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2 Real Analysis Review

1 Preface

I’d like to thank the following individuals for their contributions to this document:

• Edward Azoff, for supplying a problem sheet broken out by topic.
• Mentzelos Melistas, for explaining and documenting many solutions to these questions.
• Jingzhi Tie, for supplying many additional problems and solutions.
• Swaroop Hegde for supplying a number of proofs

Any mistakes are surely my own!

2 Real Analysis Review

E
2.1 Tie’s Extra Questions: Fall 2015

(Computing area) e

Problem 2.1.1 (?)
Let f(z) = ∑∞

n=0 cnz
n be analytic and one-to-one in |z| < 1. For 0 < r < 1, let Dr be the disk

|z| < r. Show that the area of f(Dr) is finite and is given by

S = π
∞∑
n=1

n|cn|2r2n.

Note that in general the area of f(D1) is infinite.

Solution:

Preface 10
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Since f is injective, f ′ is nonvanishing in Ω := |z| ≤ r. A computation:

µ(f(Dr)) =
∫
Dr

∣∣f ′(z)
∣∣ dz

=
∫
Dr

f ′(z)f ′(z) dz

=
∫
Dr

∑
j≥1

jcjz
j−1

∑
k≥1

kckzk−1

 dz
=
∫
Dr

∑
j≥1

jcjz
j−1

∑
k≥1

kckz
k−1

 dz
=
∫
Dr

∑
j,k≥1

jkcjckz
j−1zk−1 dz

=
∫ R

0

∫ 2π

0

∑
j,k≥1

jkcjck(reit)j−1(re−it)k−1r dr dt

=
∫ R

0

∫ 2π

0

∑
j,k≥1

jkcjckr
j+k−1ei(j−k)t dr dt

=
∫ R

0

∑
k≥1

k2|ck|2r2k−1 · 2π dt

=
∑
k≥1

k2|ck|2
r2k

2k
∣∣∣R
r=0

= π
∑
k≥1

k|ck|2R2k.

E
2.2 Tie’s Extra Questions: Fall 2015

(Variant) e

Problem 2.2.1 (?)
Let f(z) = ∑∞

n=−∞ cnz
n be analytic and one-to-one in r0 < |z| < R0. For r0 < r < R < R0,

let D(r,R) be the annulus r < |z| < R. Show that the area of f(D(r,R)) is finite and is given
by

S = π
∞∑

n=−∞
n|cn|2(R2n − r2n).

Solution:
See above solution: all goes identically up until the integral over r values, just replace

∫ R
0 with∫ R

r .

2.2 Tie’s Extra Questions: Fall 2015 (Variant) 11
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E 2.3 Spring 2019.1 e

Define

E(z) = ex(cos y + i sin y).

• Show that E(z) is the unique function analytic on C that satisfies

E′(z) = E(z), E(0) = 1.

• Conclude from the first part that

E(z) =
∞∑
n=0

zn

n! .

E 2.4 Recurrences e

Problem 2.4.1 (?)
Let x0 = a, x1 = b, and set

xn := xn−1 + xn−2
2 n ≥ 2.

Show that {xn} is a Cauchy sequence and find its limit in terms of a and b.

Solution:
With some substitution, one can compute

|xn − xn−1| =
∣∣∣∣12xn−1 + 1

2xn−2 − xn−1

∣∣∣∣ = 1
2 |xn−1 − xn−2|,

which holds for all n. This is enough to show that the sequence is contractive, i.e.

|xn − xn−1| = c|xn−1 − xn−2| c ∈ (0, 1).

Apply this recursively yields

|xn − xn−1| =
(1

2

)n−1
|b− a| n→∞−→ 0,

since |b− a| is a constant. So in fact xn is convergent and thus Cauchy convergent.

2.3 Spring 2019.1 12
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Note: to compare |xi − xj | directly, assume i > j and apply the above estimate i− j + 1 on
|xi − xi−1|, |xi−1 − xi−2|, · · · to reduce to this case. This yields something like

|xi − xj | =
(1

2

)i−j+1
|xj − xj−1| =

(1
2

)i−j+1 (1
2

)j−1
|b− a| → 0.

One could equivalently use the triangle inequality and a partial geometric sum to write

|xi − xj | ≤
∑

j≤k≤i−1
|xk+1 − xk| =⇒ |xi − xj | ≤ cj

( 1
1 − c

)
|b− a|.

Computing its limit: the usual trick of setting L := lim xn = lim xn−1 = lim xn−2 only yields
L = L+L

2 here, and thus no information. Instead assume xn = rn is geometric, then

2xn − xn−1 − xn−2 = 0 =⇒ 2rn − rn−1 − rn−2 = 0
=⇒ 2r2 − r − 1 = 0 ⇐⇒ (2r + 1)(r − 1) = 0
=⇒ r = −1/2, 1.

Write a general solution as

xn = c1(−1/2)n + c2(1)n = c1(−1/2)n + c2,

and solve for initial conditions:

x0 : a = c1 + c2

x1 : b = (−1/2)c1 + c2

=⇒
[

1 1
−1/2 1

] [
c1
c2

]
=
[
a
b

]

=⇒
[
c1
c2

]
= 1

1 + (1/2)

[
1 −1

1/2 1

] [
a
b

]

=
(1

3

)[2 −2
1 2

] [
a
b

]

=
(1

3

)[2a− 2b
a+ b

]
.

So the general solution is

xn = 2
3(a− b)

(−1
2

)n
+ 1

3(a+ b) n→∞−→
(1

3

)
(a+ b).

E 2.5 Uniform continuity e

2.4 Recurrences 13
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Problem 2.5.1 (?)
Suppose f : R → R is continuous and limx→±∞ f(x) = 0. Prove that f is uniformly
continuous.

Solution:
Fix ε > 0, we need to find a δ = δ(ε) such that

|x− y| < δ =⇒ |f(x) − f(y)| < ε ∀x, y ∈ R.

Use that limx → ±∞f(x) = 0 to choose M ≫ 0 such that

|x| ≥ M =⇒ |f(x)| ≤ ε/2,

then

|x|, |y| ≥ M =⇒ |f(x) − f(y)| ≤ |f(x)| + |f(y)| ≤ ε.

So in this region choose (say) δ1 < ε to ensure that Bδ(x), Bδ(y) ⊆ [−M,M ]c. On [−M,M ],
note that this region is compact and f continuous on a compact set implies uniformly contin-
uous. So use this to choose δ2 = δ2(ε) in this region to ensure |f(x) − f(y)| < ε.
This handles the cases x, y ∈ (M,M)c, or x, y ∈ [M,M ], so it only remains to handle x ∈
[M,M ] and y ∈ (M,M)c (wlog, relabeling x, y if necessary). In this case, use the triangle
inequality:

|f(x) − f(y)| = |f(x) − f(M) + f(M) − f(y)|
≤ |f(x) − f(M)| + |f(M) − f(y)|
≤ ε+ |f(M)| + |f(y)|
≤ ε+ ε+ ε,

where we’ve used that M,y ∈ (M,M)c to apply the first bound and M,x ∈ [M,M ] to apply
the second.

E 2.6 Negating uniform continuity e

Tie, Fall 2009

Problem 2.6.1 (?)
Show that f(z) = z2 is uniformly continuous in any open disk |z| < R, where R > 0 is fixed,
but it is not uniformly continuous on C.

2.5 Uniform continuity 14
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Solution:
A direct computation: fix ε > 0 and suppose |z − w| < R. Then∣∣∣z2 − w2

∣∣∣ = |z − w||z + w|

≤ δ (|z| + |w|)
≤ δ · 2R,

so choose δ < ε
2R to get uniform continuity on DR/2(0).

To see f can’t be uniformly continuous on C, take ε := c any constant and suppose the
appropriate δ exists. We’ll look for a bad pair of z, w, so take w = z + 1

2δ. This would imply∣∣∣z2 − w2
∣∣∣ =

∣∣∣z2 − (z + δ)2
∣∣∣

=
∣∣∣−2zδ − δ2

∣∣∣
=
∣∣∣2zδ + δ2

∣∣∣
= δ|2z + δ|
|z|→∞−→ ∞,

using the δ = δ(ε) can’t depend on z or w, and is thus constant in this expression. This
contradicts that

∣∣z2 − w2∣∣ < ε = c < ∞.

E 2.7 Non-continuously differentiable e

Problem 2.7.1 (?)
Give an example of a function f : R → R that is everywhere differentiable but f ′ is not
continuous at 0.

Solution:
The standard example:

f(x) :=

x2 sin
(

1
x

)
x ̸= 0

0 x = 0.
.

Away from zero, this is clearly differentiable since we can just compute the derivative by the
chain rule. It turns out that

f ′(x) =

2x sin
(

1
x

)
+ x2 cos

(
1
x

) (
−1
x2

)
= 2x sin

(
1
x

)
− cos

(
1
x

)
x ̸= 0

0 x = 0.
.

Here we check differentiability and compute the derivative at x = 0 directly:

f(x) − f(0)
x− 0 =

x2 sin
(

1
x

)
− 0

x− 0 = x sin
(1
x

)
x→0−→ 0,

2.7 Non-continuously differentiable 15
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using that −x ≤
∣∣∣x sin

(
1
x

)∣∣∣ ≤ x.
But now notice that the cos

(
1
x

)
term in f ′ isn’t enveloped by an xc term, so limx→0 f

′(x)
does not exist for oscillatory reasons:

In particular, limx→0 f
′(x) ̸= f ′(0) = 0.

E
2.8 Uniformly convergent + uniformly

continuous
e

Problem 2.8.1 (?)
Suppose {gn} is a uniformly convergent sequence of functions from R to R and f : R → R is
uniformly continuous. Prove that the sequence {f ◦ gn} is uniformly convergent.

Solution:
Uniformly convergent means that ∥gi − gj∥∞ → 0, so supx∈X |gi(x) − gj(x)| i,j→∞−→ 0. We want
to show that given ε we can find N0 such that i, j > N0 yields

sup
x∈X

|f ◦ gi(x) − f ◦ gj(x)| < ε.

2.8 Uniformly convergent + uniformly continuous 16
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Fix ε > 0, then choose δ1 = δ1(ε) by uniform continuity of f to guarantee

|y1 − y2| ≤ δ1 =⇒ |f(y1) − f(y2)| < ε∀y1, y2 ∈ X.

Now by uniform convergence of {gn}, choose N0 = N0(δ1) such that

i, j ≥ N0 =⇒ |gi(x) − gj(x)| < δ1 ∀x ∈ X.

Now writing y1 := gi(x), y2 := gj(x), choose i, j > N0 yields

|y1 − y2| := |gi(x) − gj(x)| < δ1

=⇒ |f(y1) − f(y2)| := |f(gi(x)) − f(gj(x))| < ε,

and taking the supremum over x ∈ X preserves the inequality since δ1 and consequently N0
only depend on ε.

