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1 Foreword
These are notes from Chun-Ju (CJ) Lai’s Fall 2019 course on Lie Algebras at the University of
Georgia. It is worth noting that they were live-tex’d, and thus any errors or inaccuracies are
certainly due to my own mistakes and/or lack of understanding. For those that do spot errors and
would like to help improve these notes, please feel free to email me directly or submit a pull request
to the Github repository.

D. Zack Garza, February 24, 2020

2 Monday August 12
The material for this class will roughly come from Humphrey, Chapters 1 to 5. There is also a
useful appendix which has been uploaded to the ELC system online.

2.1 Overview
Here is a short overview of the topics we expect to cover:

2.1.1 Chapter 2

• Ideals, solvability, and nilpotency
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• Semisimple Lie algebras
– These have a particularly nice structure and representation theory

• Determining if a Lie algebra is semisimple using Killing forms
• Weyl’s theorem for complete reducibility for finite dimensional representations
• Root space decompositions

2.1.2 Chapter 3-4

We will describe the following series of correspondences:

Semisimple algebras Root systems Dynkin diagrams

Simple algebras over C Irreducible root systems Connected Dynkin diagrams

⊕ ∐ ∐

2.2 Classification
The classical Lie algebras can be essentially classified by certain classes of diagrams:

A` :
`

· · ·

B` :
`

· · ·

C` :
`

· · ·

D` :

`

· · ·

E6, E7, E8 :
`

· · ·

F4:
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2.3 Chapters 4-5
These cover the following topics:

• Conjugacy classes of Cartan subalgebras
• The PBW theorem for the universal enveloping algebra
• Serre relations

2.3.1 Chapter 6

Some import topics include:

• Weight space decompositions
• Finite dimensional modules
• Character and the Harish-Chandra theorem
• The Weyl character formula

– This will be computed for the specific Lie algebras seen earlier

We will also see the type A` algebra used for the first time; however, it differs from the other types
in several important/significant ways.

2.3.2 Chapter 7

Skip!

2.3.3 Topics

Time permitting, we may also cover the following extra topics:

• Infinite dimensional Lie algebras [Carter 05]
• BGG Cat-O [Humphrey 08]

2.4 Content
Fix F a field of characteristic zero – note that prime characteristic is closer to a research topic.

Definition 1. A Lie Algebra g over F is an F -vector space with an operation denoted the Lie
bracket,

[ · , · ] : g× g→ g

(x, y) 7→ [x, y].

satisfying the following properties:

• [ · , · ] is bilinear
• [x, x] = 0
• The Jacobi identity:
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[x, [y, z]] + [y, [x, z]] + [z, [x, y]] = 0.

Exercise 1. Show that [x, y] = −[y, x].

Definition 2. Two Lie algebras g, g′ are said to be isomorphic if ϕ([x, y]) = [ϕ(x), ϕ(y)].

2.5 Linear Lie Algebras

Let V = Fn, and define End(V ) =
{
f : V → V

∣∣∣ V is linear
}
. We can then define gl(n, V ) by

setting [x, y] = (x ◦ y)− (y ◦ x).

Exercise 2. Verify that V is a Lie algebra.

Definition 3. Define
sl(n, V ) =

{
f ∈ gl(n, V )

∣∣∣ Tr(f) = 0
}
.

(Note the different in definition compared to the lie group SL(n, V ).).

Definition 4. A subalgebra of a Lie algebra is a vector subspace that is closed under the bracket.

Definition 5. The symplectic algebra

sp(2`, F ) =
{
A ∈ gl(2`, F )

∣∣∣ MA−ATM = 0
}

where M =
(

0 In
−In 0

)
.

Definition 6. The orthogonal algebra

so(2`, F ) =
{
A ∈ gl(2`, F )

∣∣∣ MA−ATM = 0
}

where

M =




1 0

0
0 In

−In 0

 n = 2`+ 1 odd,

(
0 In

−In 0

)
else.

Proposition 7. The dimensions of these algebras can be computed;

• The dimension of gl(n,F) is n2, and has basis {ei,j} the matrices if a 1 in the i, j position and
zero elsewhere.

7



• For type A`, we have dim sl(n,F) = (`+ 1)2 − 1.

• For type C`, we have ||sp(n,F) = `2 + 2
(
`(`+ 1)

2

)
, and so elements here

(
A B = Bt

C = Ct At

)
.

• For type D` we have

||so(2`,F) = dim
{(

A B = −Bt

C = −Ct −At

)}
,

which turns out to be 2`2 − `.

• For type B`, we have dim so(2`,F) = 2`2 − `+ 2` = 2`2 + `, with elements of the form

8



 0 M N

−N t A C = Ct

−M t B = Bt −At

 .

Exercise 3. Use the relation MA = AtM to reduce restrictions on the blocks.

so(6)

so(5)

sl(4) sl(2)2 so(4) sp(4)

so(3)

sl(2) sp(2)

Theorem 8. These are all of the isomorphisms between any of these types of algebras, in any
dimension.

3 Wednesday August 14
Recall from last time that a Lie Algebra is a vector space with a bilinear bracket, which importantly
satisfies the Jacobi identity:

[x, [y, z]] + [y, [x, z]] + [z, [x, y]] = 0.

Also recall the examples from last time:

• A` ⇐⇒ sl(`+ 1, F )
• B` ⇐⇒ so(2`+ 1, F )
• C` ⇐⇒ sp(2`, F )
• D` ⇐⇒ so(2`, F )

Exercise: Characterize these matrix subalgebras in terms of basis elements, and compute their
dimensions.

3.1 Lie Algebras of Derivations
Definition: An F -algebra A is an F -vector space endowed with a bilinear map A2 → A, (x, y) 7→
xy.

Definition: An algebra is associative if x(yz) = (xy)z.
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Modern interest: simple Lie algebras, which have a good representation theory. Take a look a
Erdmann-Wildon (Springer) for an introductory look at 3-dimensional algebras.

Definition: Any map δ : A2 → A that satisfies the Leibniz rule is called a derivation of A, where
the rule is given by δ(xy) = δ(x)y + xδ(y).

Definition: We define Der(A) =
{
δ
∣∣∣ δ is a derivation

}
.

Any Lie algebra g is an F -algebra, since [ · , · ] is bilinear. Moreover, g is associative iff [x, [y, z]] = 0.

Exercise: Show that Derg ≤ gl(g) is a Lie subalgebra. One needs to check that δ1, δ2 ∈ g =⇒
[δ1, δ2] ∈ g.

Exercise: Define the adjoint by ad x : g	, y 7→ [x, y]. Show that ad x ∈ Der(g).

3.2 Abstract Lie Algebras
Fact: Every finite-dimensional Lie algebra is isomorphic to a linear Lie algebra, i.e. a subalgebra of
gl(V ). Each isomorphism type can be specified by certain structure constants for the Lie bracket.

Example: Any F -vector space can be made into a Lie algebra by setting [x, y] = 0; such algebras
are referred to as abelian.

Attempting to classify Lie algebras of dimension at most 2.

• 1 dimensional: We can write g = Fx, and so [x, x] = 0 =⇒ [ · , · ] = 0. So every bracket must
be zero, and thus every Lie algebra is abelian.
• 2 dimensional: Write g = Fx⊕ Fy, the only nontrivial bracket here is [x, y]. Some cases:

– [x, y] = 0 =⇒ g is abelian.
– [x, y] = ax + by 6= 0. Assume a 6= 0 and set x′ = ax + by, y′ = y

a
. Now compute

[x′, y′] = [ax+ by,
y

a
] = [x, y] = ax+ by = x′. Punchline: g ∼= Fx′ ⊕ Fy′, [x′, y′] = x′.

We can fill in a table with all of the various combinations of brackets:
[ · , · ] x′ y′

x′ 0 x′

y′ −x′ 0

Example: Let V = R3, and define [a, b] = a× b to be the usual cross product.

Exercise: Look at notes for basis elements of sl(2, F ),

e =
[

0 1
0 0

]
,

h =
[

1 0
0 −1

]
,

f =
[

0 0
1 0

]
.

Compute the matrices of ad (e), ad (h), ad (g) with respect to this basis.
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3.3 Ideals
Definition: A subspace I ⊆ g is called an ideal, and we write I E g, if x, y ∈ I =⇒ [x, y] ∈ I.

Note that there is no need to distinguish right, left, or two-sided ideals. This can be shown using
[x, y] = [−y, x].

Exercise: Check that the following are all ideals of g:

• {0} , g.
• z(g) =

{
z ∈ g

∣∣∣ [x, z] = 0 ∀x ∈ g
}

• The commutator (or derived) algebra [g, g] =
{∑

i

[xi, yi]
∣∣∣ xi, yi ∈ g

}
.

– Moreover, [gl(n, F ), gl(n, F )] = sl(n, F ).

Fact: If I, J E g, then

• I + J =
{
x+ y

∣∣∣ x ∈ I, y ∈ J} E g

• I
⋂
J E g

• [I, J ] =
{∑

i

[xi, yi]
∣∣∣ xi ∈ I, yi ∈ J

}
E g

Definition: A Lie algebra is simple if [g, g] 6= 0 (i.e. when g is not abelian) and has no non-trivial
ideals. Note that this implies that [g, g] = g.

Theorem: Suppose that char F 6= 2, then sl(2, F ) is not simple.

Proof:

Recall that we have a basis of sl(2, F ) given by B = {e, h, f} where

• [e, f ] = h,
• [h, e] = 2e,
• [h, f ] = −2f .

So think of [h, e] = ad h, so h is an eigenvector of this map with eigenvalues {0,±2}. Since char F 6= 2,
these are all distinct. Suppose sl(2, F ) has a nontrivial ideal I; then pick x = ae + bh + cf ∈ I.
Then [e, x] = 0− 2be+ ch, and [e, [e, x]] = 0− 0 + 2ce. Again since char F 6= 2, then if c 6= 0 then
e ∈ I. Now you can show that h ∈ I and f ∈ I, but then I = sl(2, F ), a contradiction. So c = 0.

Then x = bh 6= 0, so h ∈ I, and we can compute

2e = [h, e] ∈ I =⇒ e ∈ I,
2f = [h,−f ] ∈ I =⇒ f ∈ I.

which implies that I = sl(2, F ) and thus it is simple.

�
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4 Friday August 16
Last time, we looked at ideals such as 0, g, Z(g), and [g, g].

Definition: If I E g is an ideal, then the quotient g/I also yields a Lie algebra with the bracket
given by [x+ I, y + I] = [x, y] + I.

Exercise: Check that this is well-defined, so that if x + I = x′ + I and y + I = y′ + I then
[x, y] + I = [x′, y′] + I.

4.1 Homomorphisms and Representations
Definition: A linear map φ : g1 → g2 is a Lie homomorphism if φ[x, y] = [φ(x), φ(y)].

Remark: kerφ E g1 and im φ ≤ g2 are subalgebras.

Fact: There is a canonical way to set up a 1-to-1 correspondence {I E g} ⇐⇒
{
homφ : g→ g′

}
where I 7→ (x 7→ x+ I) and the inverse is given by φ 7→ kerφ.

Theorem (Isomorphism theorem for Lie algebras):

• If φ : g1 → g2 is a Lie algebra homomorphism, then g/ kerφ ∼= im φ
• If I, J E g are ideals and I ⊂ J then J/I E gg/I and (g/I)/(J/I) ∼= g/J .
• If I, J E g then (I + J)/J ∼= I/(I

⋂
J).

Definition: A representation of a Lie algebra g is a Lie algebra homomorphism φ : g→ gl(V ) into
a linear Lie algebra for some vector space V .

We call V a g-module with action g · v = φ(g)(v).

Example: The adjoint representation:

ad : g→ gl(g)
x 7→ [x, · ].

Corollary: Any simple Lie algebra is isomorphic to a linear Lie algebra.

Proof:

Since g is simple, the center Z(g) = 0. We can rewrite the center as

Z(g) =
{
x ∈ g

∣∣∣ ad x(y) = 0 ∀y ∈ g
}

= ker ad x.

Using the first isomorphism theorem, we have g/Z(g) ∼= im ad ⊆ gl(g). But g/Z(g) = g here, so we
are done.
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4.2 Automorphisms
Definition: An automorphism of g is an isomorphism g	, and we define

Aut(g) =
{
φ : g	

∣∣∣ φ is an isomorphism
}
.

Proposition: If δ ∈ Der(g) is nilpotent, then

exp(δ) :=
∑ δn

n! ∈ Aut(g).

This is well-defined because δ is nilpotent, and a binomial formula holds:

δn([x,y])

n! =
n∑
i=0

[δ
i(x)
i! ,

δn−i(y)
(n− i)! ].

and for n = 1, δ([x, y]) = [x, δ(y)] + [δ(x), y].

Exercise: Show that

[(exp δ)(x), (exp δ)(y)] =
k−1∑
n=0

δn([x, y])
n! .

Example: Let g = sl(2,F) and define

s = exp(ad e) exp(ad −f ) exp(ad e) ∈ Autg.

where e, f are defined as (todo, see written notes).

Then define the Weyl group W = 〈s〉.

Exercise: Check that s(e) = −f, s(f) = −e, s(h) = −h, and so the order of s is 2 and W = {1, s}.

5 Monday August 19
5.1 Solvability

Idea: Define a semisimple Lie algebra

Definition: The derived series for g is given by

g(0) = g

g(1) = [g(0), g(0)]
· · ·

g(i+1) = [g(i), g(i)].
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The Lie algebra g is solvable if there is some n for which g(n) = 0.

Exercise (to turn in): Check that the Lie algebra of upper triangular matrices in gl(n,F).

Example: Abelian Lie algebras are solvable

Example: Simple Lie algebras are not solvable.

Proposition: Let g be a Lie algebra, then

1. If g is solvable, then all subalgebras and all homomorphic images of g are also solvable.
2. If I E g and both I and g/I are solvable, then so is g.
3. If I, J E g are solvable, then so is I + J .

Corollary (of part 3 above): Any Lie algebra has a unique maximal solvable ideal, which we
denote the radical Rad(g).

Definition: A Lie algebra is semisimple if Rad(g) = 0.

Example: Any simple Lie algebra is semisimple.

Example: Using part (2) above, we can deduce that we can construct a semisimple Lie algebra from
any Lie algebra: for any g, the quotient g/Rad(g) is semisimple.

5.2 Nilpotency

g0 = g

g1 = [g0, g0]
· · ·

gi+1 = [gi, gi].

Much like the previous case, we have

Example: Abelian Lie algebras are nilpotent.

Example: Nilpotent Lie algebras are solvable.

Example: The strictly upper triangular matrices (with zero on the diagonal) are nilpotent.

1. If g is nilpotent, then all subalgebras and all homomorphic images of g are also nilpotent.
2. If g/Z(g) is nilpotent, then so is g.
3. If g 6= 0 is nilpotent, then Z(g) 6= 0.

Proposition: If g is nilpotent, then ad x ∈ End(g) is nilpotent for all x ∈ g.

Proof:

This is because gn = 0 ⇐⇒ [g, [g, [g, · · · ]]] = 0, and so for every xi, y ∈ g we have [x1, [x2, · · · [xn, y]]] =
0, and so ad x1 ◦ ad x2 ◦ · · · ad xn = 0 which implies that ad n

x = 0 for all x ∈ g.

Theorem [Engel]: If ad x is nilpotent for all x ∈ g, then g is nilpotent.

Remark: This can be confusing if g is a linear algebra, we can consider elements x ∈ g and
ask if it is the case x being nilpotent (as an endomorphism) iff gg is nilpotent? False, a
counterexample is g = gl(2,C), where there exists an x which is not nilpotent while ad x is
nilpotent, which contradicts the above theorem.

14



Proof:

We’ll first establish a lemma.

Lemma: Let g ⊆ gl(V ) be a Lie subalgebra for some finite dimensional vector space V . If x is
nilpotent as an endomorphism on V for all x ∈ V , then there exists a nonzero vector v ∈ V such
that gv = 0, so x ∈ g =⇒ x(v) = 0.

Proof of lemma: Use induction on dim g, splitting into two separate base cases:

• Case dim g = 0, then g = {0}.
• Case dim g = 1, left as an exercise.

Inductive step: Let A be a maximal proper subalgebra and define φ : A → gl(g/A) where a 7→
(x+A 7→ [a, x] +A). We need to check that φ is a homomorphism, this just follows from using the
Jacobi identity.

We also need to show that im φ ≤ gl(g/a) is a Lie subalgebra, and dim im φ < dim g. The claim is
that φ(a) ∈ End(g/A) is nilpotent for all a ∈ A. By the inductive hypothesis, there is a nonzero
coset y +A ∈ g/A such that (im φ) · (y +A) = A. Since y 6∈ A, then φ(a)(y +A) = A for all a ∈ A,
and so [a, y] ∈ A.

We want to show that A is a subalgebra of codimension 1, and A⊕Fy ≤ g is a Lie subalgebra. This
is because [a1 + c1y, a2 + c2y] = [a1, a2] + c2[a1, y]− c2[a2, y] + c1c2[y, y]. The last term is zero, the
middle two terms are in A, and because A is closed under the bracket, the first term is in A as well.

But then A ⊕ Fy is a larger subalgebra than A, which was maximal, so it must be everything.
So A ⊕ Fy = g. So A E g because [a1, a2 + cy] is in A,A ⊕ Fy = g respectively, and this equals
[a1, a2] + c[a1, y], where both terms are in A.

Proof to be continued.

6 Wednesday August 21
Last time: we had a theorem that said that if g ∈ gl(V ) and every x ∈ g is nilpotent, then there
exists a nonzero v ∈ V such that gv = 0.

We proceeded by induction on the dimension of V , constructing im φ ⊆ gl(g/A), and showed that
g = A⊕ Fy. Now consider

W =
{
v ∈ V

∣∣∣ Av = 0
}
,

which is g-invariant, so g(W ) ⊆ W , or for all a ∈ A, x ∈ g, v ∈ W , we have ay x(v) = 0. This is
true because ay x = x ◦ a+ [a, x] ∈ gl(V ). But V is killed by any element in A, and both of these
terms are in A. In particular, the y appearing in Fy also satisfies y ∈W . Consider y|W ∈ End(w),
and we want to apply the inductive hypothesis to F y|W ⊆ gl(V ).

We need to check that y|W ∈ End(V ), which is true exactly because y is nilpotent. So we can
construct a nonzero v ∈W ⊂ V such that y(v) = 0, and so gv = 0.

Claim: φ(a) ∈ End(g/A) is nilpotent.
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Each a ∈ A ⊂ g is nilpotent by assumption. Define the maps for left multiplication by a, m` : x 7→ ax,
and the right multiplication mr : x 7→ xa. These are nilpotent, and since m`,mr commute, the
difference m` −mr is nilpotent, and this is exactly ad a. But then φ(a) is nilpotent.

Good proof for using all of the definitions!

Now we can see what the consequences of having such a nonzero vector are. This theorem implies
Engel’s theorem, which says that if ad x ∈ End(g) is nilpotent for every x ∈ g, then g is nilpotent.

