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These are notes live-tex’d from a course in Moduli Spaces taught by Ben Bakker at the University
of Georgia in Spring 2020. Any errors or inaccuracies are almost certainly my own.
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2 Thursday January 9th
Some references:

• Course Notes

• Hilbert schemes/functors of points: Notes by Stromme

– Slightly more detailed: Nitsure, . . . Hilbert schemes, Fundamentals of Algebraic Geometry

– Mumford, Curves on Surfaces

• Harris-Harrison, Moduli of Curves (chatty and less rigorous)

2.1 Representability
Last time: Fix an S-scheme, i.e. a scheme over S.

Then there is a map

Sch/S −→ Fun(Sch/Sop,Set)
x 7→ hx(T ) = homSch/S(T, x).

where T ′ f−→ T is given by

hx(f) : hx(T ) −→ hx(T ′)
(T 7→ x) 7→ triangles of the form

T ′ X

T

.

Theorem 2.1(Yoneda).

homFun(hx, F ) = F (x).

Corollary 2.2.

homSch/S(x, y) ∼= homFun(hx, hy).

2 THURSDAY JANUARY 9TH 3

https://sites.google.com/view/benbakker/math-8330?authuser=0
http://matwbn.icm.edu.pl/ksiazki/bcp/bcp36/bcp36111.pdf


2.1 Representability

Definition 2.2.1 (Moduli Functor).
A moduli functor is a map

F : (Sch/S)op −→ Set
F (x) = "Families of something over x"
F (f) = "Pullback".

Definition 2.2.2 (Moduli Space).
A moduli space for that “something” appearing above is an M ∈ Obj(Sch/S) such that
F ∼= hM .

Now fix S = Spec (k).

hm is the functor of points over M .

Remark (1) hm(Spec (k)) = M(Spec (k)) ∼= “families over Spec k” = F (Spec k).

Remark (2) hM (M) ∼= F (M) are families over M , and idM ∈ MorSch/S(M,M) = ξUniv is the
universal family.

Every family is uniquely the pullback of ξUniv. This makes it much like a classifying space.

For T ∈ Sch/S,

hM
∼=−→ F

f ∈ hM (T )
∼=−→ F (T ) 3 ξ = F (f)(ξUniv).

where T f−→M and f = hM (f)(idM ).

Remark (3) If M and M ′ both represent F then M ∼= M ′ up to unique isomorphism.

ξM ξM ′

M M ′

M ′ M

ξM ′ ξM

f

g

which shows that f, g must be mutually inverse by using universal properties.

Example 2.1.
A length 2 subscheme of A1

k (??) then

F (S) =
{
V (x2 + bx+ c)

}
⊂ A′5
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2.1 Representability

where b, c ∈ Os(s), which is functorially bijective with {b, c ∈ Os(s)} and F (f) is pullback.

Then F is representable by A2
k(b, c) and the universal object is given by

V (x2 + bx+ c) ⊂ A1(?)× A2(b, c)

where b, c ∈ k[b, c].

Moreover, F ′(S) is the set of effective Cartier divisors in A′5 which are length 2 for every
geometric fiber. F ′′(S) is the set of subschemes of A′5 which are length 2 on all geometric
fibers. In both cases, F (f) is always given by pullback.

Problem: F ′′ is not a good moduli functor, as it is not representable. Consider Spec k[ε]:

(ε + x− 1) (x)(ε, x− 1) (x(x− 1), ε)

F X x x
F ′ X x x
F ′′ X X X

Spec k Spec k[ε] = F ′(Spec k)

F (Spec k[ε]) F (Spec k) = F ′′(Spec k)

TpF
′,′′ P = V (x(x− 1))

i

F (i)

⊂ ∈

We think of TpF
′,′′ as the tangent space at p.

If F is representable, then it is actually the Zariski tangent space.
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2.1 Representability

M(Spec k[ε]) M(Spec k)

TpM p

⊂ ⊂

Spec k

Spec k[ε] Spec OM,p ⊂M

k

OM,p k[ε]

mp (ε)

m2
p 0

?

Moreover, TpM = (mp/m
2
p)∨, and in particular this is a k-vector space. To see the scaling structure,

take λ ∈ k.

λ : k[ε] −→ k[ε]
ε 7→ λε

λ∗ : Spec (k[ε]) −→ Spec (k[ε])

λ : M(Spec (k[ε])) −→M(Spec (k[ε]))

⊂ ⊂

TpM −→ TpM.

Conclusion: If F is representable, for each p ∈ F (Spec k) there exists a unique point of TpF that
are invariant under scaling.

1. If F, F ′, G ∈ Fun((Sch/S)op,Set), there exists a fiber product

F ×G F ′ F ′

F G

2 THURSDAY JANUARY 9TH 6



2.2 Projective Space

where

(F ×G F ′)(T ) = F (T )×G(T ) F
′(T ).

2. This works with the functor of points over a fiber product of schemes X ×T Y for X,Y −→ T ,
where

hX×TY = hX ×ht hY .

3. If F, F ′, G are representable, then so is the fiber product F ×G F ′.

4. For any functor

F : (Sch/S)op −→ Set,

for any T f−→ S there is an induced functor

FT : (Sch/T ) −→ Set
x 7→ F (x).

5. F is representable by M/S implies that FT is representable by MT = M ×S T/T .

2.2 Projective Space
Consider PnZ, i.e. “rank 1 quotient of an n+ 1 dimensional free module”.

Proposition 2.3.
PnZ represents the following functor

F : Schop −→ Set
F (S) = On+1

s −→ L −→ 0/ ∼ .

where ∼ identifies diagrams of the following form:
On+1
s L 0

On+1
s M 0

∼=

and F (f) is given by pullbacks.

Remark PnS represents the following functor:

FS : (Sch/S)op −→ Set

T 7→ FS(T ) =
{
On+1
T −→ L −→ 0

}
/ ∼ .

This gives us a cleaner way of gluing affine data into a scheme.

2 THURSDAY JANUARY 9TH 7



2.2 Projective Space

Proof (of Proposition).
Note: On+1 −→ L −→ 0 is the same as giving n+ 1 sections s1, · · · sn of L, where surjectivity
ensures that they are not the zero section.
So

Fi(S) =
{
On+1
s −→ L −→ 0

}
/ ∼,

with the additional condition that si 6= 0 at any point.
There is a natural transformation Fi −→ F by forgetting the latter condition, and is in fact a
subfunctor.

F ≤ G is a subfunctor iff F (s) ↪→ G(s).
Claim: It is enough to show that each Fi and each Fij are representable, since we have natural
transformations:

Fi F

Fij Fj

and each Fij −→ Fi is an open embedding (on the level of their representing schemes).

Example .
For n = 1, we can glue along open subschemes

F0

F01

F1
For n = 2, we get overlaps of the following form:

F0

F01

F012 F02 F1 F

F12

F2

This claim implies that we can glue together Fi to get a scheme M . We want to show
that M represents F . F (s) (LHS) is equivalent to an open cover Ui of S and sections of
Fi(Ui) satisfying the gluing (RHS).
Going from LHS to RHS isn’t difficult, since for On+1

s −→ L −→ 0, Ui is the locus where
si 6= 0 and by surjectivity, this gives a cover of S.

2 THURSDAY JANUARY 9TH 8



RHS to LHS comes from gluing.

�

Proof (of Claim).

Fi(S) =
{
On+1
S −→ L ∼= Os −→ 0, si 6= 0

}
,

but there are no conditions on the sections other than si.
So specifying Fi(S) is equivalent to specifying n − 1 functions f1 · · · f̂i · · · fn ∈ OS(s) with
fk 6= 0. We know this is representable by An.
We also know Fij is obviously the same set of sequences, where now sj 6= 0 as well, so
we need to specify f0 · · · f̂i · · · fj · · · fn with fj 6= 0. This is representable by An−1 × Gm,
i.e. Spec k[x1, · · · , x̂i, · · · , xn, x−1

j ]. Moreover, Fij ↪→ Fi is open.
What is the compatibility we are using to glue? For any subset I ⊂ {0, · · · , n}, we can define

FI =
{
On+1
s −→ L −→ 0, si 6= 0 for i ∈ I

}
=

ą

i∈I F

Fi,

and FI −→ FJ when I ⊃ J .
�

3 Tuesday January 14th
Last time: Representability of functors, and specifically projective space PnZ constructed via a functor
of points, i.e.

hPnZ : PnZSchop −→ Set

s 7→ PnZ(s) =
{
On+1
s −→ L −→ 0

}
.

for L a line bundle, up to isomorphisms of diagrams:

On+1
s L 0

On+1
s M 0

∼=

That is, line bundles with n+ 1 sections that globally generate it, up to isomorphism.

The point was that for Fi ⊂ PnZ where

Fi(s) =
{
On+1
s −→ L −→ 0

∣∣∣ si is invertible}
are representable and can be glued together, and projective space represents this functor.
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Remark Because projective space represents this functor, there is a universal object:
On+1

PnZ
L 0

OPnZ (1)
and other functors are pullbacks of the universal one. (Moduli Space)

Exercise Show that PnZ is proper over Spec Z. Use the evaluative criterion, i.e. there is a unique lift

Spec k PnZ

Spec R Spec Z

Definition 3.0.1 (Equalizer).
For a category C, we say a diagram X −→ Y ⇒ Z is an equalizer iff it is universal with respect
to the property:

X Y Z

S

∃!