E 2.9 Uniform differentiability e

Problem 2.9.1 (?)
Let f be differentiable on [a, b]. Say that f is uniformly differentiable iff

∀ε > 0, ∃δ > 0 such that |x− y| < δ =⇒
∣∣∣∣f(x) − f(y)

x− y
− f ′(y)

∣∣∣∣ < ε.

Prove that f is uniformly differentiable on [a, b] ⇐⇒ f ′ is continuous on [a, b].

Solution:
=⇒ : Fix ε > 0 and choose δ = δ(ε) to get a bound corresponding to ε/2, then for all x, y

with |x− y| < δ on [a, b], we have

∣∣f ′(x) − f ′(y)
∣∣ ≤

∣∣∣∣f ′(x) − f(x) − f(y)
x− y

∣∣∣∣+ ∣∣∣∣f(x) − f(y)
x− y

− f ′(y)
∣∣∣∣ < ε.

This uses uniformity to bound by ε/2 the terms involving f ′(x) and f ′(y) respectively. So f ′

is in fact uniformly continuous on [a, b].
⇐= : Let ε > 0 and x, y ∈ [a, b] be arbitrary. Then by the MVT, we can a ξ ∈ [x, y]

with f ′(ξ)(x − y) = f(x) − f(y). Then use continuity of f ′ to choose δ = δ(ε, x, y) so that
|x− y| < δ =⇒ |f(x) − f(y)| < ε, and note that |x− ξ| ≤ |x− y| < δ, so∣∣∣∣f(x) − f(y)

x− y
− f ′(y)

∣∣∣∣ =
∣∣f ′(ξ) − f ′(y)

∣∣ < ε.

E 2.10 Inf distance e

2.9 Uniform differentiability 17



2 Real Analysis Review

Problem 2.10.1 (?)
Suppose A,B ⊆ Rn are disjoint and compact. Prove that there exist a ∈ A, b ∈ B such that

∥a− b∥ = inf
{

∥x− y∥
∣∣∣ x ∈ A, y ∈ B

}
.

Solution:
Define a function

d : A×B → R
(x, y) 7→ ∥x− y∥.

Then d is a continuous function on a compact topological space (where the product is compact
by Tychonoff), and the extreme value theorem applies: d attains its min/max for some pair
(a, b) in its domain.

Note that disjointness just guarantees that
∥a− b∥ > 0, since ∥a− b∥ = 0 =⇒ a = b and
A ∩B = ∅.

E 2.11 Connectedness e

Problem 2.11.1 (?)
Suppose A,B ⊆ Rn are connected and not disjoint. Prove that A ∪B is also connected.

Solution:
Use that X is connected iff HomTop(X,S0) = {c−1, c1}, i.e. every continuous map from
X → {−1, 1} is a constant map x

c−1−−→ −1 or x c1−→ 1. Let f : A ∪ B → S0 be arbitrary, and
let f1 := f |A and f2 := f |B. By connectedness of A, f1 is a constant map, as is f2. On the
intersection, for x ∈ A ∩ B ̸= ∅, we have f1(x) = f2(x) since x ∈ A and x ∈ B. So f1 and f2
are constant functions that must map to the same constant, so f is constant and this A ∪B
is connected.

E 2.12 Pointwise and uniform convergence e

2.10 Inf distance 18



2 Real Analysis Review

Problem 2.12.1 (?)
Suppose {fn}n∈N is a sequence of continuous functions fn : [0, 1] → R such that

fn(x) ≥ fn+1(x) ≥ 0 ∀n ∈ N, ∀x ∈ [0, 1].

Prove that if {fn} converges pointwise to 0 on [0, 1] then it converges to 0 uniformly on [0, 1].

Solution:
Let ε > 0, we want to show that there exists an N0 such that n ≥ N0 implies ∥fn∥∞ < ε. Fix x,
by pointwise convergence pick Mx = Mx(x, ε) so that n ≥ M =⇒ |fn(x)| < ε. By continuity,
this bound holds in some neighborhood Ux ∋ x. Produce a cover {Ux}x∈[0,1] ⇒ [0, 1]; by
compactness produce a finite subcover {U1, · · · , Um} ⇒ [0, 1]. Each Ui corresponds to some
xi and some Mxi , so choose N0 > maxi≤m {Mxi}. Then n ≥ N0 =⇒ N ≥ Mxi for each i, so
|fn(x)| < ε for each x ∈ [0, 1] since x ∈ Ui for some i. So supx∈X |fn(x)| = ∥fn∥∞ < ε.

E 2.13 e

Problem 2.13.1 (?)
Show that if E ⊂ [0, 1] is uncountable, then there is some t ∈ R such that E ∩ (−∞, t) and
E ∩ (t,∞) are also uncountable.

Solution:
See 3.2.12 of Understanding analysis 2ed. of Abbott. Show something stronger, that the
following set is nonempty and open:

S :=
{
t ∈ R

∣∣∣ E ∩ (−∞, t), E ∩ (t,∞) are uncountable
}

⊆ R.

Write

S− :=
{
t ∈ R

∣∣∣ E ∩ (−∞, t) is countable
}

S+ :=
{
s ∈ R

∣∣∣ E ∩ (s,∞) is countable
}
.

Note that S− ̸= R since then we could write E = ⋃
n∈ZE ∩ (−∞, n) as a countable union of

countable sets.
Claim: S = (supS−, , inf S+).
???

E 2.14 e

2.12 Pointwise and uniform convergence 19



2 Real Analysis Review

Problem 2.14.1 (?)
Suppose f, g : [0, 1] → R where f is Riemann integrable and for x, y ∈ [0, 1],

|g(x) − g(y)| ≤ |f(x) − f(y)|.

Prove that g is Riemann integrable.

Solution:
Write U(f), L(f) for the upper and lower sums of f , so for Π the collection of all partitions of
[0, 1],

U(f) := inf
P∈Π

U(f, P ) U(f, P ) :=
n∑
k=1

sup
x∈Ik

f(x) · µ(Ik)

L(f) := sup
P∈Π

L(f, P ) L(f, P ) :=
n∑
k=1

inf
x∈Ik

f(x) · µ(Ik).

Note that integrability of f is equivalent to

∀ε∃P such that U(f, P ) − L(f, P ) < ε

⇐⇒
n∑
k=1

(
sup
x∈Ik

f(x) − inf
x∈Ik

f(x)
)
µ(Ik) < ε.

E 2.15 Exercises e

Problem 2.15.1 (Uniform continuity of xn)
Show that f(x) = xn is uniformly continuous on any interval [−M,M ].

Solution:

|xn − yn| = |y − x|

∣∣∣∣∣∣
∑

1≤k≤n
xkyn−k

∣∣∣∣∣∣ ≤ nMn−1|y − x| y→x−→ 0.

Problem 2.15.2 (?)
Show f(x) = x−n for n ∈ Z≥0 is uniformly continuous on [0,∞).

2.14 20



3 Continuity

Solution:

x
1
n − y

1
n ≤ (x− y)

1
n
x→y−→ 0,

using (a+ b)m ≥ am + bm

Problem 2.15.3 (?)
Show that f ′ bounded implies f is uniformly continuous.

Solution:
Apply the MVT:

|f(x) − f(y)| = |f(ξ)||x− y| y→x−→ 0.

Problem 2.15.4 (?)
Show that the Dirichlet function f(x) = χI∩Q is not Riemann integrable and is everywhere
discontinuous.

Solution:
Check sup f = 1 and inf f = 0 on every sub-interval, so L(f, P ) = 0 and U(f, P ) = 1 for every
partition P of [0, 1].
Discontinuity: #todo

3 Continuity

E 3.1 1 e

Is the following function continuous, differentiable, continuously differentiable?

f : R2 → R

f(x, y) =


xy√
x2+y2

(x, y) ̸= (0, 0)

0 else.

Continuity 21



4 Implicit/Inverse Function Theorems

E 3.2 ? e

Show that f(z) = z2 is uniformly continuous in any open disk |z| < R, where R > 0 is fixed, but it
is not uniformly continuous on C.

E 3.3 6 e

Let F : R2 → R be continuously differentiable with F (0, 0) = 0 and ∥∇F (0, 0)∥ < 1.

Prove that there is some real number r > 0 such that |F (x, y)| < r whenever ∥(x, y)∥ < r.

E 3.4 2 Multivariable derivatives e

a. Complete this definition: “f : Rn → Rm is real-differentiable a point p ∈ Rn iff there exists
a linear transformation. . . ”

b. Give an example of a function f : R2 → R whose first-order partial derivatives exist every-
where but f is not differentiable at (0, 0).

c. Give an example of a function f : R2 → R which is real-differentiable everywhere but nowhere
complex-differentiable.

4 Implicit/Inverse Function Theorems

E 4.1 3 e

Let f : R2 → R.

a. Define in terms of linear transformations what it means for f to be differentiable at a point
(a, b) ∈ R2.

b. State a version of the inverse function theorem in this setting.

c. Identify R2 with C and give a necessary and sufficient condition for a real-differentiable
function at (a, b) to be complex differentiable at the point a+ ib.

3.2 ? 22



5 Complex Differentiability

E 4.2 5 e

Let P = (1, 3) ∈ R2 and define

f(s, t) := ps3 − 6st+ t2.

a. State the conclusion of the implicit function theorem concerning f(s, t) = 0 when f is
considered a function R2 → R.

b. State the above conclusion when f is considered a function C2 → C.

c. Use the implicit function theorem for a function R × R2 → R2 to prove (b).

There are various approaches: using the definition
of the complex derivative, the Cauchy-Riemann equa-
tions, considering total derivatives, etc.

E 4.3 7 e

State the most general version of the implicit function theorem for real functions and outline how
it can be proved using the inverse function theorem.

5 Complex Differentiability

E 5.1 4 e

Let f = u + iv be complex-differentiable with continuous partial derivatives at a point z = reiθ

with r ̸= 0. Show that

∂u

∂r
= 1
r

∂v

∂θ

∂v

∂r
= −1

r

∂u

∂θ
.

E 5.2 Tie’s Extra Questions: Fall 2016 e

Let u(x, y) be harmonic and have continuous partial derivatives of order three in an open disc of
radius R > 0.

4.2 5 23



6 Montel

a. Let two points (a, b), (x, y) in this disk be given. Show that the following integral is independent
of the path in this disk joining these points:

v(x, y) =
∫ x,y

a,b
(−∂u

∂y
dx+ ∂u

∂x
dy).

b. In parts:

• Prove that u(x, y) + iv(x, y) is an analytic function in this disc.
• Prove that v(x, y) is harmonic in this disc.

E
5.3 Tie’s Questions, Spring 2014: Polar

Cauchy-Riemann e

Let f = u + iv be differentiable (i.e. f ′(z) exists) with continuous partial derivatives at a point
z = reiθ, r ̸= 0. Show that

∂u

∂r
= 1
r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
.