Proof:

By induction on dimension. The base case is easy. For the inductive step, the previous theorem
applies to ad g ⊂ gl(g). So we can produce the nonzero v ∈ g such that ad gv = 0. Then [x, v] = 0
for all x ∈ g, so either v ∈ Z(g) or Z(g) 6= 0. In either case, g/Z(g) has smaller dimension. Since
ad x is nilpotent, so is ad x + Z(g), and so g/Z(g) is nilpotent. By an earlier proposition, since the
quotient is nilpotent, so is the total space. �

Let N(F ) be the subalgebra of gl(F ) consisting of strictly upper triangular matrices. We have a
corollary: if g ⊂ gl(n, F ) is a Lie subalgebra such every x ∈ g is nilpotent as an endomorphism of F ,
then the matrices of g with respect to some bases of in N(n, F ).

The proof is by induction on n, where the base case is easy. For the inductive step, we use the
previous theorem to get a v1 such that x(v1) = 0 for all x ∈ g. Let V = Fn/Fv1 ∼= Fn−1, and define
φ : g→ gl(V ) where x 7→ (y 7→ y(x)).

Then im φ ≤ gl(n− 1, F ) as a subalgebra, and every φ(x) ∈ End(Fn−1) is nilpotent, since x was
nilpotent on the larger space. But (see notes) then x can be written as a strictly upper-triangular
matrix.

6.1 Chapter 2: Semisimple Lie Algebras
We now assume char F = 0 and F = F .

Theorem: If g is a solvable Lie subalgebra of gl(V ) for some finite dimensional V , then V contains
a common eigenvector for a x ∈ g, i.e. a λ : g→ F, x 7→ λ(x) such that x(v) = λ(x)v for all x ∈ g.

Proof: We will use induction on the dimension of g. For the inductive step:

Claim 1: There is an ideal A E g such that g = A⊕ Fy for some y 6= 0, so A is a subalgebra of a
solvable Lie algebra g and thus solvable itself. By hypothesis, we can produce a w ∈ V \ {0}, and
thus a functional λ : A→ F such that aw = λ(a)w for all a ∈ A. So we define

Vλ =
{
v ∈ V

∣∣∣ av = λ(a)v∀a ∈ A
}

where w ∈ Vλ.

Claim 2: y(Vλ) ⊆ Vλ, or y|Vλ ∈ End(Vλ).

Thus F (y|Vλ) ≤ gl(Vλ) is a Lie algebra of dimension 1, and thus solvable. By the inductive
hypothesis, we can find a v ∈ Vλ and some µ ∈ F such that y(v) = µv. An arbitrary element
x ∈ g can be written as x = a + cy for some a ∈ A, c ∈ F and it acts by x(v) = a(v) + cy(v) =
λ(a)v + cµv = (λ(a) + c)v ∈ Vλ.
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7 Friday August 23
Chapter 3: Theorems of Lie and Cartan

7.1 4.1: Lie’s Theorem
Theorem: Let L be a solvable subalgebra of gl(V ), where V is finite-dimensional. If V 6= 0, then
V contains a common eigenvector for all of the endomorphisms in L.

Proof:

Use induction on dimL. The case dimL = 0 is trivial. We’ll attempt to mimic the proof of Theorem
3.3. The idea is to

1. Locate an ideal of K of codimension 1,
2. Show by induction that common eigenvectors exist for k,
3. Verify that L stabilizes a space consisting of such eigenvectors,
4. Find in that space an eigenvector for a single z ∈ L satisfying L = K + Fz.

Step (1): Since L is solvable and of positive dimension, then L � [L,L]. Otherwise, if L = [L,L],
then L(1) = L =⇒ L(n) = L, which would contradict L being solvable.

Since [L,L] is abelian, any subspace is automatically an ideal. So take a subspace of codimension
one, then its inverse image K E L is an ideal satisfying [L,L] ⊆ K.

Step (2): Use induction to find a common eigenvector v ∈ V for K. (K is solvable; if K = 0 then
L is abelian of dimension 1 and any eigenvector for a basis vector of L finishes the proof.)

This means that x ∈ K =⇒ x y v = λ(x)v for some λ : K → F a linear functional. Fix this λ,
and let W =

{
w ∈ V

∣∣∣ xy w = λ(x)w∀x ∈ K
}
; note that W 6= 0.

Step (3): This will involve showing that L leaves W invariant. Assume for the moment that this
is done, and proceed to step (4).

Step (4): Write L = K + Fz. Since F is algebraically closed, we can find an eigenvector v0 ∈W
of z for some eigenvalue of z. Then v0 is a common eigenvector for L, and λ can be extended to a
linear function on L satisfying xy v0 = λ(x)v0 where x ∈ L.

It remains to show that L stabilizes W . Let w ∈W,x ∈ L. To test whether or not xy w ∈W , we
take an arbitrary y ∈ K and examine

yxy w = xy y w − [x, y] y w = λ(y)xy w − λ([x, y])w.

Note: the above equality is an important trick.

Thus we need to show that λ([x, y]) = 0. To this end, fix w ∈ W,x ∈ L. Let n > 0 be
the smallest integer for which w, x y w, · · ·xn y w are all linearly independent. Let Wi =
span(

{
w, xy w, · · ·xi−1 y w

}
) and set W0 = 0. Then dimWn = n, and Wn+i = Wn for all

i ≥ 0. Moreover, x maps Wn into itself. It is easy to check that each y ∈ K is represented by an
upper-triangular matrix with diagonal entries equal to λ(y). This follows immediately from the
congruence

yxi y w = λ(y)xi y w mod Wi,
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which can by proved by induction on i. The case i = 0 is trivial. For the inductive step, write

yxi y i = yxxi−1 y w = xyxi−1 y w = [x, y]xi−1 y w

By induction,
yxi−1 = λ(y)xi−1 y w + w′,

where w′ ∈Wi−1. Since x maps Wi−1 into Wi by construction, the congruence holds for all i.

According to our description of the action of y ∈ K on Wn, we have TrWn(y) = nλ(y). In particular,
this is true for elements k of f of the special form [x, y] where x is as it was above and y is in K.

But both x and y stabilize Wn, so [x, y] acts on Wn as the commutator of two endomor-
phisms of Wn, and the trace is therefore zero.

We conclude that nλ([x, y]) = 0. Since charF = 0, this forces λ([x, y]) = 0 as required. �

Corollary A (Lie’s Theorem): Let L ≤ gl(V ) be a solvable subalgebra where dimV = n <∞.
Then L stabilizes some flag in V , i.e. the matrices of L relative to a suitable basis of V are upper
triangular.

Proof: Use the above theorem, along with induction on dimV . This is similar to the proof of
corollary 3.3.

7.2 4.2: Jordan-Chevalley Decomposition
Fact 1:

The Jordan Canonical Form of a single endomorphism x over F algebraically closed is an expression
of x in matrix form as a sum of blocks:

Fact 2:

Call x ∈ EndV semisimple if the roots of its minimal polynomial over F are all distinct. Equivalently,
if F is algebraically closed, then x is semisimple iff x is diagonalizable.

Fact 3:

Two commuting semisimple endomorphisms can be simultaneously diagonalized. Therefore, their
sum or difference is again semisimple.

Proposition: Let V be a finite dimensional vector space over F and x ∈ EndV . Then

a. There exist unique xs, xn ∈ EndV satisfying the conditions x = xs + xn, xs is semisimple, xn
is nilpotent, and xs, xn commute.
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b. There exists polynomials p(t), g(t) such that xs = p(x) and xn = g(x). In particular, xs, xn
commute with any endomorphism commuting with x.

c. If A < B < V are subspaces and x maps B into A, then xs, xn also map B into A.

The decomposition x = xs + xn is called the (additive) Jordan-Chevalley decomposition of
x, or just the Jordan decomposition. xs, xn are respectively called the semisimple part and the
nilpotent part of x.

Example:

x =
(

1 1
0 1

)
=⇒ xs =

(
1 0
0 1

)
, xn =

(
0 1
0 0

)
.

Note that xsxn = xn = xnxs, xs = 2x − x2, and xn = x2 − x. We thus have p(t) = 2t − t2 and
q(t) = t2 − t.

8 Monday August 26
Definition (Jordan Decomposition):

Let X ∈ End(V ) for V finite dimensional. Then,

(a) There exists a unique Xs, Xn ∈ End(V ) such that X = Xs +Xn where Xs is semisimple, Xn

is nilpotent, and [Xs, Xn] = 0.

(b) There exists a p(t), q(t) ∈ tF[t] such that Xs = p(X), Xn = q(X).

(Polynomials with no constant term.)

Proof of (a): Assume Xs = Xs + Xn = X ′s + X ′n, so both have bracket zero. Assuming that (b)
holds, we have Xs = p(X), and so

[X,Xs] = [Xs +X ′n, X
′
s] = [X ′s, X ′s] + [X ′s, X ′n] = 0 =⇒ [p(X), X ′S ] = 0 = [Xs, X

′
s]

Using fact (c) from last time, then Xs, X
′
s can be diagonalized simultaneously, and so Xs −X ′s is

semisimple.

On the other hand, if X ′n, Xn are nilpotent, and since these commute, Xn −X ′n is nilpotent. But
then this is a Jordan decomposition of the zero map, i.e.

0 = X −X = (Xs −X ′s) + (Xn +X ′n)

where the first term is semisimple and the second is nilpotent. Then each term is both semisimple
and nilpotent, so they must be zero, which is what we wanted to show.

Proof of part (b): Let m(t) =
r∏
i=1

(t − λi)mi be the minimal polynomial of X, where each mi ≥ 1

and the λi are distinct. Then the primary composition of V is given by

V =
r⊕
i=1

Vi, Vi = ker(X − λiIV ) 6= 0, X(Vi) ⊆ Vi
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Figure 1: ???

Claim: There exists a polynomial p ∈ F [t] such that

p = λ mod (t− λi)mi ∀i,
p = 0 mod t.

The existence follows from the Chinese Remainder Theorem.

What is p(x) y Vi? This acts by scalar multiplication by λi for all i. (Check). Because of the
restrictive conditions, p(x) has no constant term.

So p(X) = Xs is the semisimple part we want. Now just set q(t) = t−p(t), thenXn := q(X) = X−Xs

is nilpotent.

Example: The Jordan Decomposition is invariant under taking adjoints.

If we have X = Xs +Xn, then ad X ∈ End(End(V )). It can be shown that (ad X)s + (ad X)n =
ad (Xs) + ad (Xn).

Let eii be the elementary matrix with a 1 in the i, j position. You can write ad X as a 4× 4 matrix
(see image).
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You can check that (ad X)S = 0, ad (Xs) = 0, and (ad X)n is the Jordan form given above.

Lemma:

(a) x ∈ End(V ) =⇒ ad (x)s = ad (xs) and ad (x)n = ad (xn).

(b) If A is a finite dimensional F-algebra, then δ ∈ Der(A) =⇒ δs, δn ∈ Der(A) as well.

Proof of (a):

Check that ad (x) = ad (xs) + ad (xn). Then for y ∈ End(V ), we have

(ad (x))(y) = [x, y]
= [xs + xn, y]
= [xs, y] + [xn, y]
− (ad (xs))(y) + (ad (xn))(y).

Using theorem 3.3, xn nilpotent =⇒ ad (xn) is also nilpotent. So write xs =
∑

λieii with the
eigenvalues on the diagonal. Then ad xs(eij) = (λi − λj)eij for all i, j. But then ad xs is given by
a matrix with λi − λj in the i, j position and zeros elsewhere. By the uniqueness of the Jordan
decomposition, the statement follows.
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Figure 2: Image

Proof of (b):

Since δ ∈ Der(A), the primary decomposition with respect to δ is given by

A =
⊕
λ∈F

Aλ where Aλ =
{
a ∈ A

∣∣∣ (δ − λI)ka = 0 for some k >> 0
}
.

So δs y Aλ by scalar multiplication (by λ). Then for λ, µ ∈ F, we have

So [Ax, Ay] ⊆ Aλ+µ for all x, y ∈ A. But then

and so δs ∈ Der(A), and δn = δ − δs ∈ Der(A) as well.

9 Wednesday August 28
Todo

10 Friday August 30
Review of bilinear forms: let V = Fn.

Definition: A bilinear form β : V 2 → F can be represented by a matrix B with respect to a basis
{vi} such that

ββ(
∑

aivi,
∑

bivi) = (a1 a2 · · · )B(b1 b2 · · · )

• β is symmetric iff β(a, b) = β(b, a).
• β is symplectic iff β(a, b) = −β(b, a).
• β is isotropic iff β(a, a) = 0.

For a subspace U ≤ V , define

U⊥ :=
{

v ∈ V
∣∣∣ β(u,v) = 0 ∀u ∈ U

}
.
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Figure 3: Image

Note: in general, left/right orthogonality are distinguished, but these will be identical when β
is symmetric/symplectic.

The form β is said to be non-degenerate iff V ⊥ = 0 iff detB 6= 0.

Assume F is an algebraically closed field, so F = F , and charF 6= 2, then

• If β is non-degenerate and symmetric, then B ∼ In
• If β is non-degenerate and symplectic, then B ∼ [0, In/2; In/2, 0].

Remark: so(n,F) =
{
x ∈ gl(n, F )

∣∣∣ β(x(u), v) = −β(u, x(v))
}
, where B has the matrix [0, I; I, 0] if

n is odd, or this matrix with a 1 in the top-left corner if n is odd.

Similarly, sp(2m,F) can be described this way with the matrix [0,−Im;−Im, 0].

Overview: The killing form is defined as κ : g2 → F where κ(x, y) = tr(ad x ◦ ad y).

Then we have Cartan’s Criteria:

• g solvable ⇐⇒ κ(x, y) = 0∀x ∈ [g, g], y ∈ g.
• g semisimple ⇐⇒ κ is non-degenerate.

Note that if g is semisimple, then g =
⊕
i

Ii with each Ii E g and simple.
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10.1 Cartan’s Criteria
Some facts:

1. κ is symmetric
2. If g is finite dimensional, then κ is associative, i.e κ([x, y], z) = κ(x, [y, z]).

Exercise: Show that if I E g, then I⊥ ≤ g is an ideal.

Proof of (2): In section 4.3, it was shown that tr([a, b] ◦ c) = tr(a ◦ [b, c]) for all a, b, c ∈ End(V )
(provided V is finite dimensional).

So

κ([x, y], z) = tr(ad [x,y] ◦ ad z)
= tr([ad x, ad y] ◦ ad z)
= tr(ad x ◦ [ad y, ad z])
= tr(ad x ◦ ad [y,z])
= tr(x, [y, z])..

Theorem: g is semisimple iff κ is nondegenerate.

Proof:

=⇒ : We want to show that g⊥ = 0. Note that [g⊥, g⊥] ⊆ g, and so for all x ∈ [g⊥, g⊥] and for any
y ∈ g⊥, we have

κ(x, y) = tr(ad x ◦ ad y) = 0

by the const(?) of g⊥. This implies g⊥ is solvable.

Using fact (2), we have g⊥ E g and thus g⊥ ⊆ rad(g), which is 0 since because g is semisimple. So
either g⊥ = 0 or κ is nondegenerate.

Used the fact that the radical was a maximal solvable ideal.

⇐= : We want to show that for all I E g where [I, I] = 0, we have I⊥ ⊆ g⊥.

For x ∈ I, y ∈ g, we have

(ad x ◦ ad y)2 = g
ad y−−−→ g

ad x−−−→ I
ad y−−−→ I

ad x−−−→ 0

And thus tr(ad x ◦ ad y) = 0 and I ⊆ g⊥.

Suppose that g is not semisimple. Then there exists a solvable ideal J 6= 0 such that the last term
J i in the derived series is an ideal I E g such that [I, I] = 0, forcing J i ⊂ g⊥ = 0, which is a
contradiction.

10.2 Section 5.2
Theorem: If g is semisimple, then

a. There exist ideals Ii E g which are simple Lie algebras satisfying g =
⊕

Ii. Note that
[Ii, Ij ] ⊆ Ii

⋂
Ij = 0, since direct summands intersect only trivially.
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Figure 4: Image

b. Every simple I E g is one of these Ii.

c. κIi = κg|Ii×Ii , so

Remark: g is semisimple ⇐⇒ g =
⊕
i

Ii for some simple Lie algebras Ii.

⇐= : For all i, S := radg, Ii E Ii is a solvable ideal. This implies that it is 0, since Ii is simple.

By definition, simple Lie algebras are not abelian.

Supposing that S = Ii, we would then have [S.S] 6= 0 since [Ii, Ii] 6= 0 by definition. But [S, S] 6= S
because S is solvable, which says that S is not simple (a contradiction).

Note that [radg, g] ⊆
⊕

[radg, Ii] = 0, which forces radg ⊆ Z(g). Since Ii is simple, Z(Ii) = 0 for
all i. But Z(g) =

⊕
Z(Ii) = 0, and this forces rad(g) ⊆ Z(g) =⇒ radg = 0. So g is semisimple.

Next time – starting the representation theory with sl(2,F).

11 Monday September 2
Recall the killing form:

κ : g2 → F
(x, y) 7→ tr(ad x ◦ ad y).

and Cartan’s criteria:

1. g is solvable ⇐⇒ κ(x, y) = 0 ∀x ∈ [g, g], y ∈ g.
2. g is semisimple ⇐⇒ κ is non-degenerate.
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Theorem: If g is semisimple, then

a. g =
n⊕
i=1

Ii for some Ii E g which are all simple.

b. Every simple ideal I E g is one of the Ii.
c. κIi = κg

∣∣∣
Ii×Ii

.

Proof of (a): Use induction on dim g. If g has no nonzero proper ideals, then g is simple and we’re
done.

Otherwise, let I1 be a minimal nonzero ideal of g. Then I⊥1 E g is also an ideal, and thus
I := I1

⋂
I⊥1 E g is as well. Then for all x ∈ [I, I], we must have κ(x, y) = 0 for any y ∈ I ⊆ I⊥1 .

So I is solvable, and thus I = 0. So g = I1 ⊕ I⊥1 .

Note that any ideal of I⊥1 is also an ideal of g, which implies that rad(I⊥1 ) ⊆ rad(g), which is zero
since g is semisimple, and thus I⊥1 is semisimple as well.

By the inductive hypothesis, I⊥1 = I2 ⊕ · · · ⊕ In where each Ij E I⊥i is simple. Then Ij E g =⇒
[I1, Ij ] ⊂ I1

⋂
Ij , since I1 has no contribution. But this is a subset of I1

⋂
I⊥1 = 0. �

Proof of (b): If I E g, then [I, g] E I because [[I, g], I] ⊆ [I, I] ⊆ [I, g].

Since g is semisimple, 0 = rad(g) ⊇ Z(g). So [I, g] 6= 0, and thus [I, g] = I since I is simple. But
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then [I, g] =
⊕

[I, Ii] is simple as well. So only one direct summand can survive, since otherwise
this would produce at least 2 nontrivial ideals, and [I, g] = [I, Ii] for some i.

So for all j 6= i, we must have Ij
⋂
I = Ij

⋂
[I, Ii] = 0, and so I ⊆ Ii. But then I = Ii since Ii itself

is simple, and we’re done.