Note that X is the universal object here.

Example 3.1.
For sets, X =

{
y
∣∣∣ f(y) = g(y)

}
for Y f,g−−→ Z.

Definition 3.0.2 (Coequalizer).
A coequalizer is the dual notion,

S

Z Y X

∃!

Example 3.2.
Take C = Sch/S, X/S a scheme, and Xα ⊂ X an open cover. We can take two fiber products,
Xαβ, Xβ,α:
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Xα X Xβ X

Xαβ Xβ Xβα Xα

These are canonically isomorphic.

In Sch/S, we have

∐
αβ
Xαβ

∐
α
Xα X

fαβ

gαβ

where

fαβ : Xαβ −→ Xα

gαβ : Xαβ −→ Xβ;

this is a coequalizer.

Conversely, we can glue schemes. Given Xα −→ Xαβ (schemes over open subschemes), we need to
check triple intersections:

Xα Xβ

Xγ

Then ϕαβ : Xαβ
∼=−→ Xβα must satisfy the cocycle condition:

1.

ϕ−1
αβ

(
Xβα

⋂
Xβγ

)
= Xαβ

⋂
Xαγ ,

noting that the intersection is exactly the fiber product Xβα ×Xβ Xβγ .

2. The following diagram commutes:

3 TUESDAY JANUARY 14TH 11



Xαβ

⋂
Xαγ Xγα

⋂
Xγβ

Xβα

⋂
Xβγ

ϕαβ

ϕαγ

ϕβγ

Then there exists a scheme X/S such that
∐

αβ
Xαβ ⇒

∐
Xα −→ X is a coequalizer; this is the

gluing.

Subfunctors satisfy a patching property because morphisms to schemes are locally determined. Thus
representable functors (e.g. functors of points) have to be (Zariski) sheaves.

Definition 3.0.3 (Zariski Sheaf).
A functor F : (Sch/S)op −→ Set is a Zariski sheaf iff for any scheme T/S and any open cover
Tα, the following is an equalizer:

F (T ) −→
∏

F (Tα)⇒
∏
αβ

F (Tαβ)

where the maps are given by restrictions.

Example 3.3.
Any representable functor is a Zariski sheaf precisely because the gluing is a coequalizer. Thus
if you take the cover ∐

αβ
Tαβ −→

∐
α
Tα −→ T,

since giving a local map to X that agrees on intersections if enough to specify a map from
T −→ X.

Thus any functor represented by a scheme automatically satisfies the sheaf axioms.

Definition 3.0.4 (Subfunctors, Open/Closed Functors).
Suppose we have a morphism F ′ −→ F in the category Fun(Sch/S, Set).
• This is a subfunctor if ι(T ) is injective for all T/S.
• ι is open/closed/locally closed iff for any scheme T/S and any section ξ ∈ F (T ) over
T , then there is an open/closed/locally closed set U ⊂ T such that for all maps of schemes
T ′

f−→ T , we can take the pullback f∗ξ and f∗ξ ∈ F ′(T ′) iff f factors through U .

I.e. we can test if pullbacks are contained in a subfunctors by checking factorization.

Note This is the same as asking if the subfunctor F ′, which maps to F (noting a section is the
same as a map to the functor of points), and since T −→ F and F ′ −→ F , we can form the
fiber product F ′ ×F T :
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F ′ F

F ′ ×F T T
g

ξ

and F ′ ×F T ∼= U .

Note: this is almost tautological!

Thus F ′ −→ F is open/closed/locally closed iff F ′×FT is representable and g is open/closed/locally
closed.

I.e. base change is representable, and (?).

Exercise (Tautologous)

1. If F ′ −→ F is open/closed/locally closed and F is representable, then F ′ is representable
as an open/closed/locally closed subscheme

2. If F is representable, then open/etc subschemes yield open/etc subfunctors

Mantra: Treat functors as spaces. We have a definition of open, so now we’ll define coverings.

Definition 3.0.5 (Open Covers).
A collection of open subfunctors Fα ⊂ F is an open cover iff for any T/S and any section
ξ ∈ F (T ), i.e. ξ : T −→ F , the Tα in the following diagram are an open cover of T :

Fα F

Tα T

ξ

Example 3.4.
Given

F (s) =
{
On+1
s −→ L −→ 0

}
and Fi(s) given by those where si 6= 0 everywhere, the Fi −→ F are an open cover. Because
the sections generate everything, taking the Ti yields an open cover.

Proposition 3.1.
A Zariski sheaf F : (Sch/S)op −→ Set with a representable open cover is representable.

Proof .
Let Fα ⊂ F be an open cover, say each Fα is representable by xα. Form the fiber product
Fαβ = Fα ×F Fβ. Then xβ yields a section (plus some openness condition?), so Fαβ = xαβ
representable. Because Fα ⊂ F , the Fαβ −→ Fα have the correct gluing maps.

3 TUESDAY JANUARY 14TH 13



This follows from Yoneda (schemes embed into functors), and we get maps xαβ −→ xα satisfying
the gluing conditions. Call the gluing scheme x; we’ll show that x represents F .
First produce a map x −→ F from the sheaf axioms. We have a map ξ ∈

∏
α

F (xα), and

because we can pullback, we get a unique element ξ ∈ F (X) coming from the diagram

F (x) −→
∏

F (xα)⇒
∏
αβ

F (xαβ).

�

Lemma 3.2.
If E −→ F is a map of functors and E,F are Zariski sheaves, where there are open covers
Eα −→ E,Fα −→ F with commutative diagrams

E F

Eα Fα
∼=

(i.e. these are isomorphisms locally) then the map is an isomorphism.
With the following diagram, we’re done by the lemma:

X F

Xα Fα
∼=

Example 3.5.
For S and E a locally free coherent Os module,

PE(T ) = {f∗E −→ L −→ 0} / ∼

is a generalization of projectivization, then S admits a cover Ui trivializing E.

Then the restriction Fi −→ PE were Fi(T ) is the above set if f factors through Ui and empty
otherwise. On Ui, E ∼= OniUi , so Fi is representable by Pni−1

Ui
by the proposition.

Note that this is clearly a sheaf.

Example 3.6.
For E locally free over S of rank n, take r < n and consider the functor

Gr(k,E)(T ) = {f∗E −→ Q −→ 0} / ∼

3 TUESDAY JANUARY 14TH 14



(a Grassmannian) where Q is locally free of rank k.

Exercise

a. Show that this is representable

b. For the Plucker embedding

Gr(k,E) −→ P ∧k E,

a section over T is given by f∗E −→ Q −→ 0 corresponding to

∧kf∗E −→ ∧kQ −→ 0,

noting that the left-most term is f∗ ∧k E.

Show that this is a closed subfunctor. (That it’s a functor is clear, that it’s closed is not.)

Take S = Spec k, then E is a k-vector space V , then sections of the Grassmannian are quotients of
V ⊗O that are free of rank n.

Take the subfunctor Gw ⊂ Gr(k, V ) where

Gw(T ) = {OT ⊗ V −→ Q −→ 0} with Q ∼= Ot ⊗W ⊂ Ot ⊗ V.

If we have a splitting V = W ⊕ U , then GW = A(hom(U,W )). If you show it’s closed, it follows
that it’s proper by the exercise at the beginning.

Thursday: Define the Hilbert functor, show it’s representable. The Hilbert scheme functor
gives e.g. for Pn of all flat families of subschemes.

4 Thursday January 16th
4.1 Subfunctors

Definition 4.0.1 (Open Functors).
A functor F ′ ⊂ F : (Sch/S)op −→ Set is open iff for all T ξ−→ F where T = hT and ξ ∈ F (T ).

We can take fiber products:

F ′ F

F ′ ×F T
Representable T

Open

So we can think of “inclusion in F” as being an open condition: for all T/S and ξ ∈ F (T ), there
exists an open U ⊂ T such that for all covers f : T ′ −→ T , we have

F (f)(ξ) = f∗(ξ) ∈ F ′(T ′)

4 THURSDAY JANUARY 16TH 15



4.1 Subfunctors

iff f factors through U .

Suppose U ⊂ T in Sch/T , we then have

hU/T (T ′) =
{
∅ T ′ −→ T doesn’t factor
{pt} otherwise

.

which follows because the literal statement is hU/T (T ′) = homT (T ′, U).

By the definition of the fiber product,

(F ′ ×F T )(T ′) =
{

(a, b) ∈ F ′(T )× T (T )
∣∣∣ ξ(b) = ι(a) in F (T )

}
,

where F ′ ι−→ F and T ξ−→ F .

So note that the RHS diagram here is exactly given by pullbacks, since we identify sections of F/T ′
as sections of F over T/T ′ (?).

F ′ F

F ′ ×F T T

T ′

ι

ξ

f◦ξ

f

We can thus identify

(F ′ ×F T )(T ′) = hU/S(T ′),

and so for U ⊂ T in Sch/S we have hU/S ⊂ hT/S is the functor of maps that factor through U . We
just identify hU/S(T ′) = homS(T ′, U) and hT/S(T ′) = homS(T ′, T ).

Example 4.1.
Gm,Ga. Ga represents giving a global function, Gm represents giving an invertible function.

