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1 Preface

I’d like to extend my gratitude to the following people for helping supply solutions and proofs:

• Paco Adajar
• Swaroop Hegde

Many other solutions contain input and ideas from other graduate students and faculty members at
UGA, along with questions and answers posted on Math Stack Exchange or Math Overflow. Any
and all mistakes are surely my own!

2 Group Theory: General

E 2.1 Permutations e

2.1.1 Fall 2021 #1

Let G be a group. An automorphism φ : G → G is called inner if the automorphism is given by
conjugation by a fixed group element g, i.e.,

φ = φg : h 7→ ghg−1.

a. Prove that the set of inner automorphisms forms a normal subgroup of the group of all
automorphisms of G.

b. Give an example of a finite group with an automorphism which is not inner.

c. Denote by Sn the group of permutations of the set {1, . . . , n}. Suppose that g ∈ Sn sends i
to gi for i = 1, . . . , n. Let (a, b) denote as usual the cycle notation for the transposition which
permutes a and b. For i ∈ {1, . . . , n− 1}, compute φg((i, i+ 1)).

d. Suppose that an automorphism φ ∈ Aut (Sn) preserves cycle type, i.e., that for every element
s of Sn, s and φ(s) have the same cycle type. Show that φ is inner.

Hint: Consider the images of generators
φ((1, 2)), φ((2, 3)), · · · , φ((n− 1, n)).

E 2.2 Cosets e

Preface 14
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2.2.1 Spring 2020 #2

Let H be a normal subgroup of a finite group G where the order of H and the index of H in G are
relatively prime. Prove that no other subgroup of G has the same order as H.

Concepts Used:

• Division algorithm: (a, b) = d =⇒ as+ bt = 1 for some s, t.
• Coset containment trick: X ⊆ N ⇐⇒ xN = N for all x.

Strategy:
Recognize that it suffices to show hN = N . Context cue: coprimality hints at division algorithm.
Descend to quotient so you can leverage both the order of h and the order of cosets simultaneously.

Solution:

• For ease of notation, replace H in the problem with N so we remember which one is
normal.

• Write n := ♯N and m := [G : N ] = ♯G/N , where the quotient makes sense since N is
normal.

• Let H ≤ G with ♯H = n, we’ll show H = N .

– Since ♯H = ♯N it suffices to show H ⊆ N .
– It further suffices to show hN = N for all h ∈ H.

• Noting gcd(m,n) = 1, use the division algorithm to write 1 = ns+mt for some s, t ∈ Z.
• The result follows from a computation:

hN = h1N

= hns+mtN

= hnsN · hmtN

= (hnN)s ·
(
htN

)m
= (eN)s ·N
= N,

– We’ve used that h ∈ H =⇒ o(h)
∣∣ ♯H = n by Lagrange, so hn = e.

– We’ve also used that ♯G/N = m, so (xH)m = H for any xH ∈ G/H.

2.2 Cosets 15
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2.2.2 Fall 2014 #6

Let G be a group and H,K < G be subgroups of finite index. Show that

[G : H ∩K] ≤ [G : H] [G : K].

Concepts Used:

• For H,K ≤ G, intersection is again a subgroup of everything: H ∩K ≤ H,K,G by the
one-step subgroup test.

• Counting in towers: A ≤ B ≤ C =⇒ [C : A] = [C : B][B : A].
• Fundamental theorem of cosets: xH = yH ⇐⇒ xy−1 ∈ H.
• Common trick: just list out all of the darn cosets!

Strategy:
Count in towers, show that distinct coset reps stay distinct.

Solution:

• H ∩K ≤ H ≤ G =⇒ [G : H ∩K] = [G : H][H : H ∩K]
• So it suffices to show [H : H ∩K] ≤ [G : K]
• Write H/H ∩K = {h1J, · · · , hmJ} as distinct cosets where J := H ∩ J .
• Then hiJ ̸= hjJ ⇐⇒ hih

−1
j ̸∈ J = H ∩K.

• H is a subgroup, so hih−1
j ∈ H forces this not to be in K.

• But then hiK ̸= hjK, so these are distinct cosets in G/K.
• So ♯G/K ≥ m.

2.2.3 Spring 2013 #3

Let P be a finite p-group. Prove that every nontrivial normal subgroup of P intersects the center
of P nontrivially.

Clean up, sketchy argument.

Solution:

• Let N ⊴ P , then for each conjugacy class [ni] in N , H ∩ [gi] = [gi] or is empty.
• G = ∐

i≤M [gi] is a disjoint union of conjugacy classes, and the conjugacy classes of H
are of the form [gi] ∩H.

• Then pull out the center

H =
∐
i≤M

[gi] ∩H = (Z(G) ∩H)∐ ∐
i≤M ′

[gi].

2.2 Cosets 16
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• Taking cardinalities,

♯H = ♯ (Z(G) ∩H) +
∑
i≤M ′

♯[gi].

• p divides H since H ≤ P and P is a p-group.
• Each ♯[gi] ≥ 2 since the trivial conjugacy classes appear in the center, forcing ♯[gi] ≥ p.
• p divides ♯[gi] since ♯[gi] must divide ♯P = pk

• So p must divide the remaining term Z(G) ∩H, which makes it nontrivial.

E 2.3 Burnside / Class Equation e

2.3.1 Spring 2019 #4

For a finite group G, let c(G) denote the number of conjugacy classes of G.

a. Prove that if two elements of G are chosen uniformly at random,then the probability they
commute is precisely

c(G)
|G|

.

b. State the class equation for a finite group.

c. Using the class equation (or otherwise) show that the probability in part (a) is at most

1
2 + 1

2[G : Z(G)] .

Here, as usual, Z(G) denotes the center of G.

△! Warning 2.3.1
(DZG) This is a slightly anomalous problem! It’s fun and worth doing, because it uses the major
counting formulas. Just note that the techniques used in this problem perhaps don’t show up in
other group theory problems.

Concepts Used:

• Notation: X/G is the set of G-orbits
• Notation: Xg =

{
x ∈ X

∣∣∣ g · x = x
}

• Burnside’s formula: ♯X/G = 1
♯G

∑
♯Xg.

• Definition of conjugacy class: C(g) =
{
hgh−1

∣∣∣ h ∈ G
}

.

2.3 Burnside / Class Equation 17
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Strategy:
Fixed points of the conjugation action are precisely commuting elements. Apply Burnside. Context
clue: 1/[G : Z(G)] is weird, right? Use that [G : Z(G)] = ♯G/♯Z(G), so try to look for ♯Z(G)/♯(G)
somewhere. Count sizes of centralizers.

Proof (Part a).

• Define a sample space Ω = G×G, so ♯Ω = (♯G)2.

• Identify the event we want to analyze:

A :=
{

(g, h) ∈ G×G
∣∣∣ [g, h] = 1

}
⊆ Ω.

• Note that the slices are centralizers:

Ag :=
{

(g, h) ∈ {g} ×G
∣∣∣ [g, h] = 1

}
= Z(g) =⇒ A =

∐
g∈G

Z(g).

• Set n be the number of conjugacy classes, note we want to show P (A) = n/|G|.

• Let G act on itself by conjugation, which partitions G into conjugacy classes.
– What are the orbits?

Og =
{
hgh−1

∣∣∣ h ∈ G
}
,

which is the conjugacy class of g. In particular, the number of orbits is the
number of conjugacy classes.

– What are the fixed points?

Xg =
{
h ∈ G

∣∣∣ hgh−1 = g
}
,

which are the elements of G that commute with g, which is isomorphic to Ag.

• Identifying centralizers with fixed points,

♯A = ♯
∐
g∈G

Z(g) =
∑
g∈G

♯Z(g) =
∑
g∈G

♯Xg.

• Apply Burnside

♯X/G = 1
♯G

∑
g∈G

♯Xg,

• Note ♯X/G = n, i.e. the number of conjugacy classes is the number of orbits.

• Rearrange and use definition:

n · ♯G = (♯X/G) · ♯G =
∑
g∈G

♯Xg

• Compute probability:

P (A) = ♯A

♯Ω =
∑
g∈G

♯Xg

(♯G)2 = (♯X/G) · ♯G
(♯G)2 = n · ♯G

(♯G)2 = n

♯G
.

■
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Proof (Part b).
Statement of the class equation:

|G| = Z(G) +
∑

One x from each
conjugacy class

[G : Z(x)]

where Z(x) =
{
g ∈ G

∣∣∣ [g, x] = 1
}

is the centralizer of x in G.
■

Proof (Part c).
(DZG): I couldn’t convince myself that a previous
proof using the class equation actually works. In-
stead, I’ll borrow the proof from this note

• Write the event as A = ∐
g∈G {g} × Z(g), then

P (A) = ♯A

(♯G)2 = 1
(♯G)2

∑
g∈G

♯Z(g).

• Attempt to estimate the sum: pull out central elements g ∈ Z(G).

– Note Z(g) = G for central g, so ♯Z(g) = ♯G
– Note

g ̸∈ Z(G) =⇒ ♯Z(g) ≤ 1
2♯G,

since Z(g) ≤ G is a subgroup, and

[G : Z(g)] ̸= 1 =⇒ [G : Z(g)] ≥ 2.

2.3 Burnside / Class Equation 19
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2 Group Theory: General

• Use these facts to calculate:

P (A) = 1
(♯G)2

 ∑
g∈Z(g)

♯Z(g) +
∑

g ̸∈Z(g)
♯Z(g)


= 1

(♯G)2

 ∑
g∈Z(g)

♯G+
∑

g ̸∈Z(g)
♯Z(g)


= 1

(♯G)2

♯Z(G) · ♯G+
∑

g ̸∈Z(g)
♯Z(g)


≤ 1

(♯G)2

♯Z(G) · ♯G+
∑

g ̸∈Z(g)

1
2♯G


= 1

(♯G)2

♯Z(G) · ♯G+

 ∑
g ̸∈Z(g)

1
2

 · ♯G


= 1

(♯G)

♯Z(G) +
∑

g ̸∈Z(g)

1
2


= 1

(♯G)

♯Z(G) + 1
2
∑

g ̸∈Z(g)
1


= 1

(♯G)

(
♯Z(G) + 1

2♯(G \ Z(G))
)

= 1
(♯G)

(
♯Z(G) + 1

2♯G− 1
2♯Z(G)

)
= 1

(♯G)

(1
2♯Z(G) + 1

2♯G
)

= 1
2

(
1 + ♯Z(G)

♯G

)
= 1

2

(
1 + 1

[G : Z(G)]

)
.

■

Redo part c

E 2.4 Group Actions / Representations e

2.4.1 Spring 2017 #1

Let G be a finite group and π : G → Sym∗(G) the Cayley representation.

2.4 Group Actions / Representations 20
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(Recall that this means that for an element x ∈ G,
π(x) acts by left translation on G.)

Prove that π(x) is an odd permutation ⇐⇒ the order |π(x)| of π(x) is even and |G|/|π(x)| is
odd.

△! Warning 2.4.1
(DZG): This seems like an unusually hard group theory problem. My guess is this year’s qual class
spent more time than usual on the proof of Cayley’s theorem.

Concepts Used:

• Sym(G) := AutSet(G,G) is the group of set morphisms from G to itself, i.e. permutations
of elements of G.

• More standard terminology: this is related to the left regular representation where
g 7→ φg where φg(x) = gx, regarded instead as a permutation representation.

– This action is transitive!

• Cayley’s theorem: every G is isomorphic to a subgroup of a permutation group. In
particular, take

{
φg
∣∣∣ G ∈ G

}
with function composition as a subgroup of AutSet(G).

Solution:
(DZG): Warning!! I haven’t checked this solution
very carefully, and this is kind of a delicate parity
argument. Most of the key ideas are borrowed from
here.

• Write k := o(πg), then since π is injective, k = o(g) in G.
• Since πg as a cycle is obtained from the action of g, we can pick an element x0 in G,

take the orbit under the action, and obtain a cycle of length k since the order of g is k.
Then continue by taking any x1 not in the first orbit and taking its orbit. Continuing
this way exhausts all group elements and yields a decomposition into disjoint cycles:

πg = (x0, gx0, g
2x0, · · · , gk−1x0)(x1, gx1, g

2x1, · · · , gk−1x1) · · · (xm, gxm, g2xm, · · · , gk−1xm).

• So there are m orbits all of length exactly k. Proceed by casework.
• If k is even:

– This yields m odd cycles, and thus π has zero (an even number) of even cycles.
– Thus π ∈ ker sgn and is an even permutation.

• If k is odd

– This yields m even cycles, thus an even number of even cycles iff m is even

• The claim is that the number of orbit representatives m is equal to [G : H] = ♯G/H for
H = ⟨g⟩.

2.4 Group Actions / Representations 21
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– Proof: define a map

{Orbit representatives xi} → G/H

x 7→ xH.

– This is injective and surjective because

xH = yH ⇐⇒ xy−1 ∈ H = ⟨g⟩
⇐⇒ xy−1 = gℓ

⇐⇒ x = gℓy

⇐⇒ y ∈ Ox,

so y and x are in the same orbit and have the same orbit representative.

• We now have

πg is an even permutation ⇐⇒


k is odd and m is even
or
k is even .

• Everything was an iff, so flip the evens to odds:

πg is an odd permutation ⇐⇒


k is even and m is odd
or
k is odd .

.

• Then just recall that k := o(πg) and

m = [G : ⟨g⟩] = ♯G/♯ ⟨g⟩ = ♯G/o(g) = ♯G/o(πg).

2.4.2 Fall 2015 #1

Let G be a group containing a subgroup H not equal to G of finite index. Prove that G has a
normal subgroup which is contained in every conjugate of H which is of finite index.

(DZG) A remark: it’s not the conjugates that should
be finite index here, but rather the normal subgroup.

Solution:

• Let H ≤ G and define n := [G : H].
• Write G/H = {x1H, · · · , xnH} for the finitely many cosets.
• Let G act on G/H by left translation, so g · xH := gxH.. Call the action ψ : G →

Sym(G/H).
• Then Stab(xH) = xHx−1 is a subgroup conjugate to H, and K := kerψ = ⋂n

i=1 xHx
−1

2.4 Group Actions / Representations 22
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is the intersection of all conjugates of H.
• Kernels are normal, so K ⊴ G, and K ⊆ xHx−1 for all x, meaning K is contained in

every conjugate of H.
• The index [G : K] is finite since G/K ∼= imψ by the first isomorphism theorem, and
♯ imψ ≤ ♯ Sym(G/H) = ♯Sn = n! < ∞.

E 2.5 Conjugacy Classes e

2.5.1 Spring 2021 #2

Let H ⊴ G be a normal subgroup of a finite group G, where the order of H is the smallest prime p
dividing |G|. Prove that H is contained in the center of G.

Solution due to Swaroop Hegde, typed up + modifica-
tions added by DZG.

Concepts Used:

• x ∈ Z(G) iff ♯Cx = 1, i.e. the size of its conjugacy class is one.
• Normal subgroups are disjoint unions of (some) conjugacy classes in G.

– In fact, this is a characterization of normal subgroups (i.e. H is normal iff H is a
union of conjugacy classes in G).

– Why: if H ⊴ G then ghg−1 ∈ H for all g, so Ch ⊆ H and ⋃hCh = H. Conversely,
if H = ⋃

h∈H Ch, then ghg−1 ∈ Ch ⊆ H and thus gHg−1 = H.

• Orbit stabilizer theorem: ♯Cg = ♯G/♯Kg where Cg is the centralizer and Kg is the
conjugacy class of g.

– In particular, ♯Cg divides ♯G.

Strategy:
Show an element x is central by showing ♯Cx = 1.

Proof (?).

• Let p := ♯H.

• Let {Ci}i≤n be the conjugacy classes in G, then G = ∐
i≤nCi

• By the first fact, there is a sub-collection
{
Cij

}
j≤k

such that

H = ∐
j≤kCij .

2.5 Conjugacy Classes 23
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• The identity is always in a single conjugacy class, so Ce = {e}.

• Since e ∈ H, without loss of generality, label Ci1 = {e}.

• So

H =
∐
j≤k

Cij = Ci1
∐∐

j≤k
j ̸=1

Cij .

• Take cardinality in the above equation

p = 1 +
∑
j≤k
j ̸=1

♯Cij .

• So ♯Cij ≤ p− 1 for all j ̸= 1.

• Every ♯Cij divides ♯G, but p was the minimal prime dividing ♯G, forcing ♯Cij = 1 for all
j ̸= 1.

– This rules out ♯Cij being a prime less than p, but also rules out composites: if a
prime q

∣∣ ♯Cij , then q < p and q
∣∣ ♯G, a contradiction.

• By fact 3, each x ∈ Cij satisfies x ∈ Z(G).

• ∪Cij = H, so H ⊆ Z(G).

■

2.5.2 Spring 2015 #1

For a prime p, let G be a finite p-group and let N be a normal subgroup of G of order p. Prove
that N is contained in the center of G.

Concepts Used:

• Definition of conjugacy class: [x] =
{
gxg−1

∣∣∣ g ∈ G
}

.
• A conjugacy class [x] is trivial iff [x] = {x} iff x ∈ Z(G).
• Sizes of conjugacy classes divide the order of the group they live in.

– This is orbit-stabilizer: G ↷ G by g · x := gxg−1, so O(x) = [x]. Then ♯O(x) =
♯G/♯Stab(x), so ♯O(x) divides ♯G.

Solution:

• Use that N ⊴ G ⇐⇒ N = ∐′[ni] is a disjoint union of (full) conjugacy classes.
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• Take cardinalities:

p = ♯N =
m∑
i=1

♯[ni] = 1 +
m∑
i=2

[ni].

• The size of each conjugacy class divides the size of H by orbit-stabilizer, so ♯[ni]
∣∣ p for

each i.
• But the entire second term must sum to p − 1 for this equality to hold, which forces
♯[ni] = 1 (and incidentally m = p− 1)

• Then [ni] = {ni} ⇐⇒ ni ∈ Z(G), and this holds for all i, so N ⊆ Z(G).

E 2.6 Unsorted / Counting Arguments e

2.6.1 Fall 2021 #2

Give generators and relations for the non-commutative group G of order 63 containing an element
of order 9.

Solution:

• Idea: take a semidirect product involving C9 and C7. We’ll need some facts:
Hom(Cm, Cn) ∼= Cd where d = gcd(m,n), and Aut(Cm) ∼= C×

m which has order φ(m)
(since one needs to send generators to generators), which can be explicitly calculated
based on the prime factorization of m.

• Some calculations we’ll need:

– Aut(C9) ∼= C×
9

∼= Cφ(9) ∼= C6, using that φ(pk) = pk−1(p− 1).
– Aut(C7) ∼= C×

7
∼= Cφ(7) ∼= C6 using that φ(p) = p− 1.

• To get a nonabelian group, we need a nontrivial semidirect product, so look at
Hom(G,Aut(H)) in the two possible combinations.

– Hom(C7,Aut(C9)) ∼= Hom(C7, C6) ∼= C1 := {e} using that Hom(Cm, Cn) ∼= Cd for
d = gcd(m,n). So there are no nontrivial homs here, so only the direct product is
possible.

– Hom(C9,Aut(C7)) ∼= Hom(C9, C6) ∼= C3, so use this!
– Note that we don’t have to consider possibilities for C3 × C3, since including this

as a factor would yield no elements of order 9.

• So take G := C7 ⋊ψ C9 for some ψ : C9 → Aut(C7), and we can take the presentation

G =
〈
x, y

∣∣∣ x7, y9, yxy−1 = ψ(x)
〉
.
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• It now suffices to find a nontrivial ψ : C7 → C7. Writing it multiplicatively as C7 =〈
x
∣∣∣ x7

〉
, any map that sends x to a generator will do. It suffices to choose any k coprime

to 7, and then take ψ(x) := xk, which will be another generator.

• So take

G =
〈
x, y

∣∣∣ x7, y9, yxy−1 = x2
〉
.

2.6.2 Fall 2019 Midterm #5

Let G be a nonabelian group of order p3 for p prime. Show that Z(G) = [G,G].

Note: this is a good problem, it tests several common
theorems at once. Proof due to Paco Adajar.

Concepts Used:
Important notations and definitions:

• The center of G, denoted by Z(G), is the subset of elements of G which commute with
all elements of G. That is, if x ∈ Z(G), then for all g ∈ G, gx = xg:

Z(G) = {x ∈ G : gx = xg for all g ∈ G}.

In fact, Z(G) is not just a subset of G, but a normal subgroup of G.

• The commutator subgroup of G, denoted by [G,G], is the subgroup of G generated
by the commutators of G, i.e., the elements of the form ghg−1h−1:

[G,G] = ⟨ghg−1h−1 : g, h ∈ G⟩.

The commutator subgroup [G,G] is the smallest normal subgroup of G whose quotient
is abelian. That is, if H is a normal subgroup of G for which G/H is abelian, then
[G,G] ≤ H.
Moreover, G is abelian if and only if [G,G] is trivial.

Theorems to remember and know how to prove:

• G/Z(G) Theorem: If G/Z(G) is cyclic, then G is abelian, i.e., G/Z(G) is in fact trivial.

• Lagrange’s Theorem: If G is a group of finite order and H is a subgroup of G, then
the order of H divides that of G.

– One consequence of this is that every group of prime order is cyclic.
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• A p-group (a group of order pn for some prime p and some positive integer n) has
nontrivial center.

• A consequence of the theorems above: every group of order p2 (where p is prime) is
abelian.

Solution:
Since Z(G) is a subgroup of G and |G| = p3, by Lagrange’s theorem, |Z(G)| ∈ {1, p, p2, p3}.
Since we stipulated that G is nonabelian, |Z(G)| ≠ p3. Also, since G is a p-group, it has
nontrivial center, so |Z(G)| ≠ 1. Finally, by the G/Z(G) theorem, |Z(G)| ≠ p2: if |Z(G)| = p2,
then |G/Z(G)| = p and so G/Z(G) would be cyclic, meaning that G is abelian. Hence,
|Z(G)| = p.
Then, since |Z(G)| = p, we have that |G/Z(G)| = p2, and so G/Z(G) is abelian. Thus,
[G,G] ∈ Z(G). Since |Z(G)| = p, then |[G,G]| ∈ {1, p} again by Lagrange’s theorem. If
|[G,G]| = p then [G,G] = Z(G) and we are done. And, indeed, we must have |[G,G]| = p,
because G is nonabelian and so |[G,G]| ≠ 1.

2.6.3 Spring 2012 #2

Let G be a finite group and p a prime number such that there is a normal subgroup H ⊴ G with
|H| = pi > 1.

a. Show that H is a subgroup of any Sylow p-subgroup of G.

b. Show that G contains a nonzero abelian normal subgroup of order divisible by p.

Concepts Used:

• p groups have nontrivial centers.
• Definition of maximality and p-groups
• Sylows are conjugate
• Z(G) chG always.
• Transitivity of characteristic: A chB and B ⊴ C implies A ⊴ C.

Strategy:
Just use maximality for (a). For (b), centers are always abelian, so Z(H) is good to consider, just
need to ensure it’s normal in G. Use transitivity of characteristic.

Solution:
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Proof (of a).

• By definition, S ∈ Sylp(G) ⇐⇒ S is a maximal p-subgroup: S < G is a p-group,
so ♯S = pk for some k, S is a proper subgroup, and S is maximal in the sense that
there are no proper p-subgroups S′ with S ⊆ S′ ⊆ G.

• Since ♯H = pi, H is a p-subgroup of G.
• If H is maximal, then by definition H ∈ Sylp(G)
• Otherwise, if H is not maximal, there exists an H ′ ⊇ H with H ′ ≤ G a p-subgroup

properly containing H.

– In this apply the same argument to H ′: this yields a proper superset contain-
ment at every stage, and since G is finite, there is no infinite ascending chain
of proper supersets.

– So this terminates in some maximal p-subgroup S, i.e. a Sylow p-subgroup.

• So H ⊆ S for some S ∈ Sylp(G).
• All Sylows are conjugate, so for any S′ ∈ Sylp(G) we can write S′ = gSg−1 for some
g.

• Then using that H is normal, H ⊆ S =⇒ H = gHg−1 ⊆ gSg−1 := S′. So H is
contained in every Sylow p-subgroup.

■
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Proof (of b).

• Claim: Z(H) ≤ H works.

– It is nontrivial since H is a p-group and p-groups have nontrivial centers
– It is abelian since Z(Z(H)) = Z(H).
– ♯Z(H) = pℓ for some ℓ ≤ i by Lagrange

• It thus remains to show that Z(H) ⊴ G.
• Use that Z(H) chH and use transitivity of characteristic to conclude Z(H) ⊴ H.
• That Z(H) chH: let ψ ∈ Aut(H) and x = ψ(y) ∈ ψ(Z(H)) so y ∈ Z(H), then for

arbitrary h ∈ H,

ψ(y)h = ψ(y)(ψ ◦ ψ−1)(h)
= ψ(y · ψ−1(h))
= ψ(ψ−1(h) · y) since ψ−1(h) ∈ H, y ∈ Z(H)
= hψ(y).

• That A chB ⊴ C =⇒ A ⊴ C:

– A chB iff A is fixed by every ψ ∈ Aut(B)., WTS cAc−1 = A for all c ∈ C.
– Since B ⊴ C, the automorphism ψ(−) := c(−)c−1 descends to an element of

Aut(B).
– Then ψ(A) = A since A chB, so cAc−1 = A and A ⊴ C.

■

2.6.4 Fall 2016 #1

Let G be a finite group and s, t ∈ G be two distinct elements of order 2. Show that subgroup of G
generated by s and t is a dihedral group.

Recall that the dihedral groups of order 2m for m ≥ 2
are of the form

D2m =
〈
σ, τ

∣∣∣ σm = 1 = τ2, τσ = σ−1τ
〉
.

Solution:

• Suppose G = ⟨a, b⟩ with a2 = b2 = e, satisfying some unknown relations.

• Consider ab. Since G is finite, this has finite order, so (ab)n = e for some n ≥ 2.

• Note ⟨ab, b⟩ ⊆ ⟨a, b⟩, since any finite word in ab, b is also a finite word in a, b.
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• Since (ab)b = ab2 = a, we have ⟨ab, b⟩ ⊆ ⟨a, b⟩, so ⟨ab, b⟩ = ⟨a, b⟩.

• Write D2n = F (r, s)/ kerπ for π : F (r, s) → D2n the canonical presentation map.

• Define

ψ : F (r, s) → G

r 7→ ab

t 7→ b.

• This is clearly surjective since it hits all generators.

• We’ll show that ab, a satisfy all of the relations defining D2n, which factors ψ through
kerπ, yielding a surjection ψ̃ : D2n ↠ G.

– (ab)n = e by construction, b2 = e by assumption, and

b(ab)b−1 = babb−1 = ba = b−1a−1 = (ab)−1,

corresponding to the relation srs−1 = r−1. Here we’ve used that o(a) = o(b) = 2
implies a = a−1, b = b−1.

• Surjectivity of ψ̃ yields 2n = ♯D2n ≥ ♯G.

• The claim is that ♯G ≥ 2n, which forces ♯G = 2n. Then ψ̃ will be a surjective group
morphism between groups of the same order, and thus an isomorphism.

– We have ⟨ab⟩ ≤ G, so n
∣∣ ♯G.

– Since b ̸∈ ⟨ab⟩, this forces ♯G > n, so ♯G ≥ 2n.

Remark: see a more direct proof in Theorem 2.1
and Theorem 1.1 here

2.6.5 Fall 2019 Midterm #1

Let G be a group of order p2q for p, q prime. Show that G has a nontrivial normal subgroup. :::

Solution:

• Write ♯G = p2q

• Cases: first assume p > q, then do q < p.

• In any case, we have

np
∣∣ q =⇒ np ∈ {1, q}

nq
∣∣ p2 =⇒ nq ∈

{
1, p, p2

}
.
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• If np = 1 or nq = 1, we’re done, so suppose otherwise.

• Case 1: : p > q.

– Using that [np]p ≡ 1, consider reducing elements in {1, q} mod p.
– Since q < p, we just have qmod p = q, and as long as q ̸= 1 we have q ̸≡ 1 mod p.

But since np ̸= 1 and np ̸= q, this is a contradiction. E

• Case 2: p < q:

– Using that [nq]q ≡ 1, consider reducing
{
1, p, p2}mod q.

– Since now p < q, we have pmod q = p itself, so pmod q ̸= 1 and we can rule it out.
– The remaining possibility is nq = p2.
– Supposing that np ̸= 1, we have np = q, so we can count

Elements from Sylow q : nq(♯Sq − 1) = p2(q − 1) + 1,

where we’ve used that distinct Sylow qs can only intersect at the identity, and
although Sylow ps can intersect trivially, they can also intersect in a subgroup of
size p.

– Suppose all Sylow ps intersect trivially, we get at least

Elements from Sylow p : np(♯Sp − 1) = q(p2 − 1).

Then we get a count of how many elements the Sylow ps and qs contribute:

q(p2 − 1) + p2(q − 1) + 1 = p2q − q + p2q − p2 + 1 = p2q + (p2 − 1)(q − 1) > p2q = ♯G,

provided (p2 − 1)(q− 1) ̸= 0, which is fine for p ≥ 2 since this is at least (22 − 1)(3 −
2) = 3 (since p < q and q = 3 is the next smallest prime). E

– Otherwise, we get two Sylow ps intersecting nontrivially, which must be in a sub-
group of order at least p since the intersection is a subgroup of both. In this case,
just considering these two subgroups, we get

Elements from Sylow p : np(♯Sp − 1) > p2 + p2 − p = 2p2 − p− 1.

Then a count:

p2(q − 1) + (2p2 − p− 1) + 1 = p2q − p2 + 2p2 − p

= p2q + p2 − p

= p2q + p(p− 1)
> p2q = ♯G,

a contradiction since this inequality is strict provided p ≥ 2. E
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2.6.6 Fall 2019 Midterm #4

Let p be a prime. Show that Sp = ⟨τ, σ⟩ where τ is a transposition and σ is a p-cycle.

3 Groups: Group Actions

E 3.1 Fall 2012 #1 e

Let G be a finite group and X a set on which G acts.

a. Let x ∈ X and Gx :=
{
g ∈ G

∣∣∣ g · x = x
}

. Show that Gx is a subgroup of G.

b. Let x ∈ X and G · x :=
{
g · x

∣∣∣ g ∈ G
}

. Prove that there is a bijection between elements in
G · x and the left cosets of Gx in G.

E 3.2 Fall 2015 #2 e

Let G be a finite group, H a p-subgroup, and P a sylow p-subgroup for p a prime. Let H act on
the left cosets of P in G by left translation.

Prove that this is an orbit under this action of length 1.

Prove that xP is an orbit of length 1 ⇐⇒ H is contained in xPx−1.

E 3.3 Spring 2016 #5 e

Let G be a finite group acting on a set X. For x ∈ X, let Gx be the stabilizer of x and G · x be the
orbit of x.

a. Prove that there is a bijection between the left cosets G/Gx and G · x.

b. Prove that the center of every finite p-group G is nontrivial by considering that action of G
on X = G by conjugation.

Groups: Group Actions 32



3 Groups: Group Actions

E 3.4 Fall 2017 #1 e

Suppose the group G acts on the set A. Assume this action is faithful (recall that this means that
the kernel of the homomorphism from G to Sym∗(A) which gives the action is trivial) and transitive
(for all a, b in A, there exists g in G such that g · a = b.)

a. For a ∈ A, let Ga denote the stabilizer of a in G. Prove that for any a ∈ A,⋂
σ∈G

σGaσ
−1 = {1} .

b. Suppose that G is abelian. Prove that |G| = |A|. Deduce that every abelian transitive
subgroup of Sn has order n.

E 3.5 Fall 2018 #2 e

a. Suppose the group G acts on the set X . Show that the stabilizers of elements in the same
orbit are conjugate.

b. Let G be a finite group and let H be a proper subgroup. Show that the union of the conjugates
of H is strictly smaller than G, i.e. ⋃

g∈G
gHg−1 ⊊ G

c. Suppose G is a finite group acting transitively on a set S with at least 2 elements. Show that
there is an element of G with no fixed points in S.

Concepts Used:

• Orbit: G · x :=
{
g · x

∣∣∣ g ∈ G
}

⊆ X

• Stabilizer: Gx :=
{
g ∈ G

∣∣∣ g · x = x
}

≤ G

• Orbit-Stabilizer: G · x ≃ G/Gx.
• abc ∈ H ⇐⇒ b ∈ a−1Hc−1

• Set of orbits for G↷ X, notated X/G.
• Set of fixed points for G↷ X, notated Xg.
• Burnside’s Lemma: |X/G| · |G| = ∑

g∈G |Xg|

– Number of orbits equals average number of fixed points.
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Solution:

Proof (of a).

• Fix x, then y ∈ Orb(x) =⇒ g · x = y for some g, and x = g−1 · y.
• Then

h ∈ Stab(x) ⇐⇒ h · x = x by being in the stabilizer
⇐⇒ h · (g−1 · y) = g−1 · y
⇐⇒ (ghg−1) · y = y

⇐⇒ ghg−1 ∈ Gy by definition
⇐⇒ h ∈ g−1Stab(y)g,

so Stab(x) = g−1Stab(y)g.

■
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Proof (of b).
Let G act on its subgroups by conjugation,

• The orbit G ·H is the set of all subgroups conjugate to H, and

• The stabilizer of H is GH = NG(H).

• By orbit-stabilizer,

G ·H = [G : GH ] = [G : NG(H)].

• Since |H| = n, and all of its conjugate also have order n.

• Note that

H ≤ NG(H) =⇒ |H| ≤ |NG(H)| =⇒ 1
|NG(H)| ≤ 1

|H|
,

• Now strictly bound the size of the union by overcounting their intersections at the
identity:∣∣∣∣∣∣

⋃
g∈G

gHg−1

∣∣∣∣∣∣ < (Number of Conjugates of H) · (Size of each conjugate)

strictly overcounts since they intersect in at least the identity
= [G : NG(H)]|H|

= |G|
|NG(H)| |H|

since G is finite

≤ |G|
|H|

|H|

= |G|.

■
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Proof (of c).

• Let G↷ X transitively where |X| ≥ 2.
• An action is transitive iff there is only one orbit, so |X/G| = 1.
• Apply Burnside’s Lemma

1 = |X/G| = 1
|G|

∑
g∈G

|Fix(g)| =⇒ |G| =
∑
g∈G

|Fix(g)| = Fix(e) +
∑
g∈G
g ̸=e

|Fix(g)|

• Note that Fix(e) = X, since the identity must fix every element, so |Fix(e)| ≥ 2.
• If |Fix(g)| > 0 for all g ̸= e, the remaining term is at least |G| − 1. But then the

right-hand side yields is at least 2 + (|G| − 1) = |G| + 1, contradicting the equality.
• So not every |Fix(g)| > 0, and |Fix(g)| = 0 for some g, which says g has no fixed

points in X.

■

4 Groups: Sylow Theory

E 4.1 Fall 2019 #1 e

Let G be a finite group with n distinct conjugacy classes. Let g1 · · · gn be representatives of the
conjugacy classes of G. Prove that if gigj = gjgi for all i, j then G is abelian.

Concepts Used:

• Z(g) = G ⇐⇒ g ∈ Z(G), i.e. if the centralizer of g is the whole group, g is central.

• If H ≤ G is a proper subgroup, then ⋃g∈G hGh
−1 is again a proper subgroup (subset?)