Proof of (c):

(Without using the simplicity of Ii)

For x, y ∈ Ii, we have

11.1 Inner Derivations
Recall that ad g ⊆ Derg, and in fact (lemma) this is an ideal.

Theorem: If g is semisimple, then ad g = Derg.

Proof of lemma:

For all δ ∈ Derg and all x, y ∈ g, we have

[δ, ad x](y) = δ([x, y])− [x, δ(y)]
= [δ(x), y]
= [ad δ(x)](y),

and so [δ, ad x] ⊆ ad g. �

28



Proof of theorem:

If g is semisimple, then 0 = radg ⊇ Z(g) = ker ad . Thus ad g ∼= g/ ker ad ∼= g is also semisimple.

This means that κad g is non-degenerate, and thus ad g
⋂

(ad g)⊥ = 0, where (ad g)⊥ E Der(g).

Note that the non-degeneracy of κ already forces (ad g)⊥ = 0.

Then [(ad g)⊥, ad g] = 0, and so for all δ ∈ (ad g)⊥, we have δ(x) = [δ, ad x] by the lemma, but
we’ve shown that this is zero.

But then δ must be zero because ad is an isomorphism, and in particular it is injective. This means
that (ad g)⊥ = 0, and thus ad g = g. �

We can use this to define an abstract Jordan decomposition by pulling back decompositions on
adjoints:
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12 Wednesday September 4
12.1 4.3: Cartan’s Criterion
Lemma: LetA ⊂ B be two subspaces of gl(V ) where dimV <∞. SetM =

{
x ∈ gl(V )

∣∣∣ [x,B] ⊂ A
}
.

Suppose that x ∈M satisfies Tr(xy) = 0 for all y ∈M . Then x is nilpotent.

Proof: Let x = s+ n (where s = xs and n = xn) be be the Jordan decomposition of x. Fix a basis
v1 · · · vm of V relative to which s has matrix diag(a1 · · · am). Let E be the vector subspace of F over
the prime field Q spanned by the eigenvalues a1 · · · am. We have to show that s = 0, or equivalently
that E = 0, since E has finite Q-dimension by construction. It will suffice to show that the dual
space E∨ is 0, i.e. that any linear functional f : E → Q is zero.

Given f , let y be the element of gl(V ) whose matrix is given by diag(f(a1), · · · f(am)). If {eij} is a
basis of gl(V ), then ad s(eij) = (ai − aj)eij and ad y(eij) = (f(ai)− f(aj))eij .

Now let r(t) ∈ F [t] be a polynomial with no constant term, satisfying r(ai − aj) = f(ai) − f(aj)
for all pairs i, j. The existence of such r(t) follows from Lagrange interpolation, and the fact that
if ai = aj then 0 = r(aj) − r(ai) = r(ai − aj) = r(0), so r has no constant term. Thus there is
no ambiguity in the assigned values, since ai − aj = aj − al would imply (by linearity of f) that
f(ai)− f(aj) = f(ak)− f(al). Thus ad y = r(ad s).

Note that Lagrange Interpolation is a special case of the Chinese Remainder Theorem for
polynomials. If all xis are distinct, then pi(x) = x− xi are all pairwise coprime. Then dividing
p(x)
pi(x) = p(xi). So letting A1 · · ·Ak be constants in k, there is a unique polynomial of degree less

than k such that p(xi) = Ai. Thus there is a polynomial p(x) such that p(x) = Ai mod pi(x),
and p(xi) = Ai.

Now ad s is the semisimple part of ad x. By lemma A of 4.2, ad s can be written as a polynomial in
ad x without a constant term. Therefore ad y is also a polynomial in ad x without constant term.
By hypothesis, ad x maps B into A, so we have ad y(B) ⊂ A, and so y ∈M . Using the hypothesis
of the lemma, Tr(xy) = 0, and so

∑
aif(ai) = 0. The left side is a Q-linear combination of elements

of E. Applying f , we obtain
∑

f(ai)2 = 0. But the numbers f(ai) are rational, so this forces all of
them to be zero. Finally, f must be identically 0 because the ai span E. �

Note that Tr([x, y]z) = Tr(x[y, z]). To verify this, write [x, y]z = xyz − yxz and x[y, z] =
xyz − xzy, then use the fact that Tr(y(xz)) = Tr((xz)y).

Theorem (Cartan’s Criterion): Let L ≤ gl(V ) be a subalgebra with V finite dimensional.
Suppose Tr(xy) = 0 for all x ∈ [L,L] and y ∈ L. Then L is solvable.

Proof: It suffices to show that [L,L] is nilpotent, or just that all x ∈ [L,L] are nilpotent en-
domorphisms. We apply the above lemma, with V as given, A = [L,L], and B = L, so
M =

{
x ∈ gl(V )

∣∣∣ [x, L] ⊂ [L,L]
}
. We have L ⊂ M . Our hypothesis is that Tr(xy) = 0 for

all x ∈ [L,L] and y ∈ L. To use the lemma to reach the desired conclusion, we need a stronger
result: that Tr(xy) = 0 for x ∈ [L,L] and y ∈M .

If [x, y] is a generator of [L,L] and z ∈M , then Tr([x, y]z) = Tr(x[y, z]) = Tr([y, z]x). By definition
of M , [y, z] ∈ [L,L], so the right side is 0 by hypothesis.

Corollary: Let L be a Lie algebraic such that Tr(ad x ◦ ad y) = 0 for all x ∈ [L,L], y ∈ L. Then L
is solvable.
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Proof: Apply the theorem to the adjoint representation of L. We then get ad L is solvable. Since
ker ad = Z(L) is also solvable, L itself is solvable.

12.2 Killing Form
12.2.1 Criterion for Semisimplicity

Let L be any lie algebra. If x, y ∈ L, then define κ(x, y) = Tr(ad x ◦ ad y). Then k is a symmetric
bilinear form on L, called the killing form.

Theorem: g is solvable ⇐⇒ κ(x, y) = 0 for all x ∈ [g, g], y ∈ g.

Proof:

⇐= : By Cartan’s Criterion.

=⇒ : Exercise.

Example: The killing form of sl(2, F ).

We have

x =
(

0 1
0 0

)

h =
(

1 0
0 −1

)

y =
(

0 0
1 0

)
.

Then ad h = diag(2, 0,−2), and

ad x =

 0 −2 0
0 0 1
0 0 0


ad y ==

 0 0 0
−1 0 0
0 2 0

 .
and thus k has the matrix  0 0 4

0 8 0
4 0 0

 .
where kij = κ(xi, xj) where xi is a basis of L.

13 Wednesday September 11
Theorem: If L is semisimple and x ∈ L, there exists a unique xs, xn in L such that x = xs + xn,
[xn, xs] = 0, ad xs is semisimple, and ad xn is nilpotent.

Todo.
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14 Friday September 13
Todo

15 Monday September 16
Let S = exp(ad e) ◦ exp(ad − f) ◦ exp(ad ei), which has the following matrix:

Where exp(ad e) = 1 + ad e+ 1
2(ad e)2, which would have the form

Theorem: If g is semisimple, then any finite dimensional g-module V is completely reducible, i.e. it
splits into a direct sum of simple modules.

32



15.1 Proof of Weyl’s(?) Theorem
If V itself is simple, then we’re done, so suppose it is not.

Assume there exists a nonzero submodule U ( V . It suffices to show that V = U ⊕ U ′ for some U ′.

15.1.1 Step 1:

If dimV = 2 and dimU = 1.

Then U, V/U are both trivial modules. So g y u = 0 for all u ∈ U . But then g y (v + U) = U for
all v ∈ V , since g y v ∈ U .

So for all x, y ∈ lieg and all v ∈ V , we have [x, y] y v = x y (y y v) − y y (x y v). But both
of the terms in parenthesis are in U , and all elements in g kill elements in U , so this is zero. So
[g, g] y V trivially.

Exercise: If g is semisimple, then [g, g] = g.

So gy V trivially. Thus any U ′ that is a complementary subspace of U will be a submodule of V .

15.1.2 Step 2:

Suppose U is simple and dimU > 1, so dimV/U = 1.

Let Ω be the Casimir element on U (faithful representation?). Then Ωu = cu for some c ∈ F, and
so Ω(U) ⊆ U .

Since Ω : V	 is a homomorphism, ker Ω ⊆ V is a g-submodule. Then dimV/U = 1 =⇒ V/U is a
trivial module. So gy V/U = 0, i.e. gy V ⊆ U .

Then Ω(v) =
∑
i

xi y (yi y v) ∈ U for all v ∈ V . What is the matrix of Ω?
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In particular, Tr(Ω
∣∣∣
V/U

) = 0. So Tr(Ω) = Tr(Ω
∣∣∣
U

). From 6.2, we know that Tr(Ω) 6= 0 =⇒ c 6= 0,

where c is the scalar appearing above. So ker Ω is 1-dimensional, and ker Ω
⋂
U = {0}.

So take U ′ = ker Ω.

15.1.3 Step 3:

Suppose U is not simple, but dimV/U = 1.

We will induct on the dimension of U . Pick a proper nonzero submodule U ( U , so that dimU/U <
dimU . Now V/U ∼= (V/U)/(U/U) by an isomorphism theorem. So U/U is a submodule of V/U of
codimension 1. Applying the inductive hypothesis, we obtain V/U = U/U ⊕ V /U for some V such
that U ⊆ V ⊆ V .

In particular, since U ⊆ V has codimension 1, dimU < dimU . So apply the inductive hypothesis
again: V = U ⊕ U ′ for some U ′, and V = U ⊕ U ′.

15.1.4 Step 4: The general case

Recall that hom(V,U) is a g-module where

(g y φ)(v) = g y φ(v)− φ(g y v).
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Define
S =

{
φ ∈ hom(V,U)

∣∣∣ φ ∣∣∣
U
∈ F1U

}
.

Then S ≤ hom(V,U) as a submodule. Define T =
{
φ ∈ S

∣∣∣ φ ∣∣∣
U

= 0
}
. Then T ≤ S as a submodule,

and g(S) ⊆ T .

Now each φ ∈ Sis determined ( mod T ) by the scalar φ
∣∣∣
U
. Note that dim(S/T ) = 1. By steps 1-3,

we know that S = T ⊕ T ′ for some T ′ ⊆ S of dimension 1. Then T ′ = spanF(f) for some nonzero
map f : V → U such that f(u) = cu for some c 6= 0.

Then g(T ⊕ T ′) = g(S) ⊆ T =⇒ g(T ′) = 0. So for all g ∈ g, we have 0 = (g y f)(v) = f y
f(v)− f(g y v). Then f : V → U is a lie algebra homomorphism, ker f = U ′, and thus V = U ⊕U ′.
�

Some consequences of Weyl’s theorem:

15.2 Preservation of Jordan Decomposition
Recall that when g ∈ gl(V ) is a linear lie algebra, then for x ∈ g we have:

Jordan Decomposition: x = xs + xn where xs, xn ∈ End(V ).

Abstract Jordan Decomposition:

g
ad−−→ ad (g)
x 7→ ad x

xs ← (ad x)s
xn ← (ad x)n.

and so x = x′s + x′n for some x′. The theorem will be that these recover the usual Jordan
decomposition.

Theorem: If g ∈ gl(V ) is semisimple and V is finite dimensional, then xs, xn ∈ g, and xs = x′s, x
′
n.

Corollary: If g is semisimple and finite dimensional and φ : g → gl(V ) is a finite dimensional
representation, then if x = xs + xn is the abstract Jordan decomposition, then φ(x) = φ(xs) + φ(xn)
is the Jordan decomposition in gl(V ).

Example: If g = sl(2,C) is semisimple and finite dimensional, and h is diagonal, then by JD h =
h+ 0, φ(h) = φ(h) + 0. Then hy V semisimply, or V =

⊕
λ∈C

Vλ, where Vλ =
{
v ∈ V

∣∣∣ hy v = λv
}

are the eigenspaces.
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16 Wednesday September 18
Last time: The abstract Jordan Decomposition coincides with the actual Jordan Decomposition.

φ : g→ gl(V )
x 7→ φ(x) = φ(x)s + φ(x)n = φ(xn) + φ(xs)

xs + xn 7→ φ(xs) + φ(xn).

Therefore xs y V semisimply. The example we saw last time was g = sl(2,C), with a matrix
h = [1, 0; 0,−1] and V =

⊕
λ∈C

Vλ.

16.1 Finite Dimensional Representations of sl(2,C)
16.1.1 Weights and Maximal Vectors

Definition: If Vλ 6= 0, then Vλ is a weight space of V and λ ∈ C is a weight of h in V . We then
define Wt(V ) = {weights in V }.

Lemma: If v ∈ Vλ then ey v ∈ Vλ+2 and f y v ∈ Vλ−2.

Proof:

hy (ey v) = [h, e] y v + ey (hy v)
= 2ey v + λey v

= (λ+ 2)ey v.

and

hy (f y v) = [h, f ] y v + f y (hy v)
= −2f y v + λf y v

= (λ− 2)f y v.
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So if V is a finite-dimensional g-module, then there exists a Vλ 6= 0 such that Vλ+2 = 0. Any nonzero
v ∈ Vλ is called a maximal vector.

Note: in category O, these always exist?

Some computations: Let g = gl(2,C)

Then V = C is the trivial module, and g y V = 0. So Wt(V ) = {0}, and V = V0.

If V = C2, then take the natural representation spanC {v1 = [1, 0], v2 = [0, 1]}. Then g y V by
matrix multiplication, and if h = [1, 0; 0,−1] then hy v1 = v1 and hy v2 = −v2 by just doing the
matrix-vector multiplication. Then C([1, 0]) = V1,C([0, 1]) = V−1, so Wt(V ) = {±1}.

Taking V = C3 = ad g = spanC {e, f, h}, then

hy f = [h, f ] = −2f
hy h = [h, h] = 0h
hy e = [h, e] = 2e.

So Wt(V ) = {2, 0,−2} and V2 = Ce, V0 = Ch, V−2 = Cf .

Note the pattern: some largest value, then jumping by 2 to lower values, ending at negative
the largest value. In some sense, the rest of the theory will reduce to the case of sl(2,C).

Lemma: Let V be a finite dimensional simple sl(2,C)-module, and V0 ∈ Vλ a maximal vector.

Set V−1 = 0, Vi = f (i) y v0 (where f (i) = f i

i! ). Then for all i ≥ 0, we have

a. hy vi = (λ− 2i)vi
b. f y vi = (i+ 1)vi+1
c. ey vi = (λ− i+ 1)vi−1

Proof of (a): By lemma 7.1, we have f y v0 ∈ Vλ−2, and so inductively f (i) y v0 ∈ Vλ−2i

Proof of (b): By definition.

Proof of (c):

iey vi = iey
f i y v0

i!
= ey (f y vi−1)
= [e, f ] y vi−1 + f y (ey vi−1)
= hy vi−1 + f y ((λ− i+ 2)vi−2)ind
= (λ− 2i+ 2)vi−2 + (λ+ i− 2)(i− 1vi−1)
= i(RHS).

Theorem: If V is a finite dimensional and simple, then V ∼= L(m) for some m ∈ Z≥0 where
L(m) = spanC {v0, v1, · · · vm} where each vi is of weight m− 2i.

Thus L(m) = L(m)m ⊕ L(m)m−2 ⊕ · · · ⊕ L(m)−m where dimL(m)µ = 1 for all µ and dimL(m) =
m+ 1.

Proof: Pick a maximal vector v0 ∈ Vλ for any weight λ. Define vi as usual. Letm = min
{
i
∣∣∣ Vi 6= 0, Vi+1 = 0

}
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Definition: A module V is a highest weight module of weight λ if V = gy v0 for some maximal
vector v0 ∈ Vλ.

Then λ is referred to as the highest weight, and v0 is the highest weight vector.

Corollary: If V is finite-dimensional, then

a. V =
⊕
λ∈Z

Vλ

b. The number of summands = dimV0 + dimV1.

Proof of (a): By Weyl’s theorem, we know V = ⊕Wi for some simple Wi. By theorem 7.2, this is
equal to ⊕m∈Z≥0L(m)µm

Proof of (b): dimV0 = # {summands where m is even} and dimV1 = # {summands where m is odd}

�

Remark: Let

Vd =
{
f ∈ C[x, y]

∣∣∣ f is homogeneous of total degree d
}

= spanC
{
xd, xd−1y, · · · , yd

}
.

Then sl(2,C) y Vd by

e 7→ x
∂

∂y

f 7→ y
∂

∂x

h 7→ x
∂

∂x
− y ∂

∂y
.

Fact: For L(m) and φ : sl(2,C)→ gl(L(m)), define

s = (expφ(e)) ◦ (expφ(−f)) ◦ (expφ(e))

Then s(vi) = −vm−i.
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17 Friday September 20
Last time: Construction of simple finite-dimensional sl(2,C) module.

Today: Root space decomposition for semisimple finite-dimensional g.

17.1 Root Space Decomposition
Let g be semisimple and finite dimensional, and let F = C.

17.1.1 Maximal Toral subalgebra and roots

Definition: A subalgebra h ≤ g is toral if h 6= 0 and it consists of only semisimple elements
(i.e. xn = 0∀x ∈ h)

Lemma:

a. There exists a toral subalgebra of g, which is a nontrivial maximal toral subalgebra.
b. Any toral subalgebra is abelian.

Proof of (a): Want to show that there exists an x ∈ g such that xs 6= 0, which will imply that
h = Cxs is toral.

Suppose xs = 0 for all x ∈ g, then ad x = ad xn is nilpotent. By Engel’s theorem, this means g
must be nilpotent. But this contradicts [g, g] = g (since g is semisimple) so the derived series can
never reach zero.

Proof of (b): Fix x ∈ h, want to show that [x, h] = 0∀h ∈ h. Then x = xs, and so ad x : g→ g is
diagonalizable. It suffices to show that ad x|h = 0 for all h.

Suppose that [x, h] = ah for some vector h where a 6= 0. Decompose h into eigenspaces, so h =
⊕
λ

hλ

where hλ =
{
y ∈ h

∣∣∣ [h, y] = λy
}
. But then [h, x] ∈ h0, since [h, [h, x]] = [h,−ah] = 0.

So write x =
∑
λ

cλxλ, where cλ ∈ C and xλ ∈ hλ.

Then

[h, x] =
∑
λ

cλ[h, xλ]

=
∑
λ

cλλxλ ∈ h0,

so λcλ = 0∀λ 6= 0, which means cλ = 0∀λ 6= 0, and thus x ∈ h0 and [h, x] = 0. But this contradicts
[x, h] = ah.

Now ∀x, h ∈ h, g ∈ g, we have [h, [x, y]] = [x, [h, y]] + [y, [x, h]] = [x, [h, y]]. Thus ad h ◦ ad x =
ad x ◦ ad h as elements of End(g).

So g =
⊕
α∈h∗

gα, where gα =
{
x ∈ g

∣∣∣ [h, x] = α(h)x∀h ∈ h
}
.
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Note that g0 =
{
x ∈ g

∣∣∣ [h, x] = 0∀h ∈ h
}

= Cg(h) ⊇ h, i.e. the centralizer of h in g.