Gm Ga

T ′ T

x
f∈OT (T )

where T ′ = {f 6= 0} and OT (T ) are global functions.
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4.2 Actual Geometry: Hilbert Schemes

4.2 Actual Geometry: Hilbert Schemes
The best moduli space!

Warning: Unless otherwise stated, assume schemes are Noetherian.

Want to parameterize families of subschemes over a fixed object. Fix k a field, X/k a scheme; we’ll
parameterize subschemes of X.

Definition 4.0.2 (Hilbert Functor).
The Hilbert functor is given by

HilbX/S : (Sch/S)op −→ Set

which sends T to closed subschemes Z ⊂ X ×S T −→ T which are flat over T .

Here flatness replaces the Cartier condition.

Definition 4.0.3 (Flatness).
For X f−→ Y and F a coherent sheaf on X, f is flat over Y iff for all x ∈ X the stalk Fx is a
flat Oy,f(x)-module.

Note that f is flat if Ox is.

Flatness corresponds to varying continuously. Note that everything works out if we only path
with finite covers.

Remark If X/k is projective, so X ⊂ Pnk , we have line bundles Ox(1) = O(1). For any sheaf F over
X, there is a Hilbert polynomial PF (n) = χ(F (n)) ∈ Z[n]. ( i.e. we twist by O(1) n times.)

The cohomology of F isn’t changed by the pushforward into Pn since it’s a closed embedding,
i.e.

χ(X,F ) = χ(Pn, i∗F ) =
∑

(−1)i dimkH
i(Pn, i∗F (n)).

Fact (First) For n� 0, dimkH
0 = dimMn, the nth graded piece of M , which is a graded module

over the homogeneous coordinate ring whose i∗F = M̃ .

In general, for L ample of X and F coherent on X, we can define a Hilbert polynomial,

PF (n) = χ(F ⊗ Ln).

This is an invariant of a polarized projective variety, and in particular subschemes. Over
irreducible bases, flatness corresponds to this invariant being constant.

Proposition 4.1.
For f : X −→ S projective, i.e. there is a factorization:
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4.2 Actual Geometry: Hilbert Schemes

X Pn × S 3 O(1)

S

f

If S is reduced, irreducible, locally Noetherian, then f is flat ⇐⇒ POxs is constant for all
s ∈ S.

To be more precise, look at the base change to X1, and the pullback of the fiber? O
∣∣∣
xi

?

Note: not using the word “integral” here! S is flat ⇐⇒ the hilbert polynomial over the fibers are
constant.

Example 4.2.
The zero-dimensional subschemes Z ∈ Pnk , then PZ is the length of Z, i.e. dimk(OZ), and

PZ(n) = χ(OZ ⊗O(n)) = χ(OZ) = dimkH
0(Z;OZ) = dimkOZ(Z).

For two closed points in P2, PZ = 2.

Consider the affine chart A2 ⊂ P2, which is given by

Spec k[x, y]/(y, x2) ∼= k[x]/(x2)

and PZ = 2. I.e. in flat families, it has to record how the tangent directions come together.

Example 4.3.
Consider the flat family xy = 1 (flat because it’s an open embedding) over k[x], here we have
points running off to infinity.

Proposition 4.2(Modified Characterization of Flatness for Sheaves).
A sheaf F is flat iff PFS is constant.

4.2.1 Proof

Assume S = Spec A for A a local Noetherian domain.

Lemma 4.3.
For F a coherent sheaf on X/A is flat, we can take the cohomology via global sections
H0(X;F (n)). This is an A-module, and is a free A-module for n� 0.

Proof (of Lemma).
Assumed X was projective, so just take X = PnA and let F be the pushforward. There is a
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4.2 Actual Geometry: Hilbert Schemes

correspondence sending F to its ring of homogeneous sections constructed by taking the sheaf
associated to the graded module

∑
n�0

H0(Πm
A ;F (n)) This is equal to ⊕n�0H

0(PmA ;F (n)) and

taking the associated sheaf (Y 7→ Ỹ , as per Hartshorne’s notation) which is free, and thus F is
free.

See tilde construction in Hartshorne, essentially amounts to localizing free tings.
Conversely, take an affine cover Ui of X. We can compute the cohomology using Čech
cohomology, i.e. taking the Čech resolution. We can also assume H i(Pm;F (n)) = 0 for n� 0,
and the Čech complex vanishes in high enough degree. But then there is an exact sequence

0 −→ H0(Pm;F (n)) −→ C0(U ;F (n)) −→ · · · −→ Cm(U ;F (n)) −→ 0.

Assuming F is flat, and using the fact that flatness is a 2 out of 3 property, the images of these
maps are all flat by induction from the right.
Finally, local Noetherian + finitely generated flat implies free.

�

By the lemma, we want to show H0(Pm;F (n)) is free for n� 0 iff the Hilbert polynomials on the
fibers PFS are all constant.

Claim 4.4(1).
It suffices to show that for each point s ∈ Spec A, we have

H0(Xs;FS(n)) = H0(X;F (n))⊗ k(S)

for k(S) the residue field, for n� 0.

Note that PFs measures the rank of the LHS.

=⇒ : The dimension of RHS is constant, whereas the LHS equals PFS (n).

⇐= : If the dimension of the RHS is constant, so the LHS is free.

For a f.g. module over a local ring, testing if localization at closed point and generic point have the
same rank.

For M a finitely generated module over A, find
0 −→ An −→M −→ Q

is surjective after tensoring with Frac(A), and tensoring with k(S) for a closed point, if dimAn =
dimM then Q = 0.

Proof (of Claim 1).
By localizing, we can assume s is a closed point. Since A is Noetherian, its ideal is f.g. and we
have

Am −→ A −→ k(S) −→ 0.

We can tensor with F (viewed as restricting to fiber) to obtain

F (n)m −→ F (n) −→ FS(n) −→ 0.
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Because F is flat, this is still exact.

We can take H∗(x, · ), and for n � 0 only H0 survives. This is the same as tensoring with
H0(x, F (n)).

�

Definition 4.4.1 (Hilbert Polynomial Subfunctor).
Given a polynomial P ∈ Z[n] for X/S projective, we define a subfunctor by picking only those
with Hilbert polynomial p fiberwise as HilbPX/S ⊂ HilbX/S . This is given by Z ⊂ X ×S T with
PZ = P .

Theorem 4.5(Grothendieck).
If S is Noetherian and X/S projective, then HilbPX/S is representable by a projective S-scheme.

See cycle spaces in analytic geometry.

5 Thursday January 23
Some facts about the Hilbert polynomial:

1. For a subscheme Z ⊂ Pnk with degPz = dimZ = n, then

pz(t) = deg z t
n

n! +O(tn−1).

2. We have pz(t) = χ(Oz(t)), consider the sequence

0 −→ Iz(t) −→ O(t)
Pn −→ O

(t)
z −→ 0,

then χ(Iz(t)) = dimH0(Pn, Jz(t)) for t� 0, and pz(0) is the Euler characteristic of OZ .

Serre vanishing, Riemann-Roch, ideal sheaf.

Example 5.1 (Good to keep in mind).
The twisted cubic:
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P3

P1

ι C

Then

pC(t) = (degC)t+ χ(OP1) = 3t+ 1.

5.0.1 Hypersurfaces

Recall that length 2 subschemes of P1 are the same as specifying quadratics that cut them out,
each such Z ⊂ P1 satisfies Z = V (f) where deg f = d and f is homogeneous. So we’ll be looking at
PH0(Pnk ,O(d))∨, and the guess would be that this is HilbPn

k

Resolve the structure sheaf

0 −→ OPn(−d) −→ OPn(t) −→ OD(t) −→ 0.

so we can twist to obtain

0 −→ OPn(t− d) −→ OPn(t) −→ OD(t) −→ 0.

Then

χ(OD(t)) = χ(OPn(t))− χ(OPn(t− d)),

which is (
n+ t

n

)
−
(
n+ t− d

n

)
= dtn−1

(n− 1)! +O(tn−2).
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Lemma 5.1.
Anything with the Hilbert polynomial of a degree d hypersurface is in fact a degree d hyper-
surface.

We want to write a morphism of functors

HilbPn,dPn
k
−→ PH0(Pn,O(d))∨.

which sends flat families to families of equations cutting them out.

Want

Z ⊂ Pn × S −→ Os ⊗H0(Pn,O(d))∨ −→ L −→ 0.

This happens iff

0 −→ L∨ −→ Os ⊗H0(Pn,O(d))

with torsion-free quotient.

Note that we use L∨ instead of Os because of scaling.

We have

0 −→ Iz −→ OPn×S −→ Oz −→ 0
0 −→ Iz(d) −→ OPn×S(d) −→ Oz(d) −→ 0 by twisting.

We then consider πs : Pn × S −→ S, and apply the pushforward to the above sequence noting that
it is not right-exact.

0 πs∗Iz(d) πs∗OPn×S(d) πs∗Oz(d) 0

0 L∨ = Os ⊗H0(Pn,O(d)) locally free 0

Note: above diagram may be off horizontally? Todo: check.

This equality follows from flatness, cohomology, and base change. In particular, we need the following
facts.

The scheme-theoretic fibers, given by H0(Pn, Iz(d)) and H0(Pn,Oz(d)), are all the same dimension.

