canonical system (not counting the
fixed points at the node). Mapping P2 → P4 by this linear system of conics, show that the
canonical curve X is contained in a cubic surface V ⊆ P4, with V isomorphic to P2 with
one point blown up (II, Ex. 7.7).

Furthermore, V is the union of all the trisecants of X corresponding to the g1
3(5.5.3), so

V is contained in the intersection of all the quadric hypersurfaces containing X. Thus V
and the g1

3 are unique.159

4.5.6. IV.5.6. Show that a nonsingular plane curve of degree 5 has no g1
3. Show that there are

nonhyperelliptic curves of genus 6 which cannot be represented as a nonsingular plane quintic
curve.

4.5.7. IV.5.7.
a. Any automorphism of a curve of genus 3 is induced by an automorphism of P2 via the

canonical embedding.
b. * Assume char k ̸= 3. If X is the curve given by the group AutX is the simple group of

order 168 , whose order is the maximum 84(g − 1) allowed by (Ex. 2.5).160

c. * Most curves of genus 3 have no automorphisms except the identity.161162

4.6. IV.6: Classification of Curves in P3.

4.6.1. IV.6.1. A rational curve of degree 4 in P3 is contained in a unique quadric surface Q, and
Q is necessarily nonsingular.

4.6.2. IV.6.2. A rational curve of degree 5 in P3 is always contained in a cubic surface, but there
are such curves which are not contained in any quadric surface.

4.6.3. IV.6.3. A curve of degree 5 and genus 2 in P3 is contained in a unique quadric surface Q.
Show that for any abstract curve X of genus 2 , there exist embeddings of degree 5 in P3 for which
Q is nonsingular, and there exist other embeddings of degree 5 for which Q is singular.

4.6.4. IV.6.4. There is no curve of degree 9 and genus 11 in P3.163

158Hint: If D ∈ g1
3 , use K −D to mapX → P2.

159Note. Conversely, if X does not have a g1
3 , then its canonical embedding is a complete intersection, as in (a).

More generally, a classical theorem of Enriques and Petri shows that for any nonhyperelliptic curve of genus g ⩾ 3,
the canonical model is projectively normal, and it is an intersection of quadric hypersurfaces unless X has a g1

3 or
g = 6 and X has a g2

5 . See Saint-Donat [1].
160See Burnside [1, §232] or Klein [1].
161Hint: For each n, count the dimension of the family of curves with an automorphism T of order n. For example,

if n = 2, then for suitable choice of coordinates, T can be written as x → −x, y → y, z → z. Then there is an
8-dimensional family of curves fixed by T ; changing coordinates there is a 4-dimensional family of such T , so the
curves having an automorphism of degree 2 form a family of dimensional 12 inside the 14-dimensional family of all
plane curves of degree 4.

162More generally it is true (at least over C ) that for any g ⩾ 3, a “sufficiently general” curve of genus g has no
automorphisms except the identity-see Baily

1
.

163Hint: Show that it would have to lie on a quadric surface, then use (6.4.1).
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4.6.5. IV.6.5. If X is a complete intersection of surfaces of degrees a, b in P3, then X does not lie
on any surface of degree < min(a, b).

4.6.6. IV.6.6. Let X be a projectively normal curve in P3, not contained in any plane. If d = 6,
then g = 3 or 4 . If d = 7, then g = 5 or 6 . Cf. (II, Ex. 8.4) and (III, Ex. 5.6).

4.6.7. IV.6.7. The line, the conic, the twisted cubic curve and the elliptic quartic curve in P3 have
no multisecants. Every other curve in P3 has infinitely many multisecants.164

4.6.8. IV.6.8. A curve X of genus g has a nonspecial divisor D of degree d such that |D| has no
base points if and only if d ⩾ g + 1.

4.6.9. IV.6.9. * Let X be an irreducible nonsingular curve in P3. Then for each m ≫> 0, there is
a nonsingular surface F of degree m containing X.165

5. V: Surfaces

5.1. V.1: Geometry on a Surface.

5.1.1. V.1.1. Let C,D be any two divisors on a surface X, and let the corresponding invertible
sheaves be L,M. Show that

5.1.2. V.1.2. Let H be a very ample divisor on the surface X, corresponding to a projective
embedding X ⊆ PN . If we write the Hilbert polynomial of X (III, Ex. 5.2) as show that
a = H2, b = 1

2H
2 + 1 − π, where π is the genus of a nonsingular curve representing H, and

c = 1 + pa. Thus the degree of X in PN , as defined in (I, §7), is just H2. Show also that if C is
any curve in X, then the degree of C in PN is just C.H