Definition: Fix a toral subalgebra h ⊆ g, then a root is a nonzero α ∈ h∗ such that gα 6= 0. gα is
referred to as the root space.

We write Φ = {roots} and g = Cg(h)⊕

⊕
α∈Φ

gα

.
Example: sl(3,C).

TODO: Insert image from phone.

Then Φ = {α : h→ C, h1 7→ α(h1) ∈ {±1,±2}}. So

• g0 = Ch1 ⊕ Ch2
• g1 = Cf2 ⊕ Ce3
• g2 = Ce1
• g−1Cf3 ⊕ Ce2
• g−2 = Cf1.

TODO: Insert second and third image from phone

From these computations, we collect the eigenvalues as ordered pairs. If we choose a larger toral
subalgebra, we get a finer decomposition. And if we take a maximal toral subalgebra, then h = g0
and all dim gα = 1.

Proposition (a): [gα, gβ] ⊆ gα+β for all α, β ∈ h∗.

Proposition (b): If x ∈ gα and α 6= 0 then ad x is nilpotent.

Proposition (c): If α, β ∈ h∗ and α+ β = 0, then κ(x, y) = 0∀x ∈ gα, y = gβ.

Proof of (a): Easy exercise:

Proof of (b): For all y ∈ g, y ∈ gµ for some µ ∈ h∗. We have gu
ad x−−−→ gµ+α

ad x−−−→ gµ+2α → · · · by
y 7→ [x, y] 7→ · · ·. Since g is finite dimensional, this must terminate, so (ad x)n(y) = 0 for some n.

Proof of (c): If α+ β = 0, then there exists an h ∈ h such that α(h) + β(h) 6= 0. Since the killing
form is associative, we have
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Corollary: κ
∣∣∣
g0

is nondegenerate.

Proof: We want to show κ(h, y) = 0∀y ∈ g0 =⇒ h = 0 holds for any choice of y ∈ gα with α 6= 0.

By proposition (c), we have κ(h, y) = 0. Note that we have g = g0 ⊕ (
⊕
α 6=0

gα). This implies that

κ(h, y) = 0∀y ∈ g. But then h = 0 because κ is nondegenerate and g is semisimple.

18 Monday September 23
Last time: h is a toral subalgebra if it contains only semisimple elements, and implies that there is
a root space decomposition

g = g0 ⊕
⊕
α∈Φ

gα

where gα =
{
x ∈ g

∣∣∣ [h, x] = α(h)x ∀h ∈ h
}
and Φ =

{
α : h→ C

∣∣∣ gα 6= 0, α 6= 0
}
and g0 = Cg(h).

Take larger h yields finer decompositions, and a maximal h gives dim gα = 1∀α ∈ Phi.

Corollary: κ|g0
is nondegenerate.

18.1 The Centralizer of h
If x, y ∈ End(V ) where V is finite dimensional, xy = yx, and y is nilpotent, then xy is nilpotent
and Tr(xy) = 0.

Proposition: If h ⊆ g is a maximal toral subalgebra, then h = g0.

Proof:
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Step 1: If x ∈ g0, then xs, xn ∈ g0.

If x ∈ g0, then ad x(h) ⊆ 0. By proposition 4.2, ad xs(h) ⊆ 0, ad xn(h), and so xs, xn ∈ g0.

Step 2:
{
xs
∣∣∣ x ∈ g0

}
⊆ h.

If x ∈ g0, then by step 1 we have xs ∈ g0 and so h + Cxs is toral, and thus xs ∈ h.

Step 3: κ|h is non-degenerate.

We want to show that κ(h, x) = 0 ∀x ∈ g =⇒ h = 0. By the corollary, it suffices to show that
κ(h, x) = 0 ∀x ∈ g0. By step 2, it suffices to check this only for x ∈ g0 such that x = xn.

If x = xn, then ad xn is nilpotent and ad h commutes with ad x because [h, x] = 0 (since x ∈ g0).
By the lemma, Tr(ad h ◦ ad x) = 0, since ad h = κ(h, x).

Step 4: g0 is nilpotent.

Pick x ∈ g0. Then by step 2, xs ∈ h, so ad xs : g0	 is a zero map and thus nilpotent.

So ad xn is nilpotent, meaning that ad x is nilpotent. By Engel’s theorem, this implies that g0 itself
is nilpotent.

Step 5: g0 is abelian.

Suppose that I := [g0, g0] 6= 0. We have I E g0, and I is not nilpotent whereas g0 is.

By Lemma 3.3, we have I
⋂
Z(g0) 6= 0, so pick x in the intersection. Note that κ(h, I) = κ(h, [g0, g0]),

which by associativity equals κ([h, g0], g0) = 0.

By step 3, we have h
⋂
I = 0. By step 2, x 6= xs, and thus xn 6= 0. But we also have x ∈ Z(g0), so

[x, g0] = 0 and ad x(g0) ⊆ 0. By Proposition 4.2, this holds for xs, xn as well, which are both in the
center. So for all y ∈ g0, ad y commutes with ad xn, which is nilpotent.

By the lemma, this implies that 0 = Tr(ad y ◦ ad xn) = κ(xn, y) for all y ∈ g0. So xn = 0.

Step 6: Suppose g0 6⊂ h. By step 2, there exists an x ∈ g0 such that x 6∈ h, where xn 6= 0. By step
5, [xn, y] = 0 for all y ∈ g0. Then ad x (which is nilpotent) commutes with ad y. By the lemma,
0 = κ(xn, y) for all y ∈ g0, and thus xn = 0. �

Main idea: Choose a maximal toral subalgebra to get a nice root space decomposition, and so
it coincides with g0.

Corollary: κ|g is nondegenerate.

Thus for all α ∈ h∗, there exists a unique tα ∈ h such that α = κ(tα, · ) : h→ C.

In other words, there is an identification

h
1−1−−→ h∗

h 7→ κ(h, · )
tα ← α.

Definition: A subalgebra h ⊆ g is a Cartan subalgebra if h is nilpotent and

h = Ng(h) =
{
x ∈ g

∣∣∣ [x, h] ⊆ h
}
.
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Note that Ng(h) is the largest subalgebra of g in which h is an ideal.

Remark: If g is semisimple and finite dimensional with char(F ) = 0, we will have a correspondence:

{CSAs of g} ⇐⇒ {maximal toral subalgebras of g} .

Maximal toral subalgebras advantages over Cartan subalgebra definition:

• Yields the finest root space decomposition
• h∗ = h, Weyl group?
• Existence is easy compared to CSAs

On the other hand, CSA advantages:

• All CSAs are conjugate under G (some group to be defined)
• The dimensions of all CSAs are the same, giving a well-defined notion of dimension (rankg =

dim h).

18.2 8.3: Orthogonality Properties
From now on, h will be a maximal toral subalgebra.

Proposition: Let α ∈ Φ. Then

a. Φ spans h∗
b. −α ∈ Φ
c. ∀x ∈ gα, y ∈ g−α, we have [x, y] = κ(x, y)tα
d. [gα, g−α] = Ctα (let the nonzero scalar be λ)
e. α(tα) = κ(tα, tα) 6= 0.
f. For any nonzero eα ∈ gα, there exists a unique fα ∈ g−α such that [eα, fα] = hα := λ

κ(tα, tα) tα.

Moreover, 〈eα, fα, hα〉 = sl(2,C).

19 Wednesday September 25
Today: Properties of the root space when the toral subalgebra is maximal.

Last time: We have g = g⊕

⊕
α∈Φ

gα

 where κ
∣∣∣
h
is nondegenerate. We also have a correspondence

h ⇐⇒ h∗h 7→ κ(h, · )
tα ← α := κ(tα, · ).

19.1 Orthogonality Properties
Proposition: Let α ∈ Φ. Then:

a. Φ spans h∗
b. −α ∈ Φ
c. [x, y] = κ(x, y)tα for all x ∈ gα and y ∈ g−α
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d. [gα, g−α] = Ctα
e. α(tα) = κ(tα, tα) 6= 0
f. For each nonzero eα ∈ gα, there exists a unique fα ∈ g−α such that [eα, fα] = hα := 2

κ(tα, tα) tα.

Moreover, 〈eα, tα, hα〉 ∼= sl(2,C).

Proof of (a): We want to show that h ∈ h implies that if α(h) = 0 for all α ∈ Φ, then h = 0.

Take x ∈ gα. Then [h, x] = α(h)x = 0. So [h, g] = 0 because h is abelian. But then [h, g] = 0, or
h ∈ Z(g) = 0 since g is semisimple.

Proof of (b): By Proposition 8.1c, we have κ(gα, gβ) = 0 for all β 6= −α.

If −α 6∈ Φ, then g−α = 0. So κ(gα, g) = 0 by the non-degeneracy of κ.

Proof of (c): For all h ∈ h, we have

κ(h, [x, y]) = κ([h, x], y)
= κ(α(h)x, y)

= κ(tα, h)κ(x, y)
= κ(κ(x, y)tα, h)

= κ(h, κ(x, y)tα).

which implies that κ(h, [x, y] − κ(x, y)tα) = 0, which forces the second argument to be zero by
non-degeneracy.

Proof of (d): We will show that (d) implies (c), i.e. [gα, g−α] ⊆ Ctα.

We want to show κ(x, y) is not always zero.

Pick any nonzero x ∈ gα. Then κ(x, gβ) = 0 for all β 6= −α. If κ(x, g−α) = 0, then κ(x, g) = 0. By
non-degeneracy, this forces x = 0.

Proof of (e): We will skip this for now, and revisit with methods from later sections that make this
proof simpler.

Proof of (f): Let eα 6= 0 in gα. Then there exists a y ∈ g−α such that κ(eα, y) 6= 0. Set fα ∈ g−α

such that κ(eα, fα) = 2
κ(tα, tα) .

By (c), we have

[eα, fα] = κ(eα, tα)tα

= 2
κ(tα, tα) tα

= hα.

and

[hα, eα] = 2
κ(tα, tα) [tα, eα]

= 2
κ(tα, tα)α(tα)eα

= 2eα.
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and similarly [hα, fα] = −2fα.

Definition: Let sl(2, α) = 〈eα, fα, hα〉 as in (f). A priori, this depends on a choice of eα 6= 0. We
will show that this only depends on α.

19.2 Orthogonality/Integrality Properties
Proposition: Let α ∈ Φ. Then:

a. dim gα = 1. (Note that in general, dim g0 = dim h ≥ 1)
b. Cα

⋂
Φ = {±α}

c. If β ∈ Φ such that α+ β ∈ Φ, then [gα, gβ] = gα+β.
d. If β 6= −α ∈ Φ, then let p, q ∈ Z be the largest such that β − pα and β + qα are both in Φ.

Then β + iα ∈ Φ for every −p ≤ i ≤ q, and

β(hα) = κ(tβ, hα) = 2κ(tβ, tα)
κ(tα, tα) = p− q ∈ Z.

Proof of (a) and (b):

Let M = h⊕

⊕
c 6=0

gcα

 ≤ g as a subspace. By a routine check, M is an sl(2, α) submodule of g.

Recall that M =
⊕
λ∈Z

as a direct sum of vector spaces. Applying Weyl’s theorem, we also have

M =
⊕

m∈Z≥0

L(m)⊕µm as a direct sum of (irreducible?) modules.

For h, if we have [hα, h] = 0 for all h ∈ h, then h ∈M0. For gcα, [hα, x] = cα(hα)x for all x ∈ gcα.
But this equals 2cx. So this implies that gcα ⊆M2c.

Thus 2c ∈ Z, and thus c ∈ 1
2Z, and M0 = h.

We then have dimM0 =
∑
m∈2Z

µm. So write h = Ctα ⊕ kerα as vector spaces. Consider the action

sl(2, α) y kerα, which is trivial since h ∈ kerα. We [hα, h] = 0, [eα, h] = −α(h)eα = 0 since
h ∈ kerα, and similarly [fα, h] = 0.

Thus kerα = L(0)⊕ dim h−1. Moreover, sl(2, α) = L(2) = span(eα, tα, fα)T . But this forces the case
that there is no other summand of the form L(k) for k even in M .

Then g2α ⊆ M4, which must be zero. So 2α 6∈ Φ, so 2α is not a root. (“Twice a root is never a
root”)

So 1
2α 6∈ Φ, otherwise we could apply this argument to conclude that α is not a root and reach a

contradiction. Thus M1 = 0, since c 6= 1
2 implies that there is not summand of the form L(k) for k

odd in M . But this forces M = h⊕ sl(2, α).

Motto: reduce the complexity by using the sl(2) module structure and its representation
theory!
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20 Friday September 27
Last time: We saw Φ ⊆ h∗ = {α : h→ C}.

Suppose g is semisimple and h is a maximal toral subalgebra and take F = C.

Propositions:

a. dim gα = 1 ∀α ∈ Φ

b. Cα
⋂

Φ = {±α}, and 2α 6∈ Φ where cα : h→ C, h 7→ cy α(h). Moreover,M = h⊕

⊕
c 6=0

gcα


c. If α, β ∈ Φ and β 6= −α Let p, q ∈ Z be the largest such that β − pα and b + qα are in Φ.

Moreover, β(hα) = κ(tβ, tα) = p− q ∈ Z.

Proof of (c):

SetM =
∑
i∈Z

gβ+iα, which is an sl(2, α) module. By (a), we have dim gβ+iα = 1 ⇐⇒ β+iα ∈ Φ. But

for all x ∈ gβ+iα, we have [h, x] = (β+ iα)(h)x for all h ∈ h. But then [hα, x] = (β(hα)+ iα(hα))x =
(β(hα) + 2i)x

Then gβ+iα ⊆Mβ(hα)+2i, so β(hα) ∈ Z.

Moreover, Wt(M) = 2Z or 2Z+ 1, and in particular dimM0 + dimM1 = 1.

ThusM is irreducible, andM ∼= L(m) for some m ∈ Z≥0. Moreover, Wt(M) = {m,m− 2, · · · −m},
andsimggβ+iα = 1 for all i ∈ [−p, q]. Thus β + iα ∈ Φ.

Proof of 8.3(e): α(tα) 6= 0. The claim is that for all β ∈ Phi, there exists an r ∈ Q such that
β(h) = rα(h) for all h ∈ [gα, g−α].

There are two cases: if β = −α, then we’re done by the previous argument.

Otherwise, β 6= −α. Take M =
⊕
i∈Z

gβ+iα.

Then,

TrM (ad h) =
∑
i

TrM ((ad ei ◦ ad fi)− (ad fi ◦ ad ei))

=
∑
i

Trgβ+iα(ad h)

=
∑

(β + iα)(h) dim gβ+iα

=
∑
i

dim gβ+iαβ(h) +
∑
i

idim(gβ+iα)

=⇒ β(h) = −
∑
i dim gβ+iα∑
i dim gβ+iα

α(h).

Now consider the killing form κ(tβ, tα) = β(tα) = rα(tα), where the last equality is what we are
claiming.

Suppose that α(tα) = 0. Then κ(tβ, tα) = 0 for all β ∈ Phi. By the non-degeneracy of κ, we have
tα = 0 and thus α = 0.
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20.1 Summary
We have g semisimple, finite dimensional, and h a maximal toral subalgebra (i.e. the Cartan
subalgebra). This implies that κ is nondegenerate, and we have a correspondence

h ⇐⇒ h∨

h 7→ κ(h, · )
tα ← α.

This gives a symmetric bilinear form ( · , · ) : h∨ → h∨.

For α ∈ Phi, define its coroot α∨ = 2
(α, α)α.

Note that ( · )∨ is not linear: note that

(2α)∨ = 2
(2α, 2α)2α = α

(α, α) = α∨

2 .

Assume that Φ = {αi}. Define EQ =
⊕̀
i=1
Qαi , and E = R⊗Q EQ.

Lemma: If α, β ∈ Φ, then

a. (β, α) ∈ Q,
b. ( · , · ) on EQ is positive definite, i.e. x 6= 0 =⇒ (x, x) > 0.

An immediate consequence of (b) is that ( · , wait) on E is an inner product.

Proof: For all λ, µ ∈ h∨, we have

(λ, µ) = κ(tλ, tµ)
= Trg(ad tλ ◦ ad tµ)
= Trg(...) +

∑
α∈Φ

Trgα(...)

= 0 +
∑
α∈Φ

α(tλ)α(tµ)

=
∑

[
α ∈ Φ] = κ(tα, tλ)κ(tα, tµ)

=
∑
α∈Φ

(α, λ)(α, µ)

.

So pick λ = µ = α ∈ Φ. Then (α, α) =
∑
β∈Φ

(β, α)2.

Then

1
(α, α) =

∑
β∈Φ

((β, α∨)
2

)2
.
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where (β, α∨) = · · · = β(hα) ∈ Z.

This means that (α, α) ∈ Q>0.

Summary of Properties Proved:

Let α, β ∈ Φ. Then

1. 0 6∈ Φ and Φ spans E
2. Cα

⋂
Φ = {±α}

3. β − (β, α∨)α ∈ Φ
4. (β, α∨) ∈ Z

Thus the assignment (g, h) 7→ (Φ, E) defines a root system. This only works when g is semisimple
and h is maximal toral.

Proof of (3):

We computed (β, α∨) = p− q. Then −p ≤ −(β, α∨) = q − p ≤ q. So this must be something on the
root stream.

21 Monday September 30
Last time: Let g be finite dimensional and h a maximal toral subalgebra.

Then (Φ, E) is a root system, and we obtain a bilinear product

〈 · , · 〉 : E × E → R
(α, β) 7→ κ(tα, tβ).

Examples: g = sl(3,C) and h = Ch1 ⊕ Ch2 where

Todo: Insert clip image h1, h2

α1 : h→ C
h1 7→ 2h2 7→ −1.

α2 : h→ C
h1 7→ −1h2 7→ 2.

To find tαi , we need to look at κ
∣∣∣
h
.

Todo: Insert phone image

Since we only need the trace, this suffice, and we find
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h1 h2
h1 12 −6
h2 −6 12

 .

We then get tα1 = h1
6 and tα2 = h2

6 . Moreover

〈α1, α1〉 = κ(tα1 , tα1) = 1
3 ∈ Q

〈α1, α1〉 = 1
3

〈α1, α2〉 = −1
6〈

α1, α
∨
2
〉

= 2〈α1, α2〉
〈α2, α2〉

= −1 ∈ Z
〈
αi, α

∨
i

〉
= 2〈αi, αi〉
〈αi, αi〉

= 2 ∈ Z.

This leads to a nice fact: the matrix
〈
αi, α

∨
j

〉
has Z entries, and this is called the Cartan matrix.

21.1 Ch.3: Root Systems
21.1.1 Axiomatics: Reflections

Fix a Euclidean space E.

Definition: A hyperplane in E is a subspace of codimension 1. A reflection in E is an element
s ∈ gl(E) such that

{
Es :=

{
x ∈ E

∣∣∣ sx = s
}

is a hyperplane H and s(x) = −x ∀x ∈ E
∣∣∣ (x,H) = 0

}
For nonzero α ∈ E, its reflection is

Sα : E → E

β 7→ β −
〈
β, α∨

〉
α.

with respect to Hα =
{
x ∈ E

∣∣∣ 〈x, α〉 = 0
}
, where α∨ = 2α

〈α, α〉
.