E 5.4 ? e

1. Show that the function u = u(x, y) given by

u(x, y) = eny − e−ny

2n2 sinnx for n ∈ N

is the solution on D = {(x, y) |x2 + y2 < 1} of the Cauchy problem for the Laplace equation

∂2u

∂x2 + ∂2u

∂y2 = 0, u(x, 0) = 0, ∂u

∂y
(x, 0) = sinnx

n
.

2. Show that there exist points (x, y) ∈ D such that lim sup
n→∞

|u(x, y)| = ∞.

6 Montel

E
6.1 Convergence of holomorphic functions

on line segments e

5.3 Tie’s Questions, Spring 2014: Polar Cauchy-Riemann 24



6 Montel

Problem 6.1.1 (?)
Suppose {fn}n∈N is a sequence of entire functions where

• fn → g pointwise for some g : C → C.
• On every line segment in C, fn → g uniformly.

Show that

• g is entire, and
• fn → g uniformly on every compact subset of C.

Solution:
Note that g is entire by Morera’s theorem, since 0 =

∫
T fn →

∫
T g by uniform convergence and

the fn are holomorphic. By Cauchy’s theorem, up to a constant we have

fn(z) =
∮
T

fn(ξ)
ξ − z

dξg(z) =
∮
T

g(ξ)
ξ − z

dξ,

Thus fixing K and ε, for any T ⊆ K containing z,

|fn(z) − g(z)| =
∣∣∣∣∮
T

fn(ξ)
ξ − z

dξ −
∮
T

g(ξ)
ξ − z

dξ

∣∣∣∣
≤
∮
T

|fn(ξ) − g(ξ)|
ξ − z

dξ

≤
∮
T

supξ∈T |fn(ξ) − g(ξ)|
ξ − z

dξ

≤
∮
T

ε

ξ − z
dξ

= εC → 0,

where n = n(ε, T ) can be chosen to produce this ε using that fn → g uniformly on T . Taking
a sup over the z enclosed by T on the LHS yields a bound on the open region enclosed by
T . Taking a union of all such T in K yields an open cover of K, which by compactness has
a finite subcover. This yields a finite collection {n = n(ε, Tk)}k≤N , and taking the maximum
such n yields a uniform bound for all of K.

E 6.2 Tie’s Extra Questions: Spring 2015 e

Problem 6.2.1 (?)
Assume fn ∈ H(Ω) is a sequence of holomorphic functions on the region Ω that are uniformly
bounded on compact subsets and f ∈ H(Ω) is such that the set {z ∈ Ω : lim

n→∞
fn(z) = f(z)}

has a limit point in Ω. Show that fn converges to f uniformly on compact subsets of Ω.

6.2 Tie’s Extra Questions: Spring 2015 25



7 Function Convergence

E 6.3 Spring 2019.7 e

Problem 6.3.1 (?)
Let Ω ⊂ C be a connected open subset. Let {fn : Ω → C}∞

n=1 be a sequence of holomorphic
functions uniformly bounded on compact subsets of Ω. Let f : Ω → C be a holomorphic
function such that the set {

z ∈ Ω
∣∣∣ lim
n→∞

fn(z) = f(z)
}

has a limit point in Ω. Show that fn converges to f uniformly on compact subsets of Ω.

Solution:
Write g(z) := limn→∞ fn(z) for the pointwise limit, then g(z) = f(z) on a set with a limit
point. By the identity principle, g ≡ f on Ω, making f the pointwise limit of the fn.
By Montel, locally uniformly bounded implies normal and locally equicontinuous. So {fn} is
normal, and thus has a locally uniformly convergent subsequence {fnk

}. Since singletons {z}
are compact, fnk

(z) → g(z) pointwise, and by uniqueness of limits, limk→∞ fnk
= g = f on

any compact K ⊆ Ω.
It remains to show that the original sequence {fn} converges locally uniformly to f , not
just the subsequence. Suppose not, then there exists a compact K ⊆ Ω and ε > 0 so that
∥fn − f∥K,∞ > ε for infinitely many n. This produces a subsequence

{
fnj

}
with

∥∥∥fnj − f
∥∥∥ > ε

for all j. However, since F was normal, every subsequence has a locally uniformly convergent
subsequence, so this has a further subsequence fnj′ uniformly converging to f , a contradiction.

7 Function Convergence

E 7.1 Fall 2021.4 e

Problem 7.1.1 (?)
Prove that the sequence

(
1 + z

n

)n converges uniformly to ez on compact subsets of C.
Hint: en log wn = wn

n and ez is uniform continuous
on compact subsets of C.

Solution:
Let K be compact, where z ∈ K =⇒ |z| ≤ R for some constant R. For the remainder of the
problem, we only work in K.

Claim: fn(z) := n log(1 + z
n) → z uniformly.

6.3 Spring 2019.7 26



7 Function Convergence

Claim: fn are uniformly bounded on K.

Claim: ez is uniformly continuous on K.

Claim: If gn → g uniformly and F is uniformly continuous, then F ◦ gn → F ◦ g uniformly.
Why these claims imply the result:
If fn(z) → z uniformly, both are uniformly bounded, and ez is uniformly continuous, then
ef(z) → ez uniformly.

7.1 Fall 2021.4 27



7 Function Convergence

Proof (Of first claim).
We’ll first show that for w in a neighborhood of zero avoiding 1, there exists a constant
C such that ∣∣∣∣1 − log(1 + w)

w

∣∣∣∣ ≤ C|w|.

This follows from estimating the series expansion about w = 0:

∣∣∣∣1 − log(1 + w)
w

∣∣∣∣ =

∣∣∣∣∣∣w−1 ∑
k≥1

(−w)k
k

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
k≥2

(−w)k−1

k

∣∣∣∣∣∣
≤
∑
k≥2

|w|k−1

k

=
∑
k≥1

|w|k

k + 1

≤
∑
k≥1

|w|k

2

= 1
2

( 1
1 − |w|

− 1
)

= 1
2 |2|

( 1
1 − |w|

)
≤ C|w|,

using that 1
1−x is bounded in compact sets avoiding x = 1.

We can now apply the M -test:∣∣∣∣n log
(

1 + z

n

)
− z

∣∣∣∣ = |z| ·
∣∣∣∣∣ log

(
1 + z

n

)
z
n

− 1
∣∣∣∣∣

≤ |z| · C
∣∣∣∣ zn
∣∣∣∣

≤ M · C
(
M

n

)
= CM2

n
n→∞−→ 0.

■

E 7.2 Spring 2021.6, Spring 2015, Extras e

7.1 Fall 2021.4 28



7 Function Convergence

Problem 7.2.1 (?)
Let {fn}∞

n=1 is a sequence of holomorphic functions on D and f is also holomorphic on D.
Show that the following are equivalent:

• fn → f uniformly on compact subsets of D.
• For 0 < r < 1, ∫

|z|=r
|fn(z) − f(z)||dz| n→∞−→ 0.

Note: | dz| = |γ′(t)| dt for γ a parameterization of
the curve.

Solution:
=⇒ :

• Fix r ∈ (0, 1) and let γ = {|z| = r}. This is compact, so fn → f uniformly on γ:∫
γ

|fn(z) − f(z)| dz ≤
∫
γ

sup
w∈γ

|fn(w) − f(w)| dz

≤
∫
γ

∥fn(w) − f(w)∥∞ dz

= ∥fn(w) − f(w)∥∞

∫
γ
dz

= ∥fn(w) − f(w)∥∞ length(γ)
n→∞−→ 0.

⇐= :

• Let K be compact, then choose γ enclosing but not intersecting K.

• Since γ,K are disjoint compact sets, define M := inf
{

|z − ξ|
∣∣∣ z ∈ K, ξ ∈ γ

}
, the 0 <

M < ∞.

• Apply Cauchy’s formula to the function Fn(z) := fn(z) − f(z), where we want to show
|Fn(z)| < ε:

Fn(z) = 1
2πi

∫
γ

Fn(ξ)
z − ξ

dξ

=⇒ |fn(z) − f(z)| ≤ 1
2π

∫
γ

∣∣∣∣fn(ξ) − f(ξ)
z − ξ

∣∣∣∣ dξ
≤ 1

2π

∫
γ

|fn(ξ) − f(ξ)|
M

dξ

≤ 1
2πM

∫
γ

|fn(ξ) − f(ξ)|| dξ|

,

7.2 Spring 2021.6, Spring 2015, Extras 29



7 Function Convergence

where by hypothesis we can bound this integral by an ε. So given ε, choose n large
enough to bound the integral as above by some ε depending only on n and not on z.
Taking sup of both sides yields ∥fn − f∥∞,K ≤ ε

2πM , so fn → f uniformly on K.

E 7.3 Spring 2020 HW 2, SS 2.6.10 e

Problem 7.3.1 (?)
Can every continuous function on D be uniformly approximated by polynomials in the variable
z?

Hint: compare to Weierstrass for the real interval.

Solution:
No: polynomials are holomorphic and the uniform limit of holomorphic functions is holomor-
phic. However, f(z) := z is continuous on D but not holomorphic, so can not be uniformly
approximated by any sequence of polynomials.

E 7.4 Spring 2020 HW 2.5 e

Problem 7.4.1 (?)
Assume f is continuous in the region

{
x+ iy

∣∣∣ x ≥ x0, 0 ≤ y ≤ b
}

, and the following limit
exists independent of y:

lim
x→+∞

f(x+ iy) = A.

Show that if γx :=
{
z = x+ it

∣∣∣ 0 ≤ t ≤ b
}

, then

lim
x→+∞

∫
γx

f(z) dz = iAb.

Solution:
The key insight: ∫

γ
Adz =

∫ b

0
A · i dt z = x+ it, dz = i dt

= iA

∫ b

0
dt

= iAb.

7.3 Spring 2020 HW 2, SS 2.6.10 30



7 Function Convergence

So now estimate the difference:∣∣∣∣∫
γ
f(z) dz − iAb

∣∣∣∣ =
∣∣∣∣∫
γ
f(z) dz −

∫
γ
Adz

∣∣∣∣
=
∣∣∣∣∫
γ

(f(z) −A) dz
∣∣∣∣

≤
∫
γ

|f(z) −A| dz

≤ sup
z=x+iy∈γ

|f(x+ iy) −A| · length(γx)

x→∞−→ 0,

using that length(γx) = b is constant.

E 7.5 Limiting curve variant e

Problem 7.5.1 (?)
Let 0 ≤ α ≤ 2π be a fixed angle. Suppose f is continuous on the region Ω =
{|z| ≥ R,Arg(z) ∈ [0, α]} and limz→∞ zf(z) = A. Show that

lim
z→∞

∫
γR

f(z) dz = iAα,

where γR := {|z| = R,Arg(z) ∈ [0, α]} is an arc.