5.1.3. V.1.3. Recall that the arithmetic genus of a projective scheme D of dimension 1 is defined
as See III, Ex. 5.3.

a. If D is an effective divisor on the surface X, use (1.6) to show that
b. pa(D) depends only on the linear equivalence class of D on X.
c. More generally, for any divisorD onX, we define the virtual arithmetic genus (which is equal

to the ordinary arithmetic genus if D is effective) by the same formula: 2pa−2 = D.(D+K).
Show that for any two divisors C,D we have and

5.1.4. V.1.4.
a. If a surface X of degree d in P3 contains a straight line C = P1, show that C2 = 2 − d

b. Assume char k = 0, and show for every d ⩾ 1, there exists a nonsingular surface X of degree
d in P3 containing the line x = y = 0.

5.1.5. V.1.5.
a. If X is a surface of degree d in P3, then
b. If X is a product of two nonsingular curves C,C ′, of genus g, g′ respectively, then Cf. (II,

Ex. 8.3).

164Hint: Consider a projection from a point of the curve to P2.
165Hint: Let π : P̃ → P3 be the blowing-up of X and let Y = π−1(X). Apply Bertini’s theorem to the projective

embedding of P̃ corresponding to IY ⊗ π∗OP3 (m).
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5.1.6. V.1.6.

a. If C is a curve of genus g, show that the diagonal ∆ ⊆ C×C has self-intersection ∆2 = 2−2g.
(Use the definition of ΩC/k in (II, §8).)

b. Let l = C × pt and m = pt × C. If g ⩾ 1, show that l,m, and ∆ are linearly independent
in Num(C × C). Thus Num(C × C) has rank ⩾ 3, and in particular, Cf. (III, Ex. 12.6),
(V, Ex. 4.10).

5.1.7. V.1.7. Algebraic Equivalence of Divisors. Let X be a surface. Recall that we have defined
an algebraic family of effective divisors on X, parametrized by a nonsingular curve T , to be an
effective Cartier divisor D on X ×T , flat over T (III, 9.8.5). In this case, for any two closed points
0, 1 ∈ T , we say the corresponding divisors D0, D1 on X are prealgebraically equivalent.

Two arbitrary divisors are prealgebraically equivalent if they are differences of prealgebraically
equivalent effective divisors. Two divisors D,D′ are algebraically equivalent if there is a finite
sequence D = D0, D1, . . . , Dn = D′ with Di and Di+1 prealgebraically equivalent for each i.

a. Show that the divisors algebraically equivalent to 0 form a subgroup of Div X.
b. Show that linearly equivalent divisors are algebraically equivalent.166

c. Show that algebraically equivalent divisors are numerically equivalent.167168

5.1.8. V.1.8. Cohomology Class of a Divisor. For any divisor D on the surface X, we define its
cohomology class c(D) ∈ H1 (X,ΩX) by using the isomorphism Pic X ∼= H1 (X,O∗

X ) of (III,
Ex. 4.5) and the sheaf homomorphism d log : O∗ → ΩX (III, Ex. 7.4c). Thus we obtain a group
homomorphism c : PicX → H1 (X,ΩX). On the other hand, H1(X,Ω) is dual to itself by Serre
duality (III, 7.13), so we have a nondegenerate bilinear map

a. Prove that this is compatible with the intersection pairing, in the following sense: for any
two divisors D,E on X, we have in k.169

b. If char k = 0, use the fact that H1 (X,ΩX) is a finite-dimensional vector space to show that
NumX is a finitely generated free abelian group.

5.1.9. V.1.9.

a. If H is an ample divisor on the surface X, and if D is any divisor, show that

166Hint: If (f) is a principal divisor on X, consider the principal divisor (tf − u) on X × P1, where t, u are the
homogeneous coordinates on P1.

167Hint: Use (III, 9.9) to show that for any very ample H, if D and D′ are algebraically equivalent, then D.H =
D′.H.

168Note. The theorem of Néron and Severi states that the group of divisors modulo algebraic equivalence, called
the Néron-Severi group, is a finitely generated abelian group. Over C this can be proved easily by transcendental
methods (App. B, §5 ) or as in (Ex. 1.8) below. Over a field of arbitrary characteristic, see Lang and Néron

1

for a proof, and Hartshorne
6

for further discussion. Since NumX is a quotient of the Néron-Severi group, it is also finitely generated, and hence
free, since it is torsion-free by construction.