Using

1. Cohomology and base change, i.e. for X f−→ Y a map of Noetherian schemes (or just finite-type)
and F a sheaf on X which is flat over Y , there is a natural map (not usually an isomorphism)

Rif∗f ⊗ k(y) −→ H i(xy, F |xy),

but is an isomorphism if dimH i(xy, F |xy) is constant, in which case Rif∗f is locally free.
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2. If Z ⊂ Pnk is a degree d hypersurface, then independently we know

dimH0(Pn, Iz(d)) = 1 and dimH0(Pn,Oz(d)) =
(
d+ n

n

)
− 1.

To get a map going backwards, we take the universal degree 2 polynomial and form

V (a00x
2
0 + a11x

2
1 + a12x

2
2 + a01x0x1 + a02x0x2 + a12x1x2) ⊂ P2 × P5.

5.0.2 Example: Twisted Cubics

Consider a map P1 −→ P3 obtained by taking a basis of a homogeneous cubic polynomial. The
canonical example is

(x, y) −→ (x3, x2y, xy2, y3).

Then PC(t) = 3t+ 1, and Hilb3t+1
P3
k

has a component with generic point a twisted cubic, and another
component with points a curve disjoint union a point, and the overlap are nodal curves with a “fat”
3-dimensional point:
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Then PC′ = 1 + P̃ , the hilbert polynomial of just the base without the disjoint point, so this equals
1 + P2,3 = 1 + (3t+ 0) = 3t+ 1. For PC′′ , we take the sequence

0 −→ k −→ OC′′ −→ OC′′reduced −→ 0,

so

PC′′ = 1 + PC′′red = 3t+ 1.

Note: flat families have to have the same constant Hilbert polynomial.

Note that we can get paths in this space from C −→ C ′′ and C ′ −→ C ′′ by collapsing a twisted
cubic onto a plane, and sending a disjoint point crashing into the node on a nodal cubic.

We’re mapping P1 −→ P3, and there is a natural action of PGL(4) y P3, so we get a map
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PGL(4)× P3 −→ P3.

Let c ∈ P3 and let C be the preimage. This induces (?) a map

PGL(4) −→ Hilb3t+1
P3

where the fiber over [C] in the latter is PGL(2) = Aut(P1). By dimension counting, we find that
the dimension of the twisted cubic component is 15− 3 = 12.

The 15 in the other component comes from 3-dim choices of plane, 3-dim choices of a disjoint point,
and

PH0(P2,O(3))∨ ∼= P9,

yielding 15 dimensions.

To show that these are actually different components, we use Zariski tangent spaces. Let T1 be the
tangent space of the twisted cubic component, then

dimT1Hilb3t+1
P3
k

= 12,

and similarly the dimension of the tangent space over the C ′ component is 15.

Fact (from Algebra) Let A be Noetherian and local, then the dimension of the Zariski tangent
space, dimm/m2 ≥ dimA, the Krull dimension. If this is an equality, then A is regular.

Thus dimensions of the tangent spaces give an upper bound.

Proposition: If X/k is projective and P is a Hilbert polynomial, then [Z] ∈ HilbPX/k, i.e. a closed
subscheme of X with hilbert polynomial p (note there’s an ample bundle floating around) then the
tangent space is homOx(Iz,Oz).

6 Tuesday January 28th
Last time: Twisted cubics, given by Hilb3t+1

P3
k

.
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We got lower (?) bounds on the dimension by constructing families, but want an exact dimension.

Key: Let Z ⊂ X be a closed k-dimensional subspace.

Proposition 6.1.
For [z] ∈ HilbPX/k(k), we have an identification of the Zariski tangent space T[z]HilbPX/k =
homOx(Iz,Oz).

Say F : (Sch/K)op −→ Set is a function and let x ∈ F (k). There is an inclusion i : Spec k ↪→
Spec k[ε]. Then there is an induced map F (Spec k[ε]) i∗−→ F (Spec k) where TxF := (i∗)−1(x) 7→ x.
So if F is represented by a scheme H/k, then TxhJ = TxH = (mx/m

2
x)∨ over k.

Will need a criterion for flatness later, esp. for Artinian thickenings.

Lemma 6.2.
Assume A′ is a Noetherian ring and 0 −→ J −→ A′ −→ A −→ 0 with J2 = 0. Assume we
have X ′/Spec A′, and a coherent sheaf F ′ on X ′, where X ′ is Noetherian.
Then F ′ is flat over A′ iff

6 TUESDAY JANUARY 28TH 26



1. F is flat
2. 0 −→ F ⊗A J −→ F ′ is exact.

Take the first exact sequence and tensor with F ′ (which is right-exact), then J ⊗A′ F ′ = J⊗A
canonically. This follows because J = J ⊗A′ A, and there is an isomorphism J ⊗A′ A′ −→ J ⊗A′ A.
And F = F ′ ⊗A′ A is a pullback of F ′. If flat, then tensoring is exact.

6.0.1 Proof of Lemma

Both conditions are necessary since pullbacks of flats are flat (1), and (2) gives the flatness condition.)

Recall that for a module over a Noetherian ring, M/A, M is flat over A iff TorA1 (M,A/p) = 0 for all
prime p. Reason: Tor commutes with direct limits, so M is flat iff TorA1 (M,N) = 0 for all finitely
generated N . Since A is Noetherian, N has a finite filtration N · where Ni/Ni+1 ∼= A/pi. Use the
fact that every ideal is contained in a prime ideal.

Take x ∈ N , this yields a map A −→ N which factors through A/I. If we make such a filtration on
A/I, then we can quotient N by im f where f : A/I −→ N . Continuing inductively, the resulting
filtration must stabilize. So we can assume N = A/I.

Then I is contained in a maximal.

Exercise Finish proof. See Aatiyah Macdonald.

So it’s enough to show that TorA′1 (F ′, A′/p′) = 0 for all primes p′ ⊂ A′.

Observation Since J is nilpotent, J ⊂ p′.

Let p = p′/J , this is a prime ideal.

We have an exact diagram by taking quotients:
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0 0

0 J p′ p 0

0 J A′ A 0

A′/p′ A/p

0 0

So we can tensor with F ′ everywhere, and get a map from kernels to cokernels using the snake
lemma:

0 Tor(A,F ) = 0

0 TorA1
1 (A′/p′, F ′) TorA1

1 (A/p, F ′)

0 J ⊗A′ F ′ p′ ⊗A′ F ′ p⊗A′ F ′ 0

0 J ⊗A′ F ′ A′ ⊗A′ F ′ A⊗A′ F ′ 0

0 A′/p′ ⊗A′ F ′ A/p⊗A′ F ′

0 0

snake

by commuting square

by (2)

snake =

Then by (1), we have TorA′1 (A′/p′, F ′) = TorA′1 (A/p, F ′) = 0.

�
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We will just need this for A′ = k[ε] and A = k.

Proposition 6.3.
TzHilbX/k = homOx(Iz,Oz).

Proof .
Again we have TzHilbX/k ⊂ HilbX/k(k[ε]), and is given by{

Z ′ ⊂ X ×Spec k Spec k[ε]flat/k[ε]
∣∣∣ Z ′ ×Spec k[ε] Spec k = Z

}
.

We have an exact diagram
0 IZ′ OX[ε] OZ′ 0

0

k IZ Ox Oz

k[ε] IZ′ Ox[ε] OZ′

k IZ Ox OZ

0
Note the existence of a splitting above.
Given φ ∈ homOx(IZ ,OZ). We have

IZ′ =
{
f + εg

∣∣∣ f ∈ IZ , φ(f) = g mod IZ , φ(f) ∈ OZ , g mod IZ ∈ Ox/IZ = OZ
}
.

It’s easy to see that Z ′ ⊂ x′, and
1. Z ′ × k = Z
2. It’s flat over k[ε], looking at 0 −→ k ⊗ IZ′ −→ IZ′ .

For the converse, take f ∈ IZ and lift to f ′ = f + εg ∈ IZ′ , then g ∈ Ox is well-defined wrt IZ .
Then g ∈ homOx(Iz,Oz).

�

The main point: these hom sets are extremely computable.

Example: Let Z be a twisted cubic in Hilb3t+1
P3/k(k).

Observation

homOx(IZ ,OZ) = homOX (IZ/I2
Z ,OZ) = homOZ (IZ/I2

Z ,OZ)

If IZ/I2
Z is locally free, these are global sections of the dual, i.e. H0((IZ/I2

Z)∨).
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In this case, Z ↪→ X is regularly embedded, and thus (IZ/I2
Z)∨ should be regarded as the normal

bundle. Sections of the normal bundle match up with directions to take first-order deformations:

For i : C ↪→ P3, there is an exact sequence

0 −→ I/I2 −→ i∗ΩP3 −→ Ωε −→ 0,

taking duals, which induces

0 −→ TC −→ i∗TP3 −→ NC/P3 −→ 0.

How do we compute TP3? Fit into the exact sequence

0 −→ O −→ i∗O(1)4 −→ i∗TP3 −→ 0,

which we can restrict to C.

We have i∗O(1) ∼= OP1(3), so

0 −→ H0Oc −→ H∗(O(3)4) −→ H0(i∗TP3) −→ 0

which looks like k −→ k16 −→ k15. This yields

0 −→ H0(Tc) −→ H0(i∗TP3) −→ H0(NC/P3) −→ H1Tc,

which reduces to 0 −→ k3 −→ k15 −→ k12 −→ 0.
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Example HilbP?
Pn)k
∼= PH0(Pn,O(d))∨ which has dimension

(
n+ 1
n

)
− 1.