Solution:
Key observation:

iAα =
∫
γ

A

z
dz.

Why this is true: ∫
γ

A

z
dz =

∫ α

0

1
Reit

iReitdt =
∫ α

0
iA dt = iAα.

Now estimate the difference:

7.5 Limiting curve variant 31



8 Series Convergence

∣∣∣∣∫
γ
f(z) dz − iAα

∣∣∣∣ =
∣∣∣∣∫
γ
f(z) dz −

∫
γ

A

z
dz

∣∣∣∣
=
∣∣∣∣∫
γ
f(z) − A

z
dz

∣∣∣∣
=
∣∣∣∣∫
γ

zf(z) −A

z
dz

∣∣∣∣
≤
∫
γ

∣∣∣∣zf(z) −A

z

∣∣∣∣ dz
=
∫
γ

|zf(z) −A|
R

dz

≤ 1
R

∫
γ

∥zf(z) −A∥∞,γ dz

= ε

R
· length(γ)

= ε

R
·Rα

= εα

R→∞−→ 0.

8 Series Convergence

E 8.1 Fall 2020.2 e

Problem 8.1.1 (?)
Expand 1

1−z2 + 1
z−3 in a series of the form ∑∞

−∞ anz
n so it converges for

• |z| < 1,

• 1 < |z| < 3,

• |z| > 3.

Solution:
General strategy: each has two expansions, so just compute them all and pick appropriate
ones for regions afterwards.

Series Convergence 32



8 Series Convergence

For 1
z−3 :

1
z − 3 = −1

3
1

1 − z
3

= −1
3
∑
k≥0

3−kzk |z| < 3

= 1
z

1
1 − 3

z

= z−1 ∑
k≥0

3kz−k |z| > 3.

For 1
1−z2 :

1
1 − z2 =

∑
k≥0

z2k |z| < 1

= 1
z2

−1
1 − z−2 = −z−2 ∑

k≥0
z−2k |z| > 1.

So take

0 < |z| < 1 f(z) =
∑
k≥0

z2k − 1
3
∑
k≥0

3−kzk

1 < |z| < 3 f(z) = −z−2 ∑
k≥0

z−2k − 1
3
∑
k≥0

3−kzk

3 < |z| < ∞ f(z) = −z−2 ∑
k≥0

z−2k + z−1 ∑
k≥0

3kz−k.

E 8.2 Spring 2020 HW 2.2 e

Problem 8.2.1 (?)
Let f be a power series centered at the origin. Prove that f has a power series expansion
about any point in its disc of convergence.

Concepts Used:

• Cauchy’s integral formula:

f(z) =
∫

f(ξ)
ξ − z

dξ.

Solution:
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8 Series Convergence

Idea: use Cauchy’s integral formula to get a series in (z − z0).

f(z) =
∫

f(ξ)
ξ − z

dξ

=
∫
f(ξ)

( 1
ξ − (z − z0) − z0

)
dξ

=
∫

f(ξ)
ξ − z0

( 1
1 − w

)
dξ w := z − z0

ξ − z0

=
∫

f(ξ)
ξ − z0

∑
k≥0

wk dξ

=
∑
k≥0

(∫
f(ξ)
ξ − z0

dξ

)
wk

=
∑
k≥0

(∫
f(ξ)
ξ − z0

dξ

)
wk

=
∑
k≥0

(∫
f(ξ)

(ξ − z0)k+1 dξ

)
(z − z0)k,

where we’ve integrated over a curve contained in D the disc of convergence, and that the
power series for f converges uniformly on D to commute the sum and integral.

E
8.3 Fall 2015, Spring 2020 HW 2, Ratio

Test
e

Problem 8.3.1 (?)
Let an ̸= 0 and show that

lim
n→∞

|an+1|
|an|

= L =⇒ lim
n→∞

|an|
1
n = L.

In particular, this shows that when applicable, the ratio test can be used to calculate the
radius of convergence of a power series.

E 8.4 Analytic on circles e

Problem 8.4.1 (?)
Suppose f is analytic on a region Ω such that D ⊆ Ω ⊆ C and f(z) = ∑∞

n=0 anz
n is a power

series with radius of convergence exactly 1.

a. Give an example of such an f that converges at every point of S1.
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8 Series Convergence

b. Give an example of such an f which is analytic at 1 but ∑∞
n=0 an diverges.

c. Prove that f can not be analytic at every point of S1.

Solution:
Part a: Take f(z) :=

∑
n−2zn, which converges absolutely for |z| = 1 by the comparison

test.
Part b: Take f(z) := 1

1+z = ∑
k≥0(−1)kzk, then f(1) = 2 by analytic continuation of the

series at z = 1. Then ak = (−1)k,
Part c: ??? Not clear if this is true, take f(z) = ∑

zn/n2.

E
8.5 Spring 2020 HW 2.3: series on the

circle
e

Problem 8.5.1 (?)
Prove the following:

a. ∑n nz
n does not converge at any point of S1

b. ∑n
zn

n2 converges at every point of S1.

c. ∑n
zn

n converges at every point of S1 except z = 1.

Concepts Used:

• Summation by parts: Set B0 := 0, Bn := ∑
k≤n bk, then

N∑
n=M

anbn = aNBN − aMBM−1 −
N−1∑
n=M

(an+1 − an)Bn.

• Summing a geometric series:

∑
1≤k≤N

zk = 1 − zN+1

1 − z
.

Solution:
Part 1: This series does not have small tails: writing cn := nzn we have |cn| = |nzn| = |n| → ∞
when |z| = 1.
Part 2: This converges absolutely and absolute convergence implies convergence:∣∣∣∑n−2zn

∣∣∣ ≤
∑∣∣∣n−2zn

∣∣∣ =
∑

n−2 < ∞.
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8 Series Convergence

Part 3: Write f(z) = ∑
k≥1 k

−1zk. The value f(1) is the harmonic series, which we know
diverges from undergraduate Calculus. For z ̸= 1, apply summation by parts with ak := k−1

and bk := zk, so

• aN = N−1

• aM = M−1

• BN = ∑
k≤N z

k = 1−zN+1

1−z
• BM = ∑

k≤M zk

• an+1 − an = (n+ 1)−1 + n−1 = −(n(n+ 1))−1

Note that |BN | ≤ Cz := 2
|1−z| for any N , since |z| = 1 is on S1 and the maximum distance

between two points on S1 is 2. Moreover Cz < ∞ when z ̸= 1.
Applying the formula:

∣∣∣∣∣
N∑

n=M
n−1zn

∣∣∣∣∣ ≤
∣∣∣∣∣N−1BN −M−1BM−1 −

N−1∑
n=M

[
−(n(n+ 1))−1Bn

]∣∣∣∣∣
≤ N−1Cz +M−1Cz +

∑
M≤n≤N−1

Cz

( 1
n2 + n

)

≤ Cz

N−1 +M−1 +
∑

M≤n≤N−1
n−2


M,N→∞−→ 0,

where we’ve used the triangle inequality and convergence of ∑n−2. By the Cauchy criterion
for sums, f(z) converges pointwise for z ̸= 1.

E 8.6 Uniform convergence of series e

Problem 8.6.1 (?)
Suppose ∑∞

n=0 anz
n converges for some z0 ̸= 0.

a. Prove that the series converges absolutely for each z with |z| < |z|0.

b. Suppose 0 < r < |z0| and show that the series converges uniformly on |z| ≤ r.

E 8.7 Sine series? e
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Problem 8.7.1 (?)
Prove that the following series converges uniformly on the set

{
z
∣∣∣ ℑ(z) < ln 2

}
:

∞∑
n=1

sin(nz)
2n .

Suppose 0 < r < |z0| and show that the series converges uniformly on |z| ≤ r.

E 8.8 Fall 2015 Extras e

Assume f(z) is analytic in D and f(0) = 0 and is not a rotation (i.e. f(z) ̸= eiθz). Show that
∞∑
n=1

fn(z) converges uniformly to an analytic function on compact subsets of D, where fn+1(z) =

f(fn(z)).

9 Holomorphicity

E 9.1 Fall 2019.6 e

Problem 9.1.1 (?)
A holomorphic mapping f : U → V is a local bijection on U if for every z ∈ U there exists an
open disc D ⊂ U centered at z so that f : D → f(D) is a bijection. Prove that a holomorphic
map f : U → V is a local bijection if and only if f ′(z) ̸= 0 for all z ∈ U .

Concepts Used:

• Inverse function theorem: if F ∈ C1(Rn → Rn) and Df is invertible at p, the F is
invertible in a neighborhood of p, and F−1 is C1.

Solution:
⇐= : Let z ∈ U be fixed. Since f is holomorphic at z and f ′(z) ̸= 0, consider f(x, y) and its
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9 Holomorphicity

Jacobian as a real-valued function:

Df =
[
ux uy
vx vy

]
=⇒ det(Df ) = uxvy − vxuy = u2

x + v2
x =

∣∣f ′∣∣2 > 0,

so the derivative matrix is invertible at z. Applying the inverse function theorem yields that f
is a smooth diffeomorphism on some neighborhood N ∋ p, and in particular is bijective on N .
̸ ⇐= : If f ′(z) = 0 for some z, then we claim that f can not be injective. Equivalently,
injectivity of f implies f ′ ̸= 0. Suppose f is holomorphic at z0 but f ′(z0) = 0. Write
h(z) := f(z) − f(z0), which has a zero z0 of some order k ≥ 2. For a disc D small enough
about z0 avoiding the other (isolated) zeros of h and f ′, for any p in a neighborhood of z0 and
contained in D, ∫

∂D

f ′(ξ)
f(ξ) − p

dξ = ♯Z(f(z) − p),

using the argument principle and that (f(ξ) − p)′ = f ′(ξ). But for D small enough, ♯Z(f(z) −
p) = ♯Z(f(z)−f(z0)) = k by Rouché, so there are k solutions to f(z) = p. Since (f(z)−p)′ ≠ 0
in D, none of these can be repeated roots, so these k solutions are distinct, forcing f to be
k-to-one and fail injectivity.
Expanding on the Rouché argument: set c := infz∈D |f(z) − w0|, then for D′ of radius c, set

• F (z) := (f(z) − z0) − (f(z) − p) = z − p
• G(z) = f(z) − z0
• (F +G)(z) = f(z) − p

Then F > G on ∂D′ will imply F, F +G have the same number of zeros within D′, and this
bound follows from

|F (z)| = |z − p| < c ≤ |f(z) − p|,

where the first inequality is from making the disc small and the second from choosing c as an
inf.

E 9.2 Spring 2020 HW 1.7 e

Problem 9.2.1 (?)
Prove that f(z) = |z|2 has a derivative at z = 0 and nowhere else.