169Hint: Reduce to the case where D and E are nonsingular curves meeting transversally. Then consider the
analogous map c : PicD → H1 (D,ΩD), and the fact (III, Ex. 7.4) that c (point) goes to 1 under the natural
isomorphism of H1 (D,ΩD) with k.



JUST DO IT: A COLLECTION OF HARTSHORNE PROBLEMS 77

b. Now let X be a product of two curves X = C × C ′. Let l = C × pt, and m = pt ×C ′. For
any divisor D on X, let a = D.l, b = D.m. Then we say D has type (a, b). If D has type
(a, b), with a, b ∈ Z, show that and equality holds if and only if D ≡ bl + am.170

5.1.10. V.1.10. Weil’s Proof of the Analogue of the Riemann Hypothesis for Curves. Let C be a
curve of genus g defined over the finite field Fq, and let N be the number of points of C rational
over Fq. Then N = 1 − a+ q, with |a| ⩽ 2g√

q.
To prove this, we consider C as a curve over the algebraic closure k of Fq. Let f : C → C be the

k-linear Frobenius morphism obtained by taking q th powers, which makes sense since C is defined
over Fq, so Xq

∼= X (See V, 2.4.1).
Let Γ ⊆ C × C be the graph of f , and let ∆ ⊆ C × C be the diagonal.
Show that Γ2 = q(2 − 2g), and Γ.∆ = N . Then apply (Ex. 1.9) to D = rΓ + s∆ for all r and s

to obtain the result.171

5.1.11. V.1.11. In this problem, we assume thatX is a surface for which NumX is finitely generated
(i.e., any surface, if you accept the Néron-Severi theorem (Ex. 1.7)).

a. If H is an ample divisor on X, and d ∈ Z, show that the set of effective divisors D with
D.H = d, modulo numerical equivalence, is a finite set.172

b. Now let C be a curve of genus g ⩾ 2, and use (a) to show that the group of automorphisms
of C is finite, as follows. Given an automorphism σ of C, let Γ ⊆ X = C ×C be its graph.
First show that if Γ ≡ ∆, then Γ = ∆, using the fact that ∆2 < 0, since g ⩾ 2 (Ex. 1.6).
Then use (a). Cf. (V, Ex. 2.5).

5.1.12. V.1.12. If D is an ample divisor on the surface X, and D′ ≡ D, then D′ is also ample. Give
an example to show, however, that if D is very ample, D′ need not be very ample.

5.2. V.2: Ruled Surfaces.

5.2.1. V.2.1. If X is a birationally ruled surface, show that the curve C, such that X is birationally
equivalent to C × P1, is unique (up to isomorphism).

5.2.2. V.2.2. Let X be the ruled surface P(E) over a curve C. Show that E is decomposable if and
only if there exist two sections C ′, C ′′ of X such that C ′ ∩ C ′′ = ∅.

5.2.3. V.2.3.

a. If E is a locally free sheaf of rank r on a (nonsingular) curve C, then there is a sequence of
subsheaves such that Ei/Ei−1 is an invertible sheaf for each i = 1, . . . , r. We say that E is a
successive extension of invertible sheaves.173

b. Show that this is false for varieties of dimension ⩾ 2. In particular, the sheaf of differentials
Ω on P2 is not an extension of invertible sheaves.

170Hint: Show that H = l+m is ample, let E = l−m, let D′ =
(
H2) (

E2)
D−

(
E2)

(D ·H)H −
(
H2)

(D ·E)E,
and apply (1.9). This inequality is due to Castelnuovo and Severi. See Grothendieck [2].

171See (App. C, Ex. 5.7) for another interpretation of this result.
172Hint: Use the adjunction formula, the fact that pa of an irreducible curve is ⩾ 0, and the fact that the

intersection pairing is negative definite on H⊥ in NumX.
173Hint: Use (II, Ex. 8.2).
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5.2.4. V.2.4. Let C be a curve of genus g, and let X be the ruled surface C × P1. We consider the
question, for what integers s ∈ Z does there exist a section D of X with D2 = s ? First show that
s is always an even integer, say s = 2r.

a. Show that r = 0 and any r ⩾ g + 1 are always possible. Cf. (V, Ex. 6.8).
b. If g = 3, show that r = 1 is not possible, and just one of the two values r = 2, 3 is possible,

depending on whether C is hyperelliptic or not.