Lemma: Let Φ ⊆ E be finite such that Sα(Φ) = Φ for all α ∈ Φ.

Suppose that S ∈ gl(E) satisfies

1. S(Φ) = Φ,
2. S(h) = h for all h ∈ H, and
3. S(α) = −α for some α ∈ Φ,

then S = Sα, i.e. this uniquely characterizes S

Proof:
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Let τ = S ◦ Sα. Then τ(Φ) = Φ and τ(α) = α. This τ y Rα by 1, and similarly τ y E/Rα by 1
by picking a representative in H. Moreover, all eigenvalues of τ are 1. So the minimal polynomial
of τ divides (t− 1)dimE .

We want to show that τ
∣∣∣ (t− 1)N for some large N , which forces τ

∣∣∣ gcd((t− 1)dimE , tN − 1) = 1.
For any β ∈ Φ and k > |Φ|, not all vectors β, τ(β), · · · τk(β). So β = τkβ (β) for some kβ depending
on β (noting that τ is invertible.)

Multiplying all of these kβs together, we can get some kΦ that is larger than |Φ|, and so β = τkΦ for
all β ∈ Φ. But then τkΦ = 1 in gl(E).

21.1.2 Root Systems

Definition: A subset Φ of E a Euclidean space is called a root system iff

1. |Φ| <∞, 0 6∈ Φ, and E =
⊕
α∈Φ

Rα

2. α ∈ φ =⇒ Cα
⋂

Φ = {±α}
3. α ∈ Φ =⇒ Sα(Φ) = Φ
4. α, β ∈ Φ =⇒

〈
β, α∨

〉
∈ Z.

Definition: The rank of a root system is the dimension on E.

Definition: The Weyl Group of Φ is defined as

W =
〈
Sα
∣∣∣ α ∈ Φ

〉
⊆ gl(E)

Note that W ↪→ Σ|Φ|, a permutation group of size |Φ|.

Lemma: If g ∈ gl(E) and g(Φ) = Φ, then for all α, β ∈ Φ, we have

gsαg
−1 = sg(α),〈

β, α∨
〉

=
〈
g(β), g(α)∨

〉
,〈

β, α∨
〉

=
〈
w(β), w(α)∨

〉
∀w ∈W.

Proof: Check 1-3 in Lemma 9.1.

Proof of 1: We have

gsαg
−1(g(β)) = gsα(β) ∈ g(Φ) = Φ ∀β ∈ Φ,

.

Proof of 2: We have {
g(β)

∣∣∣ β ∈ Φ
}

= Φ =⇒ gsαg
−1(Φ) = Φ ∀h ∈ gHα

.

and so gsαg−1(h) = gg−1(h) = h, so h is a fixed point of this map.
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Proof of 3: We have gsαg−1(g(α) = gsα(α) = −g(α), and so gsαg−1 = sg(α)) by Lemma 9.1.

Finally, we have

gsαg
−1(g(β)) = g(sα(β)) = g(β −

〈
β, α∨

〉
α) = g(β)−

〈
β, α∨

〉
g(α)

=
sg(α) = g(β)−

〈
g(β), g(α)∨

〉
g(α).

22 Wednesday October 2
Recall from last time:

1. |Φ| <∞ and Φ spans E, where 0 6∈ Φ
2. If α ∈ Φ, then Cα

⋂
Φ = {±α}

3. α ∈ Φ, then Sα(Φ) = Φ.
4. If α, β ∈ Φ, then

〈
β, α∨

〉
∈ Z where (E, 〈 · , · 〉)is Euclidean and

Sα : E → E

β 7→ β −
〈
β, α∨

〉
α, α∨ = 2

〈α, α〉
α.

Examples:

In Rank 1:

1. Prop 2 implies Φ = {±α}
2. Prop 1 implies E = Rα
3. Prop 3: Sα(α) = −α

4. Prop 4 implies 〈±α, ±α〉 = ±2〈α, α〉
〈α, α〉

= ±2

Rank 1 Diagram:

Todo: Insert phone image

In Rank 2:

Todo: Insert phone image

Exercise:

• Show that ord(Sα, Sβ) = 2, 3, 4, 6 for types A1 ×A1, B2, G2.
• Show that W (A2) ∼= Z3 and W (B2) ∼= D8.

22.1 Pairs of Roots
Lemma: Let α, β ∈ Φ where β 6= ±α, then

1.
〈
α, β∨

〉〈
β, α∨

〉
∈ {0, 1, 2, 3} Moreover, assuming |β| ≥ |α|, we have the following table

Todo: Insert table

2. If 〈α, β〉 > 0, then α− β ∈ Φ. Similarly, if 〈α, β〉 > 0, then α+ β ∈ Φ.
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3. Any root string is unbroken and has length greater than 4.

Proof of (1):

By the Law of Cosines, we can write x :=
〈
β, α∨

〉〈
α, β∨

〉
= 4 cos2(θ) ∈ Z. This restricts the

possibilities to x ≤ 4. But x = 4 ⇐⇒ α = cβ, i.e. θ = 0, but we are assuming that α 6= ±β, so this
can not happen.

Proof of (2):

Since 〈α, β〉 > 0 and |β| ≥ |α|, then
〈
α, β∨

〉
= 1. But then Sβ(α) = α−

〈
α, β∨, β

〉
∈ Φ by Prop 3.

So this is equal to α− β.

A similar argument works for |β| ≤ |α|.

Proof of (3): Let p, q be the largest integers such that b− pα, b+ qα ∈ Φ respectively. Suppose that
the root stream between these two is broken somewhere, say β + sα ∈ Φ and β + (s+ 1)α 6∈ Φ by
counting up from β − pα. Similarly, there is some t counting down from b+ qα then β + tα ∈ Φ but
β + (t− 1)α 6∈ Φ. In particular, s < t. From (2), we have 〈α, β + sα〉 ≥ 0, 〈α, β + tα〉 ≤ 0.

We have

〈α, β〉+ t〈α, α〉 = 〈α, β + tα〉 ≤ 0 ≤ 〈α, beta+ sα〉 = 〈α, β〉+ s〈α, α〉

where we know that 〈α, α〉 > 0.

Since Sα(Φ) = Φ and these Sα(β + iα) = β − Zα, we find that reflections permute the root string.
We then find that p =

〈
β, α∨

〉
+ q, and so

〈
β, α∨

〉
= p− q ∈ [−3, 3].

22.2 Chapter 10: Simple Roots and Weyl Groups
Definition: A base of a root system Φ is a subset Π ⊆ Φ such that

1. Π is a basis for the underlying vector space E, and
2. Each β ∈ Φ can be written as β =

∑
α∈Π

κβαα where all of the coefficients κβα all have the same

sign.

The roots in Π are called simple. A root β is positive (resp. negative) if the κβα ≥ 0 for all βinΦ+

(resp ≤ 0 in Φ−). The height of a β is the sum of the coefficients. Π defines a partial order on E
where µ ≤ λ ⇐⇒ λ− µ ∈

∑
α∈Π

Z≥0α.

Note that this is defined on the roots themselves, and can then be extended to all of E.

Todo: Insert phone image

23 Monday October 7
Last time: ?

Lemma 10.2

a. ?
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b. α ∈ Π =⇒ Sα y Φ+ \ {α} by permutation
c. αi ∈ Π and Sα1 , · · · , Sαj−1(αj) ∈ Φ− then Sα1 · · ·Sαj = Sα1 · · ·Salphat−1 · · ·Sαj−1 for some t,

where the former has j terms and the latter has j − 2 terms.

Proof of (a): ?

Proof of (b):

Suppose towards a contradiction that w(αj) ∈ Φ+. Then consider WS(αj) = −W (αj) ∈ Φ−.

By Lemma 10.2(c), we have W = Sα1 · · ·Salphat−1Sαt+1 · · ·Sαj−1Sαj , where this is j − 1 terms. So
w = Sα · · ·Sαj is not reduced.

23.1 Weyl Groups
Recall that the chambers are given by the connected component of E \

⋃
α∈Φ

Hα.

Theorem: Fix Π of Φ. Then

a. W y {chambers} transitively
b. W y {bases} transitively
c. ∀αΦ, ∃w ∈W

∣∣∣ w(α) ∈ Pi

d. W :=
{
Sα

∣∣∣ α ∈ Φ
}

=
〈
Sα
∣∣∣ α ∈ Π

〉
:= W0

e. W y {bases} simply transitively, i.e. w(Π) = Π =⇒ w = e.

I.e. we can describe the Weyl group using only simple reflections

Proof: We will prove (a) – (c)$ for W0.

Proof of (a): Recall the fundamental chamber, C(Π) =
{
x ∈ E

∣∣∣ (x, a) > 0 ∀α ∈ Π
}
. We want to

show that any chamber C is equal to wC(Π).

Pick γ ∈ C and g ∈W0 such that (g(γ), ρ) = max
{

(w(γ), ρ)
∣∣∣ w ∈W0

}
, which exists because W0

is a finite group.

For all α ∈ Π, Sαg ∈W0 and so by maximality we have

(g(γ), ρ) ≥ (sαg(γ)ρ)
= (g(γ), Sα(ρ))
= (g(γ), ρ− α)

= (g(γ), ρ)− (g(γ), α).

and so (g(γ), 0) ≥ 0, because this can never be an equality since γ ∈ C. Thus g(γ) ∈ C(Π).

Proof of (b):

This holds because there a correspondence between {C(Π)} ⇐⇒ {basesΠ}.

Proof of (c):

It suffices to show that α ∈ Φ lies in some base Π′ = W (Π). Note that β 6= α =⇒ Hβ 6= Hα,
and so we can pick a γ ∈ Hα

⋂
Hc
β for every β ∈ Φ \ ±α. Since 〈γ, α〉 = 0 but 〈γ, β〉 6= 0 for all
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β 6= ±α, we can choose some ε > 0 such that
∣∣〈γ′, β〉∣∣ > ε for every β 6= ±α. Then γ′ ∈ C(Π′) and

thus α ∈ Π′.

Proof of (d):

By definition, W0 ⊆W , so we need to show the reverse containment. For all α ∈ Phi, we want to
show Sα ∈W0. By (c), there exists a w ∈W0 such that w(α) := β ∈ Π, Then Sβ = Sw(α) = wsαw

−1.
So Sα = w−1Sβw, where each term is in W0, so the whole thing is in W0 as well.

Proof of (e):

Suppose W (Π) = Π. Let W = Sα1 · · ·Sα` be a reduced expression, which exists by (d). By corollary
10.2b, we have W (α` ∈ Φ−). But this forces w = e.

�

Remarks:

By (d), there is a well-defined notion of length for w ∈W . We will now show that `(w) = n(w) :=
#Nw := #

{
α ∈ Φ+

∣∣∣ W (α) ∈ Φ−
}
, i.e. the number of roots that get sent to a negative root.

24 Wednesday October 9
Last time:

We have the Weyl group W :=
{
Sα

∣∣∣ α ∈ Φ
}

=
{
Sα

∣∣∣ Sα ∈ Π
}
. If W 3 w =

∏
i = 1`Wαi

is a product of simple reflections, then W is said to be reduced if ` is the smallest among all
such products. Call `(w) the length of W and let n(W ) = #NW . By Corollary 10.2b, NW ={
α ∈ Φ+

∣∣∣ W (α) ∈ Φ−
}
, and if W =

∏
Sαi is reduced, then w(αj) ∈ Φ−.

Lemma: `(w) = n(w).

Proof: Done in class, but see Humphrey’s.

24.1 Classification
24.1.1 Cartan Matrix

Fix a base Π ⊂ Φ of rank `.

Definition: Fix an order (α1, α2, · · ·α` of Π. Then the Cartan matrix is given by Aij =
〈
αi, α

∨
j

〉
∈

Mat(`× `,Z).

Examples:
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Facts:

a. A depends on the chosen ordering of Π.
b. A is independent of the choice of Π.
c. A is invertible.
d. A uniquely determines the root system (up to isomorphism). I.e., if A(Φ) = A(Φ′) then there

is an isomorphism E
φ−→ E on the underlying Euclidean space such that

phi(Φ) = Φ′ and
〈
α, β∨

〉
=
〈
φ(α), φ(β)∨

〉
for all α, β ∈ Φ.

24.1.2 Dynkin Diagrams

Recall from Lemma 9.4 that aijaji ∈ {0, 1, 2, 3}.

Definition: Given a Cartan matrix A, its Coxeter diagram is an undirected multigraph Γ = (I, E)
where I is a vertex set and the edge set is given by edges between vertices corresponding to i, j
(where i 6= j) with weight aijaji.

Examples:

Note that these diagrams don’t encode which roots are longer, so we can decorate these diagrams
with arrows to indicate this and obtain a partially-directed multigraph.
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Figure 5: Image

Definition: A Dynkin diagram is the partially-directed multigraph obtained from the Coxeter
diagram by adding arrows on the double or triple edges between i, j precisely when |ai| > |aj |.
(Note that this also occurs when |a|ij < |a|ji)

Definition: A non-empty root system is irreducible if Φ 6= Φ1⊕Φ2 for some nonempty root system
Φ2 where α ∈ Φ1, β ∈ Φ2 =⇒ 〈α, β〉 = 0.

For example: Φ(A1 ×A1) can be written as Φ(A1)⊕ φ(A1) since the off-diagonal entries were zero,
so it is reducible.

Facts:

a. Φ is irreducible iff the Dynkin diagram is connected
b. Φ can be uniquely written as the union of irreducible root systems (where the multiplicity of

each system appearing is well-defined)

Thus to classify root systems, it suffices to classify connected Dynkin diagrams.

Examples of Dynkin diagrams:
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Figure 6: Image
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25 Friday October 11
Recall from last time the Dynkin diagrams. If Φ is irreducible, then its diagram is one of the
following:

Definition: A subset A = {v1, · · · , vn} ⊆ E is admissible iff

1. A is linearly independent.
2. 〈vi, vi〉 = 1 for all i, and 〈vi, vj〉 ≤ 0 if i 6= j.
3. sij = 4〈vi, vj〉2 ∈ {0, 1, 2, 3} if i 6= j.

Define a graph ΓA = (VA, EA) where VA = A and EA =
{
sij

∣∣∣ i 6= j
}
. If Π = {α1, · · · , α`} ⊆ Φ is a

base, then A :=
{
vi = αi√

〈αi, αi〉

}
.

Lemma:

a. If A is admissible, then #
{

(vi, vj) ∈ EA
∣∣∣ 4〈vi, vj〉2 6= 0

}
≤ |A|−1, and ΓA contains no graph

cycles.
b. deg Vi ≤ 3 for all i.
c. If ΓA contains a path p1 → · · · → pt, then A′ := {p}

⋃
A \ {p1, · · · , pt} where p :=

∑
pi.

Moreover, ΓA′ is obtained from ΓA by contracting this path onto p.
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Proof of theorem:

Assume the lemma holds. Let Γ be the Coxeter diagram of Φ; then Φ is connected.

Case 1: Γ has a triple edge. But then both vertices on this edge have degree 3, so this is the
maximal number of edges between them. But since Γ must be connected, this is everything.

Case 2: Γ has no triple edges but some double edge. We will first show that Γ has only one double
edge.

Suppose otherwise; then Γ has at least two double edges occurring. Without loss of generality
(e.g. by taking a subgraph), these are connected by a path of single edges. By the lemma, we can
contract this path to get an admissible subset. But then there is a vertex of degree 4, contracting
deg Vi ≤ 3 for all i.

Now we’ll show that Γ has no branching point, i.e. a vertex of degree exactly 3. If this occurs, then
a double edge is connected to such a vertex by a path. Contracting this path yields a vertex of
degree 4, again a contradiction.

By these two statements, Γ has the general form:

Γ = v1 → ◦ → · · · → vp →→ wq → ◦ → · · · → w1.

Let v =
∑

ivi and w =
∑

iwi, then 〈v, v〉 = 1
2p(p + 1), and 〈w, w〉 = 1

2q(q + 1). Note that

〈vi, wj〉 = −1/
√

2 if i = p and j = q, and 0 otherwise.

Thus 〈v, w〉 = · · · = 1
2p

2q2. By Cauchy-Schwarz, this is strictly less than 〈v, v〉〈w, w〉 = 1
4p(p+

1)q(q+ 1). We then obtain (p− 1)(q− 1) < 2. Supposing wlog that p ≥ q, we have either p = q = 2,
in which case we get ◦ → ◦ →→ ◦ → ◦. Otherwise q = 1, and we get ◦ → · · · → ◦ →→ ◦.

Case 3: Γ has only single edges. We want to show Γ has only one branching point, i.e. a vertex of
degree 3. If it has 2, we can contract the intermediate path to get a vertex of degree 4. So we have
the following situation:
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Define x =
∑

ixi, y =
∑

iyi, w =
∑

iwi, and ŵ, x̂, ŷ to be their normalization. Then B = {bi} :=
{ŵ, ŷ, ŷ, z} is orthonormal and linearly independent, so we can apply Gram-Schmidt. This yields a
z′ 6= 0 such that

z =
∑〈

z, b̂i
〉
b̂i

In particular,
〈
z, z′

〉
z′ 6= 0z′, otherwise z is a linear combination of the xi, yi, wi. Thus 〈z, ŵ〉2 +

〈z, x̂〉2 + 〈z, ŷ〉2 > 1. We can compute 〈z, ŵ〉 = −q/2√
1
2q(q + 1)

, and so 〈z, ŵ〉2 = q

2(q + 1) .

From this, we can obtain 1
q + 1 + 1

r + 1 + 1
p+ 1 > 1. We can assume p ≥ q ≥ r ≥ 1, since these

correspond to the lengths of paths in the above image. This allows us to do some case-by-case
analysis.

Using this, we find 3
r + 1 > 1, and so r = 1 must hold. Similarly, 2

q + 1 >
1
2 , which forces

q =∈ {1, 2}.

Supposing r = q = 1, then we get type D` because p can be anything. Supposing otherwise that
r = 1, q = 2, p ∈ {2, 3, 4}, we get type E.

26 Monday October 14
Last time:

Theorem: If Φ is irreducible, then the Dynkin diagram is given by A−G.

Definition: A subset A = {v1, · · · , vn} is admissible if

1. A is a linearly independent set,
2. 〈vi, vi〉 = 1 for all i, and 〈vi, vj〉 ≤ 0 if n 6= 0.
3. 4〈vi, vj〉2 ∈ {0, 1, 2, 3} if i 6= j.

Thus the graph ΓA = (VA, EA) is given by VA = A and EA =
{
vi

4〈vi, vj〉2−−−−−−→ vj
∣∣∣ i 6= j

}
.

Lemma:

a. If A is admissible, then the number of edges such that 4〈vi, vj〉 6= 0 is at most |A| − 1.
b. For every i, we have deg vi ≤ 3.
c. If ΓA contains a straight path of length t, then the graph Γ′ obtained by contracting this path

is also admissible.

Let p be the point obtained by contracting such a path.