I.e. G is not a union of conjugates of any proper subgroup.

• So if G is a union of conjugates of H, then H must not be proper, i.e. H = G.

Solution:

• We have gj ⊆ Z(gk) for all k by assumption.
• If we can show Z(gk) = G for all k, then gk ∈ Z(G) for all k.

– Then each conjugacy class is size 1, and since G = ∐n
i=1[gi] = ∐n

i=1 {gi}, every
g ∈ G is some gi. So G ⊆ Z(G), forcing G to be abelian.
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• If we can show G ⊆
⋃
h∈H hZ(gk)h−1 for some k, this forces Z(gk) = G and gk ∈ Z(G).

– If we can do this for all k, we’re done!

• Since g ∈ G is in some conjugacy class, write g = hgjh
−1 for some h ∈ G and some

1 ≤ j ≤ n.
• Now use gj ∈ Z(gk) for all k:

g ∈ G =⇒ g = hgjh
−1 for some h ∈ H

gj ∈ Z(gk)∀k =⇒ g ∈ hZ(gk)h−1 for some h, ∀1 ≤ k ≤ n

=⇒ g ∈
⋃
h∈G

hZ(gk)h−1 ∀1 ≤ k ≤ n

.

– Note that it’s necessary to get rid of the h dependence, since now now every g ∈ G
is in ⋃h∈G hZ(gk)h−1.

• Now

G ⊆
⋃
h∈G

hZ(gk) ⊆ G ∀k =⇒ Z(gk) = G ∀k,

and we’re done.

E 4.2 Fall 2019 Midterm #2 e

Let G be a finite group and let P be a sylow p-subgroup for p prime. Show that N(N(P )) = N(P )
where N is the normalizer in G.

E 4.3 Fall 2013 #2 e

Let G be a group of order 30.

a. Show that G has a subgroup of order 15.

b. Show that every group of order 15 is cyclic.

c. Show that G is isomorphic to some semidirect product Z15 ⋊ Z2.

d. Exhibit three nonisomorphic groups of order 30 and prove that they are not isomorphic. You
are not required to use your answer to (c).
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E 4.4 Spring 2014 #2 e

Let G ⊂ S9 be a Sylow-3 subgroup of the symmetric group on 9 letters.

a. Show that G contains a subgroup H isomorphic to Z3 × Z3 × Z3 by exhibiting an appropriate
set of cycles.

b. Show that H is normal in G.

c. Give generators and relations for G as an abstract group, such that all generators have order
3. Also exhibit elements of S9 in cycle notation corresponding to these generators.

d. Without appealing to the previous parts of the problem, show that G contains an element of
order 9.

E 4.5 Fall 2014 #2 e

Let G be a group of order 96.

a. Show that G has either one or three 2-Sylow subgroups.

b. Show that either G has a normal subgroup of order 32, or a normal subgroup of order 16.

E 4.6 Spring 2016 #3 e

a. State the three Sylow theorems.

b. Prove that any group of order 1225 is abelian.

c. Write down exactly one representative in each isomorphism class of abelian groups of order
1225.

E 4.7 Spring 2017 #2 e

a. How many isomorphism classes of abelian groups of order 56 are there? Give a representative
for one of each class.
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b. Prove that if G is a group of order 56, then either the Sylow-2 subgroup or the Sylow-7
subgroup is normal.

c. Give two non-isomorphic groups of order 56 where the Sylow-7 subgroup is normal and the
Sylow-2 subgroup is not normal. Justify that these two groups are not isomorphic.

E 4.8 Fall 2017 #2 e

Problem 4.8.1 (?)

a. Classify the abelian groups of order 36.
For the rest of the problem, assume that G is a
non-abelian group of order 36. You may assume
that the only subgroup of order 12 in S4 is A4 and
that A4 has no subgroup of order 6.

b. Prove that if the 2-Sylow subgroup of G is normal, G has a normal subgroup N such
that G/N is isomorphic to A4.

c. Show that if G has a normal subgroup N such that G/N is isomorphic to A4 and a
subgroup H isomorphic to A4 it must be the direct product of N and H.

d. Show that the dihedral group of order 36 is a non-abelian group of order 36 whose
Sylow-2 subgroup is not normal.

Concepts Used:

• Classifying abelian groups of order n: factor n = ∏k
i=1 p

ni
i , then there are

p(n1)p(n2) · · · p(nk) abelian groups of that order, where p(ℓ) is the integer partition
function.

• Transitive subgroups of Sn:

– n = 3⇝ S3, A3
– n = 4⇝ S4, A4, D4, C4, C

2
2 where Cn is a cyclic group.

– n = 5⇝ S5, A5, F20, D10, C5.

• Background for this question: there is a theorem that if ♯G = p2q2 with p < q then G
must have a normal q-Sylow subgroup unless ♯G = 36, the only counterexample, in
which case G has either a normal Sylow 2-subgroup or a normal Sylow 3-subgroup. The
counterexample is evidenced by C3 ×A4, which has n3 = 4.

– The reason this happens: p = 2, q = 3 are consecutive primes!

△! Warning 4.8.1
This is slightly more difficult/lengthy than the average group theory problem in recent years.
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Solution:
Part a: write 36 = 22 · 32, then the distinct groups correspond to all combinations of integer
partitions of the exponents 2 and 2:

• (2, 2)⇝ (Z/4Z) × (Z/9Z)
• (1 + 1, 2)⇝ (Z/2Z)2 × (Z/9Z)
• (2, 1 + 1)⇝ Z/4Z × (Z/3Z)2

• (1 + 1, 1 + 1)⇝ (Z/2Z)2 × (Z/3Z)2

Part b: let H2 ≤ G be the unique Sylow 2-subgroup, so ♯H2 = 22. Then H2 ⊴ G, so
G/H is a group of size [G : H] = 32. Note that by pure numeric observation (and the
hint), it is necessary to find a normal subgroup N ⊴ G of size 3 and thus index 12, since
♯A4 = 4!/2 = 12 = 36/3. Since normal subgroups are kernels of homomorphisms, we can look
for a morphism φ : G → S4 where ker(φ) is order 3, anticipating applying the first isomorphism
theorem to get G/ ker(φ) ∼= im(φ) ≤ S4, where we hope that im(φ) ∼= A4. So we look for an
action of G on a set with 4 elements.
Applying the Sylow theorems, we have n3

∣∣ 22 =⇒ n3 ∈ {1, 2, 4} and n3 ≡ 1 mod 4 =⇒ n3 ∈
{1, 4}. Note that n3 = 1 implies the Sylow 3-subgroup is normal, in which case G ∼= H2 ×H3
splits into a product of groups of order 22, 32, and thus G is abelian since any group of order
p2 is abelian for any prime p and products of abelian groups are abelian. So we can conclude
that n3 = 4 and consider the action of G on the set of four Sylow 3-subgroups of G to get a
map φ : G → S4.
It is a theorem that this action is transitive, and so im(φ) is a transitive subgroup of S4.
By standard facts in Galois theory, the only such subgroups are S4, A4, D4, C

2
2 , C4, and so

♯ im(φ) ∈ {24, 12, 8, 4}. By the hint it suffices to show that ♯ im(φ) = 12.

• ♯ im(φ) ̸= 24, since then φ surjects and G/ ker(φ) ∼= S4, but the RHS has order 24 and
the LHS order 36/k for some k ∈ Z, which is impossible.

• ♯ im(φ) ̸= 8 since then 36/k = 8 for some k, again impossible.
• ♯ im(φ) ̸= 4: if so, ♯ ker(φ) = 9 so ker(φ) is a Sylow 3-subgroup. Since kernels are normal

and all Sylows are conjugate, this would force n3 = 1, a contradiction.

Summarizing, to produce N , consider G↷ Syl3(G) to get a map φ : G → S4. Then im(φ) ≤ S4
must have order 12 with kernel N := ker(φ) of order 3, and since the only subgroup of order
12 in S4 is A4, we have G/N ∼= A4.
Part 3: Since N ⊴ G, we need to show:

• H ∩N = {e},
• NH = G,
• H ⊴ G

The first two conditions will give a semidirect product, and the third will show that the
semidirect product is actually direct.
Note that L := H ∩ N is a subgroup of both H and N , so if L ̸= {e} then ♯L = 3 and L is
a subgroup of both N and A4. So L = N and thus N ⊆ A4 is a cyclic subgroup of order 3
generated by (say) n; however since 2

∣∣ ♯A4 = 12, Cauchy’s theorem produces an element m
of order two. But then the subgroup ⟨n,m⟩ is an order 6 subgroup of A4, which by the hint
does not exist, so by contradiction we must have L := N ∩H = {e}.
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That NH = G now follows by counting elements: NH ≤ G is a subgroup, and ♯NH =
(♯N) · (♯H) = 3 · 12 = ♯G.
Finally, to see that H ⊴ G, we’ll instead show that the semidirect product is trivial directly.
By the first two conditions above, we already have G ∼= N ⋊φ H for some φ : H → Aut(N).
Since N ∼= C3 is cyclic, Aut(N) ∼= N× which is of order φ(3) = 2, so φ is a group morphism
from a group of order 12 to one of order 2. If φ is nontrivial, ♯ kerφ = 12/2 = 6 is a subgroup
of order 6 in H ∼= A4, contradicting the hint and forcing φ to be trivial and G ∼= H ×N .
Part d If G := D18 has a normal Sylow 2-subgroup, by part 2 ∃N ⊴ G with G/N ∼= A4, and
(claim) since G has a subgroup H ∼= A4 we must have G = N × H, a product of groups of
orders 3 and 12 respectively. Somehow this is a contradiction??

That H ∼= A4 ≤ G exists: unclear, maybe even not
true. Not sure what the intended approach is, so
here’s an alternative.

A general fact: for D2n, for any odd prime p
∣∣ 2n, the Sylow p-subgroup Hp is cyclic and

normal since D2n ∼= Cn ⋊ C2 and p > 2 implies Hp descends to a Sylow p-subgroup of Cn
and all subgroups of cyclic groups are abelian and cyclic. Here n = 18, so take p = 3 to
get H3 ⊴ D18 a normal subgroup of order 9. If n2 = 1, so there is one single normal Sylow
2-subgroup, then H2, H3 are both normal and we get D18 ∼= H2 ×H3 as a direct product. But
H2, H3 are abelian and D18 is nonabelian, so this is a contradiction.

E 4.9 Fall 2012 #2 e

Let G be a group of order 30.

a. Show that G contains normal subgroups of orders 3, 5, and 15.

b. Give all possible presentations and relations for G.

c. Determine how many groups of order 30 there are up to isomorphism.

E 4.10 Fall 2018 #1 e

Let G be a finite group whose order is divisible by a prime number p. Let P be a normal p-subgroup
of G (so |P | = pc for some c).

a. Show that P is contained in every Sylow p-subgroup of G.

b. Let M be a maximal proper subgroup of G. Show that either P ⊆ M or |G/M | = pb for some
b ≤ c.
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Concepts Used:

• Sylow 2: All Sylow p-subgroups are conjugate.
• |HK| = |H||K|/|H ∩K|.
• Lagrange’s Theorem: H ≤ G =⇒ |H|

∣∣ |G|

Solution:

Proof (of a).

• Every p-subgroup is contained in some Sylow p-subgroup, so P ⊆ Sip for some
Sip ∈ Sylp(G).

• P ⊴ G ⇐⇒ gPg−1 = P for all g ∈ G.

• Let Sjp be any other Sylow p-subgroup,

• Since Sylow p-subgroups are all conjugate gSipg−1 = Sjp for some g ∈ G.

• Then

P = gPg−1 ⊆ gSipg
−1 = Sjp.

■

Proof (of b).

• If P is not contained in M , then M < MP is a proper subgroup

• By maximality of M , MP = G

• Note that M ∩ P ≤ P and |P | = pc implies |M ∩ P | = pa for some a ≤ c by
Lagrange

• Then write

G = MP ⇐⇒ |G| = |M ||P |
|M ∩ P |

⇐⇒ |G|
|M |

= |P |
|M ∩ P |

= pc

pa
= pc−a := pb

where a ≤ c =⇒ 0 ≤ c− b ≤ c so 0 ≤ b ≤ c.

■

E 4.11 Fall 2019 #2 e
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Let G be a group of order 105 and let P,Q,R be Sylow 3, 5, 7 subgroups respectively.

a. Prove that at least one of Q and R is normal in G.

b. Prove that G has a cyclic subgroup of order 35.

c. Prove that both Q and R are normal in G.

d. Prove that if P is normal in G then G is cyclic.

Concepts Used:

• The pqr theorem.

• Sylow 3: |G| = pnm implies np
∣∣ m and np ∼= 1 mod p.

• Theorem: If H,K ≤ G and any of the following conditions hold, HK is a subgroup:

– H ⊴ G (wlog)
– [H,K] = 1
– H ≤ NG(K)

• Theorem: For a positive integer n, all groups of order n are cyclic ⇐⇒ n is squarefree
and, for each pair of distinct primes p and q dividing n, q − 1 ̸= 0 mod p.

• Theorem:

Ai ⊴ G, G = A1 · · ·Ak, Ak ∩
∏
i ̸=k

Ai = ∅ =⇒ G =
∏

Ai.

• The intersection of subgroups is a again a subgroup.

• Any subgroups of coprime order intersect trivially?

Solution:
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Proof (of 1).

• We have

• n3
∣∣ 5 · 7, n3 ∼= 1 mod 3 =⇒ n3 ∈ {1, 5, 7, 35} \ {5, 35}

• n5
∣∣ 3 · 7, n5 ∼= 1 mod 5 =⇒ n5 ∈ {1, 3, 7, 21} \ {3, 7}

• n7
∣∣ 3 · 5, n7 ∼= 1 mod 7 =⇒ n7 ∈ {1, 3, 5, 15} \ {3, 5}

• Thus

n3 ∈ {1, 7} n5 ∈ {1, 21} n7 ∈ {1, 15} .

• Toward a contradiction, if n5 ̸= 1 and n7 ̸= 1, then

|Syl(5) ∪ Syl(7)| = (5 − 1)n5 + (7 − 1)n7 + 1 = 4(21) + 6(15) = 174 > 105 elements

using the fact that Sylow p-subgroups for distinct primes p intersect trivially (?).

■

Proof (of 2).

• By (a), either Q or R is normal.
• Thus QR ≤ G is a subgroup, and it has order |Q| · |R| = 5 · 7 = 35.
• By the pqr theorem, since 5 does not divide 7 − 1 = 6, QR is cyclic.

■

Part (b) not finished!
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Proof (of 3).

• We want to show Q,R ⊴ G, so we proceed by showing not (n5 = 21 or n7 = 15),
which is equivalent to (n5 = 1 and n7 = 1) by the previous restrictions.

• Note that we can write

G = {elements of order n}
∐

{elements of order not n} .

for any n, so we count for n = 5, 7:

– Elements in QR of order not equal to 5: |QR−Q {id} + {id}| = 35−5+1 = 31
– Elements in QR of order not equal to 7: |QR− {id}R+ {id}| = 35−7+1 = 29

• Since QR ≤ G, we have

– Elements in G of order not equal to 5 ≥ 31.
– Elements in G of order not equal to 7 ≥ 29.

• Now both cases lead to contradictions:

– n5 = 21:

|G| = |{elements of order 5}
∐

{elements of order not 5}|
≥ n5(5 − 1) + 31 = 21(4) + 31 = 115 > 105 = |G|.

– n7 = 15:

|G| = |{elements of order 7}
∐

{elements of order not 7}|
≥ n7(7 − 1) + 29 = 15(6) + 29 = 119 > 105 = |G|.

■

Proof (of 4).
Suppose P is normal and recall |P | = 3, |Q| = 5, |R| = 7.

• P ∩QR = {e} since (3, 35) = 1
• R ∩ PQ = {e} since (5, 21) = 1
• Q ∩RP = {e} since (7, 15) = 1

We also have PQR = G since |PQR| = |G| (???).
We thus have an internal direct product

G ∼= P ×Q×R ∼= Z3 × Z5 × Z7 ∼= Z105.

by the Chinese Remainder Theorem, which is cyclic.
■
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5 Groups: Classification

E 4.12 Spring 2021 #3 e

a. Show that every group of order p2 with p prime is abelian.

b. State the 3 Sylow theorems.

c. Show that any group of order 4225 = 52132 is abelian.

d. Write down one representative from each isomorphism class of abelian groups of order 4225.

E 4.13 Fall 2020 #1 e

a. Using Sylow theory, show that every group of order 2p where p is prime is not simple.

b. Classify all groups of order 2p and justify your answer. For the nonabelian group(s), give a
presentation by generators and relations.

E 4.14 Fall 2020 #2 e

Let G be a group of order 60 whose Sylow 3-subgroup is normal.

a. Prove that G is solvable.

b. Prove that the Sylow 5-subgroup is also normal.

5 Groups: Classification

E 5.1 Spring 2020 #1 e

a. Show that any group of order 2020 is solvable.

b. Give (without proof) a classification of all abelian groups of order 2020.

c. Describe one nonabelian group of order 2020.
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5 Groups: Classification

Work this problem.

E 5.2 Spring 2019 #3 e

How many isomorphism classes are there of groups of order 45?

Describe a representative from each class.

Concepts Used:

• Sylow theorems:
• np ∼= 1 mod p
• np

∣∣ m.

Solution:

• It turns out that n3 = 1 and n5 = 1, so G ∼= S3 × S5 since both subgroups are normal.

• There is only one possibility for S5, namely S5 ∼= Z/(5).

• There are two possibilities for S3, namely S3 ∼= Z/(32) and Z/(3)2.

• Thus

• G ∼= Z/(9) × Z/(5), or

• G ∼= Z/(3)2 × Z/(5).

Revisit, seems short.

E 5.3 Spring 2012 #3 e

Let G be a group of order 70.

a. Show that G is not simple.

b. Exhibit 3 nonisomorphic groups of order 70 and prove that they are not isomorphic.

E 5.4 Fall 2016 #3 e

5.2 Spring 2019 #3 47



5 Groups: Classification

How many groups are there up to isomorphism of order pq where p < q are prime integers?

E 5.5 Spring 2018 #1 e

a. Use the Class Equation (equivalently, the conjugation action of a group on itself) to prove that
any p-group (a group whose order is a positive power of a prime integer p) has a nontrivial
center.

b. Prove that any group of order p2 (where p is prime) is abelian.

c. Prove that any group of order 52 · 72 is abelian.

d. Write down exactly one representative in each isomorphism class of groups of order 52 · 72.

Concepts Used:

• Centralizer: CG(x) =
{
g ∈ G

∣∣∣ [gx] = 1
}

.

• Class Equation: |G| = |Z(G)| +∑[G : CG(xi)]

• G/Z(G) cyclic ⇐⇒ G is abelian.

G/Z(G) = ⟨xZ⟩ ⇐⇒ g ∈ G =⇒ gZ = xmZ

⇐⇒ g(xm)−1 ∈ Z

⇐⇒ g = xmz forsome z ∈ Z

=⇒ gh = xmz1x
nz2 = xnz2x

mz1 = hg.

• Every group of order p2 is abelian.

• Classification of finite abelian groups.

Solution:
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Proof (of a).
Strategy: get p to divide |Z(G)|.

• Apply the class equation:

|G| = |Z(G)| +
∑

[G : CG(xi)].

• Since CG(xi) ≤ G and |G| = pk, by Lagrange |CG(xi)| = pℓ for some 0 ≤ ℓ ≤ k.

• Since |G| = pk for some k and Z(G), CG(xi) ≤ G are subgroups, their orders are
powers of p.

• Use

[G : CG(xi)] = 1 ⇐⇒ CG(xi) = G ⇐⇒
{
g ∈ G

∣∣∣ gxig−1 = xi
}

= G ⇐⇒ xi ∈ Z(G).

– Thus every index appearing in the sum is greater than 1, and thus equal to
pℓi for some 1 ≤ ℓi ≤ k

– So p divides every term in the sum

• Rearrange

|G| −
∑

[G : CG(xi)] = |Z(G)|.

• p divides both terms on the LHS, so must divide the RHS, so |Z(G)| ≥ p.

■

Proof (of b).
Strategy: examine |G/Z(G)| by cases.

• 1: Then G = Z(G) and G is abelian.
• p: Then G/Z(G) is cyclic so G is abelian
• p2: Not possible, since |Z(G)| > 1 by (a).

■
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Proof (of c).

• By Sylow

– n5
∣∣ 72, n5 ∼= 1 mod 5 =⇒ n5 ∈ {1, 7, 49} \ {7, 49} = {1} =⇒ n5 = 1

– n7
∣∣ 52, n7 ∼= 1 mod 7 =⇒ n7 ∈ {1, 5, 25} \ {5, 25} = {1} =⇒ n7 = 1

• By recognition of direct products, G = S5 × S7

– By above, S5, S7 ⊴ G
– Check S5 ∩ S7 = {e} since they have coprime order.
– Check S5S7 = G since |S5S7| = 5272 = |G|

• By (b), S5, S7 are abelian since they are groups of order p2

• The direct product of abelian groups is abelian.

■

Proof (of d).

• Z52 × Z72

• Z2
5 × Z72

• Z52 × Z2
7

• Z2
5 × Z2

7

■

6 Groups: Simple and Solvable

E 6.1 ⋆ Fall 2016 #7 e

a. Define what it means for a group G to be solvable.

b. Show that every group G of order 36 is solvable.

Hint: you can use that S4 is solvable.

E 6.2 Spring 2015 #4 e
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Problem 6.2.1 (?)
Let N be a positive integer, and let G be a finite group of order N .

a. Let Sym∗G be the set of all bijections from G → G viewed as a group under composition.
Note that Sym∗G ∼= SN . Prove that the Cayley map

C : G → Sym∗G

g 7→ (x 7→ gx)

is an injective homomorphism.

b. Let Φ : Sym∗G → SN be an isomorphism. For a ∈ G define ε(a) ∈ {±1} to be the sign
of the permutation Φ(C(a)). Suppose that a has order d. Prove that ε(a) = −1 ⇐⇒ d
is even and N/d is odd.

c. Suppose N > 2 and N ≡ 2 mod 4. Prove that G is not simple.

Hint: use part (b).

△! Warning 6.2.1
We haven’t really covered the Cayley representation (“left-regular representation”) in the qual class
in recent years, and this question uses some slightly nontrivial properties of it.

Concepts Used:

• A cycle σ ∈ SN is odd ⇐⇒ ε(σ) = −1 ⇐⇒ σ has an odd number of even cycles
⇐⇒ σ can be written as an even number of transpositions.

• A single cycle of even length is odd, and of odd length is even, by writing (123 · · · , d) =
(12)(13) · · · (1d), reading right-to-left.

• An := ker(Sn → Z/2Z) is the kernel of the sign morphism, so only even permutations.

Solution:
Part a: Check that kerC = {e} ⊆ G, or prove injectivity directly via C(g) = C(h) =⇒ g = h.
For the former, introduce some new notation: write

C : G → Sym(G)
g 7→ τg.

where

τg : G → G

x 7→ gx
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is left-translation by g. Now note that the identity in Sym(G) is the group morphism idG, so

ker(C) :=
{
g ∈ G

∣∣∣ C(g) = idG
}

=
{
g ∈ G

∣∣∣ τg(x) = x ∀x ∈ G
}

=
{
g ∈ G

∣∣∣ gx = x ∀x ∈ G
}

=
⋂
x∈G

StabG(x),

i.e. anything in the kernel is (by definition) in the stabilizer of every point x ∈ G. Now check
that

g ∈ StabG(x) ⇐⇒ gx = x ⇐⇒ gxx−1 = xx−1 ⇐⇒ ge = e ⇐⇒ g = e

where e is the identity in G, so StabG(x) = {e} for every x ∈ G and thus ker(C) = {e}.
Note: one should also prove that C is actually a
group morphism, but this is mostly a routine check.

Part b: Let Ψ : G → SN be the composition Ψ = Φ ◦ C; this is a group morphism and
ker Ψ ⊴ G is always a normal subgroup (which is used in part c).
Fix a ∈ G with d defined as the order of a.
⇐= : Suppose d is even and N/d is odd. Let A := ⟨a⟩, then [G : H] = N/d, so there are an

odd number of (left) A-cosets. Consider the permutation Ψ(a) ∈ SN ; the claim is that τa is a
product of N/d cycles, all of length d. Given this claim, under our assumptions Ψ(a) has an
odd number of even cycles, is thus an odd permutation, and thus ε(a) = −1.
=⇒ : Suppose ε(a) = −1, then Ψ(a) is an odd permutation. Since Ψ(a) is in the image of Ψ,
it can be written as a product (not necessarily unique) of N/d cycles of length d. Since this
cycle must be odd, there must be an odd number of even cycles in any such decomposition.
One can show that all cycles in the image of the left-regular representation are the same length,
so every cycle is of even length d, and there are an odd number N/d of them.
Part c: . Since a sufficient condition for G not to be simple is existence of a nontrivial normal
subgroup, it suffices to cook up a nontrivial a ∈ ker Ψ.
Note that

N ≡ 2 mod 4 =⇒ 2
∣∣ N and 22 ∣∣∤ N =⇒ N/2 is odd,

so with the hint in mind, consider d := 2.
Suppose

ker(Ψ) :=
{
a ∈ G

∣∣∣ ε(a) = 1
}

= {e} ,

then this forces ε(a) = −1 for every nontrivial a ∈ G. Letting d(a) be the order of a, we know
that d(a) must be even and N/d(a) must be odd for every a. Since d(a) is even, 2

∣∣ d(a), but
since 22 ̸

∣∣ N , we must have 22 ̸
∣∣ d(a). So d(a) is an even number (so no odd prime factors)

with exactly one copy of 2 in its prime factorization, forcing d(a) = 2 for all a ∈ G.
But now every element in G is order 2, and a one can show the general result that if every
g ∈ G satisfies g2 = e then the size of G is a power of 2. However, since N/2 is necessarily
odd, this is a contradiction. E
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So there must be some a ∈ G with ε(a) = 1, making ker(Ψ) ⊴ G nontrivial and exhibiting a
normal subgroup that makes G non-simple.

For the power of 2 result, one can use Cauchy’s
theorem: if any odd prime p ≥ 3 divides the size
of G, then there exists an element of order p, con-
tradiction.

E 6.3 Spring 2014 #1 e

Let p, n be integers such that p is prime and p does not divide n. Find a real number k = k(p, n)
such that for every integer m ≥ k, every group of order pmn is not simple.

E 6.4 Fall 2013 #1 e

Let p, q be distinct primes.

a. Let q ∈ Zp be the class of qmod p and let k denote the order of q as an element of Z×
p . Prove

that no group of order pqk is simple.

b. Let G be a group of order pq, and prove that G is not simple.

E 6.5 Spring 2013 #4 e

Define a simple group. Prove that a group of order 56 can not be simple.

E 6.6 Fall 2019 Midterm #3 e

Show that there exist no simple groups of order 148.
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7 Commutative Algebra

7 Commutative Algebra

E 7.1 UFDs, PIDs, etc e

7.1.1 Spring 2013 #2

a. Define a Euclidean domain.

b. Define a unique factorization domain.

c. Is a Euclidean domain an UFD? Give either a proof or a counterexample with justification.

d. Is a UFD a Euclidean domain? Give either a proof or a counterexample with justification.

Solution:

• R is Euclidean iff it admits a Euclidean algorithm: there is a degree function f : R → Z≥0
such that for all a, b ∈ R, there exist q, r ∈ R such that a = bq + r where f(r) < f(b) or
r = 0.

• R is a UFD iff every r ∈ R can be written as r = u
∏n
i=1 pi with n ≥ 0, u ∈ R×, and pi

irreducible. This is unique up to associates of the pi and reordering.

• Euclidean implies UFD:

– Euclidean implies PID:
♢ If I ∈ Id(R) one can use the degree function to find any b ∈ I where f(b) is

minimal.
♢ Then I = ⟨b⟩, since if a ∈ I one can write a = bq + r and use that a − bq ∈
I =⇒ r ∈ I.

♢ But by minimality, we can’t have f(r) < f(b), so r = 0 and a
∣∣ b, so b ∈ ⟨a⟩.

– PID implies UFD:
♢ Use that irreducible implies prime in a PID, so every x ∈ R has some factor-

ization into finitely many primes.
♢ Supposing x = up

∏m
i=1 pi = uq

∏n
i=1 qi, use that p1 divides the LHS and so p1

divides the RHS. WLOG, p1
∣∣ q1, so q1 = u1p1 for u ∈ R×, so x = uqu1p1

∏m
i=2 qi

by rewriting a term on the RHS.
♢ Note that this makes p1, q1 associates.
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♢ Continuing up to m, we get

x = up

m∏
i=1

pi

= uq

m∏
i=1

uipi

n∏
k=m+1

qi

=⇒ up = uq

m∏
i=1

ui

n∏
k=m+1

qi

ũ =
n∏

k=m+1
qi,

where we’ve moved all units to the LHS. This makes pi, qi associates for i ≤ m.
♢ But primes aren’t units and the product of nontrivial primes can’t be a unit,

so the right-hand side product must be empty.
♢ So m = n and all pi, qi are associate, QED.

• UFD does not imply Euclidean:

– It suffices to find a UFD that is not a PID.
– Take R := C[x, y], which is a UFD by the usual factorization of polynomials. It is

not a PID, since ⟨2, x⟩ is not principal.

7.1.2 Fall 2017 #6

For a ring R, let U(R) denote the multiplicative group of units in R. Recall that in an integral
domain R, r ∈ R is called irreducible if r is not a unit in R, and the only divisors of r have the
form ru with u a unit in R.

We call a non-zero, non-unit r ∈ R prime in R if r
∣∣ ab =⇒ r

∣∣ a or r
∣∣ b. Consider the ring

R = {a+ b
√

−5
∣∣∣ a, b ∈ Z}.

a. Prove R is an integral domain.

b. Show U(R) = {±1}.

c. Show 3, 2 +
√

−5, and 2 −
√

−5 are irreducible in R.

d. Show 3 is not prime in R.

e. Conclude R is not a PID.
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Concepts Used:

• Integral domain: ab = 0 =⇒ a ̸= 0 or b ̸= 0.
• Prime: p

∣∣ ab =⇒ p
∣∣ a or b.

• Reducible: a = xy where x, y are proper divisors.
• Irreducible implies prime in a UFD.

Solution:

• R is an integral domain:

– Let α = a+ b
√

−5 and β = c+ d
√

−5 and set α, β be their conjugates.
– Then

0 = αβ = ααββ = (a2 − 5b2)(c2 − 5d2) ∈ Z,

so one factor is zero.
– If a2 = 5b2 then a =

√
5b ̸∈ Z unless a = b = 0. Otherwise, the same argument

forces c = d = 0.

• The units are ±1:

– Use that u ∈ R× =⇒ N(u) = ±1, and N(α) = αα = (a + b
√

−5)(a − b
√

−5) =
a2 + 5b2 = 1 forces b = 0 and a = ±1.

• Irreducible elements:

– 2, 3 are irreducible because if (say) 3 = xy then N(x)N(y) = N(3) = 9, and if
neither x, y are units then N(x) = N(y) = 3. But N(a + b

√
−5) = a2 + 5b2 and

a2 + 5b2 = 3 has no solutions. The same argument works for 2.
– 2 ±

√
−5 are irreducible because N(2 +

√
−5) = 22 + 5(1) = 9, and in fact N(2 −√

−5) = 22 + 5(−1)2 = 9. By the same argument as above, this forces irreducibility.

• 3 is not prime:

– We can write 6 = (3)(2) = (1 +
√

−5)(1 −
√

−5), so if we assume 3 is prime we get
3
∣∣ (1 ±

√
−5).

– But writing (1 ±
√

−5) = 3r for some r ∈ R yields

(1 ±
√

−5) = 3(a+ b
√

−5) =⇒ 3a = 1, 3b = ±1.

These have no solutions a, b ∈ Z. E

• R is not a PID:

– Use that irreducibles are prime in a UFD, which is not true here.
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7.1.3 Spring 2017 #4

a. Let R be an integral domain with quotient field F . Suppose that p(x), a(x), b(x) are monic
polynomials in F [x] with p(x) = a(x)b(x) and with p(x) ∈ R[x], a(x) not in R[x], and both
a(x), b(x) not constant.

Prove that R is not a UFD.

(You may assume Gauss’ lemma)

b. Prove that Z[2
√

2] is not a UFD.

Hint: let p(x) = x2 − 2.

Concepts Used:

• Gauss’ lemma: for R a UFD with fraction field F , if f is reducible in F [x] with f = pq
then there are r, s ∈ R such that f = (rp)(sq) reduces in R[x].

• Corollary: R is a UFD iff R[x] is a UFD.

Solution:

Proof (of 1).

• The important assumption is a(x) ̸∈ R[x], we’ll assume R is a UFD and try to
contradict this.

• Write f(x) = a(x)b(x) ∈ F [x], then if R is a UFD we have r, s ∈ F such that
f(x) = ra(x)sb(x) ∈ R[x].

• Since a(x), b(x) are monic and f = ab, f is monic, and by the factorization in R[x]
we have rs = 1. So r, s ∈ R×.

• Then using that ra(x) ∈ R[x], we have r−1ra(x) = a(x) ∈ R[x]. E

■

Proof (of b).

• Set R = Z[2
√

2], F = Q[2
√

2].
• Let p(x) := x2−2 ∈ R[x] which splits as p(x) = (x+

√
2)(x−

√
2) := a(x)b(x) ∈ F [x].

• Note neither a(x), b(x) are in R[x].

– Explicitly, every monic linear p ∈ R[x] is of the form x+ 2t
√

2 with t ∈ Z, and
±

√
2 ̸= 2t

√
2 for any t.

• So we have p(x) ∈ R[x] splitting as p = ab in F [x] with a ̸∈ R[x], so part (a) applies.

■
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7 Commutative Algebra

E
7.2 Ideals (Prime, Maximal, Proper,

Principal, etc) e

7.2.1 Fall 2021 #5 #algebra/qual/stuck

Let R be an algebra over C which is finite-dimensional as a C-vector space. Recall that an ideal I
of R can be considered as a C-subvector space of R. We define the codimension of I in R to be

codimR I := dimCR− dimC I,

the difference between the dimension of R as a C-vector space, dimCR, and the dimension of I as
a C-vector space, dimC I.

a. Show that any maximal ideal m ⊂ R has codimension 1 .

b. Suppose that dimCR = 2. Show that there exists a surjective homomorphism of C-algebras
from the polynomial ring C[t] to R.

c. Classify such algebras R for which dimCR = 2, and list their maximal ideals.

Solution:
Part a: Since I is proper, we have codimR I ≥ 1 since codimR I = 0 =⇒ I = R since I ≤ R
is a vector subspace of the same dimension. We also have codimR I ≤ dimCR, and noting
that codimR I = dimCR ⇐⇒ dimC I = dimCR and if I is maximal it is necessarily proper,
we in fact have codimR I < dimCR, so

1 ≤ codimR I ≤ dimCR− 1.