5.2.5. V.2.5. Values of e. Let C be a curve of genus g ⩾ 1.

a. Show that for each 0 ⩽ e ⩽ 2g − 2 there is a ruled surface X over C with invariant e,
corresponding to an indecomposable E . Cf. (2.12).

b. Let e < 0, let D be any divisor of degree d = −e, and let ξ ∈ H1(L(−D)) be a nonzero
element defining an extension Let H ⊆ |D + K| be the sublinear system of codimension 1
defined by ker ξ, where ξ is considered as a linear functional on H0(L(D + K)). For any
effective divisor E of degree d−1, let LE ⊆ |D+K| be the sublinear system |D+K−E|+E.
Show that E is normalized if and only if for each E as above, LE ⊈ H. Cf. proof of (2.15).

c. Now show that if −g ⩽ e < 0, there exists a ruled surface X over C with invariant e.174

d. For g = 2, show that e ⩾ −2 is also necessary for the existence of X.175

5.2.6. V.2.6. Show that every locally free sheaf of finite rank on P1 is isomorphic to a direct sum
of invertible sheaves.176

5.2.7. V.2.7. On the elliptic ruled surface X of (2.11.6), show that the sections C0 with C2
0 = 1

form a one-dimensional algebraic family, parametrized by the points of the base curve C, and that
no two are linearly equivalent.

5.2.8. V.2.8. A locally free sheaf E on a curve C is said to be stable if for every quotient locally
free sheaf we have Replacing > by ⩾ defines semistable.

a. A decomposable E is never stable.
b. If E has rank 2 and is normalized, then E is stable (respectively, semistable) if and only if

deg E > 0 (respectively, ⩾ 0 ).
c. Show that the indecomposable locally free sheaves E of rank 2 that are not semistable are

classified, up to isomorphism, by giving
(1) an integer 0 < e ⩽ 2g − 2,
(2) an element L ∈ PicC of degree −e, and
(3) a nonzero ξ ∈ H1 (L∨), determined up to a nonzero scalar multiple.

5.2.9. V.2.9. Let Y be a nonsingular curve on a quadric cone X0 in P3. Show that either
• Y is a complete intersection of X0 with a surface of degree a ⩾ 1, in which case deg Y =

2a, g(Y ) = (a− 1)2, or,
• deg Y is odd, say 2a+ 1, and g(Y ) = a2 − a.177

174Hint: For any given D in (b), show that a suitable ξ exists, using an argument similar to the proof of (II, 8.18).
175Note. It has been shown that e ⩾ −g for any ruled surface (Nagata [8]).
176Hint: Choose a subinvertible sheaf of maximal degree, and use induction on the rank.
177Cf. (V, 6.4.1). Hint: Use (2.11.4).
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5.2.10. V.2.10. For any n > e ⩾ 0, let X be the rational scroll of degree d = 2n− e in Pd+1 given
by (2.19). If n ⩾ 2e− 2, show that X contains a nonsingular curve Y of genus g = d+ 2 which is
a canonical curve in this embedding.

Conclude that for every g ⩾ 4, there exists a nonhyperelliptic curve of genus g which has a g1
3.

Cf. (V, §5).

5.2.11. V.2.11. Let X be a ruled surface over the curve C, defined by a normalized bundle E , and
let e be the divisor on C for which L(e) ∼=

∧2 E (See 2.8 .1). Let b be any divisor on C.
a. If |b| and |b+e| have no base points, and if b is nonspecial, then there is a sectionD ∼ C0+bf ,

and |D| has no base points.
b. If b and b+ e are very ample on C, and for every point P ∈ C, we have b−P and b+ e−P

nonspecial, then C0 + bf is very ample.

5.2.12. V.2.12. Let X be a ruled surface with invariant e over an elliptic curve C, and let b be a
divisor on C.

a. If deg b ⩾ e+ 2, then there is a section D ∼ C0 + bf such that |D| has no base points.
b. The linear system |C0 + bf | is very ample if and only if deg b ⩾ e + 3. Note. The case
e = −1 will require special attention.

5.2.13. V.2.13. For every e ⩾ −1 and n ⩾ e + 3, there is an elliptic scroll of degree d = 2n − e in
Pd−1. In particular, there is an elliptic scroll of degree 5 in P4.

5.2.14. V.2.14. Let X be a ruled surface over a curve C of genus g, with invariant e < 0, and
assume that char k = p > 0 and g ⩾ 2.

a. If Y ≡ aC0 + bf is an irreducible curve ̸= C0, f , then either
• a = 1, b ⩾ 0, or
• 2 ⩽ a ⩽ p− 1, b ⩾ 1

2ae, or
• a ⩾ p, b ⩾ 1

2ae+ 1 − g.

b. If a > 0 and b > a
(

1
2e+ (1/p)(g − 1)

)
, then any divisor D ≡ aC0 + bf is ample. On the

other hand, if D is ample, then a > 0 and b > 1
2ae.