Solution:
The easy check: f is differentiable iff ∂zf = 0, but

∂z|z|2 = ∂zzz = z ̸= 0,

unless of course z = 0.
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9 Holomorphicity

A more explicit check: check the limits.

f(z) − f(0)
z − 0 = |z|2

z
= zz

z
= z

z→0−→ 0,

so f is differentiable at w = 0. Now taking w = Reiθ ̸= 0,

f(z) − f(w)
z − w

= |z|2 − |w|2

z − w
= (|z| + |w|) (|z| − |w|)

z − w
= |z| − |w|

z − w
· (|z| + |w|) .

First let z → w along ∂DR′(0) where R′ := |w|, so that the numerator vanishes and the limit
is zero. Then let z → w along the curve

{
tw
∣∣∣ t ∈ [0, 1]

}
, then |z| = t|w|, so the ratio becomes

|z| − |w|
z − w

· (|z| + |w|) = t|w| − |w|
tw − w

· (t|w| + |w|)

= |w| (t− 1)
w(t− 1) · |w|(t+ 1)

= |w|2(t+ 1)
w

= w(t+ 1)
t→1→ 2w,

which is nonzero is w ̸= 0.

E 9.3 Spring 2020 HW 1.8 e

Problem 9.3.1 (?)
Let f(z) be analytic in a domain, and prove that f is constant if it satisfies any of the following
conditions:

a. |f(z)| is constant.
b. ℜ(f(z)) is constant.
c. arg(f(z)) is constant.
d. f(z) is analytic.

How do you generalize (a) and (b)?

Solution (1):
Slick proof: use that no curve γ ⊆ C is open in C.
If |f | = c = r2 for some r, then the image of f is contained in the curve ∂Dr(0). Since f is
holomorphic on the source domain Ω, f is an open map, so if f is nonconstant the f(Ω) is
open. But f(Ω) ⊆ ∂Dr(0) can not be open, so f must be constant.
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9 Holomorphicity

The usual more direct proof: write |f(z)| = u2 = v2 = r2. The claim is that both u and v are
constant. Take partial derivatives and clear the factor of 2:

∂x : uux + vvx = 0
∂y : uuy + vvy = 0.

Now apply CR: ux = vy, uy = −vx, then

uux − vuy = 0
uuy + vux = 0.

Multiply the first by ux and the second by uy, then add

uu2
x − vuyux = 0

uu2
y + vuxuy = 0

=⇒ u(u2
x + u2

y) = 0.

A similar calculation yields v(v2
x+v2

y) = 0, so If u(x, y) = v(x, y) = 0 at any point, then |f | = 0
and f ≡ 0, so we’re done. Otherwise, u, v do not simultaneously vanish, so we must have

0 = u2
x + u2

y =⇒ 0 = ux = uy =⇒ u constant
0 = v2

x + v2
y =⇒ 0 = vx = vy =⇒ v constant ,

so f = u+ iv is constant.

Solution (2):
Write f = u + iv, so u ≡ c is constant. Then ux = uy = 0, and CR yields vy = ux = 0 and
vy = −ux = 0, so v is constant, making f constant.

Solution (3):
Slick proof: apply the open mapping theorem again, since Arg(f) = θ0 implies that im(f) ⊆ γ

for the curve γ :=
{
teiθ0

∣∣∣ t ∈ R
}

which has no open subsets.
Note that this implies that any R-valued holomorphic function is constant.

Solution (4):
Write f = u+ iv so f = u+ iṽ where ṽ := −v. Then u, ṽ are constant, so in particular ℜ(f)
is constant and by 2 f is constant.
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9 Holomorphicity

E 9.4 Spring 2020 HW 1.9 e

Problem 9.4.1 (?)
Prove that if z 7→ f(z) is analytic, then z 7→ f(z) is analytic.

Solution (Cauchy-Riemann):
It suffices to show that g(z) := f(z) satisfies CR. Write f = u+ iv, then

g(x, y) := a(x, y) + ib(x, y) = u(x,−y) − iv(x,−y),

so we want to show ax = by and ay = −bx. By the chain rule,

ax = ∂x(x 7→ u(x,−y)) = ux

ay = ∂x(y 7→ u(x, y)) ◦ (y 7→ −y) = −uy
bx = ∂x(x 7→ −v(x,−y)) = −vx
by = ∂x(y 7→ −v(x, y)) ◦ (y 7→ −y) = vy.

Now use CR for f to write

ax = ux = vy = by

ay = −uy = vx = −bx.

Solution (Direct definition):
Set g(z) := (f(z∗))∗ := f(z), we can then show g′ exists:

lim
h→0

g(z + h) − g(z)
h

:= lim
h→0

f((z + h)∗)∗ − f(z∗)∗

h∗∗

= lim
h→0

(f(z∗ + h∗) − f(z∗))∗

h∗∗

= lim
h→0

(
f(z∗ + h∗) − f(z∗)

h∗

)∗

:=
(
f ′(z∗)

)∗
,

where we’ve used that w 7→ w∗ is continuous to commute a limit. So this limit exists, g is
differentiable with g′(z) := f ′(z).

Solution (Power series):
Since f is analytic, take a Laurent expansion f(z) = ∑

k≥0 ckz
k. Then

g(z) := (f(z∗))∗ =

∑
k≥0

ckzk

∗

=
∑
k≥0

ckz
k,

making g analytic.

9.4 Spring 2020 HW 1.9 41



9 Holomorphicity

E 9.5 Spring 2020 HW 1.10 e

Problem 9.5.1 (?)

a. Show that in polar coordinates, the Cauchy-Riemann equations take the form

∂u

∂r
= 1
r

∂v

∂θ
and ∂v

∂r
= −1

r

∂u

∂θ
.

b. Use (a) to show that the logarithm function, defined as

Log z = log r + iθ where z = reiθ with − π < θ < π.

is holomorphic on the region r > 0,−π < θ < π.

Also show that this function is not continuous in r > 0.

Solution:
Part 1:
Write

x = r cos θ =⇒ gradr,θ x = [cos θ,−r sin θ]
y = r sin θ =⇒ gradr,θ y = [sin θ, r cos θ].

Then

ur = uxxr + uyyr

= ux cos θ + uy sin θ
= vy cos θ − vx sin θ
= r−1 (vy · r cos θ − uy · r sin θ)
= r−1 (vyyθ + uyxθ)
= r−1vθ.

Similarly

vr = vxxr + vyyr

= vx cos θ + vy sin θ
= −uy cos θ + ux sin θ
= −r−1 (uy · r cos θiux · r sin θ)
= −r−1 (uxxθ + uyyθ)
= −r−1uθ.

Part 2:
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Define u(r, θ) = log(r) and v(r, θ) = θ to write Log(z) = u+ iv. Then check

ur = r−1, vθ = 1 =⇒ ur = r−1vθ

vr = 0, uθ = 0 =⇒ vr = −r−1uθ,

provided r > 0 so that ur is defined.
That this function is not continuous: let wk = 1 ·ei(2π−1/k), noting that these are two sequences
converging to 1. If Log(z) were continuous, we would have

lim
k→∞

Log(wk) = Log(1) := log(1) + i · 0 = 0,

Thus for any ε we could choose k ≫ 1 so that

|log(zk) − 0|, |log(wk) − 0| < ε.

However,

log(wk) = log(1) + i(2π − 1/k) = i(2π − 1/k) = 2πi− 1
k
> ε,

for arbitrarily large k, provided we choose ε small.

E 9.6 Fall 2021.1 e

Problem 9.6.1 (?)
Let f(z) be an analytic function on |z| < 1. Prove that f(z) is necessarily a constant if f(z)
is also analytic.

Solution:
Let f̃(z) := f(z). Using that f is analytic iff its components solve Cauchy-Riemann, using
that f, f̃ are analytic,

ux = vy uy = −vx
ux = −vy uy = vx

=⇒ 2ux = vy − vy = 0 =⇒ ux = 0
=⇒ 2uy = vx − vx = 0 =⇒ uy = 0

=⇒ 0 = uy − uy = vx − (−vx) = 2vx =⇒ vx = 0
=⇒ 0 = ux − ux = vy − (−vy) = 2vy =⇒ vy = 0,

so gradu = [ux, uy] ≡ 0 making u constant. Similarly grad v = [vx, vy] = 0, so f : R2 → R is
constant.
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9 Holomorphicity

E
9.7 Holomorphic functions form an integral

domain
e

Problem 9.7.1 (?)
Suppose D is a domain and f, g are analytic on D.
Prove that if fg = 0 on D, then either f ≡ 0 or g ≡ 0 on D.

Solution:
Suppose fg = 0 on D but f ̸≡ 0, we’ll show g ≡ 0 on D. Since f ̸≡ 0, f(z0) ̸= 0 at some point
z0. Since f is holomorphic, in particular f is continuous, so there is a neighborhood U ∋ z0
where f(z) ̸= 0 for any z ∈ U . But f(z)g(z) = 0 for all z ∈ U , and since C is an integral
domain, this forces g(z) = 0 for every z ∈ U . So g ≡ 0 on U . Now U is a set with a limit
point, so by the identity principle, g ≡ 0 on D.

E
9.8 Holomorphic functions with specified

values
e

Problem 9.8.1 (?)
Suppose f is analytic on D◦. Determine with proof which of the following are possible:

a. f
(

1
n

)
= (−1)n for each n > 1.

b. f
(

1
n

)
= e−n for each even integer n > 1 while f

(
1
n

)
= 0 for each odd integer n > 1.

c. f
(

1
n2

)
= 1

n for each integer n > 1.

d. f
(

1
n

)
= n−2

n−1 for each integer n > 1.

Solution:
Part a: Not possible: if f is holomorphic then f is in particular continuous, so

f(0) = f(lim 1/n) = lim f(1/n) = lim(−1)n,

which does not converge.
Part b: Not possible: note that 1/n has a limit point, so if f(1/n) = 0 then f ≡ 0 on D by
the identity principle. In particular, we can not have f(1/n) = e−n > 0.
Alternatively, note that a holomorphic f must have isolated zeros, while z0 = 0 is forced to be
a zero of f by continuity, which has infinitely many zeros of the form 1/n in any neighborhood.
Part c: Not possible: suppose so, then by continuity, we have

f(0) = f(lim 1/n2) = lim f(1/n2) = lim 1/n = 0,
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10 Geometry

so z0 = 0 is a zero. Now defining g(z) = z
1
2 := e

1
2 log(z) on U := C \ (−∞, 0] extending this

continuously to zero by g(0) = 0 yields g(z) = f(z)on
{

1/n2
∣∣∣ n > 1

}
∪ {0}, so g(z) ≡ f(z)

on U . But then g ≡ f on D, and g is not holomorphic on all of D, contradicting that f was
holomorphic on D.
Part d: Yes: note that this forces f(0) = lim n−2

n−1 = 1 by continuity at z = 0. We can write

n− 2
n− 1 =

1 − 2 · 1
n

1 − 1
n

,

so define g(z) := 1−2z
1−z . Then g(1/n) = f(1/n) for all n and g(0) = 1 = f(0), so g = f on a set

with an accumulation point making g ≡ f on D. Note that g is holomorphic on D, since it has
only a simple pole at z0 = 1.