Proof of (a): If {p1, · · · , pt} are linearly independent, then p 6= 0. Thus by positive-definiteness,
we have 0 <pd 〈p, p〉 =#2 t+

∑
i<j

2〈pi, pj〉. Then t >
∑
i<j

(−2)〈pi, pj〉 =
∑
i<j

√
4〈pi, pj〉2, where the

quantity in the square root is the number of edges, which is thus greater than or equal to the number
of pairs connected.

Proof of (b): Fix i. Let u1 · · ·uk be the vertices in A that are connected to vi by a single edge.
Then by (a), we have 〈ui, uj〉 = 0 for all i 6= j.
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Then the set {u1, · · · , uk} is an orthonormal basis for their span. Applying Gram-Schmidt, we can

write each vi =
k∑
j=0
〈vi, uj〉uj , where we pick u0 such that the new set {u0}

⋃
{u1, · · · , uk}. Then

〈vi, u0〉 6= 0 for all i; otherwise we would have {u1, · · · , uk, vi} would be linearly dependent, since
vi =

∑
ciui from above, which contradicts our initial axiom/assumption. Then 1 = 〈vi, vi〉 by A2,

which equals
k∑
j=0
〈vi, uj〉2 = 〈vi, u0〉2 +

k∑
j=1
〈vi, uj〉2, where the first term is strictly positive.

But then 1 >
k∑
j=1
〈vi, vj〉2 ≥

k

4 by A3, which then forces k = deg vi ≤ 3.

Proof of (c): The conditions of A1 are satisfied. For A2, we have

〈pi, pj〉 =


−1

2 |i− j| = 1

0 |i− j| > 1
1 i = j.

We then have 〈p, p〉 = t+ 2
∑

i < j〈pi, pj〉 = t+ 2
t−1∑
i=1
〈pi, pi+1〉 = 1. Thus 〈p, vi〉 =

t∑
j=1
〈pj , vi〉 ≤

0.

For A3, fix vi ∈ A′. Then vi is connected (by a single edge) to at most one point pj , otherwise there
would be a cycle. Thus

〈vi, p〉 =
{
〈vi, pj〉 if vi is connected to pj
0 else.

We thus have 4〈vi, p〉2 = 4〈vi, pj〉 ∈ {0, 1, 2, 3} 1vi ∼ pj .

26.1 Construction of Root Systems and Automorphisms
We’ll start with the construction of types A−G.

Theorem: For Dynkin diagrams of type A−G, there exists an irreducible root system having the
given diagram.

Proof: By explicit construction. Fix an orthonormal basis {εi}.

Type A`: Let
Φ =

{
εi − εj

∣∣∣ 1 ≤ i 6= j ≤ `+ 1
}

Then |Φ| = `2 + `, and Π =
{
αi = εi − εi+1

∣∣∣ 1 ≤ i ≤ `
}
. We then find that dim g = `2 + 2`.

Note that we don’t know anything about g yet, but already know its dimension.
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Example: A2. We have Π = {α1 = ε1 − ε2, α2 = ε3 − ε2}. Then A = (aij) with aij =
〈
ai, a

∨
j

〉
, and

α∨1 = 2α1
〈α1, α1〉

= 2(ε1 − ε2)
〈ε1 − ε2, ε1 − ε2〉

= ε1 − ε2 = α1. Doing the computations, it turns out that〈
α1, α

∨
2
〉

= −1,
〈
α2, α

∨
1
〉

= −1, and
〈
αi, α

∨
i

〉
= 2.

Thus A = [2,−1;−1, 2], which has Dynkin diagram given by:

Type B`: Recall that these have one “short root”:

Then Φ =
{
±εj ,±εj

∣∣∣ 1 ≤ i 6= j ≤ `
}⋃{

±εi
∣∣∣ 1 ≤ i ≤ `

}
, and we have Π =

{
αi = εi − εi−1

∣∣∣ 1 ≤ i ≤ `− 1
}⋃
{α` := ε`}.

After carrying out the computation, we have the following Cartan matrix:

And dim g = 2`2 + `, since |Φ| = 2`(`− 1) + 2` = 2`2.

Type D`:

We obtain Φ =
{
αi = εi − εi+1

∣∣∣ 1 ≤ i ≤ `− 1
}⋃
{α` := ε`−1 + ε`}. We then find

〈
α`−1, α

∨
`

〉
= 0

and
〈
α`−2, α

∨
`

〉
= −1.

Type E`: We have Π(E`) = Π(D`−1)
⋃{

α` := −1
2

8∑
i=1

εi

}
.

This yields |Φ| = 72, 126, 240 and dim g = 78, 133, 248, corresponding to ` = 6, 7, 8.

More results on exceptional Lie Algebras:

27 Wednesday October 16 (TODO)
Todo

28 Friday October 18 (TODO)
Todo

29 Monday October 21
29.1 Chapter 5: Existence Theorem
29.1.1 Universal Enveloping Algebra (UAE)

Some applications/motivations for UAEs:

1. Groups G are to group algebras F [G] as Lie algebras g are to UAE U(g). Any g-module then
becomes a module over a ring, so the general theory applies.

2. PBW theorem: this yields a concrete F -basis of U(g). There is a triangular decomposition
U(g) = U(h)⊗U(f)⊗U(n). This allows constructing the Vermo module (and hence irreducible
modules) for g, allowing for a description of BGG Category O.
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3. Harish-Chandra theorem: Z(U(g)) = S(g)W . This characterizes central characters χ :
Z(U(g)) → F , which further allows describing the blocks of O, i.e. when two irreducible
modules have non-trivial extensions.

4. U(g) deforms to a quantum group Uq(g).

29.1.2 Tensor and Symmetric Algebras

Definition: For V a f.d. vector space, the tensor algebra over V is given by T (V ) =
⊕
n∈N

Tn(V ) where

Tn(V ) = ⊗ni=1V with an associative multiplication T a × T b → T a+b given by (⊗ai=1vi,⊗bi=1wi) 7→
⊗ai=1vi ⊗⊗bi=1wi.

The tensor algebra satisfies a universal property: given any F -linear map φ : V → A. (See phone
image)

Definition: The symmetric algebra on V is given by S(V ) = T (V )/I where I = 〈x⊗ y − y ⊗ x〉 E T (g).

Some facts:

a. There is a natural grading S(V ) =
⊕
n∈N

Sn(V ) where S0(V ) = F, S1(V ) = V, Sn(V ) =

Tn(V )/(I
⋂
TnV ),

b. If {xi}n is a basis of V , then S(V ) ∼= F [x1, · · · , xn].

29.1.3 Construction of UEA

Definition: For g a lie algebra, define U(g) = T (g)/J where J = 〈x⊗ y − y ⊗ x− [x, y]〉 E T (g).

Thus we have the following type of equation that holds in U(g):

v1 ⊗ · · · ⊗ va ⊗ (x⊗ y)⊗ w1 ⊗ · · · ⊗ wb =
v1 ⊗ · · · ⊗ va ⊗ (y ⊗ x)⊗ w1 ⊗ · · · ⊗ wb + v1 ⊗ · · · ⊗ va ⊗ ([x, y])⊗ w1 ⊗ · · · ⊗ wb.

Proposition: U(g) has a universal property: given a lie algebra hom θ : g → A where A is any
unital associative F -algebra with a lie bracket, there exists a unique ψ : U(g) → A making the
following diagram commute:

g U(g)

A

θ

ι

∃ψ

where ι : g ↪→ T (g)� U(g) is given by x 7→ x+ J .

The upshot: There is a 1 to 1 correspondence
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Lie algebra

representations
g→ gl(V )

→
{ Algebras from
U(g)→ End(V )

}
θ 7→ ψ

θ = ψ ◦ ι←[ ψ

Proof (existence):

θ : g → A extends to an algebra homomorphism θ̃ : T (g) → A given by ⊗ni=1xi 7→
∏

θ(xi).
Note that θ̃(x⊗ y − y ⊗ x− [x, y]) = θ(x)θ(y)− θ(y)θ(x)− θ([x, y]) = 0, and thus J E ker θ̃ and
φ : T (g)/J → A is well-defined.

Proof (uniqueness): Suppose that ψ′ : U(g)→ A is another hom ψ′ such that the following diagram
commutes:

g U(g)

A

θ

ι

ψψ′

Since T (g) is generated by T 1(g), U(g) is generated by ι(g) ∈ U(g). Thus for all x ∈ g, ψ ◦ ι(x) =
θ(x) = ψ′ ◦ ι(x) by the commuting of each triangle. We then have ψ = ψ′ on ι(g), and hence on
U(g).

29.1.4 PBW Theorem

PBW: Poincaré-Birkhoff-Witt

Theorem: If g has a basis {xi}i∈I where ≤ is a total order on I, then let yi := ι(xi) ∈ U(g). Then
U(g) has an F -basis called a PBW basis which is given by

{
yr1i1 · · · y

rn
in

∣∣∣ n ∈ N, ri ∈ N, i1 ≤ · · · ≤ in} .
We refer to each term appearing as a PBW monomial.

Examples:

Type A, g = sl(2, F ) = 〈f, h, e〉. Pick an order x1 = f, x2 = h, x3 = e, so f < h < e.

Then U(g) has a basis

B = {1}
⋃{

f r
1}{

f r
1
hr2
}⋃
{f r1hr2er3}

⋃
{hr1}

⋃
{f r1er2}

⋃
{er1}

⋃
{hr1er2} .

i.e. B =
{
fahbec

∣∣∣ a, b, c ∈ N}.
If you pick a different order, say f < e < h, then we obtain B =

{
faebhc

∣∣∣ a, b, c ∈ N}.
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30 Wednesday October 23
Recall from last time:

For g a lie algebra, we define T (g) the tensor algebra, and the universal enveloping algebra
U(g) = T (g)/ ∼ where x⊗ y − y ⊗ x ∼ [x, y].

We also described the PBW Theorem, which provides a basis for U(g).

30.1 Proof of PBW Theorem
Proof of PBW Theorem:

We have T (g) = span
{
xj1 ⊗ · · · ⊗ xjk

∣∣∣ j1, · · · , jk ∈ I}, where we note that there are not required

to be ordered. Thus U(g) = span
{
yj1 ⊗ · · · ⊗ yjk

∣∣∣ j1, · · · , jk ∈ I}, where which are again not
required to be ordered. We would thus like to express every term here as some linear combination of
monomials in the yij with increasing indices. We proceed by inducting on k, the number of tensor
factors occurring. The base case is clear.

For k > 1, supposing that the element is not a PBW monomial, then there is some inversion in the
indices (j1, · · · , jk), i.e. there is at least one i such that ji+1 < ji. Now for any two indices a, b ∈ I,
we have

ι(xb ⊗ xa) = ι(xa ⊗ xb + [xb, xa]) =⇒ ybya = yayb + ι([xb, xa])

Since [xb, xa] =
∑
t

Fxt and ι[xb, xa] =
∑
t

Fyt.

But then yj1 · · · yjk = yi1yi2 · · · yjk + lower degree terms where i1 ≤ i2 · · · ik is a non-decreasing
rearrangement of the ji. By the inductive hypothesis, the lower degree terms are spanned by PBW
monomials, so we’re done.

Proof of linear independence:

Claim: Let x := xj1 ⊗ · · · ⊗ xjn for an arbitrary indexing sequence, and x(k) be this tensor with the
jk and jk+1 terms swapped, and x[k] be this tensor with xjk , xjk+1 replaced by their bracket.

Then there exists a linear map

f : T (g)→ R := F [{zi}i∈I ]
f(xi1 ⊗ · · · ⊗ xin) = zi1 · · · zin

f(x− x(k)) = f(x[k]).

By collecting terms, we can write

x− x(k) − x[k] = xj1 ⊗ · · · ⊗ xjk−1 ⊗
(
(xjk ⊗ xjk+1)− (xjk+1 ⊗ xjk)− [xjk , xjk+ ]

)
⊗ · · ·

So we can take J to be the ideal generated by all elements of this form, and we find that J ⊂ ker f ,
and thus f descends to a map f on U(g). We then know that if f applied to any PBW monomial is
zr1i1 · · · z

rn
in
, which are linearly independent in R, then any PBW monomial will be linearly independent

in U(g).
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Proof of claim:

For each x, define an index

λ(x) = #
{

(a, b) ∈ {1, · · · , n}2
∣∣∣ a < b, ja < jb

}
.

Then {
x
∣∣∣ λ(x) = 0

}
=
{
xi1 ⊗ · · · ⊗ xin

∣∣∣ i1 ≤ · · · ≤ in} .
So set Tn,k =

{
x ∈ Tn(g)

∣∣∣ λ(x) ≤ k
}
; we then have a filtration Tn,0 ↪→ Tn,1 ↪→ · · · ↪→ Tn(g).

Step 1: We’ll construct f by induction on n.

For n > 0, set f(x) = zj1 · · · zjn if λ(x) = 0. We now induct on the index k at a fixed power n > 0.
The base case is clear.

For k > 0, there exists an inversion (`, `+ 1), i.e. some indices i` > ß`+1. Set f(x) = f(x(`))−f(x[`]),
where the LHS is in Tn,k and the RHS terms are in Tn,k−1 and Tn−1(g respectively.

Step 2: We’ll check that f is well-defined.

In the above definition, note that f(x) can be defined using different inversions of the indices, we’d
like to show that these yield the same map.

Let (`, `+ 1) and (`′, `′ + 1) be two distinct inversions. Then set

a = xj`
b = xj`+1

c = xj′
`

d = xj`′+1

.

Then we have several cases:

Case 1: `+ 1 < `′.

Then

f(x(`)) + f(x[`]) = f(· · · b⊗ a · · · c⊗ d · · · )
+f(· · · ⊗ [a, b]⊗ · · · c⊗ d · · · )

= f(· · · b⊗ a · · · d⊗ c · · · ) + f(· · · b⊗ a · · · [c, d] · · · ) + f(· · · ⊗ [a, b]⊗ · · · d⊗ c · · · ) + f(· · · ⊗ [a, b]⊗ · · · [c, d] · · · )
= f(x(`′]) + f(x[`′]).

Case 2: `+ 1 = `′

Then
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f(x(`)) + f(x[`]) = f(· · · b⊗ a⊗ x) + f(· · · [a, b]⊗ c)
= f(b⊗ c⊗ a) + f(c⊗ [a, b]) + f(b⊗ [a, c]) + f([[a, b], c])
= f(c⊗ b⊗ a) + f(c⊗ [a, b]) + f(b⊗ [a, c]) + f([[a, b], c]) + f(b⊗ [a, c]) + f(a⊗ [b, c]) + f([[b, c], a])
= f(x(`′)) + f(x[`′]).

where the last equality is found by expanding the expression backwards.

31 Friday October 25
31.1 PBW Theorem
Theorem (PBW): The universal enveloping algebra U(g) has a basis consisting of the PBW mono-
mials. If we fix a basis

{
xi
∣∣∣ i ∈ I} of g with a total order, then

{
yr1i1 · · · y

rn
in

∣∣∣ n ∈ N > 0, ij ∈ I, ri ≥ 1
}
.

We will construct a map

ι : g→ U(g)
xi 7→ xi + J := yi,

where we can recall that U(g) := T (g)/J where J was an ideal of specific relations.

Corollary:

a. The map ι is injective.
b. The map ι has no zero divisors.

We will use property (b) to study properties of Verma modules

Proof of (a): If
∑

cixi ∈ ker(ι), then

0 = ι(
∑

cixi) =
∑

ciyi

=⇒ ci = 0 ∀i since {yi} ( { PBW monomials }
=⇒ ker(ι) = 0.

Proof of (b): An arbitrary element in U(g) is of the form

a =
∑

cai,ry
r1
i1
· · · yrnin for some c ∈ F

:= fa(y) + terms with smaller total degree .

where f is defined by picking out only those terms of highest total degree, e.g. f(2y1 +y1y2y3 +y2
2) =

y1y2y3, which is of total degree 3.
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We want to show that a 6= 0 and b 6= 0 then ab 6= 0, i.e. (fa(y) + · · · )(fb(y) + · · · ) 6= 0.

Recall that yayb = ybya+
∑
a,b∈I

degree 1 monomials . Thus fa(y)(fb(y)) := fafb(y)+
∑

terms of smaller total degree .

Here we define fa(y)fb(y) by e.g. if b = y2, then fb(y) = y2, and fa(y)fb(y) = y1y2y3y2 =
y1y

2
2y3 + y1y2[y3, y2]. Note that the leading term is of total degree 4, and the remaining term is a

sum of lower degree terms.

31.2 Free Lie Algebra

LetX :=
{
xi
∣∣∣ i ∈ I} be a set. Define the free associative algebra F(X) as

{∑
k

ciXi

∣∣∣ i = (i1, · · · , ik) ∈ Ik, ci ∈ F
}
.

Then the associated free lie algebra FL(x) =
⋂
g

g where X ⊆ g ⊆ F(X) is a containment of lie

algebras.

Let ι : X ↪→ FL(X).

Proposition:

a. FL(X) satisfies a universal property – for any map θ : X → g a lie algebra, there exists a
unique ψ making the following diagram commute:

X FL(X)

g

ι

θ ∃!ψ

b. U(FL(X)) = F(X).

Upshot: we can define a Lie algebra g using generators and relations, and define g := FL(X)/(R)
for some set of relations R.

31.3 Generators and Relations
Recall that we have a correspondence

{
g
∣∣∣ g is a semisimple Lie Algebra

}
⇐⇒ {Φ, root systems }
⇐⇒ {Dynkin diagrams (Cartan Matrices)}

(g, h)→ Φ, {ai} ⊆ {a} := Π ⊆ Φ 7→ Ai,j =
〈
αi, α

∨
j

〉
g(A) < −?Φ < −A.

We had an explicit construction to go from Dynkin diagrams to root systems, and an existence
theorem of Serre’s will take root systems Φ and produce semisimple Lie algebras from them. The
question will be whether or not there is a one-to-one correspondence here, and that’s what we’ll
spend the rest of the semester showing.
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31.4 Cartan/Serre Relations
Recall from (8.3): For all α ∈ Φ, we have eα ∈ gα \ {0}, then there exists a unique fα ∈ g−α such
that [eα, fα] = hα := 2tα

κ(tα, tα) , where tα
:= α = κ(tα, · ).

Fix Π =
{
αi
∣∣∣ i ∈ I}, and write hi := hαi , ei = eαi for each i. Then αi(hj) = aij . Now fix

ei ∈ gαi , fi ∈ g−α such that [ei, fi] = hi for every i ∈ I.

Proposition: g is generated by
{
ei, fi, hi

∣∣∣ i ∈ I}.
We have the Cartan relations for each i, j ∈ I:

[hi, hj ] = 0, [ei, fj ] = δijhi

[hi, ej ]ajiej [hi, fj ] = −ajifj .

as well as Serre relations for each i 6= j:

(ad ei)1−aji(ej) = 0 (adfi)1−aji(fj) = 0.

Example: g = sl(2,C) = 〈e1 := e, f1 := f, h1 := h〉 satisfies [h, e] = 2e and [h, f ] = −2f , and since
there are no higher order relation, there are no Serre relations. So we get A = (2) as a matrix.