5.2.15. V.2.15. Funny behavior in characteristic p. Let C be the plane curve x3y + y3z + z3x = 0
over a field k of characteristic 3 (V, Ex. 2.4).

a. Show that the action of the k-linear Frobenius morphism f on H1 (C,OC) is identically 0
(Cf. (V, 4.21)).

b. Fix a point P ∈ C, and show that there is a nonzero ξ ∈ H1(L(−P )) such that f∗ξ = 0 in
H1(L(−3P )).

c. Now let E be defined by ξ as an extension and let X be the corresponding ruled surface
over C. Show that X contains a nonsingular curve Y ≡ 3C0 − 3f , such that π : Y → C is
purely inseparable.

Show that the divisor D = 2C0 satisfies the hypotheses of (2.21.b), but is not ample.

5.2.16. V.2.16. Let C be a nonsingular affine curve. Show that two locally free sheaves E , E ′ of
the same rank are isomorphic if and only if their classes in the Grothendieck group K(X) (II, Ex.
6.10) and (II, Ex. 6.11) are the same. This is false for a projective curve.
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5.2.17. V.2.17 *.

a. Let φ : P1
k → P3

k be the 3-uple embedding (I, Ex. 2.12). Let I be the sheaf of ideals of the
twisted cubic curve C which is the image of φ. Then I/I2 is a locally free sheaf of rank 2
on C, so φ∗ (

I/I2)
is a locally free sheaf of rank 2 on P1. By (2.14), therefore, for some

l,m ∈ Z. Determine l and m.
b. Repeat part (a) for the embedding φ : P1 → P3 given by x0 = t4, x1 = t3u, x2 = tu3, x3 =
u4, whose image is a nonsingular rational quartic curve.178

5.3. V.3: Monoidal Transformations.

5.3.1. V.3.1. Let X be a nonsingular projective variety of any dimension, let Y be a nonsingular
subvariety, and let π : X̃ → X be obtained by blowing up Y . Show that pa(X̃) = pa(X)

5.3.2. V.3.2. Let C and D be curves on a surface X, meeting at a point P . Let π : X̃ → X be the
monoidal transformation with center P .

Show that Conclude that C.D = ∑
µP (C) · µP (D), where the sum is taken over all intersection

points of C and D, including infinitely near intersection points.

5.3.3. V.3.3. Let π : X̃ → X be a monoidal transformation, and let D be a very ample divisor on
X. Show that 2π∗D − E is ample on X̃.179

5.3.4. V.3.4. Multiplicity of a Local Ring. Let A be a noetherian local ring with maximal ideal m.
For any l > 0, let ψ(l) = length

(
A/ml

)
. We call ψ the Hilbert-Samuel function of A.

a. Show that there is a polynomial PA(z) ∈ Q[z] such that PA(l) = ψ(l) for all l ≫ 0. This is
the Hilbert-Samuel polynomial of A.180181

b. Show that degPA = dimA.
c. Let n = dimA. Then we define the multiplicity of A, denoted µ(A), to be (n!). (leading

coefficient of PA ). If P is a point on a noetherian scheme X, we define the multiplicity of
P on X,µP (X), to be µ (OP,X).

d. Show that for a point P on a curve C on a surface X, this definition of µP (C) coincides
with the one in the text just before (3.5.2).

e. If Y is a variety of degree d in Pn, show that the vertex of the cone over Y is a point of
multiplicity d.

5.3.5. V.3.5. Let a1, . . . , ar, r ⩾ 5, be distinct elements of k, and let C be the curve in P2 given
by the (affine) equation y2 = ∏r

i=1 (x− ai). Show that the point P at infinity on the y-axis is a
singular point. Compute δP and g(Ỹ ), where Ỹ is the normalization of Y . Show in this way that
one obtains hyperelliptic curves of every genus g ⩾ 2.

5.3.6. V.3.6. Show that analytically isomorphic curve singularities (I, 5.6.1) are equivalent in the
sense of (3.9.4), but not conversely.

178Answer: If char k ̸= 2, then l = m = −7; if char k = 2, then l,m = −6,−8.
179Hint: Use a suitable generalization of (I, Ex. 7.5) to curves in Pn.
180Hint: Consider the graded ring grmA =

⊕
d⩾0 m

d/md+1, and apply (I, 7.5)
181See Nagata [7,ChIII, §23] or Zariski-Samuel [1, vol2,ChV III, §10].
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5.3.7. V.3.7. For each of the following singularities at (0, 0) in the plane, give an embedded reso-
lution, compute δP , and decide which ones are equivalent.

a. x3 + y5 = 0.
b. x3 + x4 + y5 = 0.
c. x3 + y4 + y5 = 0.
d. x3 + y5 + y6 = 0.
e. x3 + xy3 + y5 = 0.