10 Geometry

E 10.1 Some Geometry e

Let zk(k = 1, · · · , n) be complex numbers lying on the same side of a straight line passing through
the origin. Show that

z1 + z2 + · · · + zn ̸= 0, 1/z1 + 1/z2 + · · · + 1/zn ̸= 0

Hint: Consider a special situation first.

E 10.2 Images of circles e

Let f(z) = z + 1/z. Describe the images of both the circle |z| = r of radius r(r ̸= 0) and the ray
arg z = θ0 under f in terms of well known curves.

E 10.3 Geometric Identities e

Prove that |z1 + z2|2 + |z1 − z2|2 = 2
(
|z1|2 + |z2|2

)
for any two complex numbers z1, z2, and explain

the geometric meaning of this identity
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10 Geometry

E 10.4 Geometric Identities e

Use n-th roots of unity (i.e. solutions of zn − 1 = 0 ) to show that

cos 2π
n

+ cos 4π
n

+ cos 6π
n

+ · · · + cos 2(n− 1)π
n

+ = −1 and

sin 2π
n

+ sin 4π
n

+ sin 6π
n

+ · · · 2(n− 1)π
n

= 0

Hint: If zn + c1z
n−1 + · · · + cn−1z + cn = 0 has roots

z1, z2, . . . , zn, then

z1 + z2 + · · · + zn = −c1

z1z2 · · · zn = (−1)ncn (not used)

E 10.5 Geometry from equations e

Describe each set in the z-plane in (a) and (b) below, where α is a complex number and k is a
positive number such that 2|α| < k.

(a) |z − α| + |z + α| = k;

(b) |z − α| + |z + α| ≤ k.

E 10.6 Spring 2020.1, Spring 2020 HW 1.4 e

Problem 10.6.1 (?)

a. Prove that if c > 0,

|w1| = c|w2| =⇒
∣∣∣w1 − c2w2

∣∣∣ = c|w1 − w2|.

b. Prove that if c > 0 and c ̸= 1, with z1 ̸= z2, then the following equation represents a
circle: ∣∣∣∣z − z1

z − z2

∣∣∣∣ = c.

Find its center and radius.

Hint: use part (a)
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Solution (part 1):

∣∣∣w1 − c2w2
∣∣∣2 = (w1 − c2w2)(w1 − c2w2)

= |w1|2 + c4|w2|2 − 2c2ℜ(w1w2)
= c2|w2|2 + c4|w2|2 − 2c2ℜ(w1w2)
= c2|w2|2 + c2|w1|2 − 2c2ℜ(w1w2)
= c2|w1 − w2|,

where we’ve applied the assumption |w1| = c|w2| twice.

Solution (part 2):
Using part 1:

w1 := z − z1, w2 := z − z2 =⇒ |w1| = c|w2|

=⇒
∣∣∣w1 − c2w2

∣∣∣ = c|w1 − w2|

=⇒
∣∣∣z − z1 − c2(z − z2)

∣∣∣ = |(z − z1) − (z − z2)|

=⇒
∣∣∣(1 − c2)z − z3

∣∣∣ = |z2 − z1|

=⇒ |z − z4| = r,

where the zi and r are all constant, so this is the equation of a circle.

E 10.7 Spring 2020 HW 1.1 e

Problem 10.7.1 (?)
Geometrically describe the following subsets of C:

a. |z − 1| = 1
b. |z − 1| = 2|z − 2|
c. 1/z = z
d. ℜ(z) = 3
e. ℑ(z) = a with a ∈ R.
f. ℜ(z) > a with a ∈ R.
g. |z − 1| < 2|z − 2|

Solution:

a. A circle of radius 1 about z = 1.

b. A circle, using that Apollonius circles are characterized as the locus of distances whose
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ratios to some fixed points A,B are constant. To actually compute this:

|z − 1|2 = 4|z − 2|2

=⇒ (x− 1)2 + y2 − 4
(
(x− 2)2 + y2

)
= 0

−3x2 + 14x− 3y2 − 15 = 0 ⋆

=⇒ x2 − 14
3 x+ y2 + 5 = 0

=⇒ (x− 14
2 · 3)2 − 14

2 · 3
2

+ y2 + 5 = 0

=⇒ (x− 14
6 )2 + y2 =

(2
3

)2
,

which is a circle of radius 2/3 with center
(

14
6 , 0

)
. To avoid the calculation, use

Ax2 +Bxy + Cy + · · · = 0, A = 1, B = 0, C = 1 =⇒ ∆ := B2 − 4AC < 0,

which is an ellipse, and since A = C it is in fact a circle.

c. S1, using that 1
z = z

zz = z
|z|2 and if this equals z, then |z|2 = 1. Alternatively, 1 = zz =

|z|2.

d. Vertical line through z = 3.

e. Horizontal line through z = ia.

f. Region to the right of the vertical line through z = a.

g. Exterior of a circle: same calculation is (2), replacing = 0 with < 0. Note that the line
marked ⋆ involves dividing by a negative, so this flips the sign, and we get · · · >

(
2
3

)2
at

the end.

E 10.8 Fixed argument exercise e

Exercise 10.8.1 (?)
Fix a, b ∈ C and θ, and describe the locus{

z
∣∣∣ Arg

(
z − a

z − b

)
= θ

}
.

Solution:
The geometry at hand:
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By the inscribed angle theorem, this locus is an arc of a circle whose center O is the point for
which the angle aOb is 2θ:
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E 10.9 Fall 2019.2, Spring 2020 HW 1.11 e

Problem 10.9.1 (?)
Prove that the distinct complex numbers z1, z2, z3 are the vertices of an equilateral triangle if
and only if

z2
1 + z2

2 + z2
3 = z1z2 + z2z3 + z3z1.

Solution:
=⇒ : Write the vertices as z1, z2, z3 and the sides as

• s1 := z2 − z1
• s2 := z3 − z2
• s1 := z1 − z3

Note that si = ±ζ3si−1, dividing yields
s2
s3

= s1
s2

⇐⇒ s2
2 − s1s3 = 0

⇐⇒ (z2 − z3)2 − (z2 − z1) (z1 − z3) = 0

⇐⇒
(
z2

2 + z2
3 − 2z2z3

)
−
(
z2z1 − z2z3 − z2

1 + z1z3
)

= 0

⇐⇒ z2
1 + z2

2 + z2
3 − (z1z2 + z2z3 + z3z1) = 0.

⇐= : We still have si = θisi−1 for some angles θi We have

and

s1
s2

= θ1
θ2

· s3
s1

s2
s3

= θ2
θ3

· s1
s2

s3
s1

= θ3
θ1

· s2
s3
.

Running the above calculation backward yields s2/s3 = s1/s2, and by the 2nd equality above,
this forces θ2 = θ3. Similar arguments show θ1 = θ2 = θ3 which forces s1 = s2 = s3.
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11 Complex Arithmetic

E 11.1 Sum of Sines e

Use de Moivre’s theorem (i.e.
(
eiθ
)n

== cosnθ + i sinnθ, or (cos θ + i sin θ)n = cosnθ + i sinnθ)
to find the sum

sin x+ sin 2x+ · · · + sinnx

E 11.2 Solving Equations e

Characterize positive integers n such that (1 + i)n = (1 − i)n

E 11.3 Characters e

Let n be a natural number. Show that

[1/2(−1 +
√

3i)]n + [1/2(−1 −
√

3i)]n

is equal to 2 if n is a multiple of 3 , and it is equal to −1 otherwise.

E 11.4 Spring 2019.3 #complex/qual/stuck e

Problem 11.4.1 (?)
Let R > 0. Suppose f is holomorphic on

{
z
∣∣∣ |z| < 3R

}
. Let

MR := sup
|z|≤R

|f(z)|, NR := sup
|z|≤R

∣∣f ′(z)
∣∣

a. Estimate MR in terms of NR from above.

b. Estimate NR in terms of M2R from above.
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11 Complex Arithmetic

Solution:
First note that by the maximum modulus principal, it suffices to consider sups on the boundary,
i.e.

MR = sup
|z|=R

|f(z)|, NR = sup
|z|=R

∣∣f ′(z)
∣∣.

The first estimate: stuck!
The second estimate: suppose z0 ∈ DR(0), then any DR(z0) is contained in D2R(0), So for any
such z0, apply Cauchy’s integral formula centered at z0:

f (1)(z0) = 1
2πi

∮
∂DR(z0)

f(ξ)
(ξ − z0)2 dξ

=⇒
∣∣∣f (1)(z0)

∣∣∣ ≤ 1
2π

∮
∂DR(z0)

∣∣∣∣ f(ξ)
(ξ − z0)2

∣∣∣∣ dξ
= 1

2π

∮
∂DR(z0)

|f(ξ)|
|ξ − z0|2

dξ

= 1
2π

∮
∂DR(z0)

|f(ξ)|
R2 dξ

≤ 1
2πR

−2
∮
∂DR(z0)

sup
z∈∂DR(z0)

|f(z)| dξ

= 1
2πR

−2 sup
∂DR(z0)

|f(z)| · 2πR

= R−1 sup
∂DR(z0)

|f(z)|

≤ R−1M2R,

where we’ve used in the last step that DR(z0) ⊆ D2R(0), and sups can only get larger when
taken over larger sets. Since this was an arbitrary z0 ∈ DR(0), this holds for all z with |z| ≤ R.
Since taking sups preserves inequalities, we have∣∣f ′(z0)

∣∣ ≤ R−1M2R ∀|z| ≤ R =⇒ NR := sup
|z|≤R

∣∣f ′(z)
∣∣ ≤ R−1M2R.

E 11.5 Spring 2021.1 e

△! Warning 11.5.1
The question as written on the original qual has several errors. What is below is the correct version
of the inequality.

Problem 11.5.1 (?) 1. Let z1 and z2 be two complex numbers.
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(a) Show that

|1 − z1z2|2 − |z1 − z2|2 =
(
1 − |z1|2

) (
1 − |z2|2

)
(b) Show that if |z1| < 1 and |z2| < 1, then

∣∣∣ z1−z2
1−z1z2

∣∣∣ < 1.

(c) Assume that z1 ̸= z2. Show that
∣∣∣ z1−z2

1−z1z2

∣∣∣ = 1 if only if |z1| = 1 or |z2| = 1.

Solution:
Part 1: For ease of notation, let z = z1 and w = z2 We want to show

|1 − zw| − |z − w|2 =
(
1 − |z|2

) (
1 − |w|2

)
.