Now if codimR I ≥ 2, then dimC I ≤ dimCR − 2. Choosing a basis {v1, · · · , vn} for R as
a C-vector space induces a basis {v1, · · · , vk} on I for some k ≤ n − 2. But then I ′ :=
⟨v1, · · · , vk, vk+1⟩ is a proper C-vector subspace of R containing I, contradicting maximality
of I. So codimR I < 2, forcing codimR I = 1.
Part b: Choose a vector space basis {v1, v2} for R and define a map

φ : C[t] → R

1 7→ v1

t 7→ v2,

extended by linearity.
Part c: By part (b), R ∼= C[t]/I where I = kerφ (using the first isomorphism theorem).
Since C[t] is a PID, we have I = ⟨f⟩ for some monic f . We must have deg f = dimC C[t]/I =
dimCR = 2, so f is a quadratic. Since C is algebraically closed we can write f(z) = (z−a)(z−a)
or f(z) = (z − a)2 for some a ∈ C. By the ideal correspondence theorem, maximal ideals of R
correspond to maximal ideals of C[t] containing I, and again using that C[t] is a PID, these
correspond to ideals ⟨g⟩ with g

∣∣ f (to contain is to divide) for some g ∈ C[t]. So the maximal
ideals of R correspond to any of
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• g(z) = 1
• g(z) = z − a
• g(z) = z − a
• g(z) = f(z)

Thanks to Akash Singha Roy for this solution.

7.2.2 Fall 2013 #3

a. Define prime ideal, give an example of a nontrivial ideal in the ring Z that is not prime, and
prove that it is not prime.

b. Define maximal ideal, give an example of a nontrivial maximal ideal in Z and prove that it is
maximal.

Solution:

• p is prime iff xy ∈ p =⇒ x ∈ p or y ∈ p.

– An ideal I ⊴ Z that is not prime: I := 8Z.
– For example, 2 · 4 ∈ 8Z but neither 2 nor 4 is a multiple of 8.

• m is maximal iff whenever I ⊇ m is an ideal in R, then either I = m or I = R.

– A maximal ideal in Z: pZ. This is because primes are maximal in a PID and pZ is
a prime ideal. Alternatively, “to contain is to divide” holds for Dedekind domains,
so mZ ⊇ pZ ⇐⇒ m

∣∣ p, which forces m = 1, p, so either mZ = pZ or mZ = Z.

7.2.3 Fall 2014 #8

Let R be a nonzero commutative ring without unit such that R does not contain a proper maximal
ideal. Prove that for all x ∈ R, the ideal xR is proper.

You may assume the axiom of choice.

7.2.4 Fall 2014 #7

Give a careful proof that C[x, y] is not a PID.

Concepts Used:

• If R[x] is a PID, then R is a field (not explicitly used).
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• In P := R[x1, · · · , xn], there are degree functions degxn
: P → Z≥0.

Solution:

• The claim is that I := ⟨x, y⟩ is not principal.
• Toward a contradiction, if so, then ⟨x, y⟩ = ⟨f⟩.
• So write x = fg for some g ∈ C[x, y], then

– degx(x) = 1, so degx(fg) = 1 which forces degx(f) ≤ 1.
– degy(y) = 1, so degy(fg) = 1 which forces degy(f) ≤ 1.
– So f(x, y) = ax+ by + c for some a, b, c ∈ C.
– degx(y) = 0 and thus degx(fg) = 0, forcing a = 0
– degy(x) = 0 and thus degy(fg) = 0, forcing b = 0
– So f(x, y) = c ∈ C.

• But C[x] is a field, so c is a unit in C and thus C[x, y], so ⟨f⟩ = ⟨c⟩ = C[x, y].
• This is a contradiction, since 1 ̸∈ ⟨x, y⟩:

– Every element in α(x, y) ∈ ⟨x, y⟩ is of the form α(x, y) = xp(x, y) + yq(x, y).
– But degx(α) ≥ 1,degy(α) ≥ 1, while degx(1) = degy(1) = 0.
– So ⟨x, y⟩ ≠ C[x, y].

• Alternatively, ⟨x, y⟩ is proper since C[x, y]/ ⟨x, y⟩ ∼= C ̸= C[x, y].

7.2.5 Spring 2019 #6

Let R be a commutative ring with 1.

Recall that x ∈ R is nilpotent iff xn = 0 for some
positive integer n.

a. Show that every proper ideal of R is contained within a maximal ideal.

b. Let J(R) denote the intersection of all maximal ideals of R. Show that x ∈ J(R) ⇐⇒ 1 + rx
is a unit for all r ∈ R.

c. Suppose now that R is finite. Show that in this case J(R) consists precisely of the nilpotent
elements in R.

Concepts Used:

• Definitions:

N(R) :=
{
x ∈ R

∣∣∣ xn = 0 for some n
}

J(R) := ∩m∈mSpecm.
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• Zorn’s lemma: if P is a poset in which every chain has an upper bound, P contains a
maximal element.

Solution:

Proof (of a).
Define the set of proper ideals

S =
{
J
∣∣∣ I ⊆ J < R

}
,

which is a poset under set inclusion.
Given a chain J1 ⊆ · · ·, there is an upper bound J := ∪Ji, so Zorn’s lemma applies.

■

Proof (of b, =⇒ ).
=⇒ :

• We will show that x ∈ J(R) =⇒ 1 + x ∈ R×, from which the result follows by
letting x = rx.

• Let x ∈ J(R), so it is in every maximal ideal, and suppose toward a contradiction
that 1 + x is not a unit.

• Then consider I = ⟨1 + x⟩ ⊴ R. Since 1+x is not a unit, we can’t write s(1+x) = 1
for any s ∈ R, and so 1 ̸∈ I and I ̸= R

• So I < R is proper and thus contained in some maximal proper ideal m < R by
part (1), and so we have 1 + x ∈ m. Since x ∈ J(R), x ∈ m as well.

• But then (1 + x) − x = 1 ∈ m which forces m = R.

■
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Proof (of b, ⇐= ).
⇐=

• Fix x ∈ R, and suppose 1 + rx is a unit for all r ∈ R.

• Suppose towards a contradiction that there is a maximal ideal m such that x ̸∈ m
and thus x ̸∈ J(R).

• Consider

M ′ :=
{
rx+m

∣∣∣ r ∈ R, m ∈ M
}
.

• Since m was maximal, m ⊊M ′ and so M ′ = R.

• So every element in R can be written as rx+m for some r ∈ R,m ∈ M . But 1 ∈ R,
so we have

1 = rx+m.

• So let s = −r and write 1 = sx−m, and so m = 1 + sx.

• Since s ∈ R by assumption 1+sx is a unit and thus m ∈ m is a unit, a contradiction.

• So x ∈ m for every m and thus x ∈ J(R).

■
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Proof (of c: J(R) = N(R)).
N(R) ⊆ J(R):

• Use the fact x ∈ N(R) =⇒ xn = 0 =⇒ 1 + rx is a unit ⇐⇒ x ∈ J(R) by (b):

n−1∑
k=1

(−x)k = 1 − (−x)n
1 − (−x) = (1 + x)−1.

J(R) ⊆ N(R):

• Let x ∈ J(R) \ N(R).

• Since R is finite, xm = x for some m > 0.

• Without loss of generality, we can suppose x2 = x by replacing xm with x2m.

• If 1 − x is not a unit, then ⟨1 − x⟩ is a nontrivial proper ideal, which by (a)
is contained in some maximal ideal m. But then x ∈ m and 1 − x ∈ m =⇒
x+ (1 − x) = 1 ∈ m, a contradiction.

• So 1 − x is a unit, so let u = (1 − x)−1.

• Then

(1 − x)x = x− x2 = x− x = 0
=⇒ u(1 − x)x = x = 0
=⇒ x = 0.

■

7.2.6 Spring 2018 #8

Let R = C[0, 1] be the ring of continuous real-valued functions on the interval [0, 1]. Let I be an
ideal of R.

a. Show that if f ∈ I, a ∈ [0, 1] are such that f(a) ̸= 0, then there exists g ∈ I such that g(x) ≥ 0
for all x ∈ [0, 1], and g(x) > 0 for all x in some open neighborhood of a.

b. If I ̸= R, show that the set Z(I) = {x ∈ [0, 1]
∣∣∣ f(x) = 0 for all f ∈ I} is nonempty.

c. Show that if I is maximal, then there exists x0 ∈ [0, 1] such that I = {f ∈ R
∣∣∣ f(x0) = 0}.

Remark 7.2.1: Cool problem, but pretty specific topological tricks needed.
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Solution:

Proof (of a).

• Suppose c := f(a) ̸= 0, noting that c may not be positive.
• By continuity, pick ε small enough so that |x− a| < ε =⇒ |f(x) − f(a)| < c/2.

Since we’re on the interval, we have f(x) ∈ (f(a) − c/2, f(a) + c/2) = (c/2, 3c/2)
which is a ball of radius c/2 about c, which thus doesn’t intersect 0.

• So f(x) ̸= 0 on this ball, and g := f2 > 0 on it. Note that ideals are closed under
products, so g ∈ I

• Moreover f2(x) ≥ 0 since squares are non-negative, so g ≥ 0 on [0, 1].

■

Proof (of b).

• By contrapositive, suppose V (I) = ∅, we’ll show I contains a unit and thus I = R.
• For each fixed x ∈ [0, 1], since V (I) is empty there is some fx such that fx(x) ̸= 0.
• By (a), there is some gx with gx(x) > 0 on a neighborhood Ux ∋ x and gx ≥ 0

everywhere.
• Ranging over all x yields a collection

{
(gx, Ux)

∣∣∣ x ∈ [0, 1]
}

where {Ux}⇒ [0, 1].
• By compactness there is a finite subcover, yielding a finite collection {(gk, Uk)}nk=1

for some n.
• Define the candidate unit as

G(x) := 1∑n
k=1 gk(x) .

• This is well-defined: fix an x, then the denominator is zero at x iff gk(x) = 0 for all
k. But since the Uk form an open cover, x ∈ Uℓ for some ℓ, and gℓ > 0 on Uℓ.

• Since ideals are closed under sums, H := 1
G

:= ∑
gk ∈ I. But H is clearly a unit

since HG = id.

■

Proof (of c).

• If I ⊴ R is maximal, I ̸= R, and so by (b) we have V (I) ̸= ∅.
• So there is some x0 ∈ [0, 1] with f(x0) = 0 for all f ∈ I.
• Define mx0 :=

{
f ∈ R

∣∣∣ f(x0) = 0
}

, which is clearly an ideal.

– This is a proper ideal, since constant nonzero functions are continuous and
thus in R, not not mx0 .

• We thus have I ⊆ mx0 , and by maximality they are equal.

■
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I’m not super convinced by c!

E 7.3 Zero Divisors and Nilpotents e

7.3.1 Spring 2014 #5

Let R be a commutative ring and a ∈ R. Prove that a is not nilpotent ⇐⇒ there exists a
commutative ring S and a ring homomorphism φ : R → S such that φ(a) is a unit.

Note: by definition, a is nilpotent ⇐⇒ there is a
natural number n such that an = 0.

Solution:
̸ A =⇒ ̸ B:

• Suppose a is nilpotent, so am = 0R, and suppose φ : R → S is a ring morphism.
• Ring morphisms send zero to zero, so 0S = φ(0R) = φ(am) = φ(a)m and φ(a) is

nilpotent.
• But nontrivial rings can’t contain nilpotent units: if u is a unit and ut = 1 with uk = 0,

then 1 = 1k = (ut)k = uktk = 0 and R = 0.

A =⇒ B:

• If a is not nilpotent, localize at the infinite multiplicative subset A :=
{
1, a, a2, · · ·

}
to

obtain R [A−1]. Since 0 ̸∈ A, this is not the zero ring.
• By the universal property, there is a map φ : R → R [A−1], and the claim is that φ(a) is

a unit in R [A−1].
• More directly, φ(a) = [a/1] ∈

{
p, q

∣∣∣ p ∈ R, q ∈ A
}

, which has inverse [a/1].

7.3.2 Spring 2021 #5

Problem 7.3.1 (Spring 2021)
Suppose that f(x) ∈ (Z/nZ)[x] is a zero divisor. Show that there is a nonzero a ∈ Z/nZ with
af(x) = 0.

Solution:

• Write f(x) = ∑n
k=0 akx

k, and supposing it’s a zero divisor choose g(x) = ∑m
k=0 bkx

k of
minimal degree so that g ̸= 0, bm ̸= 0, and f(x)g(x) = 0.
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• The claim is that the top coefficient bm will suffice.
• Write the product:

0 = f(x)g(x) = (a0 + · · · + an−1x
n−1 + anx

n)(b0 + · · · + bm−1x
m−1 + bmx

m).

• Equating coefficients, the coefficient for xm+n must be zero, so (importantly) anbm = 0.

– Since anbm = 0, consider ang(x). This has degree d1 ≤ m − 1 but satisfies
ang(x)f(x) = an(g(x)f(x)) = 0, so by minimality ang(x) = 0.

– This forces anb0 = · · · = anbm−1 = 0, so an annihilates all of the bk.

• Now consider the coefficient of xm+n−1, given by an−1bm + anbm−1.

– The second term anbm−1 = 0 since an annihilates all bk, so (importantly) an−1bm =
0.

– Considering now an−1g(x):
♢ The same argument shows this has degree d2 ≤ m− 1 but an−1g(x)f(x) = 0,

so an−1g(x) = 0.
♢ So an−1 annihilates all bk, and allowing this process to continue inductively.

• For good measure, the coefficient of xm+n−2 is an−2bm + an−1bm−1 + anbm−2.

– Note that an, an−1 annihilate all bk, so (importantly) an−2bm = 0, and so on.

• Thus akbm = 0 for all 0 ≤ k ≤ n, and by linearity and commutativity, we have

bmf(x) = bm

n∑
k=0

akx
k =

n∑
k=0

(bmak)xk = 0.

7.3.3 Fall 2018 #7

Let R be a commutative ring.

a. Let r ∈ R. Show that the map

r• : R → R

x 7→ rx.

is an R-module endomorphism of R.

b. We say that r is a zero-divisor if r• is not injective. Show that if r is a zero-divisor and
r ̸= 0, then the kernel and image of R each consist of zero-divisors.

c. Let n ≥ 2 be an integer. Show: if R has exactly n zero-divisors, then ♯R ≤ n2 .

d. Show that up to isomorphism there are exactly two commutative rings R with precisely 2
zero-divisors.
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You may use without proof the following fact: every
ring of order 4 is isomorphic to exactly one of the
following:

Z
4Z ,

Z
2Z [t]

(t2 + t+ 1) ,
Z

2Z [t]
(t2 − t) ,

Z
2Z [t]
(t2) .

Concepts Used:

• Testing module morphisms: φ(sm+ n) = sφ(m) + φ(n).
• First isomorphism theorem used for sizes: R/ ker f ∼= im f , so ♯R = ♯ ker f · ♯ im f .
• See 1964 Annals “Properties of rings with a finite number of zero divisors”

Solution:

Proof (of a).

• Let φ denote the map in question, it suffices to show that φ is R-linear, i.e. φ(sx +
y) = sφ(x) + φ(y):

φ(sx + y) = r(sx + y)
= rsx + ry
= s(rx) + (ry)
= sφ(x) + φ(y).

■
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Proof (of b).
Let φr(x) := rx be the multiplication map.

• Let x ∈ kerφr :=
{
x ∈ R

∣∣∣ rx = 0
}

.

• Since R is commutative 0 = rx = xr, and so r ∈ kerφx, so kerφx ̸= 0 and x is a
zero divisor by definition.

• Let y ∈ imφr :=
{
y := rx

∣∣∣ x ∈ R
}

, we want to show kerφy is nontrivial by
producing some z such that yz = 0. Write y := rx for some x ∈ R.

• Since r is a zero divisor, we can produce some z ̸= 0 ∈ kerφr, so rz = 0.

• Now using that R is commutative, we can compute

yz = (rx)z = (xr)z = x(rz) = x(0) = 0,

so z ∈ kerφy.

■

Proof (of c).

• Let Z := {zi}ni=1 be the set of n zero divisors in R.

• Let φi be the n maps x 7→ zix, and let Ki = kerφi be the corresponding kernels.

• Fix an i.

• By (b), Ki consists of zero divisors, so

|Ki| ≤ n < ∞ for each i.

• Now consider R/Ki := {r +Ki}.

• By the first isomorphism theorem, R/Ki
∼= imφ, and by (b) every element in the

image is a zero divisor, so

[R : Ki] = |R/Ki| = |imφi| ≤ n.

• But then

|R| = [R : Ki] · |Ki| ≤ n · n = n2.

■
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Proof (of d).

• By (c), if there are exactly 2 zero divisors then |R| ≤ 4. Since every element in a
finite ring is either a unit or a zero divisor, and |R×| ≥ 2 since ±1 are always units,
we must have |R| = 4.

• Since the characteristic of a ring must divide its size, we have chR = 2 or 4.

• Using the hint, we see that only Z/(4) has characteristic 4, which has exactly 2
zero divisors given by [0]4 and [2]4.

• If R has characteristic 2, we can check the other 3 possibilities.

• We can write Z/(2)[t]/(t2) =
{
a+ bt

∣∣∣ a, b ∈ Z/(2)
}

, and checking the multiplica-
tion table we have

0 1 t 1 + t

0 0 0 0 0
1 0 1 t 1 + t
t 0 t 0 t

1 + t 0 1 + t t 1

,

and so we find that t, 0 are the zero divisors.

• In Z/(2)[t]/(t2 − t), we can check that t2 = t =⇒ tt2 = t2 =⇒ t(t2 + 1) = 0 =⇒
t(t+ 1) = 0, so both t and t+ 1 are zero divisors, along with zero, so this is not a
possibility.

• Similarly, in Z/(2)[t]/(t2 + t + 1), we can check the bottom-right corner of the
multiplication table to find  t 1 + t

t 1 + t 1
t 1 t

 ,
and so this ring only has one zero divisor.

• Thus the only possibilities are:

R ∼= Z/(4)
R ∼= Z/(2)[t]/(t2).

■

E 7.4 Zorn’s Lemma e
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7.4.1 Fall 2013 #4

Let R be a commutative ring with 1 ̸= 0. Recall that x ∈ R is nilpotent iff xn = 0 for some positive
integer n.

a. Show that the collection of nilpotent elements in R forms an ideal.

b. Show that if x is nilpotent, then x is contained in every prime ideal of R.

c. Suppose x ∈ R is not nilpotent and let S =
{
xn
∣∣∣ n ∈ N

}
. There is at least on ideal of R

disjoint from S, namely (0).

By Zorn’s lemma the set of ideals disjoint from S has a maximal element with respect to
inclusion, say I. In other words, I is disjoint from S and if J is any ideal disjoint from S with
I ⊆ J ⊆ R then J = I or J = R.

Show that I is a prime ideal.

d. Deduce from (a) and (b) that the set of nilpotent elements of R is the intersection of all prime
ideals of R.

7.4.2 Fall 2015 #3

Let R be a rng (a ring without 1) which contains an element u such that for all y ∈ R, there exists
an x ∈ R such that xu = y.

Prove that R contains a maximal left ideal.

Hint: imitate the proof (using Zorn’s lemma) in the
case where R does have a 1.

Solution:

• Define the map

φu : R → R

x 7→ xu,

which is right-multiplication by u. By assumption, φu is surjective, so the principal ideal
Ru equals R.

• Then K := kerφu ∈ Id(R) is an ideal.
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• K is proper – otherwise, noting Ru = R, if K = R we have Ru = 0 and thus R = 0. So
suppose R ̸= 0.

• Take a poset S :=
{
J ∈ Id(R)

∣∣∣ J ⊇ K,J ̸= R
}

, the set of all ideals containing K,
ordered by subset inclusion. Note that K ∈ S, so S is nonempty.

• Apply Zorn’s lemma: let C : C1 ⊆ C2 ⊆ · · · be a chain (totally ordered sub-poset) in
S. If C is the empty chain, K is an upper bound. Otherwise, if C is nonempty, define
Ĉ := ⋃∞

i=1Ci.

– Ĉ is an ideal: if a, b ∈ Ĉ, then a ∈ Ci, b ∈ Cj for some i, j. But without loss of
generality, using that chains are totally ordered, Ci ⊆ Cj , so a, b ∈ Cj and thus
ab ∈ Cj . Similarly for x ∈ Ĉ, x ∈ Cj for some j, and thus Rx ⊆ Cj since Cj is an
ideal.

– Ĉ is in S: It clearly contains K, since for example K ⊆ C1 ⊆ Ĉ.
♢ That Ĉ ≠ R: an ideal equals R iff it contains a unit. But if r ∈ Ĉ is a unit,
r ∈ Cj for some j is a unit, making Cj = R. E

• So by Zorn’s lemma, Ĉ contains a maximal ideal (incidentally containing K).

7.4.3 Spring 2015 #7

Let R be a commutative ring, and S ⊂ R be a nonempty subset that does not contain 0 such that
for all x, y ∈ S we have xy ∈ S. Let I be the set of all ideals I ⊴ R such that I ∩ S = ∅.

Show that for every ideal I ∈ I, there is an ideal J ∈ I such that I ⊂ J and J is not properly
contained in any other ideal in I.

Prove that every such ideal J is prime.

Solution:

• Restating, take the poset S :=
{
J ∈ Id(R)

∣∣∣ J ∩ S = ∅, I ̸= R, I ⊆ J
}

ordered by inclu-
sion. Note that S is nonempty since it contains I. It suffices to produce a maximal
element of S.

• Applying Zorn’s lemma, let C : C1 ⊆ C2 ⊆ · · · be a chain and define Ĉ := ∪Ci.
• By standard arguments, Ĉ ∈ Id(R) and Ĉ ⊇ I, and it suffices to show Ĉ ∩ S = ∅ and
Ĉ ̸= R.

• Ĉ ∩ S = ∅:

– By contradiction, if x ∈ Ĉ ∩ S then x ∈ Cj for some j, and x ∈ S. But then
x ∈ Cj ∩ S = ∅.

• Ĉ ̸= R:

– By contradiction, if so then 1 ∈ Ĉ =⇒ 1 ∈ Cj for some j, forcing Cj = R.

• So Zorn’s lemma applies and we obtain some ideal p, which we now claim is prime.
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• Let ab ∈ p, we want to show a ∈ p or b ∈ p.
• Suppose not, then neither a, b ∈ p. By maximality, p+Ra = R, and so p+Ra intersects
S. Similarly p +Rb = R so p +Rb intersects S.

• Produce elements x := p1 + r1a, y := p2 + r2b ∈ S, then since S is multiplicatively closed,

xy := (p1 + r1a)(p2 + r2b) ∈ S

=⇒ p1p2 + p1r2b+ p2r1a+ r1r2ab ∈ S

=⇒ xy ∈ p + pRb+ pRa+Rp since pi, ab ∈ p

=⇒ xy ∈ (p +Rb+Ra+R)p ⊆ p.

But then xy ∈ S ∩ p, a contradiction.

7.4.4 Spring 2013 #1

Let R be a commutative ring.

a. Define a maximal ideal and prove that R has a maximal ideal.

b. Show than an element r ∈ R is not invertible ⇐⇒ r is contained in a maximal ideal.

c. Let M be an R-module, and recall that for 0 ̸= µ ∈ M , the annihilator of µ is the set

Ann(µ) =
{
r ∈ R

∣∣∣ rµ = 0
}
.

Suppose that I is an ideal in R which is maximal with respect to the property that there
exists an element µ ∈ M such that I = Ann(µ) for some µ ∈ M . In other words, I = Ann(µ)
but there does not exist ν ∈ M with J = Ann(ν) ⊊ R such that I ⊊ J .

Prove that I is a prime ideal.

Solution:

Proof (part a and b).

• Maximal: a proper ideal I ⊴ R, so I ≠ R, such that if J ⊇ I is any other ideal,
J = R.

• Existence of a maximal ideal: use that 0 ∈ Id(R) always, so S :={
I ∈ Id(R)

∣∣∣ I ̸= R
}

is a nonempty poset under subset inclusion. Applying the
usual Zorn’s lemma argument produces a maximal element.

■
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Proof (part c).
⇐= : By contrapositive: if r ∈ R is a unit and m is maximal, then r ∈ m =⇒ m = R,

contradicting that m is proper.
=⇒ :

• Suppose a is not a unit, we’ll produce a maximal ideal containing it.
• Let I := Ra be the principal ideal generated by a, then Ra ̸= R since a is not a

unit.
• Take a poset S :=

{
J ∈ Id(R)

∣∣∣ J ⊇ Ra, J ̸= R
}

ordered by set inclusion.

– Let C∗ be a chain in S, set Ĉ := ∪Ci. Then Ĉ ∈ S:
♢ Ĉ ≠ R, since if so it contains a unit, forcing some Ci to contain a unit

and thus equal R.
♢ Ĉ ⊇ Ra, since e.g. Ĉ ⊇ C1 ⊇ Ra.
♢ Ĉ is an ideal since xy ∈ Ĉ =⇒ x ∈ Ci, y ∈ Cj and Ci ⊆ Cj without loss

of generality, so xy ∈ Cj ⊆ Ĉ.

• Then Ra ⊆ Ĉ, some maximal ideal.

■

Proof (of d).

• Write I := Ann(u) for some u, and toward a contradiction suppose ab ∈ I but
a, b ̸∈ I.

• Then abu = 0 but au ̸= 0, bu ̸= 0.
• Since abu = 0, we have a ∈ Ann(bu). Note that Ann(bu) ⊇ Ann(u), since su =

0 =⇒ bsu = sbu = 0.
• We can’t have Ann(bu) = R, since if sbu = 0 for all s ∈ R, so we could take s = 1

to get bu = 0 and b ∈ Ann(u).
• By maximality, this forces Ann(u) = Ann(bu), so sbu = 0 =⇒ su = 0 for any
s ∈ R.

• Now take s = a, and since abu = 0 we get au = 0 and a ∈ Ann(u). E

■

7.4.5 Fall 2019 #6

Let R be a commutative ring with multiplicative identity. Assume Zorn’s Lemma.

a. Show that

N = {r ∈ R
∣∣∣ rn = 0 for some n > 0}

is an ideal which is contained in any prime ideal.
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b. Let r be an element of R not in N . Let S be the collection of all proper ideals of R not
containing any positive power of r. Use Zorn’s Lemma to prove that there is a prime ideal in
S.

c. Suppose that R has exactly one prime ideal P . Prove that every element r of R is either
nilpotent or a unit.

Concepts Used:

• Prime ideal: p is prime iff ab ∈ p =⇒ a ∈ p or b ∈ p.

• Silly fact: 0 is in every ideal!

• Zorn’s Lemma: Given a poset, if every chain has an upper bound, then there is a
maximal element. (Chain: totally ordered subset.)

• Corollary: If S ⊂ R is multiplicatively closed with 0 ̸∈ S then
{
I ⊴ R

∣∣∣ J ∩ S = ∅
}

has a maximal element.
Prove this

• Theorem: If R is commutative, maximal =⇒ prime for ideals.
Prove this

• Theorem: Non-units are contained in a maximal ideal. (See HW?)

Solution:

Proof (of a).

• Let p be prime and x ∈ N .
• Then xk = 0 ∈ p for some k, and thus xk = xxk−1 ∈ p.
• Since p is prime, inductively we obtain x ∈ p.

■

Proof (of b).

• Let S =
{
rk
∣∣∣ k ∈ N

}
be the set of positive powers of r.

• Then S2 ⊆ S, since rk1rk2 = rk1+k2 is also a positive power of r, and 0 ̸∈ S since
r ̸= 0 and r ̸∈ N .

• By the corollary,
{
I ⊴ R

∣∣∣ I ∩ S = ∅
}

has a maximal element p.

• Since R is commutative, p is prime.

■
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Proof (of c).

• Suppose R has a unique prime ideal p.

• Suppose r ∈ R is not a unit, and toward a contradiction, suppose that r is also not
nilpotent.

• Since r is not a unit, r is contained in some maximal (and thus prime) ideal, and
thus r ∈ p.

• Since r ̸∈ N , by (b) there is a maximal ideal m that avoids all positive powers of r.
Since m is prime, we must have m = p. But then r ̸∈ p, a contradiction.

■

E 7.5 Noetherian Rings e

7.5.1 Fall 2015 #4

Let R be a PID and (a1) < (a2) < · · · be an ascending chain of ideals in R. Prove that for some n,
we have (aj) = (an) for all j ≥ n.

Solution:

• Let I := ∪Rai which is an ideal in a PID and thus I = Rb for some b.
• Using that b ∈ I, which is a union, we have Rb ∈ Ram for some m.
• Thus I = Rb ⊆ Ram, and Ram ⊆ I by definition of I, so Rb = Ram.
• In particular, since Ram ⊆ Ram+1 by assumption, and Ram+1 ⊆ Rb ⊆ Ram since
Rb = I, we have Ram = Ram+1. So inductively, the chain stabilizes at m.

7.5.2 Spring 2021 #6

a. Carefully state the definition of Noetherian for a commutative ring R.

b. Let R be a subset of Z[x] consisting of all polynomials

f(x) = a0 + a1x+ a2x
2 + · · · + anx

n

such that ak is even for 1 ≤ k ≤ n. Show that R is a subring of Z[x].

c. Show that R is not Noetherian.
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Hint: consider the ideal generated by{
2xk

∣∣∣ 1 ≤ k ∈ Z
}

.

Solution: • A ring is Noetherian iff R satisfies the ascending chain condition: every chain
of ideals A1 ⊆ A2 ⊆ · · · eventually stabilizes, so Am ⊆ Am+1 = Am+2 = · · ·.

• That R is a subring of Z[x]:

– (R,+) is an abelian subgroup: note that f(x) + g(x) = ∑
akx

k +∑ bkx
k = ∑(ak +

bk)xk, so if ak, bk are even then ak + bk is even. It’s closed under inverses, since ak
is even iff −ak is even, and contains zero.

– (R, ·) is a submonoid: f(x)g(x) = ∑N
n=1 (∑n

k=1 akbn−k)xk where without loss of
generality, deg f = deg g = n by setting coefficients to zero. Then sums and
products of even integers are even, so fg ∈ R.

• That R is not Noetherian: it suffices to show that R contains an ideal that is not finitely
generated.

• The claim is that setting S :=
{

2xk
}
k∈Z≥1

and taking

I := ⟨S⟩ =
∑

k∈Z≥1

R · 2xk :=
{

m∑
i=1

rk(x)2xk
∣∣∣ rk(x) ∈ 2Z[x],m ∈ Z≥0

}

yields an ideal that is not finitely generated.

• Suppose toward a contradiction that {g1, g2, · · · , gM} were a finite generating set, where
each gi ∈ I.

???

E 7.6 Simple Rings e

7.6.1 Fall 2017 #5

A ring R is called simple if its only two-sided ideals are 0 and R.

a. Suppose R is a commutative ring with 1. Prove R is simple if and only if R is a field.

b. Let k be a field. Show the ring Mn(k), n× n matrices with entries in k, is a simple ring.

Concepts Used:

• Nonzero proper ideals contain at least one nonzero element.
• I = R when 1 ∈ I.
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• Effects of special matrices: let Aij be a matrix with only a 1 in the ij position.

– Left-multiplying AijM moves row j to row i and zeros out the rest of M .
– Right-multiplying MAij moves column i to column j and zeros out the rest.
– So AijMAkl moves entry j, k to i, l and zeros out the rest.

Solution:

Proof (of a).
=⇒ :

• Suppose Id(R) = {⟨0⟩ , ⟨1⟩}. Then for any nonzero r ∈ R, the ideal ⟨r⟩ = ⟨1⟩ is the
entire ring.

• In particular, 1 ∈ ⟨r⟩, so we can write a = tr for some t ∈ R.
• But then r ∈ R× with t := r−1.

⇐= :

• Suppose R is a field and I ∈ Id(R) is an ideal.
• If I ̸= ⟨0⟩ is proper and nontrivial, then I contains at least one nonzero element
a ∈ I.

• Since R is a field, a−1 ∈ R, and aa−1 = 1 ∈ I forces I = ⟨1⟩.

■

Proof (of b). • Let J ⊴ R be a nonzero two-sided ideal, noting that R is noncom-
mutative – the claim is that J contains In, the n × n identity matrix, and thus
J = R.

• Pick a nonzero element M ∈ I, then M has a nonzero entry mij.
• Let Aij be the matrix with a 1 in the i, j position and zeros elsewhere.

– Left-multiplying AijM moves row j to row i and zeros out the rest of M .
– Right-multiplying MAij moves column i to column j and zeros out the rest.
– So AijMAkl moves entry j, k to i, l and zeros out the rest.

• So define B := Ai,iMAj,i, which movies mij to the i, i position on the diagonal and
has zeros elsewhere.

• Then m−1
ij εii := Aii is a matrix with 1 in the i, i spot for any i. Since I is an ideal,

we have εii ∈ I for every i.
• We can write the identity In as ∑n

i=1 εii, so In ∈ I and I = R.
■
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7.6.2 Spring 2016 #8

Problem 7.6.1 (?)
Let R be a simple rng (a nonzero ring which is not assume to have a 1, whose only two-sided
ideals are (0) and R) satisfying the following two conditions:

i. R has no zero divisors, and
ii. If x ∈ R with x ̸= 0 then 2x ̸= 0, where 2x := x+ x.

Prove the following:

a. For each x ∈ R there is one and only one element y ∈ R such that x = 2y.

b. Suppose x, y ∈ R such that x ̸= 0 and 2(xy) = x, then yz = zy for all z ∈ R.

You can get partial credit for (b) by showing it in
the case R has a 1.

△! Warning 7.6.1
A general opinion is that this is not a great qual problem! Possibly worth skipping.

Concepts Used:

• R has no left zero divisors iff R has the left cancellation property: xa = xb =⇒ a = b.
• R has no right zero divisors iff R has the right cancellation property: ax = bx =⇒ a = b.

Solution:
Note: solutions borrowed from folks on Math twitter!
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Proof (part 1).

• Existence: the claim is that 2R :=
{

2y
∣∣∣ y ∈ R

}
is a nontrivial two-sided ideal of

R, forcing 2R = R by simpleness.

– That 2R ̸= 0 follows from condition (1): Provided y ̸= 0, we have 2y ̸= 0, and
so if R ̸= 0 then there exists some nonzero a ∈ R, in which case 2a ̸= 0 and
2a ∈ 2R.

– That 2R is a right ideal: clear, since (2y) · r = 2(yr) ∈ 2R.
– That 2R is a left ideal: use that multiplication is distributive:

r · 2y := r(y + y) = ry + ry := 2(ry) ∈ 2R.

• So 2R = R by simpleness.
• Uniqueness:

– Use the contrapositive of condition (1), so that 2x = 0 =⇒ x = 0.
– Suppose toward a contradiction that x = 2y1 = 2y2, then

0 = x− x = 2y1 − 2y2 = 2(y1 − y2) =⇒ y1 − y2 = 0 =⇒ y1 = y2.

■
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Proof (part 2).

• First we’ll show z = 2(yz):

xy + xy = x

=⇒ xy + xy − x = 0
=⇒ xyz + xyz − xz = 0
=⇒ x(yz + yz − z) = 0

=⇒ yz + yz − z = 0 since x ̸= 0 and no zero divisors
=⇒ 2(yz) = z.

• Now we’ll show z = 2(zy):

yz + yz = z

=⇒ zyz + zyz = zz

=⇒ zyz + zyz − zz = 0
=⇒ (zy + zy − z)z = 0

=⇒ z = 0 or zy + zy − z = 0 no zero divisors .

• Then if z = 0, we have yz = 0 = zy and we’re done.

• Otherwise, 2(zy) = z, and thus

2(zy) = z = 2(yz) =⇒ 2(zy − yz) = 0 =⇒ zy − yz = 0,

so zy = yz.