5.3.8. V.3.8. Show that the following two singularities have the same multiplicity, and the same
configuration of infinitely near singular points with the same multiplicities, hence the same δP , but
are not equivalent.

a. x4 − xy4 = 0.
b. x4 − x2y3 − x2y5 + y8 = 0.

5.4. V.4: The Cubic Surface in P3.

5.4.1. V.4.1. The linear system of conics in P2 with two assigned base points P1 and P2 (4.1)
determines a morphism ψ of X ′ (which is P2 with P1 and P2 blown up) to a nonsingular quadric
surface Y in P3, and furthermore X ′ via ψ is isomorphic to Y with one point blown up.

5.4.2. V.4.2. Let φ be the quadratic transformation of (4.2.3), centered at P1, P2, P3. If C is an
irreducible curve of degree d in P2, with points of multiplicity r1, r2, r3 at P1, P2, P3, then the strict
transform C ′ of C by φ has degree and has points of multiplicity

• d− r2 − r3 at Q1,
• d− r1 − r3 at Q2 and
• d− r1 − r2 at Q3.

The curve C may have arbitrary singularities.182

5.4.3. V.4.3. Let C be an irreducible curve in P2. Then there exists a finite sequence of quadratic
transformations, centered at suitable triples of points, so that the strict transform C ′ of C has only
ordinary singularities, i.e., multiple points with all distinct tangent directions (I, Ex. 5.14). Use
(3.8).

5.4.4. V.4.4.

a. Use (4.5) to prove the following lemma on cubics: If C is an irreducible plane cubic curve,
if L is a line meeting C in points P,Q,R, and L′ is a line meeting C in points P ′, Q′, R′,
let P ′′ be the third intersection of the line PP ′ with C, and define Q′′, R′′ similarly. Then
P ′′, Q′′, R′′ are collinear.

b. Let P0 be an inflection point of C, and define the group operation on the set of regular
points of C by the geometric recipe "let the line PQ meet C at R, and let P0R meet C at
T , then P +Q = T ′′ as in (II, 6.10.2) and (II, 6.11.4). Use (a) to show that this operation
is associative.

182Hint: Use (Ex. 3.2).
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5.4.5. V.4.5. Prove Pascal’s theorem: if A,B,C,A′, B′, C ′ are any six points on a conic, then the
points P = AB′ ·A′B,Q = AC ′ ·A′C, and R = BC ′ ·B′C are collinear (Fig. 22).

5.4.6. V.4.6. Generalize (4.5) as follows: given 13 points P1, . . . , P13 in the plane, there are three
additional determined points P14, P15, P16, such that all quartic curves through P1, . . . , P13 also
pass through P14, P15, P16. What hypotheses are necessary on P1, . . . , P13 for this to be true?

5.4.7. V.4.7. If D is any divisor of degree d on the cubic surface (4.7.3), show that Show furthermore
that for every d > 0, this maximum is achieved by some irreducible nonsingular curve.

5.4.8. V.4.8. *. Show that a divisor class D on the cubic surface contains an irreducible curve
⇐⇒ if it contains an irreducible nonsingular curve ⇐⇒ it is either

a. one of the 27 lines, or
b. a conic (meaning a curve of degree 2) with D2 = 0, or
c. D.L ⩾ 0 for every line L, and D2 > 0.183

5.4.9. V.4.9. If C is an irreducible non-singular curve of degree d on the cubic surface, and if the
genus g > 0, then and this minimum value of g > 0 is achieved for each d in the range given.

5.4.10. V.4.10. A curious consequence of the implication (iv) ⇒ (iii) of (4.11) is the following
numerical fact: Given integers a, b1, . . . , b6 such that bi > 0 for each i, a − bi− bj > 0 for each i, j
and 2a −

∑
i ̸=j bi > 0 for each j, we must necessarily have a2 −

∑
b2

i > 0. Prove this directly (for
a, b1, . . . , b6 ∈ R ) using methods of freshman calculus.