Pick Z a k point in this Hilbert scheme, then TZH = hom(IZ ,OZ). Since IZ ∼= OP(−d) which fits
into

0 −→ OPn(−d) −→ OPn −→ OZ −→ 0.

We can identify

hom(IZ ,OZ) = H0((IZ/I2
Z)∨) = H0(OZ(d)).

0 OPn OPn(d) OZ(d) 0

0 H0(OPn) H0(OPn(d)) H0(OZ(d)) 0

dim: k k(n+d
n ) k(n+d

n )−1

Example 6.1.
The tangent space of the following cubic:
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We can identify

homOk(IZ ,OZ) = H0((IZ/I2
Z)∨) = 3 +H0((IZ0/I

2
Z0)∨),

where the latter equals H0
(
O1

∣∣∣
z0
⊕O(ζ)

∣∣∣
z0

)
yielding

3 + 9 = 12.

7 Thursday January 30th
Recall how we constructed the hilbert scheme of hypersurfaces

HilbPm,dPn
k

= PH0(Pn;O(d))∨

A section HilbPPn
k
(s) corresponds to z ∈ Pns . We can look at the exact sequence

0 −→ IZ(m) −→ OPnS
restrict−−−−→ Oz(m) −→ 0.

as Pns
πs−→ S, so we can pushforward along π, which is left-exact, so

0 −→ πs∗IZ(m) −→ πs∗OPnS = OS ⊗H0(Pn;O(m)) −→ Oz(m) −→ R1πs∗IZ(m) −→ · · · .

Idea: Z ⊂ Pnk will be determined (in families!) by the space of degree d polynomials vanishing on Z
(?), i.e.

H0(Pn, Iz(m)) ⊂ H0(Pn,O(m))

for m very large. This would give a map of functors

HilbPPn
k
−→ Gr(N,H0(Pn,O(m))).

If this is a closed subfunctor, a closed subfunctor of a representable functor is representable and
we’re done .

Note: We need to get an m uniform in Z, and more concretely:

1. First need to make sense of what it means for Z to be determined by H0(Pn, IZ(m)) for m
only depending on P .

2. This works point by point, but we need to do this in families. I.e. we’ll use the previous exact
sequence, and want the R1 to vanish.

Slogan: We need uniform vanishing statements. There is a convenient way to package the vanishing
requirements needed here. From now on, take k = k and Pn = Pnk .
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Definition 7.0.1 (m-Regularity of Coherent Sheaves).
A coherent sheaf F on Pn is m-regular if H i(Pn;F (m− i)) = 0 for all i > 0.

Example 7.1.
Consider OPn , this is 0-regular. Line bundles on Pn only have 0 and top cohomology. Just
need to check that Hn(Pn;O(−n)) = 0, but by Serre duality this is

H0(Pn;O(n)⊗ ωPn)∨ = H0(Pn;O(−1))∨ = 0.

Proposition 7.1.
Assume F is m-regular. Then

1. There is a natural multiplication map from linear forms on Pn,

H0(Pn;O(1))⊗H0(Pn;F (k)) −→ H0(Pn;F (k + 1))

which is surjective for k ≥ n.
Think of this as a graded module, this tells you the lowest number of small grade pieces
needed to determine the entire thing.

2. F is m′-regular for m′ ≥ m.
3. F (k) is globally generated for k ≥ m, i.e. the restriction

H0(Pn;F (k))⊗OPn −→ F (k) −→ 0

is exact (i.e. surjective).

Example 7.2.
O is m-regular for m ≥ 0 implies O(k) is −k-regular and is also m-regular form ≥ −k.

7.0.1 Proof of 2 and 3

Induction on dimension of n in Pn. Coherent sheaves on P0 are vector spaces, so no higher
cohomology.

Step 1:

Take a generic hyperplane H ⊂ Pn, there is an exact sequence

0 −→ O(−1) −→ O −→ OH −→ 0

where OH is the structure sheaf. Tensoring with H remains exact, so we get

0 −→ F (−1) −→ F −→ FH −→ 0.

Why? An ⊂ Pn, let A = OPn(An) be the polynomial ring over An. Then the restriction of the first
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sequence to An yields

0 −→ A
f−→ A −→ A/f −→ 0,

and thus we want

F
f−→ F −→ F/fF −→ 0

which results after restricting the second sequence to An.

Thus we just want f to not be a zero divisor. If we take f not vanishing on any associated point of
F , then this will be exact. Associated points: generic points arising by supports of sections of F . F
is coherent, so it has finitely many associated points.

If H does not contain any of the associated points of F , then the second sequence is indeed exact.

Step 2:

Twist up by k to obtain

0 −→ F (k − 1) −→ F (k) −→ FH(k) −→ 0.

Look at the LES in cohomology to get

H i(F (m− i)) −→ H i(FH(m− i)) −→ H i+1(F (m− (i+ 1))).

So FH is m-regular. By induction, this proves statements 1 and 2 for all FH .

So take k = m+ 1− i and consider

H i(F (m− i)) −→ H i(F (m+ 1− i)) −→ H i(FH(m+ 1− i)).

We know 2 is satisfied, so the RHS is zero, and we know the LHS is zero, so the middle term is zero.
Thus F itself is m+ 1 regular, and by inducting on m we get statement 2.

By multiplication maps, we get a commutative diagram:

H0(O(1))⊗H0(F (k)) H0(O(1))⊗H0(FH(k))

H0(F (k)) H0(F (k + 1)) H0(FH(k + 1))

β

H

H⊗id

α

We’d like to show the diagonal map is surjective.

Observations

1. The top map is a surjection, since

H0(F (k)) −→ H0(FH(k)) −→ H1(F (k − 1)) = 0

for k ≥ m by (2).

2. The right-hand map is surjective for k ≥ m.

3. ker(α) ⊂ im (β) by a small diagram chase, so β is surjective.

This shows (1) and (2) completely.
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Proof (of (3)).
We know F (k) is globally generated for k � 0. Thus for all k ≥ m, F (k) is globally generated
by (1).

�

Theorem 7.2.
Let P ∈ Q[t] be a Hilbert polynomial. There exists an m0 only depending on P such that for
all subschemes Z ⊂ Pnk with hilbert polynomial PZ = P , the ideal sheaf Iz is m0-regular.

7.0.2 Proof of Theorem

Induct on n. For n = 0, again clear because higher cohomology vanishes and there are no nontrivial
subschemes.

For a fixed Z, pick H in Pn (and setting I := Iz for notation) such that

0 −→ I(−1) −→ I −→ IH −→ 0

is exact. Note that the hilbert polynomial PIH (t) = PI(t) − PI(t − 1) and PI = POPn − PZ . By
induction, there exists some m1 depending only on P such that IH is m1-regular. We get

H i−1(IH(k)) −→ H i(I(k − 1)) −→ H i(I(k)) −→ H i(IH(k)),

and for k ≥ m1 − i the LHS and RHS vanish so we get an isomorphism in the middle. By Serre
vanishing, for k � 0 we have H i(I(k)) = 0 and thus H i(I(k)) = 0 for k ≥ mi − i. This works for all
i > 1, we have H i(I(mi − i)) = 0.

We now need to find m0 ≥ m1 such that H1(I(m0 − 1)) = 0 (trickiest part of the proof).

Lemma 7.3.
The sequence

(
dimH1(I(k))

)
k≥mi−1

is strictly decreasing.

Note: h1 = dimH1.

Given the lemma, it’s enough to take m0 ≥ m1 + h1(I(m1 − 1)). Consider the LES we have a
surjection

H0(OZ(m1 − 1)) −→ H1(I(m1 − 1)) −→ 0.

So the dimension of the LHS is equal to PZ(m1 − 1), using the fact that terms vanish and make the
Euler characteristic equal to PZ . Thus we can take m0 = m1 + P (m1 − 1).

Proof (of Lemma).
Considering the LES

H0(I(k + 1)) αk+1−−−→ H0(IH(k + 1)) −→ H1(I(k)) −→ H1(I(k + 1)) −→ 0,

where the last term is zero because IH is m1-regular. So the sequence h1(I(k)) is non-increasing.
Observation: If it does not strictly decrease for some k, then there is an equality on the RHS,
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which makes αk+1 surjective. This means that αk+2 is surjective, since

H0(O(1))⊗H0(IH(k + 1))� H0(IH(k + 2)).

So if one is surjective, everything above it is surjective, but by Serre vanishing we eventually
get zeros. So αk+i is surjective for all i ≥ 1, contradicting Serre vanishing, since the RHS are
isomorphisms for all k.

�

Thus for any Z ⊂ Pnk with PZ = P , we uniformly know that IZ is m0-regular for some m0 depending
only on P .

Claim 7.4.
Z is determined by the degree m0 polynomials vanishing on Z, i.e. H0(Iz(m0)) as a subspace
of all degree m0 polynomials H0(O(m0)) and has fixed dimension. We have H i(IZ(m0)) = 0
for all i > 0, and in particular h0(IZ(m0)) = P (m0) is constant.

It is determined by these polynomials because we have a sequence

0 −→ IZ(m0) −→ O(m0) −→ OZ(m0) −→ 0.

We can get a commuting diagram over it

0 −→ H0(IZ(m0))⊗OPn −→ H0(O(m0))⊗OPn −→ · · ·

where the middle map down is just evaluation and.the first map down is a surjection. Hence IZ(m0),
hence OZ , hence Z is determined by H0(IZ(m0)).