Example: g = sp(4,C) is of type C2, and is generated by 〈e1, e2, f1, f2, h1, h2〉 satisfying

• [h1, h2] = 0
• [h1, e1] = 2e1
• [h1, e2] = −2e2
• · · ·

Then e.g. we have (ad e1)1−aij (e2) = (ad e1)3(e2) = 0.

32 Monday October 28
32.1 Algebra Generated by a Cartan Matrix
Last time: The claim was that for a Cartan matrix A, there is a lie algebra g(A) that is semisimple
with CSA h and a root system Φ that defines that Cartan matrix A.

The algebra g is generated by
{
ei, fi, hi

∣∣∣ i ∈ I = {1, 2, · · · `}
}
, with relations

[hi, hj ] = 0
[hi, ej ] = ajiej

[ei, fj ] = δijhi

[hi, fj ] = −ajifj ,
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along with the Serre relations (which only appear in higher degrees):

s+
ij := ad (ei)1−aji(ej) = 0 if i 6= j

s−ij := ad (fi)1−aji(fj) = 0 if i 6= j

.

Proof:

1. Show that {ei, fi, hi} generates g.

The subalgebra h is spanned by
{
tαi

∣∣∣ i ∈ I} and hence spanned by
{
hi
∣∣∣ i ∈ I}. So it suffices to

show that gα ⊆ 〈ei〉 for all α− inΦ+.

Write α = αi + β for each i ∈ I, β ∈ Φ+. Then [gαi , gβ] = gα = Ceα, so eα = [ei, eβ] for some
nonzero eβ ∈ gβ.

By repeating this argument, we find that eα = [[· · · [ei1 , ei2 ], ei3 ] · · · ], · · · eik ].

2. Verify the relations

We need to check that s+
ij = 0. The αi root string through αj is given by

αj + pαi → · · · → αj + qαi

where p 6= 0 because αj − αi 6∈ Φ for any i, so the smallest root must be αj ∈ Φ. By prop 8.4d, this
means that −q = αj(hi) = αji.

Thus ad (ei)1−αji(ej) = ad (ei)1+q ∈ gαj+(q+1)αi = {0}.

32.2 The Lie Algebra g̃(A)

Fix a Cartan matrix A = (aij)i,j∈Iwhere I = {1, · · · , `}. Let J̃ E FL(
{
ei, fi, hi

∣∣∣ i ∈ I}) generated
by

• [hi, hj ],
• [hi, ej ]− ajiej ,
• [ei, fj ]− δijhi
• [hi, fj ] + ajifj .

Then let J be the same ideal with the additional relations s+, s−, and set

• g̃(A) = FL({ei, fi, hi})/J̃ ,
• g(A) = FL({ei, fi, hi})/J .

Proposition:

a. Let V = F({f1, · · · , f`}). Then π : g̃→ gl(V ) is a representation with

• fj : fi1 · · · fir 7→ fjfi1
• hj : fi1 · · · fir 7→ (αji1 + · · · )fi1 · · · fir
• ej : fi1 · · · fir 7→ (

∑
δ
∑

a)(αji1 + · · · )fi1 · · · fir
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b. {h1, · · ·h`} is linearly independent set in g̃.

For (a), it suffices to check [π(hi), π(hj)] = 0, [π(hi), π(ej)] = ajiπ(ej), etc. For (b), it suffices to
show that

{
π(hi)

∣∣∣ i ∈ I} is linearly independent.

Suppose
∑

ciπ(hi) = 0 in gl(V ). Then,

0 =
(∑

c

ciπ(hi)
)

(fj) = −
(∑

i

ciαji

)
fj

=⇒
∑

ciαji = 0 ∀ j

=⇒ ci = 0 ∀ i, .

since A is invertible.

Thus h̃ := spanC {hi} is a lie subalgebra of g̃..

Theorem:

a. g̃ =
⊕
u∈h̃∗

g̃µ as vector spaces, where

g̃µ :=
{
x ∈ g̃

∣∣∣ [h, x] = µ(h)x ∀h ∈ h̃
}
.

b. g̃ = ñ− ⊕ h̃⊕ ñ as vector spaces, where ñ− := 〈fi〉 and ñ := 〈ei〉.

Proof of (a):

It’s easy to check that [g̃λ, g̃µ] ⊆ gλ+µ for all λ, µ ∈ h̃∗. Define αi ∈ h̃∗ by hj 7→ aij . Then

• ei ∈ g̃αi , fi ∈ g̃−αi , hi ∈ g̃0 for all i.
• Any x ∈ g̃ lies in g̃µ for some µ.
• g̃ =

∑
µ

g̃µ.

We just need to show that the last sum is in fact a direct sum.

Suppose that ∃x 6= 0 such that x ∈ g̃µ, x =
∑
ν

xν where xν ∈ g̃ν − {0} and ν runs over a finite set

of weights that are not equal to µ.

Then [h, x] = µ(h)x, and so (ad h− µ(h))(x) = 0. On the other hand,
∏
ν

(ad h− ν(h))(xν) = 0. So

pick some h ∈ h̃ such that µ(h) 6= ν(h) for all ν. Then the polynomials t− µ(h),
∏
ν

(t− ν(h)) are

coprime, and so there exist a, b such that

a(t− µ(h) + b
∏
ν

(t− ν(h)) = 1,

Then evaluating at t = ad h, we get
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x = 1(x) = a(ad h)(ad h− µ(h))(x) + b(ad h)(
∏
ν

ad h− ν(h))(x) = 0,

and so g̃ = ⊕ν g̃µ.

33 Wednesday October 30
Last time:

W y h∗, λ 7→ w(λ),W y h, h 7→ w · h

such that λ(w · h) = (w−1λ)(h)∀λ ∈ h∗.

We then get compatible squares:

h∗ h α tα

h∗ h wα w · tα = twα

w w·

Proposition:

a. Θi := exp(ad ei) ◦ exp(ad (−fi)) ◦ exp(ad ei),
b. Θi(h) = h, so it fixes Cartan subalgebra.
c. Θi

∣∣∣
h
= si where si is the Weyl group action

Proof of (a):

We want to show that exp(ad ei) is well-defined as an automorphism of g. It suffices to check that
ad ei is locally nilpotent, i.e. for all x ∈ g, there exists some nx > 0 such that ad (ei)n = 0. We will
also need to check that exp ad ei is a derivation.

To see the local nilpotency, we can check

(ad ei)n([x, y]) =
n∑
t=0

(
n

t

)[
(ad ei)t, (ad ei)n−t

]

for all x, y ∈ g.

If x, y are locally nilpotent, then [x, y] is as well.

It thus suffices to check that ad ei acts on generators in a nilpotent way.

A direct computation shows ad ei = [ei, ei] = 0, and (ad ei)1−aji(ej) = 0 by the Serre relations.
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We also find that ad ei(hj) = [ei, hj ] = −[hj , ei] = −aijei, and applying it again yields (ad ei)2(hj) =
−aij [ei, ei] = 0.

We have ad ei(hj) = 0, and applying ad eihi multiple times yields hi, [ei, hi], 0, so ad 3ei(hi) = 0.

Proof of (b):

By a direct computation, we have Θi(hj) = hj − aijhi ∈ h. (See CJ’s notes for full computation.)

Proof of (c):

Consider computing si · hj . This is the unique element satisfying λ(si · hj) = (s−1
i λ)(hj), but we

can compute

(s−1
i λ)(hj) = hj − aijhi = Θi(hj).

�

Theorem (Serre): Fix Φ ⊇ Π = {α1, · · · , α`} and I = {1, · · · , `}. Define A by aij = (αj , α∨i ). Let
g = g(A) be the algebra generated by these elements.

Then

a. g = n− ⊕ h⊕ n as vector spaces, where n− ∼= ñ−/s−, h ∼= h̃, and n ∼= ñ/s+.
b. g = ⊕µ∈h∗gµ as vector spaces, where gµ =

{
x ∈ g

∣∣∣ [h, x] = µ(h)x∀h ∈ h
}

c. dim gλ = dim gµ if λ ∈Wµ,
d. dim g = `+ |Φ|,
e. g is semisimple,
f. h is a Cartan subalgebra with root system Φ.

Proofs:

a. Follows from Theorem 18.2b and Lemma b.
b. Similar to Theorem 18.2a.

Proof of (c):

We may assume that λ = siµ. Pick x ∈ gλ. Then for all h ∈ h, we have

[Θi(h),Θi(x)] = Θi(h, x)
= λ(h)Θi(x)
= λ(Θ−1

i (h))Θi(x)
= λ(s−1

i · h)Θi(x)
= (siλ)Θi(x),

so Θi(x) ∈ gsiλ, and thus Θi(gλ) ⊆ gsiλ.

Replacing Θi with Θ−1
i and λ by siλ, we find Θ−1

i (gsiλ) ⊆ gsisiλ = gλ, and so gλ ∼= gsiλ, i.e. gsiλ ⊆
Θi(g).
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Proof of (d):

By Corollary 18.2b, we have

dim gkαii =


1, k = ±1
0, k 6∈ {0,±1}
`, k = 0

.

Thus g̃0 = h̃.

Since s+
ij is of height 1 + aji ≥ 2, we have dim gαi = dim g̃αi = 1 for all i ∈ I. Thus for any α ∈ Φ,

we have α = wαi for some element of the Weyl group w ∈W .

By parts (a) and (c), we have dim gα = 1, so dim gkα satisfies the same cases as dim gkαii above.

It remains to show that there are no other root spaces, i.e. gµ = 0 if µ 6∈ Zα for all α ∈ Φ.

We can show this by considering reflections about hyperplanes again, i.e. that α ∈ Φ =⇒ Hµ 6= Hα.

If this is the case, it implies that there exists an h ∈ h such that h ∈ Hµ \Hα for all α ∈ Φ. But then
µ(h) = 0 when h 6∈ Hα for all α ∈ Φ, so pick w ∈W such that w−1ai(h) ∈ C(Π), the fundamental
chamber. Thus w−1αi(h) > 0 for all i, and is equal to αi(w · h), and

0 = µ(h) = κ(tµ, h) = · · · = (wµ)(w · h)

Writing wµ =
∑̀
i=1

miαi, we have 0 =
∑̀
i=1

miαi(w · h), we find that note all mi have the same sign,

which is a contradiction. �

34 Wednesday November 6th
Last time: We considered the finite dimensional representation theory of g a semisimple Lie algebra
over C. We showed Weyl’s complete reducibility theorem: any finite dimensional g module is
semisimple and g =

⊕
si, a sum of simple modules.

Therefore, it suffices to understand the characters for simple modules, i.e. what are the dimensions
of the weight spaces?

We can answer this question for g = sl(2,C): we have L(λ) = spanC {vi}
λ
i=1 where

dimL(λ)µ =
{

1 µ ∈ {λ, λ− 2, · · · ,−λ}
0 otherwise

For an arbitrary g, what is L(λ)? We’ll describe this using Weyl’s character theorem, the Verma
module (which is an infinite-dimensional highest weight module), and the PBW theorem of the
universal enveloping algebra.

In general, the representation of g is complicated, so we restrict ourselves to a subcategory BGG
category O, which contains the simple and Verma modules. Here, the irreducible character problem
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is solved if we know that the multiplicity of simple modules in any Verma module. The multiplicity
is the number of simple modules occurring in a filtration, and the Kazhdan–Lusztig conjecture
says that this multiplicity should be the evaluation of a certain KL polynomial at 1. This was
first proved using perverse sheaves and D-modules in the 1980s (geometric), and then with purely
algebraic proof is due to Williamson around 2013. This was obtained using something called the
Soergel bimodule. This is all over C, and there are some generalizations that work for characteristic
p. It was thought that the original polynomial would work here, but it turns out that there is
another one called the p−KL polynomial.

These come from the KLR algebra, where there is a change of basis that induces a change of
basis on the Hecke algebra, where the KL polynomial takes that standard basis to the KL
basis.

Recall that M is a weight module if M = ⊕λMλ, where Mλ :=
{
m ∈M

∣∣∣ h.m = λ(h)m ∀h ∈ g
}
.

Non-example: Take g = sl(2,C) = 〈e, h, f〉 and M = U(g)/I where I = U(g)(1− e) E U(g) is a left
ideal. Then M has basis

{
fahb + I

∣∣∣ a, b ∈ Z≥0
}
. The claim is that h+ I is not in any weight space.

If so, we would have hy (h+ I) = h2 + I, which is not a multiple of h+ I, i.e. it’s not in C(h+ I).
So it is not a weight module.

34.1 Section 20.2: Highest Weight Modules
Definition: A maximal vector v+ ∈ M is a nonzero vector such that ηv+ = 0, i.e. gαv+ for all
α ∈ Φ+.

Definition: A g-ModuleM is a highest weight module of weight λ ifM = U(g)v+ for some maximal
vector v+.

Example: Consider sl(2,C) and L(λ), we have the following situation:

2 · 0

2v0

2v1

2v2

...

2v−λ

2

e

f e

f e

f

f

e

e

f e

Then a similar picture holds for M(λ), thus v0 is a maximal vector, and L(λ),M(λ) are weight
modules.
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Theorem: Let M by a highest weight module of weight λ with maximal vector v+. Fix an ordering
Φ+ = {β1, β2, · · · , βm} where m = |Φ|+. Pick a nonzero ei ∈ gβi , then there exists a nonzero
fi ∈ g−βi such that [ei, fi] = hi (a Cartan element) for all i.

a. We can write a basis for the highest weight module, M = spanC

{
m∏
i=1

f rii v
+
∣∣∣ rI ∈ Z≥0

}
,

b. Wt(M) ⊆
{
µ ∈ h∗

∣∣∣ µ ≤ λ}.
c. dimMλ = 1 and dimMµ <∞ for all µ ∈ h∗.
d. Submodules of M are weight modules.
e. If M has a unique submodule, then M has a unique simple quotient and M is indecomposable.
f. Every non-zero homomorphic image of M is a highest weight module of weight λ.

Proof of (a): M = U(g)v+, which is in
∑
Cf . . . h . . . e . . . v+ where e . . . v+ = 0, which is in∑

Cf . . . v+.

35 Wednesday
Todo

36 Friday
Todo

37 Monday November 18th (TODO)
Todo

38 Wednesday November 20
Last time:

ZΛ ⇐⇒
{
h∗ → Z≥0

∣∣∣∼} e(µ) 7→ eµe(λ)e(µ) = e(λ+ µ) 7→ f ? g(λ) =
∑

a+b=λ
f(a)g(b)

and chL(λ) =
∑
µ∈Λ

dimL(λ)µe(µ).

We have the Kostant function p(λ) = #

(kα)α
∣∣∣ −λ =

∑
α∈Φ+

kαα

 and the Weyl function q =

eρ ?
∏
α∈Φ+

(1− e−α) =
∏
α∈Φ+

(eα/2 − e−α/2).

Lemma: p ? eλ = chM(λ), so q ? chM(λ) = eλ+ρ and q ? p = eρ.
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38.1 Weyl’s Character Formula (24.2-3)
Definition: The dot action of W is given by w · λ = w(λ+ ρ)− ρ, i.e. a reflection for hyperplanes
passing through −ρ.

E.g. for type A2, where W (0) = 0, we have:

And for the dot action, we have
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where W · 0 = 0 and s(α1) = −α1.

Theorem (Harish-Chandra): If L(µ) is a composition factor of M(λ), then µ ∈W · λ for µ ≤ λ.

Proof: Postponed.

ch are characters, L(λ) is a Verma module.

Remark: If we sum over µ ≤ λ, we obtain
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chM(λ) =
∑

µ∈W ·λ
aλµchL(µ)

chL(λ) =
∑

µ∈W ·λ
bλµchM(µ)

=
∑

W ·λ∈Λ
cλW chM(w · λ).

Theorem (Weyl’s Character Formula): If λ ∈ Λ+, then

chL(λ) =
∑
w∈W (−1)`(w)e(w · λ)∑
w∈W (−1)`(w)e(w · 0)

Proof :

We have chL(λ) =
∑
w

cλwchM(w · λ), and so by the lemma,

q ∗ chL(λ) =
∑

cλwq ? chM(W (λ+ ρ)− ρ) =
∑
w

cλweW (λ+p)

Thus for all α ∈ Φ+, we have

sα(q ? chL(λ)) =
∑
w

cλ,sαwew(λ+ρ)

On the other hand, by part (c) of the lemma, we have

(sα ? q) ? chL(λ) = −q ? chL(λ) =
∑
w

−cλ,wew(λ+ρ)

which implies that cλ,sαw = −cλ,w by comparing term-by-term, and thus cλ,w = (−1)`(w) because
cλe = 1.

In particular, q = q ? e(0) = q ? chL(0) =
∑
w∈W

(−1)`(w)ew(ρ), and thus

chL(λ) =
∑
w(−1)`(w)ew(λ+p)∑
w(−1)`(w)ew(p)

=
∑
w(−1)`(w)e(w · λ)∑
w(−1)`(w)e(w · 0)

.

�

Example: For type A1, we have W = Σ2 = {1, s}. Take λ = 3 under

Λ ≡ Z
α1 → 2

w1 = ρ→ 1,
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from which we obtain

chL(3) = e(1 · 3)− e(s · 3)
e(1 · 0)− e(s · 0)

= e(3)− e(−5)
e(0)− e(−2)

= e(3) + e(1) + e(−1) + e(−3) by long division.

Corollary (Kostant’s Dimension Formula):

If µ ≤ λ ∈ Λ+, then
dimL(λ)µ =

∑
w∈W

(−1)`(w)P (w · λ− µ).

Proof: p ? eµ(w · λ) =
∑

a+b=w·λ
p(a)eµ(h) = p(w · λ− µ), since this is the only term that survives.

Then p(w · λ − µ) is the coefficient for e(µ) in chM(w · λ) = dimM(λ)µ. Thus dimL(λ)µ =∑
w∈W

(−1)`(w) dimM(w · λ)µ.

Corollary (Weyl’s Dimension Formula):

If λ ∈ Λ+, then

dimL(λ) =
∏
α∈Φ+(λ+ ρ, α∨)∏
α∈Φ+(ρ, α∨)

Proof (sketch):

Define an operator ∂ =
∏
α∈Φ+

∂a, where ∂a : e(µ) 7→ (u, α∨)e(µ). Then ∂ is well-defined since

∂α∂β = ∂β∂α for all α, β, and (exercise) ∂ is a derivation.

Define an evaluation homomorphism ν :
∑
µ

cµe(µ) 7→
∏
µ

cµ. Note that ν(chL(λ)) = dimL(λ), and

ν(q) = 0 because ν(eαi−1) = 0.

Claim:
ν(∂(q ? chL(µ− ρ))) = |w|

∏
α∈Φ+

(µ, α∨)

This is relatively straightforward once you know that you have a derivation and a homomorphism.

With this claim, we have

ν(∂(q ? chL(λ))) = ν(∂q)ν(chL(λ)) + ν(q)ν(∂chL(λ))

where we can identify a number of terms, and then taking ratios yields Weyl’s dimension formula.
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39 Friday November 22
Remark: For g semisimple, studying Rep(g) is too hard. So we study category O, which contains
simple modules L(λ) for λ ∈ g∗.