183Hint: Generalize (4.11) to the surfaces obtained by blowing up 2, 3, 4, or 5 points of P2, and combine with our
earlier results about curves on P1 × P1 and the rational ruled surface X1, (2.18).
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5.4.11. V.4.11. The Weyl Groups. Given any diagram consisting of points and line segments joining
some of them, we define an abstract group, given by generators and relations, as follows:

• Each point represents a generator xi. The relations are
• x2

i = 1 for each i;
• (xixj)2 = 1 if i and j are not joined by a line segment, and
• (xixj)3 = 1 if i and j are joined by a line segment.
a. The Weyl group An is defined using the following diagram of n − 1 points, each joined

to the next: Show that it is isomorphic to the
symmetric group Σn as follows:

• Map the generators of An to the elements (12), (23), .., (n − 1, n) of Σn, to get a
surjective homomorphism An → Σn.

• Then estimate the number of elements of An to show in fact it is an isomorphism.

b. The Weyl group E6 is defined using the diagram
Call the generators x1, . . . , x5 and y. Show that one obtains a surjective homomorphism
E6 → G, the group of automorphisms of the configuration of 27 lines (4.10.1), by send-
ing x1, . . . , x5 to the permutations (12), (23), . . . , (56) of the Ei, respectively, and y to the
element associated with the quadratic transformation based at P1, P2, P3.

c. * Estimate the number of elements in E6, and thus conclude that E6 ∼= G.184

5.4.12. V.4.12. Use (4.11) to show that if D is any ample divisor on the cubic surface X, then
H1 (X,OX(−D)) = 0. This is Kodaira’s vanishing theorem for the cubic surface (III, 7.15).

5.4.13. V.4.13. Let X be the Del Pezzo surface of degree 4 in P4 obtained by blowing up 5.points
of P2(4.7)

a. Show that X contains 16 lines.
b. Show that X is a complete intersection of two quadric hypersurfaces in P4 (the converse

follows from (4.7.1)).

5.4.14. V.4.14. Using the method of (4.13.1), verify that there are nonsingular curves in P3 with
d = 8, g = 6, 7; d = 9, g = 7, 8, 9; d = 10, g = 8, 9, 10, 11. Combining with (IV, §6), this completes
the determination of all posible g for curves of degree d ⩽ 10 in P3.

5.4.15. V.4.15. Let P1, . . . , Pr be a finite set of (ordinary) points of P2, no 3 collinear. We define
an admissible transformation to be a quadratic transformation (4.2.3) centered at some three
of the Pi (call them P1, P2, P3 ).

This gives a new P2, and a new set of r points, namely Q1, Q2, Q3, and the images of P4, . . . , Pr.
We say that P1, . . . , Pr are in general position if no three are collinear, and furthermore after

any finite sequence of admissible transformations, the new set of r points also has no three collinear.
a. A set of 6 points is in general position if and only if no three are collinear and not all six

lie on a conic.
184Note: See Manin [3, §25, 26] for more about Weyl groups, root systems, and exceptional curves.
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b. If P1, . . . , Pr are in general position, then the r points obtained by any finite sequence of
admissible transformations are also in general position.

c. Assume the ground field k is uncountable. Then given P1, . . . , Pr in general position, there
is a dense subset V ⊆ P2 such that for any Pr+1 ∈ V, P1, . . . , Pr+1 will be in general
position.185

d. Now take P1, . . . , Pr ∈ P2 in general position, and let X be the surface obtained by blowing
up P1, . . . , Pr. If r = 7, show that X has exactly 56 irreducible nonsingular curves C
with g = 0, C2 = −1, and that these are the only irreducible curves with negative self-
intersection. Ditto for r = 8, the number being 240 .

e. * For r = 9, show that the surface X defined in (d) has infinitely many irreducible nonsin-
gular curves C with g = 0 and C2 = −1.186

5.4.16. V.4.16. For the Fermat cubic surface x3
0 + x3

1 + x3
2 + x3

3 = 0, find the equations of the 27
lines explicitly, and verify their incidence relations. What is the group of automorphisms of this
surface?

5.5. V.5: Birational Transformations.

5.5.1. V.5.1. Let f be a rational function on the surface X. Show that it is possible to "resolve
the singularities of f ′′ in the following sense: there is a birational morphism g : X ′ → X so that f
induces a morphism of X ′ to P1.187

5.5.2. V.5.2. Let Y ∼= P1 be a curve in a surface X, with Y 2 < 0. Show that Y is contractible
(5.7.2) to a point on a projective variety X0 (in general singular).

5.5.3. V.5.3. If π : X̃ → X is a monoidal transformation with center P , show that H1
(
X̃,ΩX̃

)
∼=

H1 (X,ΩX) ⊕ k. This gives another proof of (5.8).188

5.5.4. V.5.4. Let f : X → X ′ be a birational morphism of nonsingular surfaces.
a. If Y ⊆ X is an irreducible curve such that f(Y ) is a point, then Y ∼= P1 and Y 2 < 0
b. Let P ′ ∈ X ′ be a fundamental point of f−1, and let Y1, . . . , Yr be the irreducible components

of f−1 (P ′). Show that the matrix |Yi.Yj | is negative definite.