�

Next time: we’ll show that this is a subfunctor that is locally closed.

8 Thursday February 6th
For k = k, and C/k a smooth projective curve, then HilbnC/k = SymnC.

For X/k a smooth projective surface, HilbnX/k 6= SymnX, there is a map (the Hilbert-Chow map)

HilbnX/k −→ SymnX

Z 7→ supp(Z)
U = reduced subschemes 7→ U ′ = reduced multisets

P1 7→ (x, x).

Example 8.1.
Consider A2 × A2 under the Z/2Z action

((x1, y1), (x2, y2)) 7→ ((x2, y2), (x1, y1)).
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Then

(A2)2/Z/(2) = Spec k[x1, y1, x2, y2]Z/2 = Spec k[x1x2, y1y2, x1 + x2, y1 + y2, x1y2 + x2y1, · · · ]

with a bunch of symmetric polynomials adjoined.

Example 8.2.
Take A2 and consider Hilb3

P2 . If I is a monomial ideal in A2, there is a nice picture. We can
identify the tangent space

TZHilbnP2 = homOP2 (I2,OZ) =
⊕

hom(IZi ,OZi)

if Z =
∐
Zi. If I is supported at 0, then we can identify the ideal with the generators it leaves

out.

Example 8.3.
I = (x2, xy, y2):

Example 8.4.
I = (x6, x2y2, xy4, y5):
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Example 8.5.
I = (x2, y). Let e = x2, f = y.

By comparing rows to columns, we obtain a relation ye = x2f . Write O = {1, x}, then note
that this relation is trivial in O since y = x2 = 0.
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Thus hom(I,O) = hom(k2, k2) is 4-dimensional.

Note that C/k for curves is an important case to know. Take Z ⊂ C × Cn, then quotient by the
symmetric group Sn (need to show this can be done), then Z/Sn ⊂ C × SymnC and composing
with the functor Hilb represents yields a map SymnC −→ HilbnC/k. This is bijective on points, and
a tangent space computation shows it’s an isomorphism.

Example 8.6.
Consider the nodal cubic in P2:

Consider the open subscheme V ⊂ Hilb2
C/k of points z ⊂ U for U ⊂ C open.

We can normalize:
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This yields a map fro P1\2 points. This gives us a stratification, i.e. a locally closed embedding

(z supported on U)
∐

(1 point at p)
∐

(both points at p) −→ Hilb2
C/k.

The first locus is given by the complement of two lines:
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The third locus is given by arrows at p pointing in any direction, which gives a copy of P1.

The second is P1 minus two points.

Above each point is a nodal cubic with two marked points, and moving the base point towards
a line correspond to moving one of the points toward the node:
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8.1 Representability

More precisely, we’re considering the cover P1 \ 2 points −→ C and thinking about ways in
which two points and approach the missing points. These give specific tangent directions at
the node on the cubic, depending on how this approach happens – either both points approach
missing point #1, both approach missing point #2, or each approach a separate missing point.

Useful example to think about. Not normal, reduced, but glued in a weird way. Possibly easier to
think about: cuspidal cubic.

8.1 Representability

Definition 8.0.1 (m-Regularity).
A coherent sheaf F on Pnk for k a field is m-regular iff H i(F (m− i)) = 0 for all i > 0.

Proposition 8.1.
For every Hilbert polynomial P , there exists some m0 depending on P such that any Z ⊂ Pnk
with PZ = P satisfies IZ is m-regular.

Remark (1) F is m- regular iff F = F ×Spec k Spec k is m-regular.

Remark (2) The m0 produced does not depend on k.
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8.1 Representability

Lemma 8.2.
For m0 = m0(P ) and N = N(P ), we have an embedding as a subfunctor

HilbPPmZ −→ Gr(N,H0(PnZ,O(m0))∨).

For any Z ⊂ PnS flat over S with PZs = P for all s ∈ S points, we want to send this to

0 −→ R∨ −→ Os ⊗H0(PnZ,O(m0))∨ −→ Q −→ 0

or equivalently

0 −→ Q∨ −→ Os ⊗H0(PnZ,O(m0)) −→ R −→ 0

with R locally free.

So instead of the quotient Q being locally free, we can ask for the sub Q∨ to be locally free instead,
which is a weaker condition.

We thus send Z to

0 −→ πs∗IZ(m0) −→ πs∗OPns (m0) = Os ⊗H0(Pn,O(m0))

which we obtain by taking the pushforward from this square:

Pns PnZ

S Spec Z

πs

We have a sequence 0 −→ IZ(m0) −→ O(m0) −→ OZ(m0) −→ 0.

Review base-change!

Thus we get a sequence

0 −→ πs∗IZ(m0) −→ πs∗O(mo) −→ πs∗OZ(m0) −→ R1πs∗IZ(m0) −→ · · · .

Step 1:

R1π∗IZ(m0) = 0.

By base change, it’s enough to show that H1(Zs, IZs(m0)) = 0. This follows by m0-regularity.

Step 2:

πs∗IZ(m0) and πs∗OZ(m0) are locally free.

For all i > 0, we have

• Riπs∗IZ(m0) = 0 by m0-regularity,
• Riπs∗O(m0) = 0 by base change,
• and thus Riπs∗OZ(m0) = 0.
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Step 3:

πs∗IZ(m0) has rank N = N(P ).

Again by base change, there is a map π∗IZ(m0)⊗ k(s) −→ H0(ZS , IZs(m0)) which we know is an
isomorphism. Because hi(IZS (m0)) = 0 for i > 0 by m-regularity and

h0(IZS (m0)) = PO(m0)− POZs (m0) = PO(m0)− P (m0).

This yields a well-defined functor

HilbPPnZ −→ Gr(N,H0(Pn,O(m0))∨).

Note that we’ve just said what happens to objects; strictly speaking we should define what
happens for morphisms, but they’re always give by pullback.

We want to show injectivity, i.e. that we can recover Z from the data of a number f polynomials
vanishing on it, which is the data 0 −→ πs∗IZ(m0) −→ Os ⊗H0(Pn,O(m0)).

Given

0 −→ Q∨ −→ Os ⊗H0(Pn,O(m0)) = πs∗OPnS (m0)

we get a diagram

π∗sQ
∨ OPns (m0)

I(m0)

where Q∨ = πs∗IZ(m0), so we’re looking at

Q∨ = π∗s∗πs∗IZ(m0) OPns (m0)

I(m0)

�

The surjectivity here follows from OZs ⊗H0(IZs(m0)) −→ IZs(m0) (?).

Given a universal family G = Gr(N,H0(O(m0))∨) and Q∨ ⊂ OG⊗H0(O(m0))∨, we obtain IW ⊂ OG
and W ⊂ PnG.

9 Tuesday February 18th

Theorem 9.1.
Let X/S be a projective subscheme (i.e. X ⊂ Pn for some n). The Hilbert functor of flat
families HilbpX/S is representable by a projective S-scheme.
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Note that without a fixed P , this is locally of finite type but not finite type. After fixing P , it
becomes finite type.

Example 9.1.
For a curve of genus g, there is a smooth family C π−→ S with S finite-type over Z where every
genus g curve appears as a fiber.

I.e., genus g curves form a bounded family (here there are only finitely many algebraic parameters
to specify a curve).

How did we construct? Take the third power of the canonical bundle and show it’s very ample, so it
embeds into some projective space and has a hilbert polynomial.

In fact, there is a finite type moduli stack Mg/Z of genus g curves. There will be a map S �Mg,
noting that C is not a moduli space since it may have redundancy.

We’ll use the fact that a finite-type scheme surjects ontoMg to show it is finite type.

Remark (1) If X/S is proper, we can’t talk about the Hilbert polynomial, but the functor HilbX/S
is still representable by a locally finite-type scheme with connected components which are
proper over S.

Remark (2) If X/S is quasiprojective (so locally closed, i.e. X ↪→ PnS), then HilbPX/S(T ) :=
{z ∈ XT projective, flat over S with fiberwise Hilbert polynomial P } is still representable, but
now by a quasiprojective scheme.

Example 9.2.
Length Z subschemes of A1: representable by A2.
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Upstairs: parametrizing length 1 subschemes, i.e. points.

Remark (3) If X ⊂ PnS and E is a coherent sheaf on X, then

QuotPE,X/S(T ) = {j∗E −→ F −→ 0, over XT −→ T, F flat with fiberwise Hilbert polynomial P}

where T g−→ S is representable by an S-projective scheme.

Example 9.3.
Take E = Ox, X and S a point, and E is a vector space, then QuotPE/S = Gr(rank, E).

Note that the Hilbert scheme of 2 points on a surface is more complicated than just the symmetric
product.

Example 9.4.
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9.1 Cubic Surfaces

(
A2
)3
−→

(
A2
)2

⊇ ∆ := ∆01 ×∆02 −→
(
A2
)2

where ∆ij denote the diagonals on the i, j factors. Here all associate points of ∆ dominate the
image, but it is not flat. Note that if we take the complement of the diagonal in the image,
then the restriction ∆′ −→

(
A2
)2
\D is in fact flat.

Example 9.5 (Mumford).
The Hilbert scheme may have nontrivial scheme structure, i.e. this will be a “nice” hilbert
scheme with is generally not reduced. We will find a component H of a HilbPP3

C
whose generic

point corresponds to a smooth irreducible C ⊂ P3 which is generically non-reduced.