Case 1, λ ∈ Λ+: In the finite-dimensional setting, we use Weyl’s character formula.

Case 2, λ 6∈ Λ+: If suffices to consider λ ∈ Λ, then we apply Soergel’s translation functor V. Then
Ł(λ) for g corresponds to L(λ]) for g] such that λ] ∈ Λ(g]).

For λ ∈ Λ, it suffices to consider λ ∈W · 0 using Jantzen’s translation functor.

Then chL(w · 0) =
∑
x≤W

(−1)`(w)−`(x)Pw0w,w0x(1)chM(x · 0).

The x ≤ w index indicates the Bruhat order on W , and P is the Kazhdan-Lusztig polynomial and
w0 is the longest element in W .

Example: Type A2, the W = Σ3, w0 = sα1sα2sα1 = sα2sα1sα2 = |3 2 1|.

Last time: If L(µ) is a composition factor of M(λ), then µ ∈W · λ.

39.1 Central Characters (Ch. 23)
39.1.1 Action of the Center (23.2)

Let Z := Z(U(g)) be the center of the universal enveloping algebra. Then there is a Casimir element
Ω ∈ Z, and Ω y L(λ) by scalar multiplication.

Definition/Proposition: For λ ∈ h∗, its central character is χλ : Z → C such that z ·m = χλ(z)m
for all z ∈ Z,m ∈M , where M is a highest weight module with highest weight λ and v+ is a highest
weight vector.

Proof: For all h ∈ h, we have h.(z.v+) = z.(h.v+) since z ∈ Z, but this equals λ(h)z.v+. Then
z.v+ ∈Mλ = Cv+, so z.v+ = χλ(z)v+ for some χλ(z) ∈ C.

An arbitrary element in M = U(g).v+ is m = x.v+ for x ∈ U(g). Then

z.m = z.(x.v+)
= x.(z.v+)
= χλ(z)x.v+

= χλ(z)m.

�

Remark: We also have Z yM(λ) and any submodule or composition factor by the same scalar.

Example: Let g = sl(2,C) and Ω = h2 + 2h+ fe ∈ Z.

Take λ ∈ Λ+ ≡ Z≥0 and v+ ∈M(λ)λ. Then Ω.v+ = (h2 + 2h+ fe)v+ = (λ2 + 2λ)v+, which means
that χλ(Ω) = λ(λ+ 2) ∈ C.
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39.1.2 Harish-Chandra Theorem

Definition: The Harish-Chandra homomorphism is the algebra homomorphism

ξ : Z → U(h)

fahbec 7→
{

hb ifa = 0 = c
0 else

.

Example: ξ(Ω) = h2 + 2h.

Lemma: χλ(z) = λ(ξ(z)) implies that Ω y L(λ),M(λ) by (λ+ ρ, λ).

Proof : If z = fahbec with c 6= 0, the z.v+ = 0 which implies that both sides are zero. If c = 0, then
a = 0. Otherwise z ∈ U(g)β for some β 6= 0, so there exists an h ∈ h such that [h, z] = β(h)z 6= 0,
while [h, z] = 0 and z ∈ Z.

Thus χλ(z) = λ(hb) = λ(ξ(z)) if z = hb. �

Recall that Ω =
∑̀
j=1

hjh
′
j +

m∑
i=1

(eiti + fiei) for hi = [ei, fi] = eifi − fiei.

Then if we have a basis {hi, ei, fi}, we can produce a dual basis
{
h′i, e

′
i, f
′
i

}
with respect to the killing

form. Thus Ω =
∑
j

hjh
′
j +

m∑
i=1

hi + 2fiei and ξ(Ω) =
∑
j

hjh
′
j +

∑
i = 1mhi.

Now by writing tλ =
∑
i

aihi =
∑
i

bih
′
j , where κ(tλ, hj) = bj , κ(tλ, h′j), and κ(tλ, tλ) =

∑
aibi, we

can write

λ(ξ(Ω)) =
∑
j

λ(hj)λ(h′j) +
∑
i

λ(hi) =
∑
j

κ(tλ, hj)κ(tλ, h]j) +
∑
i

λ(hi)

= κ(tλ, tλ) +
∑
i

λ(hi)

= κ(tλ, tλ) +
m∑
i=1

(λ, αi)

= κ(tλ, tλ) + (λ,
∑
α∈Φ+

α)

= κ(tλ, tλ) + (λ, 2ρ
= (λ, λ) + (λ, 2ρ)
= (λ+ 2ρ, λ).

�

Example: λ(ξ(Ω)) = λ(h2 + h) = λ2 + 2λ = (λ+ 2, λ) under h∗ ≡ Z where α 7→ 2, ρ 7→ 1.

Definition: The twisted Harish-Chandra homomorphism is the algebra homomorphism ψ = ζ ◦ ξ :
Z → S(h) where
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ζ : U(h) ∼= S(h)→ S(h)
ρ(h1, · · · , h`) 7→ ρ(h1 − 1, · · · , h` − 1).

Example: ξ(Ω) = h2 + 2h, so

ψ(Ω) = ζ(h2 + 2h) = (h− 1)2 + 2(h− 1) = h2 − 1.

Theorem (Harish-Chandra): For all λ, µ ∈ h∗, we have χλ = χµ ⇐⇒ µ = W · λ.

Corollary: If L(µ) is a composition factor of M(λ), then Z yM(λ) by the same scalar χλ(z) =
χµ(z) for all z.

Then χλ = χµ =⇒ µ = W · λ.

Remark: Assuming this theorem, this completes the proof of the Weyl Character Formula.

40 Monday November 25
Today: The Conjugacy theorem

December 2nd: Kac-Moody Algebras (i.e. infinite-dimensional lie algebras)

December 4th: Summary of semisimple lie algebras over C

Last time: We had the following goal: If L(µ) is a composition factor of M(λ), then µ ∈W · λ. We
then get a central character χ : Z(U(g))→ C, e.g. χλ : Z → C.

Any z ∈ Z acts on the highest weight module M of highest weight λ by χλ(z).

Example: g = sl(2,C) and λ ∈ Z≥0.
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We now want to prove this using the twisted Harish-Chandra homomorphism, where here we have

ψ : Z → U(h) = S(g)z 7→ ι ◦ ξ(z)

where

ι : S(h)→ S(h)
ρ(h1, · · · , h`) 7→ ρ(h1 − 1, · · · , h` − 1).

For example, h2 + 2h 7→ (h− 1)2 + 2(h− 1).

Theorem (Harish-Chandra): For all λ, µ ∈ h∗, we have χµ = χλ ⇐⇒ µ ∈W · λ.

Proof (sketch):

1. Assuming Chevalley’s restriction theorem, we have
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P (g)G ∼= P (h)W

where G :=
〈

exp(ad x)
∣∣∣ x ∈ g

〉
⊆ Aut(g).

Then the map Z → S(h)W given by z 7→ ψ(z) is an isomorphism.

Note: the RHS denote a subset invariant under the Weyl group action.

Example: g = sl(2,C) and W = {e, s} where s(h) = −h. Then Ω = h2 + 2h+ fe, and

ψ(Ω) = (h− 1)2 + 2(h− 1) = h2 − 1 ∈ S(h)W

because
S · (h2 − 1) = (−h)2 − 1 = h2 − 1.

2.

⇐= It suffices to prove the case λ, µ ∈ Λ since Λ is dense in h∗ in the Zariski topology.

We can check that

χλ = χW ·λ

⇐⇒ λ(ξ(z)) = (W · λ)(ξ(z))∀z ∈ Z
⇐⇒ (λ+ ρ)(ψ(z)) = ((λ+ ρ))(ψ(z))∀z ∈ Z

= (λ+ ρ)(W−1 · ψ(z))
= (λ+ ρ)(ψ(z)) by (1).

=⇒ Suppose that χλ = χµ but µ 6∈W · λ.

Construct g ∈ S(h)W such that g(W · λ) = 1 and g(W · µ) = 0.

By 1, there exists a z = ψ−1(g) ∈ Z such that

χλ(z) = (λ+ ρ)(g) = g(λ) + g(ρ) 6= g(µ) + g(ρ) = · · · = χµ(z).

�

40.1 Cartan Subalgebra (Chapter 15)
Recall that the Cartan subalgebra (CSA) is equal to the maximal toral subalgebra, which is nilpotent
and self-normalizing. Then rank g = dim h is well-defined by any CSA, since they are all conjugate
under G.
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40.1.1 Engel Subalgebras

Definition: The Engel subalgebra x ∈ g of g is the generalized eigenspace of ad x with eigenvalue
0. We can then define g0,x :=

{
y ∈ g

∣∣∣ (ad x)n(y) = 0 for n� 0
}
.

An element x ∈ g is regular if dim g0,x is minimal.

Some facts:

a. g0,x = Ng(g0,x)
b. If x is regular then g0,x is nilpotent
c. Combining (a) + (b), if x is regular then g0,x is a Cartan subalgebra.

Example: g = sl(2,C), then

• g0,e = g since ad e kills everything eventually.
• g0,h = Ch, a 1-dimensional algebra spanned by h, and h is regular, and Ch = h is a CSA,
which is nilpotent.

40.1.2 CSAs

Theorem: Let h ≤ g, then

a. h is a CSA ⇐⇒ h = g0,x for some regular x ∈ g
b. If g is semisimple and char F 6= 0, then h is maximal toral ⇐⇒ h is a CSA.

Proof (sketch):

Proof of (a):

⇐= : Easy to check.

=⇒ : Suppose h is nilpotent and h ⊆ g0,x for all x ∈ h. Then suppose that h 6∈ g0,x for all x ∈ h.

So pick z ∈ h such that dim g0,z ≤ dim g0,x for all x ∈ h. Then g0,z ⊆ g0,x for all x ∈ h. This
implies that x ∈ hy g0, z/h is a nilpotent action (where this quotient is nonzero). By Theorem 3.3,
there exists a y + h 6= g such that ad h(y + h) = h, or there exists a y 6∈ h such that [h, y] ⊆ h with
h = Ng(h). �

Proof of (b):

=⇒ : h is abelian and thus nilpotent, so g = h+
∑
α

gα with [h, h] = {0} ⊆ h, and [h, gα] ⊆ gα Thus

Ng(h).

⇐= : Next time.

41 Monday December 02
Last time: Something about Engel.

Sketch of proof of (b):

=⇒ : If h is abelian, then it is nilpotent, so g = h +
∑
α

gα and Ng(h) = h.
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⇐= : (a) implies that h = g0,x for some x, write x = xs + xn using Jordan decomposition, then

g0,x ⊆
∑(

n

i

)
(ad xj)i(ad xn)n−i. From this, you can deduce that

h = g0,xs by regularity of x
= Cg(xs) because ad xs is diagonalizable
⊇ h for some maximal toral
= CSA from the forward implication
= g0,x′ from (a) for some regular x′.

Thus equality holds by regularity and h = CSA.

41.1 Conjugacy Theorems [Carter ’05]
Now we show that any two CSAs are conjugate under

G =
〈

exp ad x
∣∣∣ ad x is nilpotent

〉
E Aut(G).

Thus rank g := dimCSA is well-defined.

For a CSA h, define f = f(h) by

f(x) = (exp(ad x1) ◦ · · · ◦ exp(ad xm)) (x0)

where

g
∼−→ h⊕ gα1 ⊕ · · · gαm

x 7→ (x0, x1, · · · , xm).

Some facts:

a. p(x) 6= 0 ⇐⇒ h = g0,x.
b. For nonzero polynomials p : g → C, there exists a nonzero polynomial q : g → C such that

f(Vp) ⊃ Vq where
Vp =

{
x ∈ g

∣∣∣ p(x) 6= 0
}
, Vq = · · ·

Theorem: Any 2 CSAs are conjugate under G.

Proof Define f = f(h), p = p(h), q = q(h) for the CSA h, and similarly f ′ = f(h′), etc.

Since q, q′ are nonzero, Vq
⋂
Vq′ 6= ∅, or ∃z 6= 0 ∈ Vq

⋂
Vq′ ⊂ f(Vp)

⋂
f ′(Vp). We then get can

x ∈ g, x′ ∈ g such that z = f(x) = f ′(x′) with p(x) 6= 0, p′(x′) 6= 0 ⇐⇒ h = g0,x, h
′ = g0,x′ .

Then there exists some θ ∈ G such that θ(x0) = x′0. For all h ∈ h, we have (ad x0)n(h)(h) = 0 and
(ad x′0)n(h)(h) = 0 =⇒ θ(h) ∈ h′. Thus θ(h) ⊆ h′, and by symmetry θ(h) ⊇ h′.

Note: this concludes the content of Humphrey’s book.
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41.2 Affine Lie Algebras
Recall from section 18 that we had a 1-to-1 correspondence

{Cartan matrices A} ⇐⇒ {semisimple Lie algebras g(A)} .

Definition: A matrix A = (aij) is a generalized Cartan matrix if aii = 2, i 6= j =⇒ aij ∈ Z≤0, and
aij = 0 ⇐⇒ = aji = 0.

Definition: A generalized Cartan matrix A is of finite type if there exists a vector v > 0 (coordinate-
wise) such that Av > 0. It is of affine type if ∃v such that Av = 0. It is of indefinite type if ∃v
such that Av < 0.

Examples:

[
2 −3
−1 2

]
finite type, take v = [5, 3]t[

2 −2
−2 2

]
affine type, take v = [0, 0]t[

2 −3
−2 2

]
indefinite type, take v = [4, 3]t.

Theorem: If A is indecomposable, i.e. A 6= A1 ⊕A2, then A has exactly one of these three types.

Facts: Let A be an indecomposable generalized Cartan matrix. Then

a. A has finite type ⇐⇒ A is a Cartan matrix
b. A has affine type ⇐⇒ det(A) = 0

Every connected proper subgraph of Dynkin(A) is a Dynkin diagram of finite type. This allows
us to classify all affine generalized Cartan matrices.

Affine Coxeter diagrams:

89



A Comparison:

Finite Affine

Killing form Standard invariant form using data
from A

Weyl group (finite) Affine Weyl group (infinite)
Roots Φ Real roots and imaginary roots
Verma modules M(λ)� L(λ) Similar
Weyl character formula for finite dimensional
irreducible modules

Kac character formula for integrable
modules

Kazhdan–Lusztig theory Similar

90



42 Wednesday December 04
42.1 Summary of Lie Algebras
• Overview

– Definition of Lie Algebra, abelian, nilpotent, solvable, (semi)simple, reductive = semisim-
ple and abelian.

– Killing form κ(x, y) = Tr(ad x ◦ ad y)
∗ Solvable iff κ(x, y) = 0 for all x ∈ [g, g], y ∈ g.
∗ Semisimple iff κ is non-degenerate

– Interested in Kac-Moody algebras
∗ Finite = semisimple Lie algebra, finite dimensional
∗ Affine = infinite dimensional
∗ Indefinite = hard!

• Structure theory for semisimple Lie Algebras
– Semisimple = direct sum of simples
– Semisimples are in 1-to-1 correspondence with Dynkin diagrams for A` → D` (classical) or
E6−8, F4, G2 (exceptional), which are also in 1-to-1 correspondence with Cartan matrices
A

– Presentations of g(A) = 〈ei, fi, hi〉 mod Cartan relations and Serre relations using aij
– sl(2) = 〈e, f, h〉 / ∼ where [h, e] = 2e, [e, f ] = h, [h, f ] = −2f
– Cartan subalgebras h := nilpotent + self-normalizing ⇐⇒ maximal toral subalgebra
∗ By the conjugacy theorem, rank g := dim h is well-defined
∗ By the abstract Jordan decomposition yields a root-space decomposition g = h +∑
α∈Φ

gα

– If Π is a fixed set of simple roots, then there exists a triangular decomposition g = n−⊕h⊕n
where n− = f ′s, h = h′s, n = e′s

– Semisimple ⇐⇒ κ non-degenerate ⇐⇒ h∗ ∼= h by the map α 7→ tα, where α = κ(tα, · )
– (α, β) := κ(tα, tβ), coroots β∨ = 2β/(β, β)
– (α, β∨) = κ(tα, hβ) = α(hβ) yields an inner product
– Generates reflections sα : h∗ → h∗ where λ 7→ λ− (λ, α∨)α
– Yields the Weyl group W =

〈
sα
∣∣∣ α ∈ Π

〉
∗ Every w ∈W has a reduced expression w =

∏
i

Sαi

∗ `(w) = length of w = #
{
α ∈ Φ+

∣∣∣ wα ∈ Φ−
}

– Universal enveloping algebra has a PBW basis
– Z(U(g)) ∼= S(h)W
– Yields central characters xλ = xµ ⇐⇒ λ ∈W · µ where w · µ =?

• Z(U(g)) 3 Ω =
∑

xix
′
i where κ(xi, x′j) = δij the Casimir element

– This acts on simple modules by a scalar, where Ω yM(λ) by (λ+ p, λ+ p)− (p, p) =
(λ+ 2p, λ)

42.2 Representation Theory of Semisimple Lie Algebras
• Simple = irreducible modules, but simple 6= indecomposable modules
• Composition series, completely reducible = direct sum of irreducibles
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• Construct new modules by V ⊗W,V ∨,hom(V,W ) = V ∨ ⊗W
• Theorem (Weyl): If g is semisimple, then any finite-dimensional module is completely reducible
• Integral weights Λ =

∑
i

Zwi, where wi is a fundamental weight such that (wi, α∨j ) = δij

• The dominant integral weights are given by Λ+ =
∑
i

Z≥0wi

– For g = sl(2), we have
∗ g∗ ∼= C
∗ λ 7→ Z
∗ α1 7→ 2
∗ ρ = wj 7→ 1
∗ Verma M(λ) = span(v0, v1, · · · ) corresponding to weights λ, λ− 2, · · · − λ.
∗ Irreducible L(λ) = span(v0, v1, · · · )
∗ Formal characters char M(λ) = e(λ)+e(λ−2)+· · · ∼ e(λ)(1+e(−2)+e(−2)2+· · · ) ∼

e(λ)
1− e(−2) as a formal power series

∗ Similarly, char L(λ) = e(λ) + e(λ− 2) + · · ·
• If g is semisimple, then there is a weight module, highest weight module, and maximal vectors
• Verma modules M(λ) = Endg

hCλ = U(g)⊗U(h) Cλ
• Yields b the Borel subalgebra given by b = n⊕ h, has basis

{
fbv+

}
• Irreducible modules L(λ) = M(λ)/N(λ) where N(λ) is the sum of proper submodules of
M(λ).
• char M(λ) = e(λ)/

∏
α∈Φ+

(1− e(−α))

• Theorem (Weyl): If λ ∈ Λ+, then there is a formula for char L(λ).
• If λ 6∈ Λ+, then char L(λ) can be deduced using composition multiplicity [M(λ) : L(µ)].

– These are obtained from the Kazhdan-Lusztig polynomials
– Extended to category O

43 Some Possible Generalizations
• Swap C with R of Fp
• Finite leads to affine or indefinite
• Lie Algebras lead to Algebraic groups/ Lie groups
• Can also consider Lie super-algebras
• Quantisation leads to quantum groups
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