■
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Proof (of 2, if R is unital).

• If 1 ∈ R,

2xy = x

=⇒ 2xy − x = 0
=⇒ x(2y − 1) = 0

=⇒ 2y − 1 = 0 x ̸= 0 and no zero divisors
=⇒ 2y = 1.

• Now use

1 · z = z · 1
=⇒ (2y)z = z(2y)

=⇒ (y + y)z = z(y + y)
=⇒ yz + yz = zy + zy

=⇒ 2(yz) = 2(zy)
=⇒ 2(yz − zy) = 0

=⇒ yz − zy = 0
,

using condition (2).

■

E 7.7 Unsorted e

7.7.1 Fall 2019 #3

Let R be a ring with the property that for every a ∈ R, a2 = a.

a. Prove that R has characteristic 2.

b. Prove that R is commutative.

Strategy:

• Just fiddle with direct computations.
• Context hint: that we should be considering things like x2 and a+ b.
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Solution:

Proof (of a).

2a = (2a)2 = 4a2 = 4a =⇒ 2a = 0.

Note that this implies x = −x for all x ∈ R.
■

Proof (of b).

a+ b = (a+ b)2 = a2 + ab+ ba+ b2 = a+ ab+ ba+ b

=⇒ ab+ ba = 0
=⇒ ab = −ba
=⇒ ab = ba by (a).

■

7.7.2 Spring 2018 #5

Let

M =
(
a b
c d

)
and N =

(
x u

−y −v

)

over a commutative ring R, where b and x are units of R. Prove that

MN =
(

0 0
0 ∗

)
=⇒ MN = 0.

Solution:

• Multiply everything out to get [
ax− by au− bv
cx− dy cu− dv

]
,

so it suffices to show cu = dv given

ax = by

cx = dy

au = bv.
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• Writing cu:

– Use that b ∈ R×, left-multiply (1) by b−1 to get b−1ax = y
– Substitute y into (2) to get cx = d(b−1ax).
– Since x ∈ R×, right-multiply by x−1 to get c = db−1a and thus cu = db−1au.
– Summary:

ax = by =⇒ b−1ax = y

=⇒ cx = dy = d(b−1ax)
=⇒ c = db−1a

=⇒ cu = db−1au.

• Writing dv:

– Left-multiply (3) by b−1 to get b−1au = v.
– Left-multiply by d to get db−1au = dv
– Summary:

au = bv =⇒ b−1au = v

=⇒ db−1au = dv.

• So

cu = db−1au = dv.

7.7.3 Spring 2014 #6

R be a commutative ring with identity and let n be a positive integer.

a. Prove that every surjective R-linear endomorphism T : Rn → Rn is injective.

b. Show that an injective R-linear endomorphism of Rn need not be surjective.

8 Galois Theory

E 8.1 General Galois Extensions e
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8.1.1 Fall 2021 #4

Recall that for a given positive integer n, the cyclotomic field Q (ζn) is generated by a primitive
n-th root of unity ζn.

a. What is the degree of Q (ζn) over Q ?

b. Define what it means for a finite field extension L/K to be Galois, and prove that the
cyclotomic field Q (ζn) is Galois over Q.

c. What is the Galois group of Q (ζn) over Q ?

d. How many subfields of Q (ζ2021) have degree 2 over Q? Note that 2021 = 43 · 47

8.1.2 Fall 2020 #4

Let K be a Galois extension of F , and let F ⊂ E ⊂ K be inclusions of fields. Let G := Gal(K/F )
and H := Gal(K/E), and suppose H contains NG(P ), where P is a Sylow p-subgroup of G for p a
prime. Prove that [E : F ] ≡ 1 mod p.

Concepts Used:
The correspondence:

K 1

E H := Gal(K/E)

F G := Gal(K/F )

[E:F ]

[K:E]

[K:F ]

[H:1]

[G:H]

[G:1]

Gal(K/−)

Link to Diagram
Normalizers:

NG(P ) =
{
g ∈ G

∣∣∣ gPg−1 = P
}
.

Solution:

• Reduce to a group theory problem: [E : F ] = [G : H], despite the fact that E/F is not
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necessarily Galois. This is because we can count in towers:

[K : F ] = [K : E][E : F ] =⇒ [G : 1] = [K : E][H : 1]
=⇒ ♯G = [K : E]♯H

=⇒ [G : H] = ♯G

♯H
= [K : E].

• Essential fact: if P ∈ Sylp(G), we can use that P ⊆ NG(P ) ⊂ H and so P ∈ Sylp(H) as
well.

• Now use that NG(P ) ⊆ H, and do Sylow theory for P in both G and H:

– Sylow 3 on G yields np(G) = [G : NG(P )] ≡ 1 mod p.
– Sylow 3 on H yields np(H) = [G : NH(P )] ≡ 1 mod p.

• Claim: NH(P ) = NG(P ).

– We have NH(P ) ⊆ NG(P ) since H ⊆ G, so hPh−1 = P remains true regarding
either h ∈ H or h ∈ G.

– For NG(P ) ⊆ NH(P ), use that NG(P ) ⊆ H and so gPg−1 = P implies g ∈ H, so
g ∈ NH(P ).

• Now morally one might want to apply an isomorphism theorem:

G/NG(P )
H/NH(P ) = G/NH(P )

H/NH(P )
∼=
G

H
,

but we don’t have normality. However, we can still get away with the corresponding
counting argument if everything is finite:

[G : NG(P )]
[H : NH(P )] = [G : NH(P )]

[H : NH(P )] = ♯G/♯NH(P )
♯H/♯NH(P ) = ♯G

♯H
= [G : H].

• We have an equation of the form np(G)/np(H) = m, and we want to show m ≡ 1 mod p.
So write

np(G)
np(H) = m =⇒ mnp(H) = np(G)

=⇒ mnp(H) ≡ np(G) mod p
=⇒ m · 1 ≡ 1 mod p

=⇒ m ≡ 1 mod p.

8.1.3 Fall 2019 Midterm #9

Let n ≥ 3 and ζn be a primitive nth root of unity. Show that [Q(ζn + ζ−1
n ) : Q] = φ(n)/2 for φ the

totient function.
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Solution:

• Some notation: let αk := ζkn + ζ−k
n .

• Let m(x) be the minimal polynomial of α1 := ζn + ζ−1
n . Note that α1 ∈ Q(ζn).

• Use that Gal(Q(ζn)/Q) ∼= C×
n , consisting of maps σk : ζ 7→ ζk for gcd(k, n) = 1, of which

there are φ(n) many.

• Galois transitively permutes the roots of irreducible polynomials, so the roots of m are
precisely the Galois conjugates of α, i.e. the Galois orbit of α, so we can just compute it.
For illustrative purposes, suppose n is prime, then

σ1(ζn + ζ−1
n ) = ζn + ζ−1

n = α1

σ2(ζn + ζ−1
n ) = ζ2

n + ζ−2
n = α2

σ3(ζn + ζ−1
n ) = ζ3

n + ζ−3
n = α3

...

σn−1(ζn + ζ−1
n ) = ζn−1

n + ζ−(n−1)
n = ζ−1

n + ζ1
n = α1

σn−2(ζn + ζ−1
n ) = ζn−2

n + ζ−(n−2)
n = ζ−2

n + ζ2
n = α2

σn−3(ζn + ζ−1
n ) = ζn−3

n + ζ−(n−3)
n = ζ−3

n + ζ3
n = α3,

where we’ve used that ζk = ζkmodn. From this, we see that σk(α1) = σn−k(α1) and we
pick up (n− 1)/2 distinct conjugates.

• For n not prime, the exact same argument runs through φ(n) values of k for σk, and again
yields σk(α1) = σφ(n)−k(α1). Matching them up appropriately yields φ(n)/2 distinct
roots.

8.1.4 Fall 2019 Midterm #10

Let L/K be a finite normal extension.

a. Show that if L/K is cyclic and E/K is normal with L/E/K then L/E and E/K are cyclic.

b. Show that if L/K is cyclic then there exists exactly one extension E/K of degree n with
L/E/K for each divisor n of [L : K].

Solution:
The setup:
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L 1

E H := Gal(L/E)

K G := Gal(L/K) = Cn

nn

g

g

Link to Diagram
Part 1:

• L/K is cyclic means L/K is Galois and G := Gal(L/K) = Cn for some n.
• By the FTGT, setting H := Gal(L/E), we get H ⊴ G precisely because E/K is normal,

and Gal(L/E) = G/H.
• But then if G is cyclic, H ≤ G must be cyclic, and G/H is cyclic as well since writing
G = Cn = ⟨x⟩, we have G/H = ⟨xH⟩.

Part 2:

• Letting G := Gal(L/K) = Cn, by elementary group theory we have subgroups H :=
Cd ≤ Cn for every d dividing n.

– A observation we’ll need: every subgroup is normal here since G is abelian.

• By the fundamental theorem, taking the fixed field of H ≤ Gal(L/K), we obtain some
intermediate extension E := KH fitting into a tower L/E/K.

• By the fundamental theorem, [E : K] = [G : H] = n/d, where we’ve used that H ⊴ G.
• Letting d range through divisors lets n/d range through divisors, so we get extensions

of every degree d dividing n.

8.1.5 Fall 2019 Midterm #8

Let k be a field of characteristic p ̸= 0 and f ∈ k[x] irreducible. Show that f(x) = g(xpd) where
g(x) ∈ k[x] is irreducible and separable.

Conclude that every root of f has the same multiplicity pd in the splitting field of f over k.

8.1.6 Fall 2019 Midterm #7

Show that a field k of characteristic p ̸= 0 is perfect ⇐⇒ for every x ∈ k there exists a y ∈ k such
that yp = x.
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8.1.7 Spring 2012 #4

Let f(x) = x7 − 3 ∈ Q[x] and E/Q be a splitting field of f with α ∈ E a root of f .

a. Show that E contains a primitive 7th root of unity.

b. Show that E ̸= Q(α).

8.1.8 Fall 2013 #5

Let L/K be a finite extension of fields.

a. Define what it means for L/K to be separable.

b. Show that if K is a finite field, then L/K is always separable.

c. Give an example of a finite extension L/K that is not separable.

Solution:

• L/k is separable iff every element α is separable, i.e. the minimal polynomial m(x) of α
is a separable polynomial, i.e. m(x) has no repeated roots in (say) the algebraic closure
of L (or just any splitting field of m).

• If ch k = p, suppose toward a contradiction that L/k is not separable. Then there is
some α with an inseparable (and irreducible) minimal polynomial f(x) ∈ k[x].

• Claim: since f is inseparable and irreducible, f(x) = g(xp) for some g ∈ k[x].

– Note: write g(x) := ∑
akx

k, so that f(x) = ∑
ak(xp)k = ∑

akx
pk.

• This is a contradiction, since it makes f reducible by using the “Freshman’s dream”:

f(x) =
∑

akx
pk =

(∑
a

1
p

k x
k
)p

:= (h(x))p.

• Proof of claim: in ch k = p, f inseparable =⇒ f(x) = g(xp).

– Use that f is inseparable iff gcd(f, f ′) ̸= 1, and since f is irreducible this forces
f ′ ≡ 0, so kak = 0 for all k.

– Then ak ̸= 0 forces p
∣∣ k, so f(x) = a0 + apx

p + a2px
2p + · · · and one takes

g(x) := ∑
akpx

kp.

• A finite inseparable extension:

– It’s a theorem that finite extensions of perfect fields are separable, so one needs a
non-perfect field.
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– Take L/k := Fp(t
1
p )/Fp(t), which is a degree p extension (although both fields are

infinite are characteristic p).
– Then the minimal polynomial of t is f(x) := xp−t ∈ Fp(t)[x], where f ′(x) = pxp ≡ 0

Alternatively, just note that f factors as f(x) = (x−t
1
p )p in L[x], which has multiple

roots.

8.1.9 Fall 2012 #4

Let f(x) ∈ Q[x] be a polynomial and K be a splitting field of f over Q. Assume that [K : Q] = 1225
and show that f(x) is solvable by radicals.

E 8.2 Galois Groups: Concrete Computations e

8.2.1 Exercise: G(x2 − 2)

Exercise 8.2.1 (?)
Compute the Galois group of x2 − 2.

Solution:
Z/2Z?

8.2.2 Exercise: G(xp − 2)

Exercise 8.2.2 (?)
Let p ∈ Z be a prime number. Then describe the elements of the Galois group of the polynomial
xp − 2.

Solution:
Q(2

1
p , ζp), which has degree p(p− 1) and is generated by the maps

p
√

2 7→ p
√

2ζa

ζ 7→ ζb.
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8.2.3 Fall 2020 #3

a. Define what it means for a finite extension of fields E over F to be a Galois extension.

b. Determine the Galois group of f(x) = x3 − 7 over Q, and justify your answer carefully.

c. Find all subfields of the splitting field of f(x) over Q.

Solution:
Part a:

• A finite extension E/F is Galois if it is normal and separable:

– Normal: every f ∈ F [x] either has no roots in E or all roots in E.
– Separable: every element e ∈ E has a separable minimal polynomial m(x), i.e. m

has no repeated roots.

Part b:

• Note f is irreducible by Eisenstein with p = 7, and since Q is perfect, irreducible implies
separable.

• Writing L := SF(f)/Q, this is a Galois extension:

– L is separable: it is a finite extension of a perfect field, which is automatically
separable.

– L is normal: L is the splitting field of a separable polynomial, and thus normal.

• Since f is degree 3, we have G := Gal(L/k) ≤ S3, and since G is a transitive subgroup
the only possibilities are

G = S3 ∼= D3, A3 ∼= C3.

• Factor x3 − 7 = (x− ω)(x− ζ3ω)(x− ζ2
3ω) where ω := 7 1

3 and ζ3 is a primitive 3rd root
of unity. Then L = Q(ζ3, ω).

– Aside: label the roots in this order, so r1 = ω, r2 = ζ3ω, r3 = ζ2
3ω.

• Write minω,Q(x) = x3 − 7 and let L0/Q := Q(ω)/Q yields [L0 : Q] = 3.

• Write minζ3,Q(x) = (x3 − 1)/(x− 1) = x2 + x+ 1, and note that this is still the minimal
polynomial over L0 since L0 ⊆ R and ζ3 ∈ C \ R. So [L : L0] = 2.

• Counting in towers,

[L : Q] = [L : L0][L0 : Q] = (2)(3) = 6.

• But ♯S3 = 6 and ♯A3 = 3, so G = S3.

8.2 Galois Groups: Concrete Computations 90



8 Galois Theory

• Explicitly, since we can write SF(f) = Q(ω, ζ3), we can find explicit generators:

σ :
{
ω 7→ ω

ζ3 7→ ζ3 · ζ3.
=⇒ σ ∼ (1, 2, 3)

τ :
{
ω 7→ ω

ζ3 7→ ζ3.
=⇒ τ ∼ (2, 3).

So G =
〈
σ, τ

∣∣∣ σ3, τ2
〉
.

Part c:

• Note that the subgroup lattice for S3 looks like the following:

• Note that we can identify

– τ = (2, 3) which fixes r1
– στ = (1, 2) which fixes r3
– σ2τ = (1, 3) which fixes r2
– σ = (1, 2, 3), for which we need to calculate the fixed field. Using that σ(ω) = ζω

and σ(ζ) = ζ, supposing σ(α) = α we have

σ(α) := σ(a+ bζ3 + cζ2
3 + dω + eζ3ω + fζ2

3ω)
= a+ bζ3 + cζ2

3 + dζ3ω + eζ2
3ω + fω

=⇒ α = a+ bζ3 + cζ2
3 + t1(ω + ζ3ω + ζ2

3ω)
=⇒ α = a+ bζ3 + cζ2

3 + t1ω(1 + ζ3 + ζ2
3 )

=⇒ α = a+ bζ3 + cζ2
3 ,

using the general fact that ∑n−1
k=0 ζ

k
n = 0. So the fixed field is Q(1, ζ, ζ2) = Q(ζ).

• We thus get the following lattice correspondence:
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Q(ζ3, ω)

Q(ω) = Q(r1) Q(ζ3ω) = Q(r2) Q(ζ2
3ω) = Q(r3) Q(ζ3)

Q

1

⟨(2, 3) = τ⟩ ∼= C2
〈
(1, 3) = σ2τ

〉 ∼= C2 ⟨(1, 2) = στ⟩ ∼= C2 ⟨(1, 2, 3) = σ⟩ ∼= C3

⟨σ, τ⟩ ∼= S3

3 3

2 2 2

2

3

3

2

3 3

2 3

23

2

Link to Diagram

8.2.4 Spring 2021 #4

Define

f(x) := x4 + 4x2 + 64 ∈ Q[x].

a. Find the splitting field K of f over Q.

b. Find the Galois group G of f .

c. Exhibit explicitly the correspondence between subgroups of G and intermediate fields between
Q and K.

Concepts Used:

• Useful trick: given a+
√
b, try to rewrite this as (

√
c+

√
d)2 for some c, d to get a better

basis for SF(f).
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Solution:

• First consider g(z) := z2 + 4z + 64. Applying the quadratic formula yields

z = −4 ±
√

16 − 64
2 = −2 ± 1

2
√

−15 · 16 = −2 ± 2i
√

15.

• Substituting z = x2 yields the splitting field of f as L := Q(±
√

−2 ± 2i
√

15).

– Note that this factorization shows that f is irreducible over Q, since the two
quadratic factors have irrational coefficients and none of the roots are real.

– Irreducible implies separable over a perfect field, so L/Q is a separable extension.
– L is the splitting field of a separable polynomial and thus normal, making L Galois.

• In this form, it’s not clear what the degree [L : Q] is, so we can find a better basis by
rewriting the roots of g:

z = −2 ± 2i
√

15 =
(√

5
)2

−
(√

3
)2

± 2i
√

5
√

3 = (
√

5 ± i
√

3)2,

and so the roots of f are x = ±
√

5 ± i
√

3 and L = Q(
√

5, i
√

3).

• Counting in towers,

[L : Q] = [Q(
√

5, i
√

3) : Q
√

5][Q
√

5 : Q] = (2)(2) = 4,

where we’ve used that min√
5,Q(x) = x2 − 5 and mini√3,Q(x) = x2 + 3, which remains

the minimal polynomial over Q(
√

5) ⊆ R since both roots are not real.

• So G := Gal(L/Q) ≤ S4 is a transitive subgroup of size 4, making it either C4 or C2
2 .

• Label the roots:

r1 =
√

5 + i
√

3
r2 =

√
5 − i

√
3

r3 = −
√

5 + i
√

3 = −r2

r4 = −
√

5 − i
√

3 = −r1.

• We can start writing down automorphisms:

σ1 :
{√

5 7→ −
√

5
i
√

3 7→ i
√

3.
σ1 ∼ (1, 3)(2, 4)

σ2

{√
5 7→

√
5

i
√

3 7→ −i
√

3.
σ2 ∼ (1, 2)(3, 4).

Note that these define automorphisms because we’ve specified what happens to a basis
and they send roots to other roots.
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• Checking that σ2
1 = σ2

2 = id, this produces two distinct order 2 elements, forcing G ∼= C2
2

since C4 only has one order 2 element. Explicitly, we have

C2
2

∼= G = ⟨τ1, τ2⟩ = {id, τ1, τ2, τ1τ2} = {id, (1, 3)(2, 4), (1, 2)(3, 4), (1, 4)(2, 3)} ,

and the generic subgroup lattice looks like:

• Computing some fixed fields. Write i
√

3 = x,
√

5 = y, then elements in the splitting field
are of the form α = 1 + ax+ by + cxy.

– For σ1, we have x 7→ −x, so

σ1(α) = 1 − ax+ by − cxy = α =⇒ a = −a = 0, c = −c = 0,

so this preserves 1 + by, making the fixed field Q(1, y) = Q(i
√

3).
– For σ2, we have y 7→ −y, so

σ2(α) = 1 + ax− by − cxy = α =⇒ b = −b = 0, c = −c = 0,

preserving 1 + ax and making the fixed field Q(1, x) = Q(
√

5).
– For σ1σ2, we have x 7→ −x and y 7→ −y, so

σ1σ2(α) = 1 − ax− by + cxy = α =⇒ a = −a = −, b = −b = 0,

preserving 1 + cxy and yielding Q(xy) = Q(i
√

3
√

5).

• So the lattice correspondence we get here is
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Q(
√

5, i
√

3)

Q(i
√

3) Q(i
√

3
√

5) Q(
√

5)

Q

1

⟨σ1⟩ ⟨σ1σ2⟩ ⟨σ2⟩

G = ⟨τ1, τ2⟩

2 2 2

22 2

2 2 2

2 2 2

Link to Diagram

8.2.5 Fall 2019 Midterm #6

Compute the Galois group of f(x) = x3 − 3x− 3 ∈ Q[x]/Q.

8.2.6 Spring 2018 #2

Let f(x) = x4 − 4x2 + 2 ∈ Q[x].

a. Find the splitting field K of f , and compute [K : Q].

b. Find the Galois group G of f , both as an explicit group of automorphisms, and as a familiar
abstract group to which it is isomorphic.

c. Exhibit explicitly the correspondence between subgroups of G and intermediate fields between
Q and k.

Not the nicest proof! Would be better to replace the ad-hoc computations at the end.
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Solution:

Proof (of a).
Note that g(x) = x2 − 4x+ 2 has roots β = 2 ±

√
2, and so f has roots

α1 =
√

2 +
√

2

α2 =
√

2 −
√

2
α3 = −α1

α4 = −α2.

and splitting field K = Q({αi}).
■
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Proof (of b).
K is the splitting field of a separable polynomial and thus Galois over Q. Moreover,
Since f is irreducible by Eisenstein with p = 2, the Galois group is a transitive subgroup
of S4, so the possibilities are:

• S4
• A4
• D4
• Z/(2) × Z/(2)
• Z/(4)

We can note that g splits over L := Q(
√

2), an extension of degree 2.
We can now note that min(α,L) is given by p(x) = x2 − (2 +

√
2), and so [K : L] = 2.

We then have

[K : Q] = [K : L][L : Q] = (2)(2) = 4.

This |Gal(K/Q)| = 4, which leaves only two possibilities:

• Z/(2) × Z/(2)
• Z/(4)

We can next check orders of elements. Take

σ ∈ Gal(K/Q)
α1 7→ α2.

Computations show that

• α2
1α

2
2 = 2, so α1α2 =

√
2

• α2
1 = 2 +

√
2 =⇒

√
2 = α2

1 − 2

and thus

σ2(α1) = σ(α2)

= σ

(√
2

α1

)

= σ(
√

2)
σ(α1)

= σ(α2
1 − 2)
α2

= α2
2 − 2
α2

= α2 − 2α−1
2

= α2 − 2α1√
2

= α2 − α1
√

2
̸= α1,

and so the order of σ is strictly greater than 2, and thus 4, and thus Gal(K/Q) ={
σk
∣∣∣ 1 ≤ k ≤ 4

}
∼= Z/(4).

■
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Proof (of c).
?? The subgroup of index 2

〈
σ2〉 corresponds to the field extension Q(

√
2)/Q.

■

Finish (c)

8.2.7 Spring 2020 #4

Let f(x) = x4 − 2 ∈ Q[x].

a. Define what it means for a finite extension field E of a field F to be a Galois extension.

b. Determine the Galois group Gal(E/Q) for the polynomial f(x), and justify your answer
carefully.

c. Exhibit a subfield K in (b) such that Q ≤ K ≤ E with K not a Galois extension over Q.
Explain.

8.2.8 Spring 2017 #8

a. Let K denote the splitting field of x5 − 2 over Q. Show that the Galois group of K/Q is
isomorphic to the group of invertible matrices(

a b
0 1

)
where a ∈ F×

5 and b ∈ F5.

b. Determine all intermediate fields between K and Q which are Galois over Q.

8.2.9 Fall 2016 #4

Set f(x) = x3 − 5 ∈ Q[x].

a. Find the splitting field K of f(x) over Q.

b. Find the Galois group G of K over Q.

c. Exhibit explicitly the correspondence between subgroups of G and intermediate fields between
Q and K.
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8.2.10 Spring 2016 #2

Let K = Q[
√

2 +
√

5].

a. Find [K : Q].

b. Show that K/Q is Galois, and find the Galois group G of K/Q.

c. Exhibit explicitly the correspondence between subgroups of G and intermediate fields between
Q and K.

8.2.11 Fall 2015 #5

Let u =
√

2 +
√

2, v =
√

2 −
√

2, and E = Q(u).

a. Find (with justification) the minimal polynomial f(x) of u over Q.

b. Show v ∈ E, and show that E is a splitting field of f(x) over Q.

c. Determine the Galois group of E over Q and determine all of the intermediate fields F such
that Q ⊂ F ⊂ E.

8.2.12 Spring 2015 #5

Let f(x) = x4 − 5 ∈ Q[x].

a. Compute the Galois group of f over Q.

b. Compute the Galois group of f over Q(
√

5).

8.2.13 Fall 2014 #3

Consider the polynomial f(x) = x4 − 7 ∈ Q[x] and let E/Q be the splitting field of f .

a. What is the structure of the Galois group of E/Q?

b. Give an explicit description of all of the intermediate subfields Q ⊂ K ⊂ E in the form
K = Q(α),Q(α, β), · · · where α, β, etc are complex numbers. Describe the corresponding
subgroups of the Galois group.

8.2 Galois Groups: Concrete Computations 99



8 Galois Theory

8.2.14 Fall 2013 #6

Let K be the splitting field of x4 − 2 over Q and set G = Gal(K/Q).

a. Show that K/Q contains both Q(i) and Q( 4√2) and has degree 8 over Q/

b. Let N = Gal(K/Q(i)) and H = Gal(K/Q( 4√2)). Show that N is normal in G and NH = G.

Hint: what field is fixed by NH?

c. Show that Gal(K/Q) is generated by elements σ, τ , of orders 4 and 2 respectively, with
τστ−1 = σ−1.

Equivalently, show it is the dihedral group of order 8.

d. How many distinct quartic subfields of K are there? Justify your answer.

8.2.15 Spring 2014 #4

Let E ⊂ C denote the splitting field over Q of the polynomial x3 − 11.

a. Prove that if n is a squarefree positive integer, then
√
n ̸∈ E.

Hint: you can describe all quadratic extensions of Q
contained in E.

b. Find the Galois group of (x3 − 11)(x2 − 2) over Q.

c. Prove that the minimal polynomial of 111/3 + 21/2 over Q has degree 6.

8.2.16 Spring 2013 #8

Let F be the field with 2 elements and K a splitting field of f(x) = x6 + x3 + 1 over F . You may
assume that f is irreducible over F .

a. Show that if r is a root of f in K, then r9 = 1 but r3 ̸= 1.

b. Find Gal(K/F ) and express each intermediate field between F and K as F (β) for an appro-
priate β ∈ K.
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E 8.3 Galois Groups: Indirect Computations /
Facts

e

8.3.1 Fall 2019 #7

Let ζn denote a primitive nth root of 1 ∈ Q. You may assume the roots of the minimal polynomial
pn(x) of ζn are exactly the primitive nth roots of 1.

Show that the field extension Q(ζn) over Q is Galois and prove its Galois group is (Z/nZ)×.

How many subfields are there of Q(ζ20)?

Concepts Used:

• Galois = normal + separable.

• Separable: Minimal polynomial of every element has distinct roots.

• Normal (if separable): Splitting field of an irreducible polynomial.

• ζ is a primitive root of unity ⇐⇒ o(ζ) = n in F×.

• φ(pk) = pk−1(p− 1)

• The lattice:

Solution:
Let K = Q(ζ). Then K is the splitting field of f(x) = xn − 1, which is irreducible over Q, so
K/Q is normal. We also have f ′(x) = nxn−1 and gcd(f, f ′) = 1 since they can not share any
roots.

Or equivalently, f splits into distinct linear factors
f(x) =

∏
k≤n(x− ζk).
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Since it is a Galois extension, |Gal(K/Q)| = [K : Q] = φ(n) for the totient function.
We can now define maps

τj : K → K

ζ 7→ ζj

and if we restrict to j such that gcd(n, j) = 1, this yields φ(n) maps. Noting that if ζ is a
primitive root, then (n, j) = 1 implies that that ζj is also a primitive root, and hence another
root of min(ζ,Q), and so these are in fact automorphisms of K that fix Q and thus elements
of Gal(K/Q).
So define a map

θ : Z×
n → K

[j]n 7→ τj .

from the multiplicative group of units to the Galois group.
The claim is that this is a surjective homomorphism, and since both groups are the same size,
an isomorphism.

Proof (of surjectivity).
Letting σ ∈ K be arbitrary, noting that [K : Q] has a basis

{
1, ζ, ζ2, · · · , ζn−1}, it suffices

to specify σ(ζ) to fully determine the automorphism. (Since σ(ζk) = σ(ζ)k.)
In particular, σ(ζ) satisfies the polynomial xn−1, since σ(ζ)n = σ(ζn) = σ(1) = 1, which
means σ(ζ) is another root of unity and σ(ζ) = ζk for some 1 ≤ k ≤ n.
Moreover, since o(ζ) = n ∈ K×, we must have o(ζk) = n ∈ K× as well. Noting that

{
ζi
}

forms a cyclic subgroup H ≤ K×, then o(ζk) = n ⇐⇒ (n, k) = 1 (by general theory of
cyclic groups).
Thus θ is surjective.

■

Proof (of being a homomorphism).

τj ◦ τk(ζ) = τj(ζk) = ζjk =⇒ τjk = θ(jk) = τj ◦ τk.

■

Proof (of part 2).
We have K ∼= Z×

20 and φ(20) = 8, so K ∼= Z8, so we have the following subgroups and
corresponding intermediate fields:

• 0 ∼ Q(ζ20)
• Z2 ∼ Q(ω1)
• Z4 ∼ Q(ω2)
• Z8 ∼ Q

For some elements ωi which exist by the primitive element theorem.
■
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8.3.2 Fall 2018 #3

Let F ⊂ K ⊂ L be finite degree field extensions. For each of the following assertions, give a proof
or a counterexample.

a. If L/F is Galois, then so is K/F .

b. If L/F is Galois, then so is L/K.

c. If K/F and L/K are both Galois, then so is L/F .

Concepts Used:

• Every quadratic extension over Q is Galois.

Solution:
Let L/K/F .

Proof (of a).
False: Take L/K/F = Q(ζ2,

3√2) → Q( 3√2) → Q.
Then L/F is Galois, since it is the splitting field of x3 − 2 and Q has characteristic zero.
But K/F is not Galois, since it is not the splitting field of any irreducible polynomial.

■

Proof (of b).
True: If L/F is Galois, then L/K is normal and separable:

• L/K is normal, since if σ : L ↪→ K lifts the identity on K and fixes L, i-t also lifts
the identity on F and fixes L (and K = F ).

• L/K is separable, since F [x] ⊆ K[x], and so if α ∈ L where f(x) := min(α, F )
has no repeated factors, then f ′(x) := min(α,K) divides f and thus can not have
repeated factors.

■

Proof (of c).
False: Use the fact that every quadratic extension is Galois, and take L/K/F =
Q( 4√2) → Q(

√
2) → Q.

Then each successive extension is quadratic (thus Galois) but Q( 4√2) is not the splitting
field of any polynomial (noting that it does not split x4 − 2 completely.)

■
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8.3.3 Spring 2018 #3

Let K be a Galois extension of Q with Galois group G, and let E1, E2 be intermediate fields of K
which are the splitting fields of irreducible fi(x) ∈ Q[x].

Let E = E1E2 ⊂ K.

Let Hi = Gal(K/Ei) and H = Gal(K/E).

a. Show that H = H1 ∩H2.

b. Show that H1H2 is a subgroup of G.

c. Show that

Gal(K/(E1 ∩ E2)) = H1H2.

Concepts Used:

• The Galois correspondence:

– H1 ∩H2 ⇌ E1E2,
– H1H2 ⇌ E1 ∩ E2.

Solution:

Proof (of a).
By the Galois correspondence, it suffices to show that the fixed field of H1 ∩H2 is E1E2.
Let σ ∈ H1 ∩H2; then σ ∈ Aut(K) fixes both E1 and E2.

Not sure if this works – compositum is not lit-
erally product..?

Writing x ∈ E1E2 as x = e1e2, we have

σ(x) = σ(e1e2) = σ(e1)σ(e2) = e1e2 = x,

so σ fixes E1E2.
■
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Proof (of b).
That H1H2 ⊆ G is clear, since if σ = τ1τ2 ∈ H1H2, then each τi is an automorphism of
K that fixes Ei ⊇ Q, so each τi fixes Q and thus σ fixes Q.

Claim: All elements in this subset commute.

Proof (of claim).

• Let σ = σ1σ2 ∈ H1H2.

• Note that σ1(e) = e for all e ∈ E1 by definition, since H1 fixes E1, and
σ2(e) ∈ E1 (?).

• Then

σ1(e) = e ∀e ∈ E1 =⇒ σ1(σ2(e)) = σ2(e)

and substituting e = σ1(e) on the RHS yields

σ1σ2(e) = σ2σ1(e),

where a similar proof holds for e ∈ E2 and thus for arbitrary x ∈ E1E2.

■

■

Proof (of c).
By the Galois correspondence, the subgroup H1H2 ≤ G will correspond to an intermediate
field E such that K/E/Q and E is the fixed field of H1H2.
But if σ ∈ H1H2, then σ = τ1τ2 where τi is an automorphism of K that fixes Ei, and so

σ(x) = x ⇐⇒ τ1τ2(x) = x ⇐⇒ τ2(x) = x

&
τ1(x) = x ⇐⇒ x ∈ E1 ∩ E2.

.
■

8.3.4 Fall 2017 #4

a. Let f(x) be an irreducible polynomial of degree 4 in Q[x] whose splitting field K over Q has
Galois group G = S4.

Let θ be a root of f(x). Prove that Q[θ] is an extension of Q of degree 4 and that there are
no intermediate fields between Q and Q[θ].
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b. Prove that if K is a Galois extension of Q of degree 4, then there is an intermediate subfield
between K and Q.

8.3.5 Spring 2017 #7

Let F be a field and let f(x) ∈ F [x].

a. Define what a splitting field of f(x) over F is.

b. Let F now be a finite field with q elements. Let E/F be a finite extension of degree n > 0.
Exhibit an explicit polynomial g(x) ∈ F [x] such that E/F is a splitting field of g(x) over F .
Fully justify your answer.

c. Show that the extension E/F in (b) is a Galois extension.

8.3.6 Spring 2016 #6

Problem 8.3.1 (?)
Let K be a Galois extension of a field F with [K : F ] = 2015. Prove that K is an extension
by radicals of the field F .

Concepts Used:

• If N ⊴ G is a normal subgroup and H ≤ G is any subgroup containing N , then N is
normal in H since hNh−1 ⊆ gNg−1 = N .

• In characteristic zero, a polynomial is solvable by radicals iff its Galois group is a solvable
group.

Solution:
Let G := Gal(K/F ), then it suffices to show that G is always a solvable group, i.e. any group
of order n = 2015 is solvable. Factor 2015 = 5 · 13 · 31 – this is a pqr factorization, and in
fact any group with exactly 3 prime factors (so n is squarefree in particular) will be solvable.
Let p = 5, q = 13, r = 31 so that p < q < r. We aim to construct a composition series whose
successive quotients are simple groups. Applying Sylow 3 yields

• np
∣∣ qr, np ≡ 1 mod p =⇒ n5

∣∣ 13 · 31 = 403 and n5 ≡ 1 mod 5.