9.1 Cubic Surfaces
See Hartshorne Chapter 5.

Let X ⊂ P3 be a smooth cubic surface, then O(1) on P3 restricts to a divisor class H of a hyperplane
section, i.e. the associated line bundle Ox(H) = Ox(1).

Two important facts:

1. X is the blowup of P2 minus 6 points (replace each point with a curve). There is thus a
blowdown map X π−→ P2.
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9.1 Cubic Surfaces

Let ` = π∗(line), then a fact is that 3`− E1 − · · · − E6 (where Ei are the curves about the pi) is
very ample and embeds X into P3 as a cubic.

2. Every smooth cubic surface X has precisely 27 lines. Any 6 pairwise skew lines arise as
E1, · · · , E6 as in the previous construction.

Take an X and a line L ⊂ X. Consider any C in the linear system |4H + 2L|. Fact: O(4H + 2L) is
very ample, so embeds into a big projective space, and thus C is smooth and irreducible by Bertini.

Then the hilbert polynomial of C is of the form at+ b where b = χ(Oc), the Euler characteristic of
the structure sheaf of C, and a = degC. So we’ll compute these.

We have degC = H · C (intersection) = H · (4H + 2L) = 4H2 + 2H · L = 4 · 3 + 2 = 14. The
intersections here correspond to taking hyperplane sections, intersecting with X to get a curve, and
counting intersection points:
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9.1 Cubic Surfaces

In general, for X a surface and C ⊂ X a smooth curve, then ωC = ωX(C)
∣∣∣
C
. Since X ⊂ P3,

we have ωX = ωP3(X)
∣∣∣
X

= O(−4) ⊕ O(3)
∣∣∣
X

= OX(−1) = OX(−H). We also have ωC =

ωX(C)
∣∣∣
X

= (OX(−H)⊕OX(4H + 2L))
∣∣∣
C
, so taking degrees yields degωC = C · (3H + 2L) =

(4H + 2L)(3H + 2L) = 12H2 + 14HL+ 4L2 = 36 + 14 + (−4) = 46. Since this equals 2g(C)− 2, we
can conclude that the genus is given by g(C) = 24.

Thus P is given by 14t+ (1− g) = 14t− 23.

Good to know: moving a cubic surface moves the lines, you get a monodromy action, and the
Weyl group of E6 acts transitively so lines look the same.

Claim: There is a flat family Z ⊂ P3
S with fiberwise hilbert polynomial P of cures of this form such

that the image of the map S −→ HilbPP3 has dimension 56.

Proof: We can compute the dimension of the space of smooth cubic surfaces, since these live in

PH0(P3,O(3)), which has dimension
(

3 + 3
3

)
− 1 = 19. Since there are 27 lines, the dimension of

the space of such cubics with a choices of a line is also 19. Choose a general C in the linear system
|4H + 2L| will add dim |4H + 2L| = dimPH0(x,Ox(C)). We have an exact sequence
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9.1 Cubic Surfaces

0 −→ OX −→ OX(C) −→ OC(C) −→ 0
H0(0 −→ OX −→ OX(C) −→ OC(C) −→ 0)

.

Since the first H0 vanishes (?) we get an isomorphism.

By Riemann-Roch, we have

degOC(C) = C2 = (4H + 2L)2 = 16H2 + 16HL+ 4L2 = 64− 4 = 60.

We can also compute χ(OC(C)) = 60− 23 = 37. We have

h0(OC(C))− h1(OC(C)) = h0(OC(C))− h0(ωC(−C))) = 2(23)− 60 < 0,

so there are no sections.

So dim |4H + 2L| = 37. Thus letting S be the space of cubic surfaces X, a line L, and a general
C ∈ |4H + 2L|, dimS = 56. We get a map S −→ HilbPP3 , and we need to check that the fibers are
0-dimensional (so there are no redundancies).

We then just need that every such C lies on a unique cubic. Why does this have to be the case? If
C ⊂ X,X ′ then C ⊂ X

⋂
X ′ is degree 14 curve sitting inside a degree 6 curve, which can’t happen.

Thus if H is a component of HilbPP3 containing the image of S, the dimH ≥ 56.

Claim 3: For any C above, we have dimTCH = 57.

When the subscheme is smooth, we have an identification with sections of the normal bundle
TCH = H0(C,NC/P3). There’s an exact sequence

0 −→ NC/X = OC(C) −→ NC/P3 −→ NX/P3

∣∣∣
C

= OC(x)
∣∣∣
C

= OC(3H)
∣∣∣
C
−→ 0.

Note ωC = OC(3H + 2L).

As we computed,

H0(OC(C)) = 37
H1(OC(C)) = 0

.

So we need to understand the right-hand term H0(OC(3H)). By Serre duality, this equals
h1(ωC(−3H)) = h1(OC(3L)). We get an exact sequence

0 −→ OX(2L− C) −→ OX(2L) −→ OC(2L) −→ 0.
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Taking homology, we have 0 −→ 0 −→ 1 −→ 1 −→ 0 since 2L − C = −4H. Computing degrees
yields h0(OC(3H)) = 20.

Thus the original exact sequence yields

0 −→ 37 −→? −→ 20 −→ 0,

so ? = 57 and thus dimNC/P3 = 57.

Claim 3: dimH = 56.

9.1.1 Proof That the Dimension is 56

Suppose otherwise. Then we have a family over Hred of smooth curves, where f(S) ⊂ Hred, where
the generic element is not on a cubic or any lower degree surface.

Let C ′ be a generic fiber. Then C ′ lies on a pencil of quartics, i.e. 2 linearly independent quartics.
Let I = IC′ be the ideal of this curve in P3, there is a SES

0 −→ I(4) −→ O(4) −→ OC(4) −→ 0.

It can be shown that dimH0(I(4)) ≥ 2.

Fact A generic quartic in this pencil is smooth (can be argued because of low degree and smoothness).

We can compute the dimension of quartics, which is
(

4 + 3
3

)
− 1 = 35− 1 = 34. The dimension of

C ′s lying on a fixed quartic is 24. But then the dimension of the image in the Hilbert scheme is at
most 24 + 34− 1 = 57. It can be shown that the picard rank of such a quartic is 1, generated by
O(1), so this is a strict inequality, which is a contradiction since dim Hilb = 56.

�

Use the fact that these curves are K3 surfaces? Get the fact about the generator of the picard group
from hodge theory.

So we can deform curves a bit, but not construct an algebraic family that escapes a particular cubic.

10 Tuesday February 25th
Let k be a field, X/k projective, then the k-points HilbPX/k(k) corresponds to closed subschemes
Z ⊂ X with hilbert polynomial Pz = P . Given a P , we want to understand the local structure of
HilbpX/k, i.e. diagrams of the form
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HilbPX/k

Spec (k) Spec (A) Spec (k)

A/k Artinian local

p ?

Example 10.1.
For A = k[ε], the set of extensions is the Zariski tangent space.

Definition 10.0.1 (Category of Artinian Algebras).
Let (Art/k) be the category of local Artinian k-algebras with local residue field k.

Note that these will be the types of algebras appearing in the above diagrams.

Remark This category has fiber coproducts, i.e. there are pushouts:

C A

B A⊗C B

There are also fibered products,

A×C B B

A C

Here, A×C B :=
{

(a, b)
∣∣∣ f(a) = g(b)

}
⊂ A×B.

Example 10.2.
If A = B = k[ε]/(ε2) and C = k, then A×C B = k[ε1, ε2]/(ε1, ε2)2

Note that on the Spec side, these should be viewed as

Spec (A)
∐

Spec (C)
Spec (B) = Spec (A×C B).
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Definition 10.0.2 (Deformation Functor (loose definition)).
A deformation functor is a functor F : (Art/k) −→ Set such that F (k) = {pt} is a singleton.

Example 10.3.
Let X/k be any scheme and let x ∈ X(k) be a k-point. We can consider the deformation
functor F such that F (A) is the set of extensions f of the following form:

X

Spec (k) Spec (A) Spec (k)

x f

If A′ −→ A is a morphism, then we define F (A′) −→ F (A) is defined because we can precompose
to fill in the following diagram

X

Spec (k) Spec (k)

Spec (A) Spec (A′)

∃f̃ f

So this is indeed a deformation functor.

Example 10.4 (Motivating).
The Zariski tangent space on the nodal cubic doesn’t “see” the two branches, so we allow
“second order” tangent vectors.

We can consider parametrizing the functors above as FX,x(A), which is isomorphic to FSpec (Ox)X,x
and further isomorphic to FSpec Ôxx,X

. This is because for Artinian algebras, we have maps

Spec (Ox,X)/mN −→ Spec OX,x −→ X.

Remark ÔX,x will be determined by FX,x.

Example 10.5.
Consider y2 = x2(x+ 1), and think about solving this over k[t]/tn with solutions equivalent
to (0, 0) mod t.
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Note that the ‘second order’ tangent vector comes from Spec k[t]/t3.

We can write FX,x(A) = π−1(x) where

homSch/k(Spec k,X) π−→ homSch/k(Spec k, x) 3 x.

Thus

FX,x(A) = homSch/k(Spec A,Spec Ox,X) = homk-alg(ÔX,x, A).