So write

|1 − zw| − |z − w|2 = (1 − zw)(1 − zw) − (z − w)(z − w)
= 1 − zw − zw − |z|2|w|2 − |z|2 − |w|2 + wz + zw

= 1 − |z|2|w|2 − |z|2 − |w|2

= (1 − |z|2)(1 − |w|2).

Part 2 and 3: ∣∣∣∣ z − w

1 − zw

∣∣∣∣2 ≤ 1 ⇐⇒ 0 ≤ |1 − zw|2 − |z − w|2

⇐⇒ 0 ≤ (1 − |z|2)(1 − |w|2),

where we’ve used part 1. But this is clearly true when |z|, |w| < 1, so the RHS is positive.
Moreover if |z| = |w| = 1, the RHS is zero, yielding equalities at every step instead.

E 11.6 Spring 2020 HW 1.5 e

11.6 Spring 2020 HW 1.5 53
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Problem 11.6.1 (?) a. Let z, w ∈ C with zw ̸= 1. Prove that∣∣∣∣ w − z

1 − wz

∣∣∣∣ < 1 if |z| < 1, |w| < 1

with equality when |z| = 1 or |w| = 1.

b. Prove that for a fixed w ∈ D, the mapping F : z 7→ w−z
1−wz satisfies

• F maps D to itself and is holomorphic.
• F (0) = w and F (w) = 0.
• |z| = 1 implies |F (z)| = 1.
• F is a bijection.

Solution:
Part 1: See Spring 2021.1 above.
Part 2, holomorphicity: This is clearly meromorphic, as it’s a rational function, and has a
singularity only at z such that wz = 1. This can only happen if z, w ∈ S1: taking the modulus
yields

wz = 1 =⇒ |w|2|z|2 = 1,

and moreover since |w|2 ≤ 1 and |z|2 ≤ 1, the only way this product can be one is when
|w|2 = |z|2 = 1. This also forces z = 1/w.
The claim is that the singularity 1/w is removable. Note that 1

w=w on the circle, so 1/w =
w = 2, so (

z − w−1
)( w − z

1 − wz

)
=
(
wz − 1
w

)(
w − z

1 − wz

)
= w−1(w − z)
= w(w − z)
z→w−1=w→ 0.

Part 2, being a bijection: This follows from finding an explicit inverse, using that F 2 = id:

F (F (z)) =
w −

(
w−z
1−wz

)
1 − w

(
w−z
1−wz

)
= w(1 − wz) − (w − z)

q − wz − w(w − z)

= w − |w|2z − w + z

1 − wz − |w|2 + wz

= z
(
1 − |w|2

)
1 − |w|2

= z.

Part 2, being an involution: A direct check shows that F (w) = 0, since the numerator
vanishes, and F (0) = w−0

1−0 = w.
Part 3, preserving the circle: Follows from the estimate in part 1.
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E 11.7 Spring 2020 HW 1.2 e

Problem 11.7.1 (?)
Prove the following inequality, and explain when equality holds:

|z − w| ≥ ||z| − |w||.

Solution:

|z − w|2 = (z − w)(z − w)
= |z|2 + |w|2 − zw − zw

= |z|2 + |w|2 − 2ℜ(wz)
≥ |z|2 + |w|2 − 2|w||z|
≥ (|z| − |w|)2 ,

and taking square roots introduces an absolute value on the final term. Here we’ve used the
basic estimate

ℜ(z) ≤ |z| =⇒ −ℜ(z) ≥ −|z|.

E 11.8 Fall 2020.1, Spring 2020 HW 1.6 e

Problem 11.8.1 (?)
Use nth roots of unity to show that

2n−1 sin
(
π

n

)
sin
(2π
n

)
· · · sin

((n− 1)π
n

)
= n.

Hint:

1 − cos(2θ) = 2 sin2(θ)
2 sin(2θ) = 2 sin(θ) cos(θ).

Concepts Used:

• ζn := e
2πi
n

• Φn(z) := ∏
1≤j≤n−1(z − ζjn)

• Φn(1) = n, since Φn(z) = zn−1
z−1 = ∑

0≤j≤n−1 z
j .
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• sin(z) =
(
eiz−e−iz

2i

)
.

• ∏
k exp(ck) = exp (∑k ck).

Solution (Newer):

∏
1≤k≤n−1

sin
(
kπ

n

)
=

∏
1≤k≤n−1

ωkn − ω−k
n

2i

=
( 1

2i

)n−1 ∏
1≤k≤n−1

ωkn

(
1 − ζ−k

n

)

=
( 1

2i

)n−1 ∏
1≤k≤n−1

exp
(
iπk

n

) ∏
1≤k≤n−1

(
1 − ζ−k

n

)

=
( 1

2i

)n−1
exp

 iπ
n

∑
1≤k≤n−1

k

 ∏
1≤k≤n−1

(
1 − ζ−k

n

)

=
( 1

2i

)n−1
e

iπn(n−1)
2n

∏
1≤k≤n−1

(
1 − ζ−k

n

)

=
(1

2

)n−1 (1
i

)n−1 (
e

iπ
2
)n−1 ∏

1≤k≤n−1

(
1 − ζ−k

n

)
= 21−n ∏

1≤k≤n−1

(
1 − ζ−k

n

)
= 21−n ∏

1≤k≤n−1

(
1 − ζkn

)
= 21−nΦn(z)

z − 1
∣∣∣
z=1

= 21−n

 ∑
0≤k≤n−1

zk

 ∣∣∣
z=1

= n21−n.

Solution (Older):
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∏
1≤j≤n−1

sin
(
jπ

n

)
=

∏
1≤j≤n−1

1
2i

(
ζ

j
2
n − ζ

− j
2

n

)

=
( 1

2i

)n−1 ∏
1≤j≤n−1

ζ
j
2
n

∏
1≤j≤n−1

(
1 − ζ−j

n

)

=
( 1

2i

)n−1 ∏
1≤j≤n−1

exp
(
ijπ

n

) ∏
1≤j≤n−1

(
1 − ζ−j

n

)

=
( 1

2i

)n−1
exp

 ∑
1≤j≤n−1

ijπ

n

Φn(1)

=
( 1

2i

)n−1
exp

((n− 1)iπ
2

)
Φn(1)

=
( 1

2i

)n−1 (
eiπ/2

)n−1
Φn(1)

=
( 1

2i

)n−1
in−1Φn(1)

=
(1

2

)n−1
Φn(1)

= n

2n−1 .

E 11.9 Spring 2020 HW 1.5 e

Problem 11.9.1 (?)

a. Let z, w ∈ C with zw ̸= 1. Prove that∣∣∣∣ w − z

1 − wz

∣∣∣∣ < 1 if |z| < 1, |w| < 1

with equality when |z| = 1 or |w| = 1.

b. Prove that for a fixed w ∈ D, the mapping F : z 7→ w−z
1−wz satisfies

• F maps D to itself and is holomorphic.
• F (0) = w and F (w) = 0.
• |z| = 1 implies |F (z)| = 1.

Solution (part 1):
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0 ≤ (1 − |w|2)(1 − |z|2)
=⇒ |w|2 + |z|2 ≤ 1 + |w|2|z|2

=⇒ |w|2 + |z|2 − 2ℜ(wz) ≤ 1 + |w|2|z|2 − 2ℜ(wz)
=⇒ |w − z|2 ≤ |1 − wz|2.

Note that if either |w|2 = 1 or |z|2 = 1 then the first line is an equality, yielding equality in
the final line.

Solution (part 2):

• That F : D → D: follows from the inequality, since |z|, |w| < 1 for z, w ∈ D. Holo-
morphicity: follows from the fact that rational expressions of holomorphic functions are
holomorphic away from where the denominators vanish.

• Then just note that |wz| ≤ |w||z| < 1, so |1 − wz| > 0.

• F (0) = w−0
1−0 = w

• F (w) = w−w
1−ww = 0

• |z| = 1 yields equality in part 1.

Other notes: F is bijective on D:

F (F (z)) =
w −

(
w−z

1−wz

)
1 − w

(
w−z

1−wz

)
= w(1 − wz) − (w − z)

(1 − wz) − w(w − z)

= z − |w|2z
1 − |w|2

= z.

12 Laurent Expansions

E 12.1 Tie, Spring 2015: e

Let f(z) = 1
z

+ 1
z2 − 1 . Find all the Laurent series of f and describe the largest annuli in which

these series are valid.
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E 12.2 1 e

Find the Laurent expansion of

f(z) = z + 1
z(z − 1)

about z = 0 and z = 1 respectively.

Solution:
Let f(z) = z+1

z(z−1) .
About z = 0:

f(z) = (z + 1)
(

−1
z

+ 1
z − 1

)
= −(z + 1)

(
1
z

+
∞∑
n=0

zn
)

= −(z + 1)
∞∑

n=−1
zn

= 1
z

+ 2
∞∑
n=0

zn

= −1
z

− 2 − 2z − 2z2 − · · · .

About z = 1:

f(z) =
((1 − z) − 2

1 − z

)( 1
1 − (1 − z)

)
=
(

1 − 2
1 − z

) ∞∑
n=0

(1 − z)n

=
∞∑
n=0

(1 − z)n − 2
∞∑

n=−1
(1 − z)n

= − 2
1 − z

−
∞∑
n=0

(1 − z)n

= 2
z − 1 +

∞∑
n=0

(−1)n+1(z − 1)n

= 2
z − 1 − 1 + (z − 1) − (z − 1)2 + · · · .
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E 12.3 2 e

Find the Laurent expansions about z = 0 of the following functions:

e
1
z cos

(1
z

)
.

Solution:
Let f(z) = z+1

z(z−1) .
About z = 0:

f(z) = (z + 1)
(

−1
z

+ 1
z − 1

)
= −(z + 1)

(
1
z

+
∞∑
n=0

zn
)

= −(z + 1)
∞∑

n=−1
zn

= 1
z

+ 2
∞∑
n=0

zn

= −1
z

− 2 − 2z − 2z2 − · · · .

About z = 1:

f(z) =
((1 − z) − 2

1 − z

)( 1
1 − (1 − z)

)
=
(

1 − 2
1 − z

) ∞∑
n=0

(1 − z)n

=
∞∑
n=0

(1 − z)n − 2
∞∑

n=−1
(1 − z)n

= − 2
1 − z

−
∞∑
n=0

(1 − z)n

= 2
z − 1 +

∞∑
n=0

(−1)n+1(z − 1)n

= 2
z − 1 − 1 + (z − 1) − (z − 1)2 + · · · .
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E 12.4 3 e

Find the Laurent expansion of

f(z) = z + 1
z(z − 1)2

about z = 0 and z = 1 respectively.

Hint: recall that power series can be differentiated.

E 12.5 4 e

For the following functions, find the Laurent series about 0 and classify their singularities there:

sin2(z)
z

z exp 1
z2

1
z(4 − z) .