– So n5 ∈ {1, 13, 31} by divisibility and imposing the congruence forces n5 ∈ {1, 31}
since 13 ̸≡ 1 mod 5.

• nq
∣∣ pr, nq ≡ 1 mod q =⇒ n13

∣∣ 5 · 31 = 155 and n13 ≡ 1 mod 13.

– So n13 ∈ {1, 5, 31} by divisibility and the congruence imposes n13 ∈ {1} since
5, 31 ̸≡ 1 mod 13. In particular, there is one Sylow 13-subgroup which is normal.
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• nr
∣∣ pq, nr ≡ 1 mod r =⇒ n31

∣∣ 5 · 13 = 65 and n31 ≡ 1 mod 31.

– So n31 ∈ {1, 5, 13} by divisibility and the congruence imposes n31 ∈ {1} since
5, 13 ̸≡ 1 mod 31. In particular, the one Sylow 31-subgroup is normal.

Let H13, H31 be the two normal subgroups of G. Taking the quotient G̃ := G/H31 yields a
group of order 5 · 13, and a similar argument as above using the Sylow theorems shows that
G̃ has a normal subgroup of order 13. By the subgroup correspondence theorem, this yields
a normal subgroup N1 ⊴ G containing H31 which has order 13 · 31. So define N2 := H31 to
obtain

G ⊵ N1 ⊵ N2 := H31 ⊵ 0.

Since the quotients Ni/Ni+1 have prime power order, they are cyclic and thus simple. We
know N1 is normal in G since it came from extending a normal group in a quotient, and we
know N2 is normal in N1 since it was normal in all of G. So G is solvable.

8.3.7 Fall 2015 #6

a. Let G be a finite group. Show that there exists a field extension K/F with Gal(K/F ) = G.

You may assume that for any natural number n there
is a field extension with Galois group Sn.

b. Let K be a Galois extension of F with |Gal(K/F )| = 12. Prove that there exists an interme-
diate field E of K/F with [E : F ] = 3.

c. With K/F as in (b), does an intermediate field L necessarily exist satisfying [L : F ] = 2?
Give a proof or counterexample.

8.3.8 Fall 2014 #1

Let f ∈ Q[x] be an irreducible polynomial and L a finite Galois extension of Q. Let f(x) =
g1(x)g2(x) · · · gr(x) be a factorization of f into irreducibles in L[x].

a. Prove that each of the factors gi(x) has the same degree.

b. Give an example showing that if L is not Galois over Q, the conclusion of part (a) need not
hold.

8.3.9 Spring 2013 #7

Let f(x) = g(x)h(x) ∈ Q[x] and E,B,C/Q be the splitting fields of f, g, h respectively.
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a. Prove that Gal(E/B) and Gal(E/C) are normal subgroups of Gal(E/Q).

b. Prove that Gal(E/B) ∩ Gal(E/C) = {1}.

c. If B ∩ C = Q, show that Gal(E/B)Gal(E/C) = Gal(E/Q).

d. Under the hypothesis of (c), show that Gal(E/Q) ∼= Gal(E/B) × Gal(E/C).

e. Use (d) to describe Gal(Q[α]/Q) where α =
√

2 +
√

3.

8.3.10 Fall 2012 #3

Let f(x) ∈ Q[x] be an irreducible polynomial of degree 5. Assume that f has all but two roots in
R. Compute the Galois group of f(x) over Q and justify your answer.

E 8.4 pth Roots and xp
k − x e

8.4.1 Spring 2021 #7

Let p be a prime number and let F be a field of characteristic p. Show that if a ∈ F is not a pth
power in F , then xp − a ∈ F [x] is irreducible.

Strategy:

• Contradiction: go to splitting field, apply Freshman’s dream.
• Use that this polynomial is ramified, and its only factors are (x− a).

Solution (Likely the ’right’ solution):

• Suppose a is not a pth power in F , then f(x) := xp − a has no roots in F .
• Toward a contradiction, suppose f is reducible in F [x].
• In SF(f), since chF = p we have f(x) = (x− ζ)p for some ζ = a

1
p .

– So if f is reducible in F [x], we have f(x) = p1(x)p2(x) where p(x) = (x−ζ)q ∈ F [x]
for some 1 ≤ q < p, since these are the only factors of f .

– The claim is that ζ ∈ F as well, which is a contradiction since ζ is a pth root of a.

• We have xq − ζq ∈ F [x], so ζq ∈ F .
• We know a = ζp ∈ F , and thus ζd = ζ ∈ F for d := gcd(p, n) = 1. E

– Why this is true: write d = gcd(p, n) in Z to obtain d = tp+ sn for some t, s.
– Then ζd = ζtp+sn = (ζp)t · (ζn)s ∈ F .
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Strategy (for an alternative solution):

• By contrapositive, show that f(x) := xp − a ∈ F[x] reducible =⇒ a is a pth power in F.
• Eventually show aℓ = bp for some ℓ ∈ N and some b ∈ F, then gcd(ℓ, p) = 1 forces b = a and
ℓ = p.

• Use the fact that the constant term of any g ∈ F[x] is actually in F.

Concepts Used:

• Reducible: f ∈ F[x] is reducible iff there exists g, h ∈ F[x] nonconstant with f = gh.

– Importantly, this factorization needs to happen in F[x], since we can always find
such factorizations in the splitting field SF(f)[x].

• Bezout’s identity: gcd(p, q) = d =⇒ there exist s, t ∈ Z such that

sp+ tq = d.

Solution:

• WTS: f(x) := xp − a ∈ F[x] reducible =⇒ f has a root in the base field F.

• Write f(x) = g(x)h(x) and factor f(x) = ∏p
i=1(x− ri) ∈ SF(f)[x] where the ri are not

necessarily distinct roots.

• WLOG, g(x) = ∏ℓ
i=1(x− ri) for some 1 ≤ ℓ ≤ p− 1, i.e. rearrange the factors so that g

is the first ℓ of them.

– ℓ ̸= 1, p since f is reducible, making g, h nonconstant.

• Set Rℓ := ∏ℓ
i=1 ri, which is the constant term in g, so Rℓ ∈ F since g ∈ F[x].

• Each ri is a root of f , so rpi − a = 0 for all i, so rpi = a.

• Trick: what is the pth power of Rℓ?

Rpℓ :=
(

ℓ∏
i=1

)p

=
ℓ∏
i=1

rpi

=
ℓ∏
i=1

a

= aℓ,

so Rpℓ = aℓ.

• Use Bezout: gcd(ℓ, p) = 1 since p is prime, so write tp+ sℓ = 1 for some t, s ∈ Z
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• Use this to build a root of f that’s in F: write

a = a1

= atp+sℓ

= atpasℓ

= atp(aℓ)s

= atp(Rpℓ )
s

= (atRsℓ)p

:= βp,

so a = βp.

– Check β ∈ F: use that Rℓ ∈ F since it was a constant term of a polynomial in F[x],
a ∈ F by assumption, and fields are closed under taking powers and products.

8.4.2 Fall 2019 #4

Let F be a finite field with q elements. Let n be a positive integer relatively prime to q and let ω
be a primitive nth root of unity in an extension field of F . Let E = F [ω] and let k = [E : F ].

a. Prove that n divides qk − 1.

b. Let m be the order of q in Z/nZ×. Prove that m divides k.

c. Prove that m = k.

Revisit, tricky!

Concepts Used:

• F× is always cyclic for F a field.
• Lagrange: H ≤ G =⇒ ♯H

∣∣ ♯G.

Solution:

Proof (of a).

• Since |F | = q and [E : F ] = k, we have |E| = qk and |E×| = qk − 1.

• Noting that ζ ∈ E× we must have n = o(ζ)
∣∣ |E×| = qk − 1 by Lagrange’s theorem.

■
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Proof (of b).

• Rephrasing (a), we have

n
∣∣ qk − 1 ⇐⇒ qk − 1 ∼= 0 modn

⇐⇒ qk ∼= 1 modn
⇐⇒ m := o(q)

∣∣ k.
■

Proof (of c).

• Since m
∣∣ k ⇐⇒ k = ℓm, (claim) there is an intermediate subfield M such that

E ≤ M ≤ F k = [F : E] = [F : M ][M : E] = ℓm,

so M is a degree m extension of E.

• Now consider M×.

• By the argument in (a), n divides qm − 1 = |M×|, and M× is cyclic, so it contains
a cyclic subgroup H of order n.

• But then x ∈ H =⇒ p(x) := xn − 1 = 0, and since p(x) has at most n roots in a
field.

• So H =
{
x ∈ M

∣∣∣ xn − 1 = 0
}

, i.e. H contains all solutions to xn − 1 in E[x].

• But ζ is one such solution, so ζ ∈ H ⊂ M× ⊂ M .

• Since F [ζ] is the smallest field extension containing ζ, we must have F = M , so
ℓ = 1, and k = m.

■

8.4.3 Spring 2019 #2

Let F = Fp , where p is a prime number.

a. Show that if π(x) ∈ F [x] is irreducible of degree d, then π(x) divides xpd − x.

b. Show that if π(x) ∈ F [x] is an irreducible polynomial that divides xpn − x, then deg π(x)
divides n.
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Concepts Used:

• Go to a field extension.

– Orders of multiplicative groups for finite fields are known.

• GF(pn) is the splitting field of xpn − x ∈ Fp[x].
• xp

d − x
∣∣ xpn − x ⇐⇒ d

∣∣ n
• GF(pd) ≤ GF(pn) ⇐⇒ d

∣∣ n
• xp

n − x = ∏
fi(x) over all irreducible monic fi of degree d dividing n.

Solution:

Proof (of a).

We can consider the quotient K = Fp[x]
⟨π(x)⟩ , which since π(x) is irreducible is an extension

of Fp of degree d and thus a field of size pd with a natural quotient map of rings
ρ : Fp[x] → K.
Since K× is a group of size pd − 1, we know that for any y ∈ K×, we have by Lagrange’s
theorem that the order of y divides pd − 1 and so ypd = y.
So every element in K is a root of q(x) = xp

d − x.
Since ρ is a ring morphism, we have

ρ(q(x)) = ρ(xpd − x) = ρ(x)pd − ρ(x) = 0 ∈ K

⇐⇒ q(x) ∈ ker ρ
⇐⇒ q(x) ∈ ⟨π(x)⟩

⇐⇒ π(x)
∣∣ q(x) = xp

d − x,

where we’ve used that “to contain is to divide” in the last step.
■
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Proof (of b).

Claim: π(x) divides xpn − x ⇐⇒ deg π divides n.

Proof (of claim, =⇒ ).
Let L ∼= GF(pn) be the splitting field of φn(x) := xp

n − x; then since π
∣∣ φn by

assumption, π splits in L. Let α ∈ L be any root of π; then there is a tower of
extensions Fp ≤ Fp(α) ≤ L.
Then Fp ≤ Fp(α) ≤ L, and so

n = [L : Fp]
= [L : Fp(α)] [Fp(α) : Fp]
= ℓd,

for some ℓ ∈ Z≥1, so d divides n.
■

Proof (of claim, ⇐= ).
⇐= : If d

∣∣ n, use the fact (claim) that xpn − x = ∏
fi(x) over all irreducible monic

fi of degree d dividing n. So f = fi for some i.
■

■

8.4.4 ⋆ Fall 2016 #5

Problem 8.4.1 (?)
How many monic irreducible polynomials over Fp of prime degree ℓ are there? Justify your
answer.

Solution:
Consider L := Fp[x]/(xpℓ − x), this yields a field extension L/Fp with [L : Fp] = ℓ and so
L ∼= Fpℓ is the splitting field of xpℓ −x. Note that xpℓ −x is the product of all monic irreducible
polynomials in Fp[x] of degree dividing ℓ, and since ℓ is prime, the only such polynomials are
of degrees 1 or ℓ – this follows because any such polynomial would generate an intermediate
extension L′ with L/L′/Fp, and multiplicativity in towers yields

[L : Fp] = [L : L′] · [L′ : Fp] = ℓ,

forcing either [L : L′] = 1 or [L′ : Fp] = 1.
Let P be the desired number of monic irreducible degree ℓ polynomials in Fp[x]. The idea is
now to get a formula involving all monic irreducible (not necessarily degree ℓ) polynomials
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and use it to solve for P . By the above observation, we have a factorization

xp
ℓ − x =

∏
i∈I

fi(x) =
∏
i∈I1

fi(x) ·
∏
i∈I2

gi(x),

where I is the set of all monic irreducible polynomials, and the above observation shows
I = I1

∐
I2 where I1 are those of degree 1 and I2 are those of degree ℓ. Taking degrees of both

sides yields

pℓ =
∑
i∈I1

deg fi(x) +
∑
i∈I2

deg gi(x) =
∑
i∈I1

1 + Pℓ = ♯I1 + Pℓ,

since each deg fi(x) = 1 and there are ♯I1 many of them, and deg gi(x) = ℓ and there are P of
them. Rearranging yields

Pℓ = pℓ − ♯I1 =⇒ P = ℓ−1
(
pℓ − ♯I1

)
,

and so it suffices to determine ♯I1, the number of monic linear irreducible polynomials in Fp[x].
These are all of the form x+a where a ∈ Fp, and there are p choices for a, so the final count is

P = ℓ−1
(
pℓ − p

)
.

8.4.5 ⋆ Fall 2013 #7

Let F = F2 and let F denote its algebraic closure.

a. Show that F is not a finite extension of F .

b. Suppose that α ∈ F satisfies α17 = 1 and α ̸= 1. Show that F (α)/F has degree 8.

E 8.5 General Field Extensions e

8.5.1 Spring 2020 #3

Let E be an extension field of F and α ∈ E be algebraic of odd degree over F .

a. Show that F (α) = F (α2).

b. Prove that α2020 is algebraic of odd degree over F .
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8.5.2 Spring 2012 #1

Suppose that F ⊂ E are fields such that E/F is Galois and |Gal(E/F )| = 14.

a. Show that there exists a unique intermediate field K with F ⊂ K ⊂ E such that [K : F ] = 2.

b. Assume that there are at least two distinct intermediate subfields F ⊂ L1, L2 ⊂ E with
[Li : F ] = 7. Prove that Gal(E/F ) is nonabelian.

8.5.3 Spring 2019 #8

Let ζ = e2πi/8.

a. What is the degree of Q(ζ)/Q?

b. How many quadratic subfields of Q(ζ) are there?

c. What is the degree of Q(ζ, 4√2) over Q?

Concepts Used:

• ζn := e
2πi
n , and ζkn is a primitive nth root of unity ⇐⇒ gcd(n, k) = 1

– In general, ζkn is a primitive n
gcd(n,k)th root of unity.

• deg Φn(x) = φ(n)
• φ(pk) = pk − pk−1 = pk−1(p− 1)

– Proof: for a nontrivial gcd, the possibilities are

p, 2p, 3p, 4p, · · · , pk−2p, pk−1p.

• Gal(Q(ζ)/Q) ∼= Z/(n)×

Solution:
Let K = Q(ζ).
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Proof (of a).

• ζ := e2πi/8 is a primitive 8th root of unity
• The minimal polynomial of an nth root of unity is the nth cyclotomic polynomial

Φn

• The degree of the field extension is the degree of Φ8, which is

φ(8) = φ(23) = 23−1 · (2 − 1) = 4.

• So [Q(ζ) : Q] = 4.

■

Proof (of b).

• Gal(Q(ζ)/Q) ∼= Z/(8)× ∼= Z/(4) by general theory
• Z/(4) has exactly one subgroup of index 2.
• Thus there is exactly one intermediate field of degree 2 (a quadratic extension).

■

Proof (of c).

• Let L = Q(ζ, 4√2).

• Note Q(ζ) = Q(i,
√

2)

– Q(i,
√

2) ⊆ Q(ζ)
♢ ζ2

8 = i, and ζ8 =
√

2−1 + i
√

2−1 so ζ8 + ζ−1
8 = 2/

√
2 =

√
2.

– Q(ζ) ⊆ Q(i,
√

2):
♢ ζ = e2πi/8 = sin(π/4) + i cos(π/4) =

√
2

2 (1 + i).

• Thus L = Q(i,
√

2)( 4√2) = Q(i,
√

2, 4√2) = Q(i, 4√2).

– Uses the fact that Q(
√

2) ⊆ Q( 4√2) since 4√22 =
√

2

• Conclude

[L : Q] = [L : Q( 4√2)] [Q( 4√2) : Q] = 2 · 4 = 8

using the fact that the minimal polynomial of i over any subfield of R is always
x2 + 1, so minQ( 4√2)(i) = x2 + 1 which is degree 2.

■
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8.5.4 Fall 2017 #3

Let F be a field. Let f(x) be an irreducible polynomial in F [x] of degree n and let g(x) be any
polynomial in F [x]. Let p(x) be an irreducible factor (of degree m) of the polynomial f(g(x)).

Prove that n divides m. Use this to prove that if r is an integer which is not a perfect square, and
n is a positive integer then every irreducible factor of x2n − r over Q[x] has even degree.

8.5.5 Spring 2015 #2

Let F be a finite field.

a. Give (with proof) the decomposition of the additive group (F,+) into a direct sum of cyclic
groups.

b. The exponent of a finite group is the least common multiple of the orders of its elements.
Prove that a finite abelian group has an element of order equal to its exponent.

c. Prove that the multiplicative group (F×, ·) is cyclic.

8.5.6 Spring 2014 #3

Let F ⊂ C be a field extension with C algebraically closed.

a. Prove that the intermediate field Calg ⊂ C consisting of elements algebraic over F is alge-
braically closed.

b. Prove that if F → E is an algebraic extension, there exists a homomorphism E → C that is
the identity on F .

9 Modules

E 9.1 Annihilators e
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9.1.1 Fall 2021 #6

Let R be a commutative ring with unit and let M be an R-module. Define the annihilator of M to
be

Ann(M) := {r ∈ R
∣∣∣ r ·m = 0 for all m ∈ M}

a. Prove that Ann(M) is an ideal in R.

b. Conversely, prove that every ideal in R is the annihilator of some R-module.

c. Give an example of a module M over a ring R such that each element m ∈ M has a nontrivial
annihilator Ann(m) := {r ∈ R

∣∣∣ r ·m = 0}, but Ann(M) = {0}

9.1.2 Spring 2017 #5

Let R be an integral domain and let M be a nonzero torsion R-module.

a. Prove that if M is finitely generated then the annihilator in R of M is nonzero.

b. Give an example of a non-finitely generated torsion R-module whose annihilator is (0), and
justify your answer.

E 9.2 Torsion and the Structure Theorem e

9.2.1 ⋆ Fall 2019 #5

Let R be a ring and M an R-module.

Recall that the set of torsion elements in M is defined
by

Tor(M) = {m ∈ M
∣∣∣ ∃r ∈ R, r ̸= 0, rm = 0}.

a. Prove that if R is an integral domain, then Tor(M) is a submodule of M .

b. Give an example where Tor(M) is not a submodule of M .
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c. If R has zero-divisors, prove that every non-zero R-module has non-zero torsion elements.

Concepts Used:

• One-step submodule test.

Solution:

Proof (of a).
It suffices to show that

r ∈ R, t1, t2 ∈ Tor(M) =⇒ rt1 + t2 ∈ Tor(M).

We have

t1 ∈ Tor(M) =⇒ ∃s1 ̸= 0 such that s1t1 = 0
t2 ∈ Tor(M) =⇒ ∃s2 ̸= 0 such that s2t2 = 0.

Since R is an integral domain, s1s2 ̸= 0. Then

s1s2(rt1 + t2) = s1s2rt1 + s1s2t2

= s2r(s1t1) + s1(s2t2) since R is commutative
= s2r(0) + s1(0)
= 0.

■

Proof (of b).
Let R = Z/6Z as a Z/6Z-module, which is not an integral domain as a ring.
Then [3]6 ↷ [2]6 = [0]6 and [2]6 ↷ [3]6 = [0]6, but [2]6 + [3]6 = [5]6, where 5 is coprime
to 6, and thus [n]6 ↷ [5]6 = [0] =⇒ [n]6 = [0]6. So [5]6 is not a torsion element.
So the set of torsion elements are not closed under addition, and thus not a submodule.

■

Proof (of c).
Suppose R has zero divisors a, b ̸= 0 where ab = 0. Then for any m ∈ M , we have
b↷ m := bm ∈ M as well, but then

a↷ bm = (ab) ↷ m = 0 ↷ m = 0M ,

so m is a torsion element for any m.
■
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9.2.2 ⋆ Spring 2019 #5

Problem 9.2.1 (?)
Let R be an integral domain. Recall that if M is an R-module, the rank of M is defined to
be the maximum number of R-linearly independent elements of M .

a. Prove that for any R-module M , the rank of Tor(M) is 0.

b. Prove that the rank of M is equal to the rank of of M/Tor(M).

c. Suppose that M is a non-principal ideal of R. Prove that M is torsion-free of rank 1 but
not free.

Solution:

Proof (of a).

• Suppose toward a contradiction Tor(M) has rank n ≥ 1.
• Then Tor(M) has a linearly independent generating set B = {r1, · · · , rn}, so in

particular
n∑
i=1

siri = 0 =⇒ si = 0R ∀i.

• Let r be any of of these generating elements.
• Since r ∈ Tor(M), there exists an s ∈ R \ 0R such that sr = 0M .
• Then sr = 0 with s ≠ 0, so {r} ⊆ B is not a linearly independent set, a contradic-

tion.

■

Proof (of b).

• Let n = rankM , and let B = {ri}ni=1 ⊆ R be a generating set.
• Let M̃ := M/Tor(M) and π : M → M ′ be the canonical quotient map.

Claim:

B̃ := π(B) = {ri + Tor(M)}

is a basis for M̃ .
Note that the proof follows immediately.

■
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Proof (of claim: linearly independent).

• Suppose that
n∑
i=1

si(ri + Tor(M)) = 0M̃ .

• Then using the definition of coset addition/multiplication, we can write this as

n∑
i=1

(siri + Tor(M)) =
(

n∑
i=1

siri

)
+ Tor(M) = 0M̃ .

• Since x̃ = 0 ∈ M̃ ⇐⇒ x̃ = x + Tor(M) where x ∈ Tor(M), this forces ∑ siri ∈
Tor(M).

• Then there exists a scalar α ∈ R• such that α∑ siri = 0M .

• Since R is an integral domain and α ̸= 0, we must have ∑ siri = 0M .

• Since {ri} was linearly independent in M , we must have si = 0R for all i.

■

Proof (of claim: spanning).

• Write π(B) = {ri + Tor(M)}ni=1 as a set of cosets.

• Letting x ∈ M ′ be arbitrary, we can write x = m +Tor(M) for some m ∈ M where
π(m) = x by surjectivity of π.

• Since B is a basis for M , we have m = ∑n
i=1 siri, and so

x = π(m)

:= π

(
n∑
i=1

siri

)

=
n∑
i=1

siπ(ri) since π is an R-module morphism

:=
n∑
i=1

si(ri + Tor(M)),

which expresses x as a linear combination of elements in B′.

■
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Proof (of c).
Notation: Let 0R denote 0 ∈ R regarded as a
ring element, and 0 ∈ R denoted 0R regarded
as a module element (where R is regarded as an
R-module over itself)

Proof (that M is not free).

• Claim: If I ⊆ R is an ideal and a free R-module, then I is principal .

– Suppose I is free and let I = ⟨B⟩ for some basis, we will show |B| = 1>
– Toward a contradiction, suppose |B| ≥ 2 and let m1,m2 ∈ B.
– Then since R is commutative, m2m1 −m1m2 = 0 and this yields a linear

dependence
– So B has only one element m.
– But then I = ⟨m⟩ = Rm is cyclic as an R- module and thus principal as

an ideal of R.
– Now since M was assumed to not be principal, M is not free (using the

contrapositive of the claim).

■

Proof (that M is rank 1).

• For any module, we can take an element m ∈ M• and consider the cyclic
submodule Rm.

• Since M is not principle, it is not the zero ideal, and contains at least two
elements. So we can consider an element m ∈ M .

• We have rankR(M) ≥ 1, since Rm ≤ M and {m} is a subset of some spanning
set.

• Rm can not be linearly dependent, since R is an integral domain and M ⊆ R,
so αm = 0 =⇒ α = 0R.

• Claim: since R is commutative, rankR(M) ≤ 1.

– If we take two elements m,n ∈ M•, then since m,n ∈ R as well, we have
nm = mn and so

(n)m + (−m)n = 0R = 0

is a linear dependence.

M is torsion-free:

• Let x ∈ TorM , then there exists some r ̸= 0 ∈ R such that rx = 0.

• But x ∈ R as well and R is an integral domain, so x = 0R, and thus Tor(M) =
{0R}.

■

■
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9.2.3 ⋆ Spring 2020 #6

Let R be a ring with unity.

a. Give a definition for a free module over R.

b. Define what it means for an R-module to be torsion free.

c. Prove that if F is a free module, then any short exact sequence of R-modules of the following
form splits:

0 → N → M → F → 0.

d. Let R be a PID. Show that any finitely generated R-module M can be expressed as a direct
sum of a torsion module and a free module.

You may assume that a finitely generated torsionfree
module over a PID is free.

Solution:
Let R be a ring with 1.
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Proof (of a).
An R-module M is free if any of the following conditions hold:

• M admits an R-linearly independent spanning set {bα}, so

m ∈ M =⇒ m =
∑
α

rαbα

and ∑
α

rαbα = 0M =⇒ rα = 0R

for all α.
• M admits a decomposition M ∼=

⊕
αR as a direct sum of R-submodules.

• There is a nonempty set X an monomorphism X ↪→ M of sets such that for every
R-module N , every set map X → N lifts to a unique R-module morphism M → N ,
so the following diagram commutes:

M

X N

∃!f̃

f

Equivalently,

Hom
Set

(X,Forget(N)) ∼−→ Hom
RMod

(M,N).

■

Proof (of b).

• Define the annihilator:

Ann(m) :=
{
r ∈ R

∣∣∣ r ·m = 0M
}
⊴ R.

– Note that mR ∼= R/Ann(m).

• Define the torsion submodule:

Mt :=
{
m ∈ M

∣∣∣ Ann(m) ̸= 0
}

≤ M

• M is torsionfree iff Mt = 0 is the trivial submodule.

■
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Proof (of c).

• Let the following be an SES where F is a free R-module:

0 → N → M
π−→ F → 0.

• Since F is free, there is a generating set X = {xα} and a map ι : X ↪→ F satisfying
the 3rd property from (a).

– If we construct any map f : X → M , the universal property modules will give
a lift f̃ : F → M

• Identify X with ι(X) ⊆ F .

• For every x ∈ X, the preimage π−1(x) is nonempty by surjectivity. So arbitrarily
pick any preimage.

• {ι(xα)} ⊆ F and π is surjective, so choose fibers {yα} ⊆ M such that π(yα) = ι(xα)
and define

f : X → M

xα 7→ yα.

• The universal property yields h : F → M :

X = {xα}

0 N M F 0

ι
f

π

∃!h

• It remains to check that it’s a section.

– Write f = ∑
rixi, then since both maps are R-module morphism, by

R-linearity we can write

(π ◦ h)(f) = (π ◦ h)
(∑

rixi
)

=
∑

ri(π ◦ h)(xi),

but since h(xi) ∈ π−1(xi), we have (π ◦ h)(xi) = xi. So this recovers f .

■
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Proof (of c, shorter proof).

• Free implies projective

– Universal property of projective objects: for every epimorphism π : M ↠ N
and every f : P → N there exists a unique lift f̃ : P → M :

P

M N

f
∃!f̃

π

– Construct φ in the following diagram using the same method as above (sur-
jectivity to pick elements in preimage):

X

F

M N 0

ι

f

π

∃φ̃

φ

Link to Diagram

• Now take the identity map, then commutativity is equivalent to being a section.

F

0 N M F 0

1F
∃!h

■
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Proof (of d).
There is a SES

0 Mt M M/Mt 0

Claim: M/Mt is a free R-module, so this sequence splits and M ∼= Mt ⊕ M
Mt

, where Mt

is a torsion R-module.
Note that by the hint, since R is a PID, it suf-
fices to show that M/Mt is torsionfree.

• Let m+Mt ∈ M/Mt be arbitrary. Suppose this is a torsion element, the claim is
that it must be the trivial coset. This will follow if m ∈ Mt

• Since this is torsion, there exists r ∈ R such that

Mt = r(m+Mt) := (rm) +Mt =⇒ rm ∈ Mt.

• Then rm is torsion in M , so there exists some s ∈ R such s(rm) = 0M .
• Then (sr)m = 0M which forces m ∈ Mt

■

9.2.4 Spring 2012 #5

Let M be a finitely generated module over a PID R.

a. Mt be the set of torsion elements of M , and show that Mt is a submodule of M .

b. Show that M/Mt is torsion free.

c. Prove that M ∼= Mt ⊕ F where F is a free module.

9.2.5 Fall 2019 Final #3

Let R = k[x] for k a field and let M be the R-module given by

M = k[x]
(x− 1)3 ⊕ k[x]

(x2 + 1)2 ⊕ k[x]
(x− 1) (x2 + 1)4 ⊕ k[x]

(x+ 2) (x2 + 1)2 .

Describe the elementary divisors and invariant factors of M .
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9.2.6 Fall 2019 Final #4

Let I = (2, x) be an ideal in R = Z[x], and show that I is not a direct sum of nontrivial cyclic
R-modules.

9.2.7 Fall 2019 Final #5

Let R be a PID.

a. Classify irreducible R-modules up to isomorphism.

b. Classify indecomposable R-modules up to isomorphism.

9.2.8 Fall 2019 Final #6

Let V be a finite-dimensional k-vector space and T : V → V a non-invertible k-linear map. Show
that there exists a k-linear map S : V → V with T ◦ S = 0 but S ◦ T ̸= 0.

9.2.9 Fall 2019 Final #7

Let A ∈ Mn(C) with A2 = A. Show that A is similar to a diagonal matrix, and exhibit an explicit
diagonal matrix similar to A.

9.2.10 Fall 2019 Final #10

Show that the eigenvalues of a Hermitian matrix A are real and that A = PDP−1 where P is an
invertible matrix with orthogonal columns.

9.2.11 Fall 2020 #7

Let A ∈ Mat(n× n,R) be arbitrary. Make Rn into an R[x]-module by letting f(x).v := f(A)(v)
for f(v) ∈ R[x] and v ∈ Rn. Suppose that this induces the following direct sum decomposition:

Rn ∼=
R[x]

⟨(x− 1)3⟩
⊕ R[x]

⟨(x2 + 1)2⟩
⊕ R[x]

⟨(x− 1)(x2 − 1)(x2 + 1)4⟩
⊕ R[x]

⟨(x+ 2)(x2 + 1)2⟩
.

a. Determine the elementary divisors and invariant factors of A.

b. Determine the minimal polynomial of A.
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c. Determine the characteristic polynomial of A.

E 9.3 Misc/Unsorted e

9.3.1 Spring 2017 #3

Problem 9.3.1 (?)
Let R be a commutative ring with 1. Suppose that M is a free R-module with a finite basis
X.

a. Let I ⊴ R be a proper ideal. Prove that M/IM is a free R/I-module with basis X ′,
where X ′ is the image of X under the canonical map M → M/IM .

b. Prove that any two bases of M have the same number of elements. You may assume
that the result is true when R is a field.

Solution:
Part a: First, a slightly more advanced argument that gives some intuition as to why this
should be true. Let X = {g1, · · · , gn} ⊆ M be a generating set so that rankRM = n and every
m ∈ M can be written as m = ∑n

i=1 rimi for some ri ∈ R. Then M = Rg1 ⊕ Rg2 ⊕ · · ·Rgn,
using the notation of Atiyah-MacDonald, where Rm is the cyclic submodule generated by m.
In particular, M ∼= R⊕n , and this is true iff M is a free R-module of rank n. So it suffices
to show that M/IM ∼= (R/I)⊕ℓ for some ℓ and that ℓ = n. Since free modules are flat, the
functor (−) ⊗RM is left and right exact, so take the short exact sequence

0 → I ↪→ R↠ R/I → 0

and tensor with M to get

0 → I ⊗RM
ι
↪−→ R⊗RM

π−→→ (R/I) ⊗RM → 0.

Noting that R⊗RM ∼= M by the canonical map r ⊗m 7→ rm (extended linearly), we have

0 → I ⊗RM
ι
↪−→ M

π−→→ (R/I) ⊗RM → 0.

Now ι(i ⊗ m) = im, so the image of ι is precisely IM , and coker(ι) = M/IM by definition.
By exactness, we must have coker(ι) ∼= (R/I) ⊗RM , so

M/IM ∼= (R/I) ⊗RM.
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But now if M ∼= R⊕n , we can conclude by a direct calculation:

M/IM ∼= (R/I) ⊗RM

∼= (R/I) ⊗R (R⊕n)
:= (R/I) ⊗R (R⊕R⊕ · · · ⊕R)
∼= ((R/I) ⊗R R) ⊕ ((R/I) ⊗R R) ⊕ · · · ⊕ ((R/I) ⊗R R)
∼= (R/I) ⊕ (R/I) ⊕ · · · ⊕ (R/I)
= (R/I)⊕n

,

where we’ve used that A⊗ (B ⊕C) ∼= (A⊗B) ⊕ (A⊗C) and A⊗R R ∼= A for any R-modules
A,B,C.
A more direct proof of a: Let X := {g1, · · · , gn} ⊆ M be a free R-basis for
M , so X is R-linearly independent and spans M . The claim is that the cosets X̃ :=
{g1 + IM, · · · , gn + IM} ⊆ IM form a basis for IM .

• Spanning: we want to show

m+ IM ∈ M/IM =⇒ ∃rk + I ∈ R/I such that

m+ IM =
n∑
k=1

(rK + I)(gk + IM).

– Note that the R/I-module structure on M/IM is defined by (r + I)(m+ IM) :=
rm+ IM .

– Fix m+ IM , and use the basis X of M to write M = ∑n
k=1 rkgk, since it spans M .

– Then

m+ IM =
(

n∑
k=1

rkgk

)
+ IM =

n∑
k=1

(rkgk + IM) =
n∑
k=1

(rk + I)(gk + IM),

so these rk suffice.

• Linear independence: we want to show
n∑
k=1

(rk + I)(gk + IM) = 0IM =⇒ rk + I = 0R/I := 0 + I ∀k.

– Expanding the assumption, we have
n∑
k=1

(rk + I)(gk + IM) = 0IM =⇒
n∑
k=1

(rkgk) + IM = 0 + IM

=⇒
n∑
k=1

rkgk ∈ IM,

and it suffices to show rk ∈ I for all k.
– Since IM :=

{∑N
k=1 ikmk

∣∣∣ ik ∈ I,mk ∈ M,N < ∞
}

by definition, we have

n∑
k=1

rkgk =
N∑
k=1

ikmk

for some ik ∈ I and mk ∈ M and some finite N .
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– Since X is a spanning set for M , we can write expand mk = ∑n
k=1 r

′
kgk for each k

and write

n∑
k=1

rkgk =
N∑
k=1

ik

 n∑
j=1

r′
jgj

 =
n∑
k=1

n∑
j=1

ikr
′
jgj =

n∑
k=1

n∑
j=1

ikjgj ,

where ikj := ikr
′
j ∈ I since I is an ideal.