Example 10.6.
Given any local k-algebra R, we can consider

hR : (Art/k) −→ Set
A 7→ hom(R,A).

and

hSpec R : (ArtSch/k)op −→ Set
Spec (A) 7→ hom(Spec A,Spec R).

Definition 10.0.3 (Representable Deformations).
A deformation F is representable if it is of the form hR as above for some R ∈ Art/k.

Remark There is a Yoneda Lemma for A ∈ Art/k,
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homFun(hA, F ) = F (A).

We are thus looking for things that are representable in a larger category, which restrict.

Definition 10.0.4 (Pro-representability).
A deformation functor is pro-representable if it is of the form hR for R a complete local k-algebra
(i.e. a limit of Artinian local k-algebras).

We will see that there are simple criteria for a deformation functor to be pro-representable. This will
eventually give us the complete local ring, which will give us the scheme representing the functor
we want.

Remark It is difficult to understand even FX,x(A) directly, but it’s easier to understand small
extensions.

Definition 10.0.5 (Small Extensions).
A small extension is a SES of Artinian k-algebras of the form

0 −→ J −→ A′ −→ A −→ 0

such that J is annihilated by the maximal ideal fo A′.

Lemma 10.1.
Given any quotient B −→ A −→ 0 of Artinian k-algebras, there is a sequence of small
extensions (quotients):

0

B0 B1 · · · Bn = A

B

This yields
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Spec A Spec B

Spec B0

...

Spec Bn

where the Spec Bi are all small.

Remark In most cases, extending deformations over small extensions is easy.

Example 10.7.
Suppose k = k and let X/k be connected. We have a picard functor

Pic X/k : (Sch/k)op −→ Set
S 7→ Pic (XS)/Pic (S).

If we take a point x ∈ Pic X/k(k), which is equivalent to line bundles on X up to equivalence, we
obtain a deformation functor

F := FPic X/k,x
−→ Set

A 7→ π−1(x)

where

π : Pic X/k(Spec A) −→ Pic X/k(Spec k)
π−1(x) 7→ x.

This is given by taking a line bundle on the thickening and restricting to a closed point. Thus the
functor is given by sending A to the set of line bundles on XA which restrict to Xx.

That is, F (A) ⊂ Pic X/k(Spec A) which restrict to x. So just pick the subspace Pic (XA) (base
changing to A) which restrict.
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There is a natural identification of Pic (XA) = H1(XA,O∗XA). If

0 −→ J −→ A′ −→ A −→ 0

is a thickening of Artinian k-algebras, there is a restriction map of invertible functions

O∗XA −→ O
∗
X′A
−→ 0

which is surjective since the map on structure sheaves is surjective and its a nilpotent extension.
The kernel is then just OXA′ ⊗ J .

If this is a small extension, we get a SES

0 −→ OX ⊗ J −→ O∗XA′ −→ O
∗
xA
−→ 0.

Taking the LES in cohomology, we obtain

H1OX ⊗ J −→ H1O∗XA′ −→ H1O∗xA −→ H0OX ⊗ J.

Thus there is an obstruction class in H2, and the ambiguity is detected by H1. Thus H1 is referred
to as the deformation space, since it counts the extensions, and H2 is the obstruction space.

11 Thursday February 27th
Big picture idea: We have moduli functors, such as

FS′ : (Sch/k)op −→ Set
Hilb : S −→ flat subschemes of XS

Pic : S −→ Pic (XS)/Pic (S)
Def : S −→ flat families /S, smooth, finite, of genus g.

Deformation Theory: Choose a point f the scheme representing FS′ with ξ0 ∈ Fgl(Spec K). Define

Floc : (Artinian local schemes/K)op −→ Set.

Spec (K) Spec (A) F (i)−1(ξ0) Fgr(Spec K)

Fgl(Spec K)

i

F (i)

Deformation functors: Let F : (Art/k) −→ Set where F (k) is a point. Denote Ârt/k the set of
complete local k-algebras. Since Art/k ⊂ Ârt/k, we can make extensions F̂ by just taking limits:

11 THURSDAY FEBRUARY 27TH 57



Art/k Set

lim
←
R/mn

R = R ∈ Ârt/k

F

F̂

where we define F̂ (R) = lim
←
F (R/mn

R).

Question When is F pro-representable, which happens iff F̂ is representable? In particular, we
want hR

∼=−→ F̂ for R ∈ Ârt/k, so

hR = homÂrt/k(R, · ) = hom?( · ,Spec k).

Example 11.1.
Let Fgl = HilbpX/k, which is represented byH/k. Then ξ0 = Fgl(k) = H(k) =

{
Z ⊂ X

∣∣∣ Pz = f
}
.

Then Floc is representable by ÔH/ξ0 .

Definition 11.0.1 (Thickening).
Given an Artinian k-algebra A ∈ Art/k, a thickening is an A′ ∈ Art/k such that 0 −→ J −→
A′ −→ A −→ 0, so Spec A ↪→ Spec A′.

Definition 11.0.2 (Small Thickening).
A small thickening is a thickening such that 0 = mA′J , so J becomes a module for the residue
field, and dimk J = 1.

Lemma 11.1.
Any thickening of A, say B −→ A, fits into a diagram:
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0

J A′ A 0

0 I B A 0

I ′ I ′

0 0

Proof .
We just need I ′ ⊂ I with mSI ⊂ J ′ ⊂ I ⇐⇒ JmB = 0.

�

Choose J ′ to be a preimage of a codimension 1 vector space in I/mBI. Thus J = I/I ′ is 1-
dimensional.

Thus any thickening A can be obtained by a sequence of small thickenings. By the lemma, in
principle F and thus F̂ are determined by their behavior under small extensions.

11.0.1 Example

Consider Pic , fix X/k, start with a line bundle L0 ∈ Pic (x)/Pic (k) = Pic (x) and the deformation
functor F (A) being the set of line bundles L on XAwith L|x ∼= L0, modulo isomorphism.

Note that this yields a diagram

x k

XA Spec A

unique closed point

This is equal to (Ix)−1(L0), where Pic (Xa)
Ix−→ Pic (x).

If

0 −→ J −→ A′ −→ A −→ 0

is a small thickening, we can identify
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0 J ⊗x Ox ∼= Ox OXA′ OXA 0

∈ AbSheaves

0 Ox O∗XA′ O∗XA 0f 7→1+f

This yields a LES

0 H0(X,Ox) = k H0(XA′ ,O∗xA′ ) = A′
∗

H0(XA′ ,O∗xA) = A∗ ∴ 0

∴ 0 H1(X,Ox) H1(XA′ ,O∗xA′ ) = Pic (XA′) H1(XA,O∗xA) = Pic (XA)

H2(X,Ox) · · ·

restriction to XA

obs

To understand F on small extensions, we’re interested in

1. Given L ∈ Floc(A), i.e. L on XA restricting to L0, when does it extend to L′ ∈ Floc(A′)? I.e.,
does there exist an L′ on XA′ restricting to L?

2. Provided such an extension L′ exists, how many are there, and what is the structure of the
space of extensions?

We have an L ∈ Pic (XA), when does it extend? By exactness, L′ exists iff obs(L) = 0 ∈ H2(X,Ox),
which answers 1. To answer 2, (Ix)−1(L) is the set of extensions of L, which is a torsor under
H1(x,Ox). Note that these are fixed k-vector spaces.

Note (#3) H1(X,Ox) is interpreted as the tangent space of the functor F , i.e. Floc(K[ε]).

Note that if X is projective, line bundles can be unobstructed without the group itself being zero.

For (3), just play with A = k[ε], which yields 0 −→ k
ε−→ k[ε] −→ k −→ 0, then

0 H1(X,Ox) H1(Xk[ε],O∗k[ε]) H1(X,O∗x)

(Ix)−1(L0) ∈ Pic (Xk[ε]) L0 ∈ Pic (x)

Ix

i.e., there is a canonical trivial extension L0[ε].
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Example 11.2.
Let X ⊃ Z0 ∈ HilbX/k(k), we computed

TZ0HilbX/k = homOx(IZ0 ,Oz).

We took Z0 ⊂ X and extended to Z ′ ⊂ Xk[ε] by base change.

In this case, Floc(A) was the set of Z ′ ⊂ XA which are flat over A, such that base-changing
Z ′ ×Spec A Spec k ∼= Z. This was the same as looking at the preimage restricted to the closed point,

HilbX/k(A) i∗−→ HilbX/k(k)
(i∗)−1(z0)←[ z0.

Recall how we did the thickening: we had 0 −→ J −→ A′ −→ A −→ 0 with J2 = 0, along with F
on XA which is flat over A with X/k projective, and finally an F ′ on XA′ restricting to F .

The criterion we had was F ′ was flat over A′ iff 0 −→ J ⊗A′ F ′ −→ F ′, i.e. this is injective.

Suppose z ∈ Floc(A) and an extension z′ ∈ Floc(A′). By tensoring the two exact sequences here, we
get an exact grid:

0 IZ′ OXA′ OZ′ 0

0 0 0

J 0 IZ0 OX OZ0 0

A′ 0 IZ′ OXA′ OZ′ 0

A 0 IZ OXA OZ 0

0 0 0

0

The space of extension should be a torsor under homOX (IZ0 ,OZ0), which we want to think of as
homOX (IZ0 ,OZ0). Picking a φ in this hom space, we want to take an extension IZ′

φ−→ IZ′′ . We’ll
cover how to make this extension next time.
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