5.5.5. V.5.5. Let C be a curve, and let π : X → C and π′ : X ′ → C be two geometrically ruled
surfaces over C. Show that there is a finite sequence of elementary transformations (5.7.1) which
transform X into X ′.189

185Hint: Prove a lemma that when k is uncountable, a variety cannot be equal to the union of a countable family
of proper closed subsets.

186Hint: Let L be the line joining P1 and P2. Show that there exist finite sequences of admissible transformations
such that the strict transform of L becomes a plane curve of arbitrarily high degree. This example is apparently due
to Kodaira-see Nagata [5, II, p.283].

187Hints: Write the divisor of f as (f) =
∑

niCi. Then apply embedded resolution (3.9) to the curve Y =
⋃
Ci.

Then blow up further as necessary whenever a curve of zeros meets a curve of poles until the zeros and poles of f are
disjoint.

188Hints: Use the projection formula (III, Ex. 8.3) and (III, Ex. 8.1) to show that Hi (X,ΩX) ∼= Hi
(
X̃, π∗ΩX

)
for each i. Next use the exact sequence and a local calculation with coordinates to show that there is a natural
isomorphism ΩX̃/X

∼= ΩE , where E is the exceptional curve. Now use the cohomology sequence of the above sequence
(you will need every term) and Serre duality to get the result.

189Hints: First show if D ⊆ X is a section of π containing a point P , and if D̃ is the strict transform of D by
elmP , then D̃2 = D2 − 1 (Fig. 23).
Next show that X can be transformed into a geometrically ruled surface X ′′ with invariant e ≫ 0. Then use (2.12),
and study how the ruled surface P(E) with E decomposable behaves under elmP .
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5.5.6. V.5.6. Let X be a surface with function field K. Show that every valuation ringR of K/k
is one of the three kinds described in (II, Ex. 4.12).190

5.5.7. V.5.7. Let Y be an irreducible curve on a surface X, and suppose there is a morphism
f : X → X0 to a projective variety X0 of dimension 2 , such that f(Y ) is a point P and f−1(P ) = Y .
Then show that Y 2 < 0.191

5.5.8. V.5.8. A surface singularity. Let k be an algebraically closed field, and let X be the surface
in A3

k defined by the equation x2 + y3 + z5 = 0. It has an isolated singularity at the origin
P = (0, 0, 0).

a. Show that the affine ring A = k[x, y, z]/
(
x2 + y3 + z5)

of X is a unique factorization do-
main, as follows. Let t = z−1;u = t3x, and v = t2y. Show that z is irreducible in
A; t ∈ k[u, v], and A

[
z−1]

= k
[
u, v, t−1]

. Conclude that A is a UFD.
b. Show that the singularity at P can be resolved by eight successive blowings-up. If X̃ is the

resulting nonsingular surface, then the inverse image of P is a union of eight projective lines,

which intersect each other according to the Dynkin diagram E8 :

5.6. V.6: Classification of Surfaces.

5.6.1. V.6.1. Let X be a surface in Pn, n ⩾ 3, defined as the complete intersection of hypersur-
faces of degrees d1, . . . , dn−2, with each di ⩾ 2. Show that for all but finitely many choices of
(n, d1, . . . , dn−2), the surface X is of general type. List the exceptional cases, and where they fit
into the classification picture.

5.6.2. V.6.2. Prove the following theorem of Chern and Griffiths. Let X be a nonsingular surface
of degree d in Pn+1

C , which is not contained in any hyperplane. If d < 2n, then pg(X) = 0. If
d = 2n, then either pg(X) = 0, or pg(X) = 1 and X is a K3 surface.192

190Hint: In case (3), let f ∈ R. Use (Ex. 5.1) to show that for all i ≫ 0, f ∈ OXi , so in fact f ∈ R0.
191Hint: Let |H| be a very ample (Cartier) divisor class on X0, let H0 ∈ |H| be a divisor containing P , and let

H1 ∈ |H| be a divisor not containing P . Then consider f∗H0, f
∗H1 and H̃0 = f∗ (H0 − P )−.

192Hint: Cut X with a hyperplane and use Clifford’s theorem (IV, 5.4). For the last statement, use the Riemann-
Roch theorem on X and the Kodaira vanishing theorem (III, 7.15).
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