– By collecting terms for each gj , we can thus write

n∑
k=1

rkgk =
n∑
k=1

i′kgk =⇒
n∑
k=1

(rk − ik)gk = 0M ,

where i′k ∈ I. Using that the gk are R-linearly independent in M , we have rk = ik
for each k, so in fact rk ∈ I, which is what we wanted to show.

Part b: suppose the result is true for fields. Noting that R/I is a field precisely when I is
maximal, suppose R contains a maximal ideal I and let B1, B2 be two R-bases for M . By
part a, their images B′

1, B
′
2 are R/I-bases for M/IM , but since R/I is a field and M/IM is

a module over the field k := R/I, the sizes of B′
1 and B′

2 must be the same. This forces the
sizes of B1 and B2 to be the same.
To see that R does in fact contain a maximal ideal, let S := R× \R be the set of non-units in
R. Applying Zorn’s lemma shows that S is contained in a proper maximal ideal I, which can
be used in the argument above.

9.3.2 Spring 2020 #5

Let R be a ring and f : M → N and g : N → M be R-module homomorphisms such that g◦f = idM .
Show that N ∼= im f ⊕ ker g.

Solution:

• We have the following situation:

M N
f

g

Link to Diagram

• Claim: im f + ker g ⊆ N , and this is in fact an equality.

– For n ∈ N , write

n = n+ (f ◦ g)(n) − (f ◦ g)(n) = (n− (f ◦ g)(n)) + (f ◦ g)(n).
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– The first term is in ker g:

g (n− (f ◦ g)(n)) = g(n) − (g ◦ f ◦ g)(n)
= g(n) − (idN ◦g)(n)
= g(n) − g(n)
= 0.

– The second term is clearly in im f .

• Claim: the sum is direct.

– Suppose n ∈ ker(g) ∩ im(f), so g(n) = 0 and n = f(m) for some m ∈ M . Then

0 = g(n) = g(f(m)) = (g ◦ f)(m) = idM (m) = m,

so m = 0 and since f is a morphism in R-modules, n := f(m) = 0.

9.3.3 Fall 2018 #6

Let R be a commutative ring, and let M be an R-module. An R-submodule N of M is maximal if
there is no R-module P with N ⊊ P ⊊M .

a. Show that an R-submodule N of M is maximal ⇐⇒ M/N is a simple R-module: i.e., M/N
is nonzero and has no proper, nonzero R-submodules.

b. Let M be a Z-module. Show that a Z-submodule N of M is maximal ⇐⇒ ♯M/N is a prime
number.

c. Let M be the Z-module of all roots of unity in C under multiplication. Show that there is no
maximal Z-submodule of M .

Concepts Used:

• Todo

Solution:
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Proof (of a).
By the correspondence theorem, submodules of M/N biject with submodules A of M
containing N .
So

• M is maximal:

• ⇐⇒ no such (proper, nontrivial) submodule A exists

• ⇐⇒ there are no (proper, nontrivial) submodules of M/N

• ⇐⇒ M/N is simple.

■

Proof (of b).
Identify Z-modules with abelian groups, then by (a), N is maximal ⇐⇒ M/N is simple
⇐⇒ M/N has no nontrivial proper subgroups.

By Cauchy’s theorem, if |M/N | = ab is a composite number, then a
∣∣ ab =⇒ there is an

element (and thus a subgroup) of order a. In this case, M/N contains a nontrivial proper
cyclic subgroup, so M/N is not simple. So |M/N | can not be composite, and therefore
must be prime.

■

Proof (of c).

• Let G =
{
x ∈ C

∣∣∣ xn = 1 for some n ∈ N
}

, and suppose H < G is a proper sub-
module.

• Since H ̸= G, there is some p and some k such that ζpk ̸∈ H.

– Otherwise, if H contains every ζpk it contains every ζn

Then there must be a prime p such that the ζpk ̸∈ H for all k greater than some constant
m – otherwise, we can use the fact that if ζpk ∈ H then ζpℓ ∈ H for all ℓ ≤ k, and if
ζpk ∈ H for all p and all k then H = G.
But this means there are infinitely many elements in G\H, and so ∞ = [G : H] = |G/H|
is not a prime. Thus by (b), H can not be maximal, a contradiction.

■
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9.3.4 Fall 2019 Final #2

Consider the Z-submodule N of Z3 spanned by

f1 = [−1, 0, 1],
f2 = [2,−3, 1],
f3 = [0, 3, 1],
f4 = [3, 1, 5].

Find a basis for N and describe Z3/N .

9.3.5 Spring 2018 #6

Let

M = {(w, x, y, z) ∈ Z4
∣∣∣ w + x+ y + z ∈ 2Z}

N =
{

(w, x, y, z) ∈ Z4
∣∣∣ 4
∣∣ (w − x), 4

∣∣ (x− y), 4
∣∣ (y − z)

}
.

a. Show that N is a Z-submodule of M .

b. Find vectors u1, u2, u3, u4 ∈ Z4 and integers d1, d2, d3, d4 such that

{u1, u2, u3, u4} is a free basis for M
{d1u1, d2u2, d3u3, d4u4} is a free basis for N

c. Use the previous part to describe M/N as a direct sum of cyclic Z-modules.

9.3.6 Spring 2018 #7

Let R be a PID and M be an R-module. Let p be a prime element of R. The module M is called
⟨p⟩ -primary if for every m ∈ M there exists k > 0 such that pkm = 0.

a. Suppose M is ⟨p⟩ -primary. Show that if m ∈ M and t ∈ R, t ̸∈ ⟨p⟩, then there exists a ∈ R
such that atm = m.

b. A submodule S of M is said to be pure if S ∩ rM = rS for all r ∈ R. Show that if M is
⟨p⟩ -primary, then S is pure if and only if S ∩ pkM = pkS for all k ≥ 0.
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9.3.7 Fall 2016 #6

Problem 9.3.2 (?)
Let R be a ring and f : M → N and g : N → M be R-module homomorphisms such that
g ◦ f = idM . Show that N ∼= im f ⊕ ker g.

Solution:
The trick: write down a clever choice of an explicit morphism. Let P := (f ◦ g) : N → N , then

Φ : N → im f ⊕ ker g
n 7→ P (n) + (n− P (n)).

The claim is that this is an isomorphism. One first needs to show that this makes sense:
P (n) := f(g(n)) is clearly in im f (since f is the last function applied), but it remains to show
that n− P (n) ∈ ker g. This is a direct computation:

g(n− P (n)) = g(n) − g(f(g(n))) = g(n) − idN (g(n)) = g(n) − g(n) = 0M ,

where we’ve used that g is an R-module morphism in the first step. Also note that Φ is an
R-module morphism since it’s formed of compositions and sums of such morphisms.
One then has to show that im f ∩ ker g = {0} – letting n be in this intersection, there exists
an m ∈ M with f(m) = n. Then applying g yields gf(m) = g(n), and the RHS is zero since
n ∈ ker g, and the LHS is gf(m) = idM (m) = m, so m = 0. Since f is an R-module morphism,
we must have f(0) = 0, so n = f(m) = f(0) = 0 as desired.
Φ is injective: letting n ∈ ker Φ, we have

0 = Φ(n) = P (n) + (n− P (n)) = P (n) − P (n) + n = n.

We thus get N ∼= im Φ and it remains to show Φ is surjective. But this follows for the same
reason:

n ∈ N =⇒ n = n+ P (n) − P (n) = P (n) + (n− P (n)) = Φ(n).

9.3.8 Spring 2016 #4

Let R be a ring with the following commutative diagram of R-modules, where each row represents
a short exact sequence of R-modules:

0 A B C 0

0 A′ B′ C ′ 0

α

f

β

g

γ

f ′ g′

Prove that if α and γ are isomorphisms then β is an isomorphism.
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9.3.9 Spring 2015 #8

Let R be a PID and M a finitely generated R-module.

a. Prove that there are R-submodules

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

such that for all 0 ≤ i ≤ n− 1, the module Mi+1/Mi is cyclic.

b. Is the integer n in part (a) uniquely determined by M? Prove your answer.

9.3.10 Fall 2012 #6

Let R be a ring and M an R-module. Recall that M is Noetherian iff any strictly increasing chain of
submodule M1 ⊊M2 ⊊ · · · is finite. Call a proper submodule M ′ ⊊M intersection-decomposable if
it can not be written as the intersection of two proper submodules M ′ = M1 ∩M2 with Mi ⊊M .

Prove that for every Noetherian module M , any proper submodule N ⊊ M can be written as a
finite intersection N = N1 ∩ · · · ∩Nk of intersection-indecomposable modules.

9.3.11 Fall 2019 Final #1

Let A be an abelian group, and show A is a Z-module in a unique way.

9.3.12 Fall 2020 #6

Let R be a ring with 1 and let M be a left R-module. If I is a left ideal of R, define

IM :=
{
N<∞∑
i=1

aimi

∣∣∣ ai ∈ I,mi ∈ M,n ∈ N
}
,

i.e. the set of finite sums of of elements of the form am where a ∈ I,m ∈ M .

a. Prove that IM ≤ M is a submodule.

b. Let M,N be left R-modules, I a nilpotent left ideal of R, and f : M → N an R-module
morphism. Prove that if the induced morphism f : M/IM → N/IN is surjective, then f is
surjective.
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E 10.1 Fall 2017 #7 e

Problem 10.1.1 (?)
Let F be a field and let V and W be vector spaces over F .
Make V and W into F [x]-modules via linear operators T on V and S on W by defining
X · v = T (v) for all v ∈ V and X · w = S(w) for all w ∈ W .
Denote the resulting F [x]-modules by VT and WS respectively.

a. Show that an F [x]-module homomorphism from VT to WS consists of an F -linear trans-
formation R : V → W such that RT = SR.

b. Show that VT ∼= WS as F [x]-modules ⇐⇒ there is an F -linear isomorphism P : V → W
such that T = P−1SP .

c. Recall that a module M is simple if M ̸= 0 and any proper submodule of M must be
zero. Suppose that V has dimension 2. Give an example of F , T with VT simple.

d. Assume F is algebraically closed. Prove that if V has dimension 2, then any VT is not
simple.

Concepts Used:

• A representation M of a k-algebra A is a morphism A → End
kAlg(M) of k-algebras.

• Simple R-modules M can be written as M ∼= R/I for I a maximal ideal.

Solution:
Part a: note that for F-modules, i.e. representations of F, a morphism V → W would be an
F-linear map φ : V → W that commutes with the actions F ↷ V,W that define the module
structure, i.e. φ(λ •V v) = λ •W φ(v) where •V is the action on V and •W is the action on W ,
where λ ∈ F, v ∈ V .
Here we are considering F[x]-modules, i.e. representations of the F-algebra F[x]. Note that
F[x] is generated by 1, x as an F-algebra, and so specifying a representation M is equivalent
to specifying an action by scalars F ↷M and an action x↷M .
Note that a morphism R : VT → WS of F[x]-modules must in particular be a morphism of the
underlying F-modules V and W , since F can be identified with the constant polynomials in
F[x]. Thus it is necessary for R to be F-linear.
To see that we must have RS = ST , note that given an action of x on W and V , we must
have R(x •V v) = x •W R(v). Since x •V v := T (v) and x •W w := S(w), we must have

R(T (v)) = R(x •V v) = x •W R(v) = S(R(V )) =⇒ RT = SR.

This shows necessity, sufficiency follows because if RT = SR then a similar argument in reverse
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shows R(xv) = xR(v) must hold.
Part b:
=⇒ : note that VT ∼= WS forces dimF V = dimFW , so T, S must be square matrices. By part

a, such an isomorphism is a isomorphism P : V → W of F-modules with PT = SP , which has
an inverse P−1 : W → V . Choosing F-bases for V and W , P is an invertible square matrix, so

PT = SP =⇒ P−1PT = P−1SP =⇒ T = P−1SP.

⇐= : given such a morphism P : V → W of F-modules with T = P−1SP , running the above
argument backwards we have

T = P−1SP =⇒ PT = PP−1SP =⇒ PT = SP,

and by part a P defines a morphism of F[x]-modules. A similar argument with P−1 produces
an inverse morphism, so P yields an isomorphism of F[x]-modules.

A shorter argument: VT
∼= WS =⇒ they have the

same invariant factor decompositions =⇒ T, S
have the same rational canonical form =⇒ they
are similar matrices by linear algebra. Conversely,
if T, S are similar then ∃P with T = P−1SP =⇒
PT = SP by definition of similarity.

Part c: let F = R; by the classification of modules over a PID, any R[t]-module M has an
invariant factor factor decomposition

M ∼= R[t]n ⊕ R[t]
⟨f1⟩

⊕ · · · ⊕ R[t]
⟨fℓ⟩

, f1
∣∣ f2

∣∣ · · ·
∣∣ fℓ

as R[t]-modules. Simple modules M correspond to R[t]/I for I a single maximal ideal, and
since R[t] is a PID maximals are prime and thus I = ⟨f⟩ for some irreducible polynomial. So
let f(x) = x2 +1, it then suffices to find a matrix A ∈ End(V ) which has f as its characteristic
polynomial – this follows since the characteristic polynomial is ∏ℓ

i=1 fi in the decomposition
above, so we’re forcing ℓ = 1 and f1 = fℓ = f with n = 0 to get M ∼= R[t]/ ⟨f⟩. So take

T :=
[

0 1
−1 0

]
.

Part d: suppose dimF V = 2 and VT is simple, VT ∼= F[x]/I for I a maximal ideal. By the
invariant factor decomposition, the characteristic polynomial equals the minimal polynomial
since I must be generated by an irreducible polynomial. So T is diagonalizable (e.g. by
examining the JCF), and in particular VT ∼= E1 ⊕ E2 is a sum of its eigenspaces since F is
algebraically closed. However, this contradicts simplicity, since T -invariant subspaces of V
correspond to C[x]-submodules of VT , and E1 is a 1-dimensional such space.

E 10.2 Spring 2015 #3 e
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Let F be a field and V a finite dimensional F -vector space, and let A,B : V → V be commuting
F -linear maps. Suppose there is a basis B1 with respect to which A is diagonalizable and a basis
B2 with respect to which B is diagonalizable.

Prove that there is a basis B3 with respect to which A and B are both diagonalizable.

E 10.3 Fall 2016 #2 e

Let A,B be two n × n matrices with the property that AB = BA. Suppose that A and B are
diagonalizable. Prove that A and B are simultaneously diagonalizable.

E 10.4 Spring 2019 #1 e

Let A be a square matrix over the complex numbers. Suppose that A is nonsingular and that A2019

is diagonalizable over C.

Show that A is also diagonalizable over C.

Concepts Used:

• A is diagonalizable iff minA(x) is separable.

– See further discussion here.

Solution:

Claim: If A ∈ GL(m,F) is invertible and An/F is diagonalizable, then A/F is diagonalizable.
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Proof (of claim). • Let A ∈ GL(m,F).

• Since An is diagonalizable, minAn(x) ∈ F[x] is separable and thus factors as a
product of m distinct linear factors:

min
An

(x) =
m∏
i=1

(x− λi), min
An

(An) = 0

where {λi}mi=1 ⊂ F are the distinct eigenvalues of An.

• Moreover A ∈ GL(m,F) =⇒ An ∈ GL(m,F): A is invertible ⇐⇒ det(A) = d ∈
F×, and so det(An) = det(A)n = dn ∈ F× using the fact that the determinant is a
ring morphism det : Mat(m×m) → F and F× is closed under multiplication.

• So An is invertible, and thus has trivial kernel, and thus zero is not an eigenvalue,
so λi ̸= 0 for any i.

• Since the λi are distinct and nonzero, this implies xk is not a factor of µAn(x) for
any k ≥ 0. Thus the m terms in the product correspond to precisely m distinct
linear factors.

• We can now construct a polynomial that annihilates A, namely

qA(x) := min
An

(xn) =
m∏
i=1

(xn − λi) ∈ F[x],

where we can note that qA(A) = minAn(An) = 0, and so minA(x)
∣∣ qA(x) by

minimality.

Claim: qA(x) has exactly nm distinct linear factors in F[x]

• This reduces to showing that no pair xn−λi, x
n−λj share a root. and that xn−λi

does not have multiple roots.

• For the first claim, we can factor

xn − λi =
n∏
k=1

(x− λ
1
n
i e

2πik
n ) :=

n∏
k=1

(x− λ
1
n ζkn),

where we now use the fact that i ̸= j =⇒ λ
1
n
i ̸= λ

1
n
j . Thus no term in the above

product appears as a factor in xn − λj for j ̸= i.

• For the second claim, we can check that ∂
∂x (xn − λi) = nxn−1 ̸= 0 ∈ F, and

gcd(xn − λi, nx
n−1) = 1 since the latter term has only the roots x = 0 with

multiplicity n− 1, whereas λi ̸= 0 =⇒ zero is not a root of xn − λi.

But now since qA(x) has exactly distinct linear factors in F[x] and minA(x)
∣∣ qA(x),

minA(x) ∈ F[x] can only have distinct linear factors, and A is thus diagonalizable over
F.

■
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E 11.1 ⋆ Spring 2012 #6 e

Let k be a field and let the group G = GL(m, k) × GL(n, k) acts on the set of m × n matrices
Mm,n(k) as follows:

(A,B) ·X = AXB−1

where (A,B) ∈ G and X ∈ Mm,n(k).

a. State what it means for a group to act on a set. Prove that the above definition yields a group
action.

b. Exhibit with justification a subset S of Mm,n(k) which contains precisely one element of each
orbit under this action.

E 11.2 ⋆ Spring 2014 #7 e

Let G = GL(3,Q[x]) be the group of invertible 3 × 3 matrices over Q[x]. For each f ∈ Q[x], let
Sf be the set of 3 × 3 matrices A over Q[x] such that det(A) = cf(x) for some nonzero constant
c ∈ Q.

a. Show that for (P,Q) ∈ G×G and A ∈ Sf , the formula

(P,Q) ·A := PAQ−1

gives a well defined map G × G × Sf → Sf and show that this map gives a group action of
G×G on Sf .

b. For f(x) = x3(x2 + 1)2, give one representative from each orbit of the group action in (a),
and justify your assertion.

E 11.3 Fall 2012 #7 e

Let k be a field of characteristic zero and A,B ∈ Mn(k) be two square n× n matrices over k such
that AB −BA = A. Prove that detA = 0.

Moreover, when the characteristic of k is 2, find a counterexample to this statement.
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E 11.4 Fall 2012 #8 e

Prove that any nondegenerate matrix X ∈ Mn(R) can be written as X = UT where U is orthogonal
and T is upper triangular.

E 11.5 Fall 2012 #5 e

Let U be an infinite-dimensional vector space over a field k, f : U → U a linear map, and
{u1, · · · , um} ⊂ U vectors such that U is generated by

{
u1, · · · , um, fd(u1), · · · , fd(um)

}
for some

d ∈ N.

Prove that U can be written as a direct sum U ∼= V ⊕W such that

1. V has a basis consisting of some vector v1, · · · vn, fd(v1), · · · , fd(vn) for some d ∈ N, and
2. W is finite-dimensional.

Moreover, prove that for any other decomposition U ∼= V ′ ⊕W ′, one has W ′ ∼= W .

E 11.6 Fall 2015 #7 e

a. Show that two 3 × 3 matrices over C are similar ⇐⇒ their characteristic polynomials are
equal and their minimal polynomials are equal.

b. Does the conclusion in (a) hold for 4 × 4 matrices? Justify your answer with a proof or
counterexample.

E 11.7 Fall 2014 #4 e

Let F be a field and T an n × n matrix with entries in F . Let I be the ideal consisting of all
polynomials f ∈ F [x] such that f(T ) = 0.

Show that the following statements are equivalent about a polynomial g ∈ I:

a. g is irreducible.

b. If k ∈ F [x] is nonzero and of degree strictly less than g, then k[T ] is an invertible matrix.
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E 11.8 Fall 2015 #8 e

Let V be a vector space over a field F and V ∨ its dual. A symmetric bilinear form (−,−) on V is
a map V × V → F satisfying

(av1 + bv2, w) = a(v1, w) + b(v2, w) and (v1, v2) = (v2, v1)

for all a, b ∈ F and v1, v2 ∈ V . The form is nondegenerate if the only element w ∈ V satisfying
(v, w) = 0 for all v ∈ V is w = 0.

Suppose (−,−) is a nondegenerate symmetric bilinear form on V . If W is a subspace of V , define

W⊥ :=
{
v ∈ V

∣∣∣ (v, w) = 0 for all w ∈ W
}
.

a. Show that if X,Y are subspaces of V with Y ⊂ X, then X⊥ ⊆ Y ⊥.

b. Define an injective linear map

ψ : Y ⊥/X⊥ ↪→ (X/Y )∨

which is an isomorphism if V is finite dimensional.

E 11.9 Fall 2018 #4 e

Let V be a finite dimensional vector space over a field (the field is not necessarily algebraically
closed).

Let φ : V → V be a linear transformation. Prove that there exists a decomposition of V as
V = U ⊕ W , where U and W are φ-invariant subspaces of V , φ|U is nilpotent, and φ|W is
nonsingular.

Revisit.

Solution:
Let m(x) be the minimal polynomial of φ. If the polynomial f(x) = x doesn’t divide m, then
f does not have zero as an eigenvalue, so φ is nonsingular and since 0 is nilpotent, φ+ 0 works.
Otherwise, write φ(x) = xmρ(x) where gcd(x, ρ(x)) = 1.
Then

V ∼=
k[x]
m(x)

∼=
k[x]
(xm) ⊕ k[x]

(ρ)
:= U ⊕W

by the Chinese Remainder theorem.
We can now note that φ|U is nilpotent because it has characteristic polynomial xm, and φ|W
is nonsingular since λ = 0 is not an eigenvalue by construction.
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E 11.10 Fall 2018 #5 e

Let A be an n× n matrix.

a. Suppose that v is a column vector such that the set {v,Av, ..., An−1v} is linearly independent.
Show that any matrix B that commutes with A is a polynomial in A.

b. Show that there exists a column vector v such that the set {v,Av, ..., An−1v} is linearly
independent ⇐⇒ the characteristic polynomial of A equals the minimal polynomial of A.

Concepts Used:

• Powers of A commute with polynomials in A.
• The image of a linear map is determined by the image of a basis

Strategy:

• Use Cayley-Hamilton to relate the minimal polynomial to a linear dependence.
• Get a lower bound on the degree of the minimal polynomial.
• Use A ↷ k[x] to decompose into cyclic k[x]-modules, and use special form of denominators

in the invariant factors.
• Reduce to monomials.

Solution:

Proof (of a).
Letting v be fixed, since

{
Ajv

}
spans V we have A

Bv =
n−1∑
j=0

cjA
jv.

So let p(x) = ∑n−1
j=0 cjx

j . Then consider how B acts on any basis vector Akv.
We have

BAkv = AkBv
= Akp(A)v
= p(A)Akv,

so B = p(A) as operators since their actions agree on every basis vector in V .
■
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Proof (of b, =⇒ ).

• If
{
Ajvk

∣∣∣ 0 ≤ j ≤ n− 1
}

is linearly independent, this means that A does satisfy
any polynomial of degree d < n.

• So degmA(x) = n, and since mA(x) divides χA(x) and both are monic degree
polynomials of degree n, they must be equal.

■

Proof (of b, ⇐= ).

• Let A↷ k[x] by A↷ p(x) := p(A). This induces an invariant factor decomposition
V =∼=

⊕
k[x]/(fi).

• Since the product of the invariant factors is the characteristic polynomial, the
largest invariant factor is the minimal polynomial, and these two are equal, there
can only be one invariant factor and thus the invariant factor decomposition is

V ∼=
k[x]

(χA(x))

as an isomorphism of k[x]-modules.

• So V is a cyclic k[x] module, which means that V = k[x] ↷ v for some v ∈ V such
that Ann(v) = χA(x), i.e. there is some element v ∈ V whose orbit is all of V .

• But then noting that monomials span k[x] as a k-module, we can write

V ∼= k[x] ↷ v

:=
{
f(x) ↷ v

∣∣∣ f ∈ k[x]
}

= span
k

{
xk ↷ v

∣∣∣ k ≥ 0
}

:= span
k

{
Akv

∣∣∣ k ≥ 0
}
,

where we’ve used that x acts by A and thus xk acts by Ak.

• Moreover, we can note that if ℓ ≥ degχA(x), then Aℓ is a linear combination of{
Aj
∣∣∣ 0 ≤ j ≤ n− 1

}
, and so

V ∼= span
k

{
Aℓv

∣∣∣ ℓ ≥ 0
}

= span
k

{
Aℓv

∣∣∣ 1 ≤ ℓ ≤ n− 1
}
.

■
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E 11.11 Fall 2019 #8 e

Let {e1, · · · , en} be a basis of a real vector space V and let

Λ :=
{∑

riei
∣∣∣ ri ∈ Z

}

Let · be a non-degenerate (v · w = 0 for all w ∈ V ⇐⇒ v = 0) symmetric bilinear form on V such
that the Gram matrix M = (ei · ej) has integer entries.

Define the dual of Λ to be

Λ∨ := {v ∈ V
∣∣∣ v · x ∈ Z for all x ∈ Λ}.

a. Show that Λ ⊂ Λ∨.

b. Prove that detM ̸= 0 and that the rows of M−1 span Λ∨.

c. Prove that detM = |Λ∨/Λ|.

Todo, missing part (c).

Solution:

Proof (of a).

• Let v ∈ Λ, so v = ∑n
i=1 riei where ri ∈ Z for all i.

• Then if x = ∑n
j=1 sjej ∈ Λ is arbitrary, we have sj ∈ Z for all j and

⟨v, x⟩ =
〈

n∑
i=1

riei,
n∑
j=1

sjej

〉

=
n∑
i=1

n∑
j=1

risj⟨ei, ej⟩ ∈ Z

since this is a sum of products of integers (since ⟨ei, ej⟩ ∈ Z for each i, j pair by
assumption) so v ∈ Λ∨ by definition.

■
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Proof (of b).

Claim: The determinant is nonzero.

• Suppose detM = 0. Then kerM ≠ 0, so let v ∈ kerM be given by v = ∑n
i=1 viei ≠

0.

• Note that

Mv = 0 =⇒


e1 · e1 e1 · e2 · · ·
e2 · e1 e2 · e2 · · ·
...

...
. . .



v1
v2
...

 = 0

=⇒
n∑
j=1

vj⟨ek, ej⟩ = 0 foreachfixed k.

• We can now note that ⟨ek, v⟩ = ∑n
j=1 vj⟨ek, ej⟩ = 0 for every k by the above

observation, which forces v = 0 by non-degeneracy of ⟨−, −⟩, a contradiction.

■

Proof (of c).
???

Missing work!

■

Solution (Alternative):
Write M = AtA where A has the ei as columns. Then

Mx = 0 =⇒ AtAx = 0
=⇒ xtAtAx = 0
=⇒ ∥Ax∥2 = 0
=⇒ Ax = 0
=⇒ x = 0,

since A has full rank because the ei are linearly independent.
Let A = [et1, · · · , etn] be the matrix with ei in the ith column.

Claim: The rows of A−1 span Λ∨. Equivalently, the columns of A−t span Λ∨.

• Let B = A−t and let bi denote the columns of B, so imB = span {bi}.
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• Since A ∈ GL(n,Z), A−1, At, A−t ∈ GL(n,Z) as well.

v ∈ Λ∨ =⇒ ⟨ei, v⟩ = zi ∈ Z ∀i
=⇒ Atv = z := [z1, · · · , zn] ∈ Zn

=⇒ v = A−tz := Bz ∈ imB

=⇒ v ∈ imB

=⇒ Λ∨ ⊆ imB,

and

BtA = (A−t)tA = A−1A = I

=⇒ bi · ej = δij ∈ Z
=⇒ imB ⊆ span Λ∨.

E 11.12 Spring 2013 #6 e

Let V be a finite dimensional vector space over a field F and let T : V → V be a linear operator
with characteristic polynomial f(x) ∈ F [x].

a. Show that f(x) is irreducible in F [x] ⇐⇒ there are no proper nonzero subspaces W < V
with T (W ) ⊆ W .

b. If f(x) is irreducible in F [x] and the characteristic of F is 0, show that T is diagonalizable
when we extend the field to its algebraic closure.

Is there a proof without matrices? What if V is infinite dimensional?

How to extend basis?

Concepts Used:

• Every v ∈ V is T -cyclic ⇐⇒ χT (x)/k is irreducible.

– =⇒ : Same as argument below.
– ⇐= : Suppose f is irreducible, then f is equal to the minimal polynomial of T .

• Characterization of diagonalizability: T is diagonalizable over F ⇐⇒ minT,F is square-
free in F [x]?

Solution:
Let f be the characteristic polynomial of T .
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Proof (of a, =⇒ . Matrix-dependent).
=⇒ :

• By contrapositive, suppose there is a proper nonzero invariant subspace W < V with
T (W ) ⊆ W , we will show the characteristic polynomial f := χV,T (x) is reducible.

• Since T (W ) ⊆ W , the restriction g := χV,T (x)
∣∣∣
W

: W → W is a linear operator on
W .

Claim: g divides f in F[x] and deg(g) < deg(f).

• Choose an ordered basis for W , say BW := {w1, · · · ,wk} where k = dimF (W )

• Claim: this can be extended to a basis of V , say BV := {w1, · · · ,wk,v1, · · · ,vj}
where k + j = dimF (V ).

– Note that since W < V is proper, j ≥ 1.

• Restrict T to W to get TW , then let B = [TW ]BW
be the matrix representation of

TW with respect to BW .

• Now consider the matrix representation [T ]BV
, in block form this is given by

[T ]BV
=
[
B C
0 D

]

where we’ve used that W < V is proper to get the existence of C,D (there is at
least one additional row/column since j ≥ 1 in the extended basis.)

Why?

• Now expand along the first column block to obtain

χT,V (x) := det([T ]BV
− xI) = det(B − xI) · det(D − xI) := χT,W (x) · det(D − xI).

• Claim: det(D − xI) ∈ xF [x] is nontrivial

• The claim follows because this forces deg(det(D − xI)) ≥ 1 and so χT,W (x) is a
proper divisor of χT,V (x).

• Thus f is reducible.

■
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Proof (of a, ⇐= ).
⇐=

• Suppose f is reducible, then we will produce a proper T -invariant subspace.
• Claim: if f is reducible, there exists a nonzero, noncyclic vector v.
• Then spank

{
T jv

}d
j=1 is a T -invariant subspace that is nonzero, and not the entire

space since v is not cyclic.

■

Proof (of b).

• Let minT,F (x) be the minimal polynomial of T and χT,F (x) be its characteristic
polynomial.

• By Cayley-Hamilton, minT,F (x) divides χT,F
• Since χT,F is irreducible, these polynomials are equal.
• Claim: T/F is diagonalizable ⇐⇒ minT,F splits over F and is squarefree.
• Replace F with its algebraic closure, then minT,F splits.
• Claim: in characteristic zero, every irreducible polynomial is separable

– Proof: it must be the case that either gcd(f, f ′) = 1 or f ′ ≡ 0, where the
second case only happens in characteristic p > 0.

– The first case is true because deg f ′ < deg f , and if gcd(f, f ′) = p, then
deg p < deg f and p

∣∣ f forces p = 1 since f is irreducible.

• So minT,F splits into distinct linear factors
• Thus T is diagonalizable.

■

E 11.13 Fall 2020 #8 e

Let A ∈ Mat(n × n,C) such that the group generated by A under multiplication is finite. Show
that

Tr(A−1) = Tr(A),

where (−) denotes taking the complex conjugate and Tr(−) is the trace.
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E 12.1 Fall 2021 #3 e

What is the Jordan normal form over C of a 7 × 7 matrix A which satisfies all of the following
conditions:

a. A has real coefficients,

b. rkA = 5,

c. rkA2 = 4,

d. rkA− I = 6,

e. rkA3 − I = 4,

f. trA = 1?

Solution:

• We’ll use rank-nullity throughout: rankM + dim kerM = 7.

• Also note that

Av = λv =⇒ Anv = An−1Av = An−1λv = · · · = λnv,

so if λ ∈ Spec(A) then λn ∈ Spec(An). Conversely, λ ∈ Spec(An) =⇒ λ
1
n ∈ Spec(A),

which we’ll use several times.

• Since 5 = rankA = rank(A − 0 · I), we have dim ker(A − 0 · I) = 2 contributing an
eigenvalue of λ = 0 with multiplicity 2.

• Since 4 = rankA2 = rank(A2−0·λ) = rank(A−0·λ)2, we have that dim ker(A−0·I)2 = 3.
Since dim ker(A−0 ·I)1 = 2 < 3, this means there is 1 generalized eigenvector associated
to λ = 0.

• Since 6 = rank(A− 1 · I), dim ker(A− 1 · I) = 1, contributing λ = 1 with multiplicity 1.

• Since rank(A3 − 1 · I) = 4, we have dim ker(A3 − 1 · I) = 3, contributing λ = 1 now
to Spec(A3) instead of Spec(A). Thus some unknown cube roots of 1 are contributed
to Spec(A), so any of 1 = ζ0

3 , ζ3, ζ
2
3 are possibilities at this point. Call these three

contributions z1, z2, z3, which may not be distinct.

• Now use that tr(A) = ∑n
i=1 λi is the sum of the diagonal on JCF(A), using that trace is

a similarity invariant, to write

1 = tr(A) = (0 + 0) + (0) + (1) + (z1 + z2 + z3) =⇒ z1 + z2 + z3 = 0,
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which is actually enough to force z1 = 1, z2 = ζ3, z3 = ζ2
3 , since no other combination

sums to zero. That 1 + ζ3 + ζ2
3 = 0 is a general fact.

• Since λ = 1 occurs twice as an eigenvalue but dim ker(A− 1 · I) = 1, the two copies of
λ = 1 must occur in a nontrivial Jordan block.

• So we get a Jordan form

JCF(A) =



0
0 1

0
1 1

1
ζ3

ζ2
3


.

E 12.2 ⋆ Spring 2012 #8 e

Let V be a finite-dimensional vector space over a field k and T : V → V a linear transformation.

a. Provide a definition for the minimal polynomial in k[x] for T .

b. Define the characteristic polynomial for T .

c. Prove the Cayley-Hamilton theorem: the linear transformation T satisfies its characteristic
polynomial.

E 12.3 ⋆ Spring 2020 #8 e

Let T : V → V be a linear transformation where V is a finite-dimensional vector space over C.
Prove the Cayley-Hamilton theorem: if p(x) is the characteristic polynomial of T , then p(T ) = 0.
You may use canonical forms.
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E 12.4 ⋆ Spring 2012 #7 e

Consider the following matrix as a linear transformation from V := C5 to itself:

A =


−1 1 0 0 0
−4 3 1 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 2

 .

a. Find the invariant factors of A.

b. Express V in terms of a direct sum of indecomposable C[x]-modules.

c. Find the Jordan canonical form of A.

E 12.5 Fall 2019 Final #8 e

Exhibit the rational canonical form for

• A ∈ M6(Q) with minimal polynomial (x− 1)(x2 + 1)2.
• A ∈ M10(Q) with minimal polynomial (x2 + 1)2(x3 + 1).

E 12.6 Fall 2019 Final #9 e

Exhibit the rational and Jordan canonical forms for the following matrix A ∈ M4(C):

A =


2 0 0 0
1 1 0 0

−2 −2 0 1
−2 0 −1 −2

 .

E 12.7 Spring 2016 #7 e

Let D = Q[x] and let M be a Q[x]-module such that

M ∼=
Q[x]

(x− 1)3 ⊕ Q[x]
(x2 + 1)3 ⊕ Q[x]

(x− 1) (x2 + 1)5 ⊕ Q[x]
(x+ 2) (x2 + 1)2 .
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Determine the elementary divisors and invariant factors of M .

E 12.8 Spring 2020 #7 e

Let

A =

 2 0 0
4 6 1

−16 −16 −2

 ∈ M3(C).

a. Find the Jordan canonical form J of A.

b. Find an invertible matrix P such that P−1AP = J .

c. Write down the minimal polynomial of A.

You should not need to compute P−1.

E 12.9 Spring 2019 #7 e

Let p be a prime number. Let A be a p× p matrix over a field F with 1 in all entries except 0 on
the main diagonal.

Determine the Jordan canonical form (JCF) of A

a. When F = Q,

b. When F = Fp.

Hint: In both cases, all eigenvalues lie in the ground
field. In each case find a matrix P such that P−1AP
is in JCF.

Strategy:

• Work with matrix of all ones instead.
• Eyeball eigenvectors.
• Coefficients in minimal polynomial: size of largest Jordan block
• Dimension of eigenspace: number of Jordan blocks
• We can always read off the characteristic polynomial from the spectrum.
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Concepts Used:

• Todo

Solution:
Proof of (a): Let A be the matrix in the question, and B be the matrix containing 1’s in
every entry.

• Noting that B = A+ I, we have

Bx = λx
⇐⇒ (A+ I)x = λx
⇐⇒ Ax = (λ− 1)x,

so we will find the eigenvalues of B and subtract one from each.

• Note that Bv = [∑ vi,
∑
vi, · · · ,

∑
vi], i.e. it has the effect of summing all of the entries

of v and placing that sum in each component.

• We proceed by finding p eigenvectors and eigenvalues, since the JCF and minimal poly-
nomials will involve eigenvalues and the transformation matrix will involve (generalized)
eigenvectors.

Claim 1: Each vector of the form pi := e1 − ei+1 = [1, 0, 0, · · · , 0 − 1, 0, · · · , 0] where i ̸= j is
also an eigenvector with eigenvalues λ0 = 0, and this gives p− 1 linearly independent vectors
spanning the eigenspace Eλ0

Claim 2: v1 = [1, 1, · · · , 1] is an eigenvector with eigenvalue λ1 = p.

• Using that the eigenvalues of A are 1 + λi for λi the above eigenvalues for B,

Spec(B) := {(λi,mi)} = {(p, 1), (0, p− 1)} =⇒ χB(x) = (x− p)xp−1

=⇒ Spec(A) = {(p− 1, 1), (−1, p− 1)} =⇒ χA(x) = (x− p+ 1)(x+ 1)p−1

• The dimensions of eigenspaces are preserved, thus

JCFQ(A) = J1
p−1 ⊕ (p− 1)J1

−1 =



p− 1 0 0 · · · 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

0 0 0 . . .
. . . 0

0 0 0 · · · −1 0
0 0 0 · · · 0 −1


.

• The matrix P such that A = PJP−1 will have columns the bases of the generalized
eigenspaces.
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• In this case, the generalized eigenspaces are the usual eigenspaces, so

P = [v1,p1, · · · ,pp−1] =



1 1 1 1 1 1
1 −1 0 0 0 0
1 0 −1 0 0 0
1 0 0 −1 0 0

1
...

...
...
. . .

...
1 0 0 0 0 −1


.

Proof (of claim 1).

• Compute

Bpi = [1 + 0 + · · · + 0 + (−1) + 0 + · · · + 0] = [0, 0, · · · , 0]

• So every pi ∈ ker(B), so they are eigenvectors with eigenvalue 0.
• Since the first component is fixed and we have p − 1 choices for where to place a

−1, this yields p− 1 possibilities for pi
• These are linearly independent since the (p − 1) × (p − 1) matrix

[
pt1, · · · ,ptp−1

]
satisfies

det



1 1 1 · · · 1
−1 0 0 · · · 0
0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1


= (1) · det


−1 0 0 · · · 0
0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1


= (−1)p−2 ̸= 0.

where the first equality follows from expanding along the first row and noting this is the
first minor, and every other minor contains a row of zeros.

■

Proof (of claim 2).

• Compute

Bv =
[ p∑
i=1

1,
p∑
i=1

1, · · · ,
p∑
i=1

1
]

= [p, p, · · · , p] = p[1, 1, · · · , 1] = pv1,

thus λ1 = p
• dimEλ1 = 1 since the eigenspaces are orthogonal and Eλ0 ⊕Eλ1 ≤ F p is a subspace,

so p > dim(Eλ0) + dimEλ1 = p− 1 + dimEλ1 and it isn’t zero dimensional.

■

Proof of (b):
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For F = Fp, all eigenvalues/vectors still lie in Fp, but now −1 = p − 1, making (x − (p −
1))(x+ 1)p−1 = (x+ 1)(x+ 1)p−1, so χA,Fp(x) = (x+ 1)p, and the Jordan blocks may merge.

• A computation shows that (A+I)2 = pA = 0 ∈ Mp(Fp) and (A+I) ̸= 0, so minA,Fp(x) =
(x+ 1)2.

– Thus the largest Jordan block corresponding to λ = −1 is of size 2

• Can check that det(A) = ±1 ∈ F×
p , so the vectors e1 − ei are still linearly independent

and thus dimE−1 = p− 1

– So there are p− 1 Jordan blocks for λ = 0.

Summary:

min
A,Fp

(x) = (x+ 1)2

χA,Fp(x) ≡ (x+ 1)p

dimE−1 = p− 1.

Thus

JCFFp(A) = J2
−1 ⊕ (p− 2)J1

−1 =



−1 1 0 · · · 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

0 0 0 . . .
. . . 0

0 0 0 · · · −1 0
0 0 0 · · · 0 −1


.

To obtain a basis for Eλ=0, first note that the matrix P = [v1,p1, · · · ,pp−1] from part (a) is
singular over Fp, since

v1 + p1 + p2 + · · · + pp−2 = [p− 1, 0, 0, · · · , 0, 1]
= [−1, 0, 0, · · · , 0, 1]
= −pp−1.

We still have a linearly independent set given by the first p− 1 columns of P , so we can extend
this to a basis by finding one linearly independent generalized eigenvector.
Solving (A− Iλ)x = v1 is our only option (the others won’t yield solutions). This amounts to
solving Bx = v1, which imposes the condition ∑xi = 1, so we can choose x = [1, 0, · · · , 0].
Thus

P = [v1,x,p1, · · · ,pp−2] =



1 1 1 1 1 1
1 0 −1 0 0 0
1 0 0 −1 0 0

1
...

...
...
. . .

...
1 0 0 0 0 −1
1 0 0 0 0 0


.
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E 12.10 Spring 2018 #4 e

Let

A =

 0 1 −2
1 1 −3
1 2 −4

 ∈ M3(C)

a. Find the Jordan canonical form J of A.

b. Find an invertible matrix P such that P−1AP = J .

You should not need to compute P−1.

E 12.11 Spring 2017 #6 e

Let A be an n × n matrix with all entries equal to 0 except for the n − 1 entries just above the
diagonal being equal to 2.

a. What is the Jordan canonical form of A, viewed as a matrix in Mn(C)?

b. Find a nonzero matrix P ∈ Mn(C) such that P−1AP is in Jordan canonical form.

E 12.12 Spring 2016 #1 e

Let

A =

 −3 3 −2
−7 6 −3
1 −1 2

 ∈ M3(C).

a. Find the Jordan canonical form J of A.

b. Find an invertible matrix P such that P−1AP = J . You do not need to compute P−1.

E 12.13 Spring 2015 #6 e
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Problem 12.13.1 (?)
Let F be a field and n a positive integer, and consider

A =


1 . . . 1

. . .

1 . . . 1

 ∈ Mn(F ).

Show that A has a Jordan normal form over F and find it.
Hint: treat the cases n · 1 ̸= 0 in F and n · 1 = 0
in F separately.

Solution:
Note that if x = [x1, · · · , xn] then Ax = [∑xi,

∑
xi, · · · ,

∑
xi], so A acts by summing the

entries in x and setting every coordinate to that sum. By inspection (or clever guessing), we
can find eigenvalues and eigenvectors:

• λ = 0 and:

– v1 = [1, 0, 0, · · · , 0,−1]
– v2 = [0, 1, 0, · · · , 0,−1]
– v3 = [0, 0, 1, · · · , 0,−1]
– · · ·
– vn−1 = [0, 0, 0, · · · , 1,−1]

• λ = n and vn = [1, 1, · · · , 1]

Note that for λ = n, we have A[1, 1, · · · , 1] = [n · 1, · · · , n · 1]. So for n · 1 ̸= 0, there are two
eigenspaces corresponding to λ = 0, n, and if n · 1 = 0 these collapse to just a single eigenspace
for λ = 0.
Assuming n · 1 ̸= 0, we get a characteristic polynomial of (x − n)xn−1. The x − n factor
corresponds to a single 1 × 1 Jordan block with diagonal n. For the xn−1 factor, we’ve
produced n− 1 distinct eigenvectors, so we get n− 1 Jordan blocks of size 1 × 1 with diagonal
zero. Thus

JCF(A) =



n · · · ·
· 0 · · ·

· · 0 . . . ·

· · ·
. . . ·

· · · · 0


.

One can verify this by checking directly that the minimal polynomial of A is p(x) = (x− n)x,
so the size of the largest Jordan block for λ = n is 1 and for λ = 0 is n − 1, while the
characteristic polynomial is (x− n)xn−1, so the sum of the sizes of Jordan blocks for λ = n is
1 and for λ = 0 is n− 1, forcing the 1 × 1 blocks everywhere.
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Now consider the case when n · 1 = 0; then vn becomes an eigenvector for λ = 0 instead of
λ = n. The minimal polynomial becomes (x − 0)x = x2 and the characteristic polynomial
becomes xn, so λ = 0 has:

• The size of the largest Jordan block is 2,
• The sum of sizes of Jordan blocks is n− 1,

and so this forces one block of size 2 × 2 and n− 2 blocks of size 1 × 1. So we now have:

JCF(A) =



0 1 · · ·
· 0 0 · ·

· · 0 . . . ·

· · ·
. . . 0

· · · · 0


.

E 12.14 Fall 2014 #5 e

Let T be a 5 × 5 complex matrix with characteristic polynomial χ(x) = (x − 3)5 and minimal
polynomial m(x) = (x− 3)2. Determine all possible Jordan forms of T .

E 12.15 Spring 2013 #5 e

Let T : V → V be a linear map from a 5-dimensional C-vector space to itself and suppose f(T ) = 0
where f(x) = x2 + 2x+ 1.

a. Show that there does not exist any vector v ∈ V such that Tv = v, but there does exist a
vector w ∈ V such that T 2w = w.

b. Give all of the possible Jordan canonical forms of T .

E 12.16 Spring 2021 #1 e

Let m

A :=

 4 1 −1
−6 −1 2
2 1 1

 ∈ Mat(3 × 3,C).
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a. Find the Jordan canonical form J of A.

b. Find an invertible matrix P such that J = P−1AP .

c. Write down the minimal polynomial of A.

You should not need to compute P−1

Concepts Used:

• χA(t) = tn − tr
(∧1A

)
tn−1 + tr

(∧2A
)
tn−2 − · · · ± det(A)

• Finding generalized eigenvectors: let B = A − λI, get eigenvector v, solve Bw1 =
v,Bw2 = w1, · · · to get a Jordan block. Repeat with any other usual eigenvectors.

• Convention: construct Jordan blocks in decreasing order of magnitude of eigenvalues.
• Polynomial exponent data:

– Minimal polynomial exponents: sizes of largest Jordan blocks.
– Characteristic polynomial exponents: sum of sizes of Jordan blocks, i.e. how many

times λ is on the diagonal of JCF(A).

Solution:
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Proof (parts a and b).

• Write χA(t) = t3 − T1t
2 + T2t− T3 where Ti := tr

(∧iA):

– T1 = tr(A) = 4 − 1 + 1 = 4.
– T2 = (−1 − 2) + (4 + 2) + (−4 − 6) = 5.
– T3 = det(A) = 4(−1 − 2) − 1(−10) + (−1)(−6 + 2) = 2.

• So χA(t) = t3 − 4t2 + 5t− 2.
• Try rational roots test: r ∈ {±2/1}, and check that 2 is root.
• By polynomial long division, χA(t)/(t− 2) = t2 − 2t+ 1 = (t− 1)2.
• So the eigenvalues are λ = 2, 1.
• λ = 2:

– Set U := A− λI, then find RREF(U) to compute its kernel:

U :=

 2 1 −1
−6 −3 2
2 1 −1

⇝
2 1 0

0 0 1
0 0 0

 ,
which yields v1 = [1,−2, 0].

• λ = 2:

– Similarly,

U :=

 3 1 −1
−6 −2 2
2 1 0

⇝
1 0 −1

0 1 2
0 0 0

 ,
which yields v2 = [1,−2, 1].

– Solve Uw = v3:  3 1 −1 1
−6 −2 2 −2
2 1 0 1

⇝
1 0 −1 0

0 1 2 1
0 0 0 0

 ,
so take v3 = [0, 1, 0].

• Putting things together:

A = P−1JP where

J = J1(λ = 2) ⊕ J2(λ = 1) =

2 0 0
0 1 1
0 0 1


P = [v1, v2, v3] =

 1 1 0
−2 −2 1
0 1 0

 .
■

12.16 Spring 2021 #1 162



13 Extra Problems

Proof (part c).

• Write minA(t) = (t− 2)(t− 1)ℓ1 , then since minA(t) divides χA(t) either ℓ1 = 1, 2.
• ℓ1 is the size of the largest block corresponding to λ = 1, which is size 2, so λ1 = 2.
• Thus

min
A

(t) = (t− 2)(t− 1)2.

■

E 12.17 Fall 2020 #5 e

Consider the following matrix:

B :=

 1 3 3
2 2 3

−1 −2 −2

 .
a. Find the minimal polynomial of B.

b. Find a 3×3 matrix J in Jordan canonical form such that B = JPJ−1 where P is an invertible
matrix.

13 Extra Problems

Tons of extra fundamental problems here:
https: // math. ucr. edu/ ~mpierce/ teaching/
qual-algebra/ fun/ groups/

(DZG): these are just random extra problems that I
found and dropped in. There is likely a ton of over-
lap/redundancy!

E 13.1 Linear Algebra e
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1. For a division ring D, let Vi be a finite dimensional vector space over D for i ∈ {1, . . . , k}.
Suppose the sequence

0 −→ V1 −→ V2 −→ · · ·Vk −→ 0

is exact. Prove that ∑k
i=1(−1)i dimD Vi = 0.

2. Prove that if A and B are invertible matrices over a field k, then A+ λB is invertible for all
but finitely many λ ∈ k.

3. For the ring of n×n matrices over a commutative unital ring R, which we’ll denote Matn(R),
recall the definition of the determinant map det: Matn(R) → R. For A ∈ Matn(R) also recall
the definition of the classical adjoint Aa of A. Prove that:

• det (Aa) = det(A)n−1

• (Aa)a = det(A)n−2A

4. If R is an integral domain and A is an n× n matrix over R, prove that if a system of linear
equations Ax = 0 has a nonzero solution then detA = 0. Is the converse true? What if we
drop the assumption that R is an integral domain?

5. What is the companion matrix M of the polynomial f = x2 − x+ 2 over C ? Prove that f is
the minimal polynomial of M .

6. Suppose that φ and ψ are commuting endomorphisms of a finite dimensional vector space E
over a field k, so φψ = ψφ.

• Prove that if k is algebraically closed, then φ and ψ have a common eigenvector.
• Prove that if E has a basis consisting of eigenvectors of φ and E has a basis consisting of

eigenvectors of ψ, then E has a basis consisting of vectors that are eigenvectors for both φ
and ψ simultaneously.

E 13.2 Galois Theory e

Taken from here: https: // math. ucr. edu/
~mpierce/ teaching/ qual-algebra/ fun/
galois/

1. Suppose that for an extension field F over K and for a ∈ F , we have that b ∈ F is algebraic
over K(a) but transcendental over K. Prove that a is algebraic over K(b).

2. Suppose that for a field F/K that a ∈ F is algebraic and has odd degree over K. Prove that
a2 is also algebraic and has odd degree over K, and furthermore that K(a) = K

(
a2)

3. For a polynomial f ∈ K[x], prove that if r ∈ F is a root of f then for any σ ∈ AutKF, σ(r)
is also a root of f

4. Prove that as extensions of Q,Q(x) is Galois over Q
(
x2) but not over Q

(
x3).

5. If F is over E, and E is over K is F necessarily over K ? Answer this question for each of
the words “algebraic,” “normal,” and “separable” in the blanks.
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6. If F is over K, and E is an intermediate extension of F over K, is F necessarily over E?
Answer this question for each of the words “algebraic,” “normal,” and “separable” in the
blanks.

7. If F is some (not necessarily Galois) field extension over K such that [F : K] = 6 and Aut
KF ≃ S3, then F is the splitting field of an irreducible cubic over K[x].

8. Recall the definition of the join of two subgroups H∨G (or H+G ). For F a finite dimensional
Galois extension over K and let A and B be intermediate extensions. Prove that

a. AutAB F = AutAF ∩ AutBF
b. Aut A∩BF = AutAF ∨ AutBF

9. For a field K take f ∈ K[x] and let n = deg f . Prove that for a splitting field F of f over K
that [F : K] ≤ n!. Furthermore prove that [F : K] divides n!.

10. Let F be the splitting field of f ∈ K[x] over K. Prove that if g ∈ K[x] is irreducible and has
a root in F , then g splits into linear factors over F .

11. Prove that a finite field cannot be algebraically closed.
12. For u =

√
2 +

√
2, What is the Galois group of Q(u) over Q? What are the intermediate

fields of the extension Q(u) over Q ?
13. Characterize the splitting field and all intermediate fields of the polynomial

(
x2 − 2

) (
x2 − 3

) (
x2 − 5

)
over Q. Using this characterization, find a primitive element of the splitting field.

14. Characterize the splitting field and all intermediate fields of the polynomial x4 − 3 over Q
15. Consider the polynomial f = x3 − x+ 1 in F 3[x]. Prove that f is irreducible. Calculate the

degree of the splitting field of f over F 3 and the cardinality of the splitting field of f .
16. Given an example of a finite extension of fields that has infinitely many intermediate fields.
17. Let u =

√
3 +

√
2. Is Q(u) a splitting field of u over Q ? (MathSE)

18. Prove that the multiplicative group of units of a finite field must be cyclic, and so is generated
by a single element.

19. Prove that F pn is the splitting field of xpn − x over F p.
20. Prove that for any positive integer n there is an irreducible polynomial of degree n over F p

21. Recall the definition of a perfect field. Give an example of an imperfect field, and the prove
that every finite field is perfect.

22. For n > 2 let ζn denote a primitive n th root of unity over Q. Prove that[
Q
(
ζn + ζ−1

n : Q
)]

= 1
2φ(n)

where φ is Euler’s totient function.
23. Suppose that a field K with characteristic not equal to 2 contains an primitive n th root of

unity for some odd integer n. Prove that K must also contain a primitive 2n th root of unity.
24. Prove that the Galois group of the polynomial xn − 1 over Q is abelian.

E 13.3 Commutative Algebra e

• Show that a finitely generated module over a Noetherian local ring is flat iff it is free using
Nakayama and Tor.

13.3 Commutative Algebra 165



13 Extra Problems

• Show that ⟨2, x⟩ ⊴ Z[x] is not a principal ideal.

• Let R be a Noetherian ring and A,B algebras over R. Suppose A is finite type over R and
finite over B. Then B is finite type over R.

E 13.4 Group Theory e

13.4.1 Centralizing and Normalizing

• Show that CG(H) ⊆ NG(H) ≤ G.

• Show that Z(G) ⊆ CG(H) ⊆ NG(H).

• Given H ⊆ G, let S(H) = ⋃
g∈G gHg

−1, so |S(H)| is the number of conjugates to H. Show
that |S(H)| = [G : NG(H)].

– That is, the number of subgroups conjugate to H equals the index of the normalizer of
H.

• Show that Z(G) = ⋂
a∈GCG(a).

• Show that the centralizer GG(H) of a subgroup is again a subgroup.

• Show that CG(H) ⊴ NG(H) is a normal subgroup.

• Show that CG(G) = Z(G).

• Show that for H ≤ G, CH(x) = H ∩ CG(x).

• Let H,K ≤ G a finite group, and without using the normalizers of H or K, show that
|HK| = |H||K|/|H ∩K|.

• Show that if H ≤ NG(K) then HK ≤ H, and give a counterexample showing that this
condition is necessary.

• Show that HK is a subgroup of G iff HK = KH.

• Prove that the kernel of a homomorphism is a normal subgroup.

13.4.2 Primes in Group Theory

• Show that any group of prime order is cyclic and simple.
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• Analyze groups of order pq with q < p.

Hint: consider the cases when p does or does not
divide q − 1.

– Show that if q does not divide p− 1, then G is cyclic.
– Show that G is never simple.

• Analyze groups of order p2q.

Hint: Consider the cases when q does or does not
divide p2 − 1.

• Show that no group of order p2q2 is simple for p < q primes.

• Show that a group of order p2q2 has a normal Sylow subgroup.

• Show that a group of order p2q2 where q does not divide p2 − 1 and p does not divide q2 − 1
is abelian.

• Show that every group of order pqr with p < q < r primes contains a normal Sylow subgroup.

– Show that G is never simple.

• Let p be a prime and |G| = p3. Prove that G has a normal subgroup N of order p2.

– Suppose N = ⟨h⟩ is cyclic and classify all possibilities for G if:
♢ |h| = p3

♢ |h| = p.
Hint: Sylow and semidirect products.

• Show that any normal p- subgroup is contained in every Sylow p-subgroup of G.

• Show that the order of 1 + p in
(
Z/p2Z

)× is equal to p. Use this to construct a non-abelian
group of order p3.

13.4.3 p-Groups

• Show that every p-group has a nontrivial center.

• Show that every p-group is nilpotent.

• Show that every p-group is solvable.

• Show that every maximal subgroup of a p-group has index p.
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• Show that every maximal subgroup of a p-group is normal.

• Show that every group of order p is cyclic.

• Show that every group of order p2 is abelian and classify them.

• Show that every normal subgroup of a p-group is contained in the center.

Hint: Consider G/Z(G).

• Let OP (G) be the intersection of all Sylow p-subgroups of G. Show that Op(G) ⊴ G, is
maximal among all normal p-subgroups of G

• Let P ∈ Sylp(H) where H ⊴ G and show that P ∩H ∈ Sylp(H).

• Show that Sylow pi-subgroups Sp1 , Sp2 for distinct primes p1 ̸= p2 intersect trivially.

• Show that in a p group, every normal subgroup intersects the center nontrivially.

13.4.4 Symmetric Groups

Specific Groups

• Show that the center of S3 is trivial.
• Show that Z(Sn) = 1 for n ≥ 3
• Show that Aut(S3) = Inn(S3) ∼= S3.
• Show that the transitive subgroups of S3 are S3, A3
• Show that the transitive subgroups of S4 are S4, A4, D4,Z2

2,Z4.
• Show that S4 has two normal subgroups: A4,Z2

2.
• Show that Sn≥5 has one normal subgroup: An.
• Z(An) = 1 for n ≥ 4
• Show that [Sn, Sn] = An
• Show that [A4, A4] ∼= Z2

2
• Show that [An, An] = An for n ≥ 5, so An≥5 is nonabelian.

General Structure

• Show that an m-cycle is an odd permutation iff m is an even number.
• Show that a permutation is odd iff it has an odd number of even cycles.
• Show that the center of Sn for n ≥ 4 is nontrivial.
• Show that disjoint cycles commute.
• Show directly that any k-cycle is a product of transpositions, and determine how many

transpositions are needed.

Generating Sets
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• Show that Sn is generated by any of the following types of cycles:

– Show that Sn is generated by transpositions.
– Show that Sn is generated by adjacent transpositions.
– Show that Sn is generated by {(12), (12 · · ·n)} for n ≥ 2
– Show that Sn is generated by {(12), (23 · · ·n)} for n ≥ 3
– Show that Sn is generated by {(ab), (12 · · ·n)} where 1 ≤ a < b ≤ n iff gcd(b− a, n) = 1.
– Show that Sp is generated by any arbitrary transposition and any arbitrary p-cycle.

13.4.5 Alternating Groups

• Show that An is generated 3-cycles.
• Prove that An is normal in Sn.
• Argue that An is simple for n ≥ 5.
• Show that Out(A4) is nontrivial.

13.4.6 Dihedral Groups

• Show that if N ⊴ Dn is a normal subgroup of a dihedral group, then Dn/N is again a dihedral
group.
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13.4.7 Other Groups

• Show that Q is not finitely generated as a group.
• Show that the Quaternion group has only one element of order 2, namely −1.

13.4.8 Classification

• Show that no group of order 36 is simple.
• Show that no group of order 90 is simple.
• Classifying all groups of order 99.
• Show that all groups of order 45 are abelian.
• Classify all groups of order 10.
• Classify the five groups of order 12.
• Classify the four groups of order 28.
• Show that if |G| = 12 and has a normal subgroup of order 4, then G ∼= A4.
• Suppose |G| = 240 = s4 · 3 · 5.

– How many Sylow-p subgroups does G have for p ∈ {2, 3, 5}?
– Show that if G has a subgroup of order 15, it has an element of order 15.
– Show that if G does not have such a subgroup, the number of Sylow-3 subgroups is either

10 or 40.
Hint: Sylow on the subgroup of order 15 and semidi-
rect products.

13.4.9 Group Actions

• Show that the stabilizer of an element Gx is a subgroup of G.
• Show that if x, y are in the same orbit, then their stabilizers are conjugate.
• Show that the stabilizer of an element need not be a normal subgroup?
• Show that if G↷ X is a group action, then the stabilizer Gx of a point is a subgroup.

13.4.10 Series of Groups

• Show that An is simple for n ≥ 5

• Give a necessary and sufficient condition for a cyclic group to be solvable.

• Prove that every simple abelian group is cyclic.

• Show that Sn is generated by disjoint cycles.

• Show that Sn is generated by transpositions.
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• Show if G is finite, then G is solvable ⇐⇒ all of its composition factors are of prime order.

• Show that if N and G/N are solvable, then G is solvable.

• Show that if G is finite and solvable then every composition factor has prime order.

• Show that G is solvable iff its derived series terminates.

• Show that S3 is not nilpotent.

• Show that G nilpotent =⇒ G solvable

• Show that nilpotent groups have nontrivial centers.

• Show that Abelian =⇒ nilpotent

• Show that p-groups =⇒ nilpotent

13.4.11 Misc

• Prove Burnside’s theorem.

• Show that Inn(G) ⊴ Aut(G)

• Show that Inn(G) ∼= G/Z(G)

• Show that the kernel of the map G → Aut(G) given by g 7→ (h 7→ ghg−1) is Z(G).

• Show that NG(H)/CG(H) ∼= A ≤ Aut(H)

• Give an example showing that normality is not transitive: i.e. H ⊴ K ⊴ G with H not normal
in G.

13.4.12 Nonstandard Topics

• Show that H char G ⇒ H ⊴G

Thus “characteristic” is a strictly stronger condition
than normality

• Show that H char K char G ⇒ H char G

So “characteristic” is a transitive relation for sub-
groups.
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• Show that if H ≤ G, K ⊴ G is a normal subgroup, and H char K then H is normal in G.

So normality is not transitive, but strengthening one
to “characteristic” gives a weak form of transitivity.

E 13.5 Ring Theory e

13.5.1 Basic Structure

• Show that if an ideal I ⊴ R contains a unit then I = R.
• Show that R× need not be closed under addition.

13.5.2 Ideals

• ⋆ Show that if x is not a unit, then x is contained in some maximal ideal.

Problem 13.5.1 (Units or Zero Divisors)
Every a ∈ R for a finite ring is either a unit or a zero divisor.

Solution:

• Let a ∈ R and define φ(x) = ax.
• If φ is injective, then it is surjective, so 1 = ax for some x =⇒ x−1 = a.
• Otherwise, ax1 = ax2 with x1 ̸= x2 =⇒ a(x1 − x2) = 0 and x1 − x2 ̸= 0
• So a is a zero divisor.

Problem 13.5.2 (Maximal implies prime)
Maximal =⇒ prime, but generally not the converse.

Solution: • Suppose m is maximal, ab ∈ m, and b ̸∈ m.

• Then there is a containment of ideals m ⊊ m + (b) =⇒ m + (b) = R.

• So

1 = m+ rb =⇒ a = am+ r(ab),

but am ∈ m and ab ∈ m =⇒ a ∈ m.
Counterexample: (0) ∈ Z is prime since Z is a domain, but not maximal since it is properly
contained in any other ideal.
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• Show that every proper ideal is contained in a maximal ideal
• Show that if x ∈ R a PID, then x is irreducible ⇐⇒ ⟨x⟩ ⊴ R is maximal.
• Show that intersections, products, and sums of ideals are ideals.
• Show that the union of two ideals need not be an ideal.
• Show that every ring has a proper maximal ideal.
• Show that I ⊴ R is maximal iff R/I is a field.
• Show that I ⊴ R is prime iff R/I is an integral domain.
• Show that ∪m∈maxSpec(R) = R \R×.
• Show that maxSpec(R) ⊊ Spec(R) but the containment is strict.
• Show that every prime ideal is radical.
• Show that the nilradical is given by

√
0R =

√
(0).

• Show that rad(IJ) = rad(I) ∩ rad(J)
• Show that if Spec(R) ⊆ maxSpec(R) then R is a UFD.
• Show that if R is Noetherian then every ideal is finitely generated.

13.5.3 Characterizing Certain Ideals

• Show that for an ideal I ⊴ R, its radical is the intersection of all prime ideals containing I.
• Show that

√
I is the intersection of all prime ideals containing I.

Problem 13.5.3 (Jacobson radical is bigger than the nilradical)
The nilradical is contained in the Jacobson radical, i.e.

√
0R ⊆ J(R).

Solution:
Maximal =⇒ prime, and so if x is in every prime ideal, it is necessarily in every maximal
ideal as well.

Problem 13.5.4 (Mod by nilradical to kill nilpotents)
R/

√
0R has no nonzero nilpotent elements.

Solution:

a+
√

0R nilpotent =⇒ (a+
√

0R)n := an +
√

0R =
√

0R
=⇒ an ∈

√
0R

=⇒ ∃ℓ such that (an)ℓ = 0
=⇒ a ∈

√
0R.
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Problem 13.5.5 (Nilradical is intersection of primes)
The nilradical is the intersection of all prime ideals, i.e.

√
0R =

⋂
p∈Spec(R)

p

Solution:

•
√

0R ⊆ ∩p:

• x ∈
√

0R =⇒ xn = 0 ∈ p =⇒ x ∈ p or xn−1 ∈ p.

• R \
√

0R ⊆ ∪p(R \ p):

• Define S =
{
I ⊴ R

∣∣∣ an ̸∈ I for any n
}

.

• Then apply Zorn’s lemma to get a maximal ideal m, and maximal =⇒ prime.

13.5.4 Misc

• Show that localizing a ring at a prime ideal produces a local ring.
• Show that R is a local ring iff for every x ∈ R, either x or 1 − x is a unit.
• Show that if R is a local ring then R \R× is a proper ideal that is contained in the Jacobson

radical J(R).
• Show that if R ̸= 0 is a ring in which every non-unit is nilpotent then R is local.
• Show that every prime ideal is primary.
• Show that every prime ideal is irreducible.

E 13.6 Field Theory e

General Algebra

• Show that any finite integral domain is a field.
• Show that every field is simple.
• Show that any field morphism is either 0 or injective.
• Show that if L/F and α is algebraic over both F and L, then the minimal polynomial of α

over L divides the minimal polynomial over F .
• Prove that if R is an integral domain, then R[t] is again an integral domain.
• Show that ff(R[t]) = ff(R)(t).
• Show that [Q(

√
2 +

√
3) : Q] = 4.

– Show that Q(
√

2 +
√

3) = Q(
√

2 −
√

3) = Q(
√

2,
√

3).

• Show that the splitting field of f(x) = x3 − 2 is Q( 3√2, ζ2).
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Extensions?

• What is [Q(
√

2 +
√

3) : Q]?
• What is [Q(2 3

2 ) : Q]?
• Show that if p ∈ Q[x] and r ∈ Q is a rational root, then in fact r ∈ Z.
• If {αi}ni=1 ⊂ F are algebraic over K, show that K[α1, · · · , αn] = K(α1, · · · , αn).
• Show that α/F is algebraic ⇐⇒ F (α)/F is a finite extension.
• Show that every finite field extension is algebraic.
• Show that if α, β are algebraic over F , then α± β, αβ±1 are all algebraic over F .
• Show that if L/K/F with K/F algebraic and L/K algebraic then L is algebraic.

Special Polynomials

• Show that a field with pn elements has exactly one subfield of size pd for every d dividing n.
• Show that xpn − x = ∏

fi(x) over all irreducible monic fi of degree d dividing n.
• Show that xpd − x

∣∣ xpn − x ⇐⇒ d
∣∣ n

• Prove that xpn − x is the product of all monic irreducible polynomials in Fp[x] with degree
dividing n.

• Prove that an irreducible π(x) ∈ Fp[x] divides xpn − x ⇐⇒ deg π(x) divides n.

E 13.7 Galois Theory e

13.7.1 Theory

• Show that if K/F is the splitting field of a separable polynomial then it is Galois.
• Show that any quadratic extension of a field F with ch(F ) ̸= 2 is Galois.
• Show that if K/E/F with K/F Galois then K/E is always Galois with g(K/E) ≤ g(K/F ).

– Show additionally E/F is Galois ⇐⇒ g(K/E) ⊴ g(K/F ).
– Show that in this case, g(E/F ) = g(K/F )/g(K/E).

• Show that if E/k, F/k are Galois with E ∩ F = k, then EF/k is Galois and G(EF/k) ∼=
G(E/k) ×G(F/k).

13.7.2 Computations

• Show that the Galois group of xn − 2 is Dn, the dihedral group on n vertices.
• Compute all intermediate field extensions of Q(

√
2,

√
3), show it is equal to Q(

√
2 +

√
3), and

find a corresponding minimal polynomial.
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• Compute all intermediate field extensions of Q(2 1
4 , ζ8).

• Show that Q(2 1
3 ) and Q(ζ32 1

3 )
• Show that if L/K is separable, then L is normal ⇐⇒ there exists a polynomial p(x) =∏n

i=1 x− αi ∈ K[x] such that L = K(α1, · · · , αn) (so L is the splitting field of p).
• Is Q(2 1

3 )/Q normal?
• Show that GF(pn) is the splitting field of xpn − x ∈ Fp[x].
• Show that GF(pd) ≤ GF(pn) ⇐⇒ d

∣∣ n
• Compute the Galois group of xn − 1 ∈ Q[x] as a function of n.
• Identify all of the elements of the Galois group of xp − 2 for p an odd prime (note: this has a

complicated presentation).
• Show that Gal(x15 + 2)/Q ∼= S2 ⋊ Z/15Z for S2 a Sylow 2-subgroup.
• Show that Gal(x3 + 4x+ 2)/Q ∼= S3, a symmetric group.

E 13.8 Modules and Linear Algebra e

• Prove the Cayley-Hamilton theorem.
• Prove that the minimal polynomial divides the characteristic polynomial.
• Prove that the cokernel of A ∈ Mat(n× n,Z) is finite ⇐⇒ detA ̸= 0, and show that in this

case |coker(A)| = |det(A)|.
• Show that a nilpotent operator is diagonalizable.
• Show that if A,B are diagonalizable and [A,B] = 0 then A,B are simultaneously diagonaliz-

able.
• Does diagonalizable imply invertible? The converse?
• Does diagonalizable imply distinct eigenvalues?
• Show that if a matrix is diagonalizable, its minimal polynomial is squarefree.
• Show that a matrix representing a linear map T : V → V is diagonalizable iff V is a direct

sum of eigenspaces V = ⊕
i ker(T − λiI).

• Show that if {vi} is a basis for V where dim(V ) = n and T (vi) = vi+1 modn then T is
diagonalizable with minimal polynomial xn − 1.

• Show that if the minimal polynomial of a linear map T is irreducible, then every T -invariant
subspace has a T -invariant complement.
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E 13.9 Linear Algebra e

Sort out from module section.

14 Even More Algebra Questions

Remark 14.0.1: (DZG): These all come from a random PDF I found, but I couldn’t find the
original author/source!

E 14.1 Groups e

14.1.1 Question 1.1

What is a normal subgroup? Can you get some natural map from a normal subgroup? What
topological objects can the original group, normal subgroup, and quotient group relate to?

14.1.2 Question 1.2

Prove that a subgroup of index two is normal.

14.1.3 Question 1.3

Find all normal subgroups of A4.

14.1.4 Question 1.4

Give an interesting example of a non-normal subgroup. Is SO(2) normal inside SL2(R)?

14.1.5 Question 1.5

Is normality transitive? That is, is a normal subgroup of a normal subgroup normal in the biggest
group?
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14.1.6 Question 1.6.

Define a solvable group. Give an example of a solvable nonabelian group.

Show A4 is solvable. Do the Sylow theorems tell you anything about whether this index 3 subgroup
of A4 is normal?

14.1.7 Question 1.7

Define lower central series, upper central series, nilpotent and solvable groups.

14.1.8 Question 1.8

Define the derived series. Define the commutator. State and prove two nontrivial theorems about
derived series.

14.1.9 Question 1.9

Prove that SL2(Z) is not solvable.

14.1.10 Question 1.10

What are all possible orders of elements of SL2(Z)?

14.1.11 Question 1.11

Can you show that all groups of order pn for p prime are solvable? Do you know how to do this for
groups of order prqs?

14.1.12 Question 1.12

Suppose a p-group acts on a set whose cardinality is not divisible by p (p prime). Prove that there
is a fixed point for the action.
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14.1.13 Question 1.13

Prove that the centre of a group of order pr (p prime) is not trivial.

14.1.14 Question 1.14

Give examples of simple groups. Are there infinitely many?

14.1.15 Question 1.15

State and prove the Jordan-Holder theorem for finite groups.

14.1.16 Question 1.16

What’s Cayley’s theorem? Give an example of a group of order n that embeds in Sm for some m
smaller than n.

Give an example of a group where you have to use Sn.

14.1.17 Question 1.17

Is A4 a simple group? What are the conjugacy classes in S4? What about in A4?

14.1.18 Question 1.18

Talk about conjugacy classes in the symmetric group Sn.

14.1.19 Question 1.19

When do conjugacy classes in Sn split in An?

14.1.20 Question 1.20

What is the centre of Sn? Prove it.

14.1 Groups 179



14 Even More Algebra Questions

14.1.21 Question 1.21

Prove that the alternating group An is simple for n ≥ 5.

14.1.22 Question 1.22

Prove the alternating group on n letters is generated by the 3-cycles for n ≥ 3.

14.1.23 Question 1.23

Prove that for p prime, Sp is generated by a p-cycle and a transposition.

14.1.24 Question 1.24

What is the symmetry group of a tetrahedron? Cube? Icosahedron?

14.1.25 Question 1.25

How many ways can you color the tetrahedron with C colors if we identify symmetric colorings?

14.1.26 Question 1.26.

What is the symmetry group of an icosahedron? What’s the stabiliser of an edge?

How many edges are there? How do you know the symmetry group of the icosahedron is the same
as the symmetry group of the dodecahedron?

Do you know the classification of higher-dimensional polyhedra?

14.1.27 Question 1.27

Do you know what the quaternion group is? How many elements are there of each order?

14.1.28 Question 1.28

What is the group of unit quaternions topologically? What does it have to do with SO(3)?
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14.1.29 Question 1.29

What’s the stabiliser of a point in the unit disk under the group of conformal automorphisms?

14.1.30 Question 1.30

What group-theoretic construct relates the stabiliser of two points?

14.1.31 Question 1.31

Consider SL2(R) acting on R2 by matrix multiplication. What is the stabiliser of a point? Does it
depend which point? Do you know what sort of subgroup this is? What if SL2(R) acts by Möbius
transformations instead?

14.1.32 Question 1.32

What are the polynomials in two real variables that are invariant under the action of D4, the
symmetry group of a square, by rotations and reflections on the plane that the two variables
form?

14.1.33 Question 1.33

Give an interesting example of a subgroup of the additive group of the rationals.

14.1.34 Question 1.34

Talk about the isomorphism classes of subgroups of Q. How many are there? Are the ones you’ve
given involving denominators divisible only by certain primes distinct? So that gives you the
cardinality. Are these all of them?

14.1.35 Question 1.35

Is the additive group of the reals isomorphic to the multiplicative group of the positive reals? Is
the same result true with reals replaced by rationals?
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14.1.36 Question 1.36

What groups have nontrivial automorphisms?

14.1.37 Question 1.37

A subgroup H of a group G that meets every conjugacy class is in fact G. Why is that true?

14.1.38 Question 1.38

Let G be the group of invertible 3 × 3 matrices over Fp, for p prime. What does basic group theory
tell us about G?

How many conjugates does a Sylow p-subgroup have? Give a matrix form for the elements in this
subgroup.

Explain the conjugacy in terms of eigenvalues and eigenvectors. give a matrix form for the normaliser
of the Sylow p-subgroup.

14.1.39 Question 1.39

Let’s look at SL2(F3). How many elements are in that group? What is its centre? Identify PSL2(F3)
as a permutation group.

14.1.40 Question 1.40

How many elements does gl2(Fq) have? How would you construct representations?

What can you say about the 1-dimensional representations? What can you say about simplicity of
some related groups?

14.1.41 Question 1.41.

A subgroup of a finitely-generated free abelian group is?

A subgroup of a finitely-generated free group is..? Prove your answers.
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14.1.42 Question 1.42

What are the subgroups of Z2?

14.1.43 Question 1.43

What are the subgroups of the free group F2? How many generators can you have?

Can you find one with 3 generators? 4 generators? Countably many generators?

Is the subgroup with 4 generators you found normal? Why? Can you find a normal one?

14.1.44 Question 1.44

Talk about the possible subgroups of Z3. Now suppose that you have a subgroup of Z3. What
theorem tells you something about the structure of the quotient group?

E 14.2 Classification of Finite groups e

14.2.1 Question 2.1

Given a finite abelian group with at most n elements of order divisible by n, prove it’s cyclic.

14.2.2 Question 2.2

Suppose I asked you to classify groups of order 4. Why isn’t there anything else? Which of those
could be realised as a Galois group over Q?

14.2.3 Question 2.3

State/prove the Sylow theorems.

14.2.4 Question 2.4

Classify groups of order 35.
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14.2.5 Question 2.5

Classify groups of order 21.

14.2.6 Question 2.6

Discuss groups of order 55.

14.2.7 Question 2.7

Classify groups of order 14. Why is there a group of order 7? Are all index-2 subgroups normal?

14.2.8 Question 2.8

How many groups are there of order 15? Prove it.

14.2.9 Question 2.9

Classify all groups of order 8.

14.2.10 Question 2.10

Classify all groups of order p3 for p prime.

14.2.11 Question 2.11

What are the groups of order p2? What about pq? What if q is congruent to 1 mod p?

14.2.12 Question 2.12

What are the groups of order 12? Can there be a group of order 12 with 2 nonisomorphic subgroups
of the same order?
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14.2.13 Question 2.13

How would you start finding the groups of order 56? Is there in fact a way for Z/7Z to act on a
group of order 8 nontrivially?

14.2.14 Question 2.14

How many abelian groups are there of order 36?

14.2.15 Question 2.15

What are the abelian groups of order 16?

14.2.16 Question 2.16.

What are the abelian groups of order 9? Prove that they are not isomorphic. groups of order 27?

14.2.17 Question 2.17

How many abelian groups of order 200 are there?

14.2.18 Question 2.18

Prove there is no simple group of order 132.

14.2.19 Question 2.19

Prove that there is no simple group of order 160. What can you say about the structure of groups
of that order?

14.2.20 Question 2.20

Prove that there is no simple group of order 40.
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E 14.3 Fields and Galois Theory e

14.3.1 Question 3.1

What is the Galois group of a finite field? What is a generator? How many elements does a finite
field have? What can you say about the multiplicative group? Prove it.

14.3.2 Question 3.2

Classify finite fields, their subfields, and their field extensions. What are the automorphisms of a
finite field?

14.3.3 Question 3.3

Take a finite field extension Fn
p over Fp. What is Frobenius? What is its characteristic polynomial?

14.3.4 Question 3.4

What are the characteristic and minimal polynomial of the Frobenius automorphism?

14.3.5 Question 3.5

What’s the field with 25 elements?

14.3.6 Question 3.6

What is the multiplicative group of F9?

14.3.7 Question 3.7

What is a separable extension? Can Q have a non-separable extension? How about Z/pZ? Why
not? Are all extensions of characteristic 0 fields separable? Of finite fields? Prove it.

Give an example of a field extension that’s not separable.
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14.3.8 Question 3.8

Are there separable polynomials of any degree over any field?

14.3.9 Question 3.9

What is a perfect field and why is this important? Give an example of a non-perfect field.

14.3.10 Question 3.10

What is Galois theory? State the main theorem. What is the splitting field of x5 − 2 over Q? What
are the intermediate extensions? Which extensions are normal, which are not, and why? What are
the Galois groups (over Q) of all intermediate extensions?

14.3.11 Question 3.11

What is a Galois extension?

14.3.12 Question 3.12

Take a quadratic extension of a field of characteristic 0. Is it Galois? Take a degree 2 extension on
top of that. Does it have to be Galois over the base field? What statement in group theory can you
think of that reflects this?

14.3.13 Question 3.13.

Is Abelian Galois extension transitive? That is, if K has abelian Galois group over E, E has abelian
Galois group over F , and K is a Galois extension of F , is it necessarily true that Gal(K/F ) is also
abelian? Give a counterexample involving number fields as well as one involving function fields.

14.3.14 Question 3.14

What is a Kummer extension?
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14.3.15 Question 3.15

Say you have a field extension with only finitely many intermediate fields. Show that it is a simple
extension.

14.3.16 Question 3.16

Tell me a condition on the Galois group which is implied by irreducibility of the polynomial. What
happens when the polynomial has a root in the base field?

14.3.17 Question 3.17

What is the discriminant of a polynomial?

14.3.18 Question 3.18

If we think of the Galois group of a polynomial as contained in Sn, when is it contained in An?

14.3.19 Question 3.19

Is Q( 3√21) normal? What is its splitting field? What is its Galois group? Draw the lattice of
subfields.

14.3.20 Question 3.20

What’s the Galois group of x2 + 1 over Q? What’s the integral closure of Z in Q(i)?

14.3.21 Question 3.21

What’s the Galois group of x2 + 9?

14.3.22 Question 3.22

What is the Galois group of x2 − 2? Why is x2 − 2 irreducible?
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14.3.23 Question 3.23

What is the Galois group of

Q(
√

2,
√

3) /Q?

14.3.24 Question 3.24

What is the Galois group of

Q (√n1, · · · ,
√
nm) /Q(√n1 + · · · + √

nm)?

14.3.25 Question 3.25

What are the Galois groups of irreducible cubics?

14.3.26 Question 3.26

If an irreducible cubic polynomial has Galois group NOT contained in A3, does it necessarily have
to be all of S3?

14.3.27 Question 3.27

Compute the Galois group of x3 − 2 over the rationals.

14.3.28 Question 3.28

How would you find the Galois group of x3 + 2x+ 1? Adjoin a root to Q. Can you say something
about the roots of x3 + 3x+ 1 in this extension?

14.3.29 Question 3.29

Compute the Galois group of x3 + 6x+ 3.

14.3.30 Question 3.30

Find the Galois group of x4 − 2 over Q.
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14.3.31 Question 3.31

What’s the Galois group of x4 − 3?

14.3.32 Question 3.32

What is the Galois group of x4 − 2x2 + 9?

14.3.33 Question 3.33

Calculate the Galois group of x5 − 2.

14.3.34 Question 3.34.

Discuss sufficient conditions on a polynomial of degree 5 to have Galois group S5 over Q and prove
your statements.

14.3.35 Question 3.35

Show that if f is an irreducible quintic with precisely two non-real roots, then its Galois group is
S5.

14.3.36 Question 3.36

Suppose you have a degree 5 polynomial over a field. What are necessary and sufficient conditions
for its Galois group to be of order divisible by 3? Can you give an example of an irreducible
polynomial in which this is not the case?

14.3.37 Question 3.37

What is the Galois group of x7 − 1 over the rationals?

14.3.38 Question 3.38

What is the Galois group of the polynomial xn − 1 over Q?
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14.3.39 Question 3.39

Describe the Galois theory of cyclotomic extensions.

14.3.40 Question 3.40

What is the maximal real field in a cyclotomic extension Q(ζn)/Q?

14.3.41 Question 3.41

Compute the Galois group of p(x) = x7 − 3.

14.3.42 Question 3.42

What Galois stuff can you say about x2n − 2?

14.3.43 Question 3.43

What are the cyclic extensions of (prime) order p?

14.3.44 Question 3.44

Can you give me a polynomial whose Galois group is Z/3Z?

14.3.45 Question 3.45

Which groups of order 4 can be realised as a Galois group over Q?

14.3.46 Question 3.46

Give a polynomial with S3 as its Galois group.
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14.3.47 Question 3.47

Give an example of a cubic with Galois group S3.

14.3.48 Question 3.48

How do you construct a polynomial over Q whose Galois group is Sn? Do it for n = 7 in particular.

14.3.49 Question 3.49

What’s a Galois group that’s not Sn or An?

14.3.50 Question 3.50

Which finite groups are Galois groups for some field extension?

14.3.51 Question 3.51

What Galois group would you expect a cubic to have?

14.3.52 Question 3.52

Draw the subgroup lattice for S3.

14.3.53 Question 3.53

Do you know what the quaternion group is? How many elements are there of each order? Suppose I
have a field extension of the rationals with Galois group the quaternion group. How many quadratic
extensions does it contain? Can any of them be imaginary?

14.3.54 Question 3.54

Suppose you are given a finite Galois extension K/Q by f(x) ∈ Z[x] such that deg(f) = n and
Gal(K/Q) = Sn. What can you say about the roots?
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14.3.55 Question 3.55

How many automorphisms does the complex field have? How can you extend a simple automorphism√
2 7→ −

√
2 of an algebraic field into C? How can you extend a subfield automorphism? What

feature of C allows you to?

14.3.56 Question 3.56.

Can it happen that a proper subfield of C is isomorphic to C? How?

14.3.57 Question 3.57

Consider the minimal polynomial f(x) for a primitive mth root of unity. Prove that if p divides
f(a) for some integer a and gcd(p,m) = 1 then m divides p− 1. Use this fact to show that there
are infinitely many primes congruent to 1 modm.

14.3.58 Question 3.58

What is Dirichlet’s theorem about primes in arithmetic progression? What can you say about the
density of such primes?

14.3.59 Question 3.59

How many irreducible polynomials of degree six are there over F2?

14.3.60 Question 3.60

Can you have a degree 7 irreducible polynomial over Fp? How about a degree 14 irreducible
polynomial?

14.3.61 Question 3.61

How many irreducible polynomials are there of degree 4 over F2?
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14.3.62 Question 3.62

For each prime p, give a polynomial of degree p that is irreducible over Fp. You can do it in a
“uniform” way.

14.3.63 Question 3.63

Can we solve general quadratic equations by radicals? And what about cubics and so on? Why
can’t you solve 5th degree equations by radicals?

14.3.64 Question 3.64

Talk about solvability by radicals. Why is S5 not solvable? Why is A5 simple?

14.3.65 Question 3.65

For which n can a regular n-gon be constructed by ruler and compass?

14.3.66 Question 3.66

How do you use Galois theory (or just field theory) to prove the impossibility of trisecting an angle?
Doubling a cube? Squaring a circle?

14.3.67 Question 3.67

Which numbers are constructible? Give an example of a non-constructible number whose degree is
nevertheless a power of 2.

14.3.68 Question 3.68

State and prove Eisenstein’s Criterion.

14.3.69 Question 3.69

Why is (xp − 1)/(x− 1) irreducible over Q?
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14.3.70 Question 3.70

Can you prove the fundamental theorem of algebra using Galois theory? What do you need from
analysis to do so?

14.3.71 Question 3.71

What are the symmetric polynomials?

14.3.72 Question 3.72

State the fundamental theorem of symmetric polynomials.

14.3.73 Question 3.73

Is the discriminant of a polynomial always a polynomial in the coefficients? What does this have
to do with symmetric polynomials?

14.3.74 Question 3.74

Find a non-symmetric polynomial whose square is symmetric.

14.3.75 Question 3.75

Let f be a degree 4 polynomial with integer coefficients. What’s the smallest finite field in which f
necessarily has four roots?

14.3.76 Question 3.76

Define p-adic numbers. What is a valuation?

14.3.77 Question 3.77

What’s Hilbert’s theorem 90?
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14.3.78 Question 3.78

Consider a nonconstant function between two compact Riemann Surfaces. How is it related to
Galois theory?

E 14.4 Normal Forms e

14.4.1 Question 4.1

What is the connection between the structure theorem for modules over a PID and conjugacy classes
in the general linear group over a field?

14.4.2 Question 4.2

Explain how the structure theorem for finitely-generated modules over a PID applies to a linear
operator on a finite dimensional vector space.

14.4.3 Question 4.3

I give you two matrices over a field. How would you tell if they are conjugate or not? What theorem
are you using? State it. How does it apply to this situation? Why is k[x] a PID? If two matrices
are conjugate over the algebraic closure of a field, does that mean that they are conjugate over the
base field too?

14.4.4 Question 4.4

If two real matrices are conjugate in Mat(n×n,C), are they necessarily conjugate in Mat(n×N,R)
as well?

14.4.5 Question 4.5

Give the 4 × 4 Jordan forms with minimal polynomial (x− 1)(x− 2)2.

14.4.6 Question 4.6

Talk about Jordan canonical form. What happens when the field is not algebraically closed?
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14.4.7 Question 4.7

What are all the matrices that commute with a given Jordan block?

14.4.8 Question 4.8

How do you determine the number and sizes of the blocks for Jordan canonical form?

14.4.9 Question 4.9

For any matrix A over the complex numbers, can you solve B2 = A?

14.4.10 Question 4.10

What is rational canonical form?

14.4.11 Question 4.11

Describe all the conjugacy classes of 3 × 3 matrices with rational entries which satisfy the equation
A4 −A3 −A+ 1 = 0. Give a representative in each class.

14.4.12 Question 4.12

What 3 × 3 matrices over the rationals (up to similarity) satisfy f(A) = 0, where f(x) = (x2 +
2)(x− 1)3? List all possible rational forms.

14.4.13 Question 4.13

What can you say about matrices that satisfy a given polynomial (over an algebraically closed
field)? How many of them are there? What about over a finite field? How many such matrices are
there then?

14.4.14 Question 4.14

What is a nilpotent matrix?
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14.4.15 Question 4.15

When do the powers of a matrix tend to zero?

14.4.16 Question 4.16

If the traces of all powers of a matrix A are 0, what can you say about A?

14.4.17 Question 4.17

When and how can we solve the matrix equation exp(A) = B? Do it over the complex numbers
and over the real numbers. give a counterexample with real entries.

14.4.18 Question 4.18

Say we can find a matrix A such that exp(A) = B for B in SLn(R). Does A also have to be in
SLn(R)? Does A need to be in SLn(R)?

14.4.19 Question 4.19

Is a square matrix always similar to its transpose?

14.4.20 Question 4.20

What are the conjugacy classes of SL2(R)?

14.4.21 Question 4.21

What are the conjugacy classes in GL2(C)?
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E 14.5 Matrices and Linear Algebra e

14.5.1 Question 5.1

What is a bilinear form on a vector space? When are two forms equivalent? What is an orthogonal
matrix? What’s special about them?

14.5.2 Question 5.2

What are the possible images of the unit circle under a linear transformation of R2?

14.5.3 Question 5.3

Explain geometrically how you diagonalise a quadratic form.

14.5.4 Question 5.4

Do you know Witt’s theorem on real quadratic forms?

14.5.5 Question 5.5

Classify real division algebras.

14.5.6 Question 5.6

Consider the simple operator on C given by multiplication by a complex number. It decomposes
into a stretch and a rotation. What is the generalisation of this to operators on a Hilbert space?

14.5.7 Question 5.7

Do you know about singular value decomposition?
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14.5.8 Question 5.8

What are the eigenvalues of a symmetric matrix?

14.5.9 Question 5.9

What can you say about the eigenvalues of a skew-symmetric matrix?

14.5.10 Question 5.10

Prove that the eigenvalues of a Hermitian matrix are real and those of a unitary matrix are unitary.

14.5.11 Question 5.11

Prove that symmetric matrices have real eigenvalues and can be diagonalised by orthogonal matri-
ces.

14.5.12 Question 5.12

To which operators does the spectral theorem for symmetric matrices generalise?

14.5.13 Question 5.13

Given a skew-symmetric/skew-Hermitian matrix S, show that U = (S + I)(S − I) − 1 is orthogo-
nal/unitary. Then find an expression for S in terms of U .

14.5.14 Question 5.14

If a linear transformation preserves a nondegenerate alternating form and has k as an eigenvalue,
prove that 1/k is also an eigenvalue.

14.5.15 Question 5.15

State/prove the Cayley–Hamilton theorem.
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14.5.16 Question 5.16

Are diagonalisable N × N matrices over the complex numbers dense in the space of all N × N
matrices over the complex numbers? How about over another algebraically closed field if we use
the Zariski topology?

14.5.17 Question 5.17

For a linear ODE with constant coefficients, how would you solve it using linear algebra?

14.5.18 Question 5.18

What can you say about the eigenspaces of two matrices that commute with each other?

14.5.19 Question 5.19

What is a Toeplitz operator?

14.5.20 Question 5.20

What is the number of invertible matrices over Z/pZ?

E 14.6 Rings e

14.6.1 Question 6.1

State the Chinese remainder theorem in any form you like. Prove it.

14.6.2 Question 6.2

What is a PID? What’s an example of a UFD that is not a PID? Why? Is k[x] a PID? Why?
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14.6.3 Question 6.3

Is C[x, y] a PID? Is ⟨x, y⟩ a prime ideals in it?

14.6.4 Question 6.4

Do polynomials in several variables form a PID?

14.6.5 Question 6.5

Prove that the integers form a PID.

14.6.6 Question 6.6

Give an example of a PID with a unique prime ideal.

14.6.7 Question 6.7

What is the relation between Euclidean domains and PIDs?

14.6.8 Question 6.8

Do you know a PID that’s not Euclidean?

14.6.9 Question 6.9

Give an example of a UFD which is not a Euclidean domain.

14.6.10 Question 6.10

Is a ring of formal power series a UFD?
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14.6.11 Question 6.11

Is a polynomial ring over a UFD again a UFD?

14.6.12 Question 6.12

What does factorisation over Q[x] say about factorisation over Z[x]?

14.6.13 Question 6.13

Give an example of a ring where unique factorisation fails.

14.6.14 Question 6.14

Factor 6 in two different ways in Z[
√

−5] Is there any way to explain the two factorisations? Factor
the ideal generated by 6 into prime ideals.

14.6.15 Question 6.15

What’s the integral closure of Z in Q(i)?

14.6.16 Question 6.16

Find all primes in the ring of Gaussian integers.

14.6.17 Question 6.17

What is a ring of integers? What does “integral over Z” mean?

14.6.18 Question 6.18

Let O be the ring of integers of Q(d), where d > 0. What can you say about the quotient of O by
one of its prime ideals?
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14.6.19 Question 6.19

Do you know about Dedekind domains and class numbers?

14.6.20 Question 6.20

Talk about factorisation and primes in a polynomial ring. What is irreducibility? For what rings
R is it true that R[x1, · · · , xn] is a unique factorisation domain? What is wrong with unique
factorisation if we don’t have a domain? Now, PIDs are Noetherian, but are there UFDs which are
not?

14.6.21 Question 6.21

What is the radical of an ideal? What is special about elements in the nilradical?

14.6.22 Question 6.22

Define the “radical” of an ideal. Prove it is an ideal. Prove that the ideal of all polynomials
vanishing on the zero set of I is

√
I.

14.6.23 Question 6.23.

Do you know what the radical is? Use the fact that the intersection of all prime ideals is the set
of all nilpotent elements to prove that F [x] has an infinite number of prime ideals, where F is a
field.

14.6.24 Question 6.24

What are the radical ideals in Z?

14.6.25 Question 6.25

Give a prime ideal in k[x, y]. Why is it prime? What is the variety it defines? What is the
Nullstellensatz? Can you make some maximal ideals?
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14.6.26 Question 6.26

State/describe Hilbert’s Nullstellensatz. Sketch a proof.

14.6.27 Question 6.27

What is an irreducible variety? Give an example of a non-irreducible one.

14.6.28 Question 6.28

What are the prime ideals and maximal ideals of Z[x]?

14.6.29 Question 6.29

Is the following map an isomorphism?

Z[t]/ ⟨tp − 1⟩ → Z[w]
t 7→ w where wp = 1.

14.6.30 Question 6.30

Describe the left, right, and two-sided ideals in the ring of square matrices of a fixed size. Now
identify the matrix algebra Mat(n × n,K) with EndK(V ) where V is an n-dimensional K-vector
space. Try to geometrically describe the simple left ideals and also the simple right ideals via that
identification.

14.6.31 Question 6.31

Give examples of maximal ideals in K = R×R×R× · · ·, the product of countably many copies of
R. What about for a product of countably many copies of an arbitrary commutative ring R?

14.6.32 Question 6.32

Consider a commutative ring, R, and a maximal ideal I, what can you say about the structure of
R/I? What if I were prime?
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14.6.33 Question 6.33

Define “Noetherian ring”. give an example.

14.6.34 Question 6.34

Prove the Hilbert basis theorem.

14.6.35 Question 6.35

What is a Noetherian ring? If I is an ideal in a Noetherian ring with a unit, what is the intersection
of In over all positive integers n?

14.6.36 Question 6.36

What is the Jacobson radical? If R is a finitely-generated algebra over a field what can you say
about it?

14.6.37 Question 6.37

Give an example of an Artinian ring.

14.6.38 Question 6.38

State the structure theorem for semisimple Artinian rings.

14.6.39 Question 6.39

What is a semisimple algebra? State the structure theorem for semisimple algebras.

14.6.40 Question 6.40

What is a matrix algebra?
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14.6.41 Question 6.41

Does L1 have a natural multiplication with which it becomes an algebra?

14.6.42 Question 6.42.

Consider a translation-invariant subspace of L1. What can you say about its relation to L2 as a
convolution algebra?

14.6.43 Question 6.43

State the structure theorem for simple rings.

14.6.44 Question 6.44

Do you know an example of a local ring? Another one? What about completions?

14.6.45 Question 6.45

Consider the space of functions from the natural numbers to C endowed with the usual law of
addition and the following analogue of the convolution product:

(f ∗ g)(n) =
∑
d
∣∣n f(d)g

(
n

d

)
.

Show that this is a ring. What does this ring remind you of and what can you say about it?

14.6.46 Question 6.46

Prove that any finite division ring is a field (that is, prove commutativity). Give an example of a
(necessarily infinite) division ring which is NOT a field.

14.6.47 Question 6.47

Prove that all finite integral domains are fields.
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14.6.48 Question 6.48

Can a polynomial over a division ring have more roots than its degree?

14.6.49 Question 6.49

Classify (finite-dimensional) division algebras over R.

14.6.50 Question 6.50

Give an example of a C-algebra which is not semisimple.

14.6.51 Question 6.51

What is Wedderburn’s theorem? What does the group ring generated by Z/5Z over Q look like?

What if we take the noncyclic group of order 4 instead of Z/5Z? The quaternion group instead of
Z/5Z?

14.6.52 Question 6.52

Tell me about group rings. What do you know about them?

E 14.7 Modules e

14.7.1 Question 7.1

How does one prove the structure theorem for modules over PID? What is the module and what is
the PID in the case of abelian groups?

14.7.2 Question 7.2

If M is free abelian, how can I put quotients of M in some standard form? What was crucial about
the integers here (abelian groups being modules over Z)? How does the procedure simplify if the
ring is a Euclidean domain, not just a PID?
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14.7.3 Question 7.3

Suppose D is an integral domain and the fundamental theorem holds for finitely-generated modules
over D (i.e. they are all direct sums of finitely many cyclic modules).

Does D have to be a PID?

14.7.4 Question 7.4

Classify finitely-generated modules over Z, over PIDs, and over Dedekind rings.

14.7.5 Question 7.5

Prove a finitely-generated torsion-free abelian group is free abelian.

14.7.6 Question 7.6.

What is a tensor product? What is the universal property? What do the tensors look like in the
case of vector spaces?

14.7.7 Question 7.7

Now we’ll take the tensor product of two abelian groups, that is, Z-modules. Take Z/pZ and Z/qZ,
where p and q are distinct primes. What is their tensor product?

14.7.8 Question 7.8

What is a projective module?

14.7.9 Question 7.9

What is an injective module?

14.7.10 Question 7.10

Do you know an example of a flat module?
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E 14.8 Representation Theory e

14.8.1 Question 8.1

Define “representation” of a group. Define “irreducible representation”. Why can you decompose
representations of finite groups into irreducible ones? Construct an in- variant inner product.

14.8.2 Question 8.2

State and prove Maschke’s theorem. What can go wrong if you work over the real field? What can
go wrong in characteristic p?

14.8.3 Question 8.3

Do you know what a group representation is? Do you know what the trace of a group representation
is?

14.8.4 Question 8.4

State/prove/explain Schur’s lemma.

14.8.5 Question 8.5

What can you say about characters? What are the orthogonality relations? How do you use
characters to determine if a given irreducible representation is a subspace of another given repre-
sentation?

14.8.6 Question 8.6

What’s the relation between the number of conjugacy classes in a finite group and the number of
irreducible representations?

14.8.7 Question 8.7

What is the character table? What field do its entries lie in?
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14.8.8 Question 8.8

Why is the character table a square?

14.8.9 Question 8.9

If χ(g) is real for every character χ, what can you say about g?

14.8.10 Question 8.10

What’s the regular representation?

14.8.11 Question 8.11

Give two definitions of “induced representation”. Why are they equivalent?

14.8.12 Question 8.12

If you have a representation of H, a subgroup of a group G, how can you induce a representation
of G?

14.8.13 Question 8.13

If you have an irreducible representation of a subgroup, is the induced representation of the whole
group still irreducible?

14.8.14 Question 8.14.

What can you say about the kernel of an irreducible representation? How about kernels of direct
sums of irreducibles? What kind of functor is induction? Left or right exact?

14.8.15 Question 8.15

What is Frobenius reciprocity?
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14.8.16 Question 8.16

Given a normal subgroup H of a finite group G, we lift all the representations of G/H to represen-
tations of G.

Show that the intersection of the kernels of all these representations is precisely H. What can you
say when H is the commutator subgroup of G?

14.8.17 Question 8.17

If you have two linear representations π1 and π2 of a finite group G such that π1(g) is conjugate to
π2(g) for every g in G, is it true that the two representations are isomorphic?

14.8.18 Question 8.18

Group representations: What’s special about using C in the definition of group algebra?

Is it possible to work over other fields?

What goes wrong if the characteristic of the field divides the order of the group?

14.8.19 Question 8.19

Suppose you have a finite p-group, and you have a representation of this group on a finite-dimensional
vector space over a finite field of characteristic p. What can you say about it?

14.8.20 Question 8.20

Let (π, V ) be a faithful finite-dimensional representation of G. Show that, given any irreducible
representation of G, the nth tensor power of GL(V ) will contain it for some large enough n.

14.8.21 Question 8.21

What are the irreducible representations of finite abelian groups?

14.8.22 Question 8.22

What are the group characters of the multiplicative group of a finite field?
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14.8.23 Question 8.23

Are there two nonisomorphic groups with the same representations?

14.8.24 Question 8.24

If you have a Z/5Z action on a complex vector space, what does this action look like? What about
an S3 action? A dihedral group of any order?

14.8.25 Question 8.25

What are the representations of S3? How do they restrict to S2?

14.8.26 Question 8.26

Tell me about the representations of D4. Write down the character table. What is the 2-dimensional
representation? How can it be interpreted geometrically?

14.8.27 Question 8.27

How would you work out the orders of the irreducible representations of the dihedral group Dn?

Why is the sum of squares of dimensions equal to the order of the group?

14.8.28 Question 8.28

Do you know any representation theory? What about representations of A4?

Give a nontrivial one. What else is there? How many irreducible representations do we have? What
are their degrees? Write the character table of A4.

14.8.29 Question 8.29

Write the character table for S4.
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14.8.30 Question 8.30

Start constructing the character table for S5.

14.8.31 Question 8.31.

How many irreducible representations does Sn have?

What classical function in mathematics does this number relate to?

14.8.32 Question 8.32

Discuss representations of Z, the infinite cyclic group. What is the group algebra of Z?

14.8.33 Question 8.33

What is a Lie group? Define a unitary representation. What is the Peter–Weyl theorem? What is
the Lie algebra? The Jacobi identity? What is the adjoint representation of a Lie algebra? What
is the commutator of two vector fields on a manifold?

When is a representation of Z completely reducible? Why?

Which are the indecomposable modules?

14.8.34 Question 8.34

Talk about the representation theory of compact Lie groups. How do you know you have a finite-
dimensional representation?

14.8.35 Question 8.35

How do you prove that any finite-dimensional representation of a compact Lie group is equivalent
to a unitary one?

14.8.36 Question 8.36

Do you know a Lie group that has no faithful finite-dimensional representations?

14.8 Representation Theory 214



14 Even More Algebra Questions

14.8.37 Question 8.37

What do you know about representations of SO(2)? SO(3)?

E 14.9 Categories and Functors e

14.9.1 Question 9.1

Which is the connection between Hom and tensor product? What is this called in representation
theory?

14.9.2 Question 9.2

Can you get a long exact sequence from a short exact sequence of abelian groups together with
another abelian group?

14.9.3 Question 9.3

Do you know what the Ext functor of an abelian group is? Do you know where it appears? What
is Ext(Z/mZ,Z/nZ)? What is Ext(Z/mZ,Z)?
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