E 12.6 Tie’s Extra Questions: Fall 2015 e

Expand the following functions into Laurent series in the indicated regions:

(a) f(z) = z2 − 1
(z + 2)(z + 3) , 2 < |z| < 3, 3 < |z| < +∞.

(b) f(z) = sin z

1 − z
, 0 < |z − 1| < +∞

E 12.7 Tie, Fall 2015: Laurent Coefficients e

Suppose that f is holomorphic in an open set containing the closed unit disc, except for a pole at z0

on the unit circle. Let f(z) =
∞∑
n=1

cnz
n denote the the power series in the open disc. Show that

(1) cn ̸= 0 for all large enough n’s, and
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(2) lim
n→∞

cn
cn+1

= z0.

E 12.8 Spring 2020 HW 2, SS 2.6.14 e

Suppose that f is holomorphic in an open set containing D except for a pole z0 ∈ ∂D. Let ∑∞
n=0 anz

n

be the power series expansion of f in D, and show that lim an
an+1

= z0.

Solution

E 12.9 2 e

Suppose f is entire and has Taylor series ∑ anz
n about 0.

a. Express an as a contour integral along the circle |z| = R.

b. Apply (a) to show that the above Taylor series converges uniformly on every bounded subset
of C.

c. Determine those functions f for which the above Taylor series converges uniformly on all of
C.

E 12.10 Spring 2020 HW 2.4 e

Without using Cauchy’s integral formula, show that if |a| < r < |b|, then∫
γ

dz

(z − α)(z − β) = 2πi
α− β

where γ denotes the circle centered at the origin of radius r with positive orientation.

Hint: take a Laurent expansion.

12.10.1 Spring 2020 HW 3 # 1

Prove that if f has two Laurent series expansions,

f(z) =
∑

cn(z − a)n and f(z) =
∑

c′
n(z − a)n

then cn = c′
n.
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13 Singularities

12.10.2 Spring 2020 HW 3 # 2

Find Laurent series expansions of

1
1 − z2 + 1

3 − z

How many such expansions are there? In what domains are each valid?

13 Singularities

E 13.1 Spring 2020 HW 3.3 e

Problem 13.1.1 (?)
Let P,Q be polynomials with no common zeros. Assume a is a root of Q. Find the principal
part of P/Q at z = a in terms of P and Q if a is

(1) a simple root, and
(2) a double root.

Solution:
Write

P (z) =
∏
k≤n

(z − ak)

Q(z) =
∏
k≤m

(z − bk)

Qj(z) =
∏
k ̸=j

(z − bk) = Q(z)
z − zj

.

For bℓ a simple pole,

P (z)
Q(z) = 1

z − bℓ

P (z)
Qℓ(z)

= 1
z − bℓ

(
c0 + c1(z − bℓ) + c2(z − bℓ)2 + · · ·

)
= c0
z − bℓ

+ c1 + O(z − bℓ)

:= Pbℓ
(z) + c1 + O(z − bℓ),

so the principal part at z = zℓ is given by

Pzℓ
(z) = c0

z − bℓ
= P (z)
Qℓ(z)

∣∣∣
z=bℓ

= lim
z→zℓ

(z − bℓ)P (z)
Q(z) .
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For bℓ a double pole,

P (z)
Q(z) = 1

(z − bℓ)2
(z − zℓ)2P (z)

Q(z)

= 1
(z − bℓ)2

(
d0 + d1(z − bℓ) + d2(z − bℓ)2

)
= d0

(z − bℓ)2 + d1
z − zℓ

+ d2 + O(z − bℓ)

:= Pbℓ
(z) + d2 + O(z − bℓ).

To extract the d1 coefficient, note that

(z − bℓ)2P (z)
Q(z) = d0 + d1(z − bℓ) + · · ·

=⇒ ∂

∂z

(z − bℓ)2P (z)
Q(z) = d1 + 2d2(z − bℓ) + · · · ,

so

d0 = lim
z→bℓ

(z − bℓ)2P (z)
Q(z)

d1 = lim
z→bℓ

∂

∂z

(z − bℓ)2P (z)
Q(z)

Pbℓ
= d0

(z − bℓ)2 + d1
z − bℓ

.

E 13.2 Spring 2020.4 e

Problem 13.2.1 (?)
Suppose that f is holomorphic in an open set containing the closed unit disc, except for a
simple pole at z = 1. Let f(z) = ∑∞

n=1 cnz
n denote the power series in the open unit disc.

Show that

lim
n→∞

cn = − lim
z→1

(z − 1)f(z).

Solution:
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Compute the series expansion of the RHS:

(z − 1)f(z) = (z − 1)
∑
n≥1

cnz
k

= −c1z +
∑
n≥2

(cn−1 − cn)zn

z→1−→ −c1 +
∑
n≥2

cn−1 − cn

:= lim
N→∞

−c1z +
N∑
n=2

cn−1 − cn

= lim
N→∞

−cN ,

where we’ve used that the sum is telescoping.

E 13.3 Entire functions with poles at ∞ e

Problem 13.3.1 (?)
Find all entire functions with have poles at ∞.

Solution:
If f is entire, write f(z) = ∑

k≥0 ckz
k and g(z) := f(1/z) = ∑

k≥0 ckz
−k. If z = ∞ is a pole of

order m of f , z = 0 is a pole of order m of g, so

g(z) =
∑

0≤k≤m
ckz

−k =⇒ f(z) =
∑

0≤k≤m
ckz

k,

making f a polynomial of degree at most m.

E
13.4 Functions with specified poles

(including at ∞) e

Problem 13.4.1 (?)
Find all functions on the Riemann sphere that have a simple pole at z = 2 and a double pole
at z = ∞, but are analytic elsewhere.

Solution:
Write f(z) = P2(z) + g(z) where P2 is the principal part of f at z = 2 and g is holomorphic
at z = 2. Then g is an entire function with a double pole at ∞, and is thus a polynomial
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of degree at most 2, so g(z) = c2z
2 + c1z + c0. Since the pole of f at z = 2 is simple,

P2(z) = ∑
k≥−1 dk(z − 2)k. Combining these, we can write

f(z) = d−1(z − 2)−1 +
∑

0≤k≤3
(dk + ck)(z − 2)k +

∑
k≥3

dk(z − 2)k.

However, if dk ̸= 0 for any k ≥ 3, this results in a higher order pole at ∞, so f must be of the
form

f(z) = d−1(z − 2)−1 +
∑

0≤k≤3
(dk + ck)(z − 2)k.

E 13.5 Entire functions with singularities at ∞ e

Problem 13.5.1 (?)
Let f be entire, and discuss (with proofs and examples) the types of singularities f might have
(removable, pole, or essential) at z = ∞ in the following cases:

1. f has at most finitely many zeros in C.
2. f has infinitely many zeros in C.

Solution:
Write f(z) = ∑

k≥0 ckz
k since it is entire.

• If f has finitely many zeros, f is nonconstant and entire, and thus unbounded by Liouville.
If f is nonconstant, z = ∞ can not be removable, since this would force f to be constant.
So z = ∞ can be a pole or an essential singularity. Both possibilities can occur: if f is a
polynomial, it is entire with finitely many zeros and a pole at z = ∞. Taking f(z) = ez

has no zeros and an essential singularity at z = ∞.

• If f has infinitely many zeros, if f is nonconstant then infinitely many ck are nonzero –
otherwise f is a polynomial and can only have finitely many zeros. Then g(z) := f(1/z) =∑
k≥0

ck

zk has infinitely many nonzero terms, making z = 0 an essential singularity for g
and z = ∞ essential for f .
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E 13.6 Sum formula for sin2 e

Problem 13.6.1 (?)
Define

f(z) = π2

sin2 (πz)

g(z) =
∑
n∈Z

1
(z − n)2 .

a. Show that f and g have the same singularities in C.
b. Show that f and g have the same singular parts at each of their singularities.
c. Show that f, g each have period one and approach zero uniformly on 0 ≤ x ≤ 1 as

|y| → ∞.
d. Conclude that f = g.

Solution:
Part 1: This is clear: sin2(πz) = 0 ⇐⇒ z = k for k ∈ Z, and this is a pole of order 2 for f .
Every k ∈ Z is visibly an order 2 pole of g.
Part 2: By periodicity, it suffices to consider the singularity at z0 = 0. Expanding sin(πz) =
πz− 1

3!(πz)3 + 1
5!(πz)5 + · · · and considering sin(πz)2 shows that z = 0 is a pole of order 2. So

z2f(z) has a removable singularity at z = 0, and can be expanded:

z2f(z) =
(

πz

sin(πz)

)2

= (πz)2
(

(πz)−1 + 1
3!(πz) + 7

360(πz3) + · · ·
)2

= (πz)2
(
(πz)−2 + O(1)

)
= 1 + O(z2)

=⇒ f(z) = z−2 + O(1),

so the singular part of f at z = 0 is z−2. This coincides with the 1
z2 term in g. The remaining

principal parts at z = k are 1
(z−k)2 , using the fact that f(z + 1) = f(z), so f(k) = f(0) and

the Laurent expansions are gotten by substituting z − k in for z everywhere.
Part 3: Periodicity is clear for f . For g,

g(z + 1) =
∑
k∈Z

((z − 1) − k)−2 =
∑
k′∈Z

(z − k)−2,

where k′ := k + 1, and the equality is true since both sums run over all of Z.
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For convergence: take z = it, then for f

f(it) ∼ csc2(iπt) ∼
(
eiπ(it) − e−iπ(it)

)−2

=
(
e−πt − eπt

)−2

≤ 1
e−πt + eπt

∼ e−πt

→ 0,

using the reverse triangle inequality and that the e−πt term in the denominator is negligible
for large t.
For g,

g(it) ∼ t−2 +
∑
k≥1

(t2 + k2)−1

≤ t−2 +
∑

1≤k≤N
(t2 + k2)−1 +

∑
k≥N

(t2 + k2)−1

≤ t−2 +
∑

1≤k≤N
(t · k2)−1 +

∑
k≥N

(k2)−1

≤ t−2 + t−1 ∑
1≤k≤N

(k2)−1 +
∑
k≥N

(k2)−1

N→∞ =⇒ t→∞−→ 0,

where given N we can pick t large enough so that t2 + k2 ≥ tk2 for all k ≤ N . These converge
to zero as N → ∞ since ∑ k−2 < ∞, making the last term the tail of a convergent sum.
Part 4: Since f, g uniformly converge to zero on the strip 0 < ℜ(x) < 1, they are bounded
on this strip. Since this is a fundamental domain for their periods, they are bounded on C.
Write h := f − g, then h is entire since f, g have the same singular parts, and bounded since
|h| ≤ |f | + |g|. By Liouville, h is constant with limt→∞ h(it) = 0, so h ≡ 0 and f ≡ g.

E
13.7 Spring 2020 HW 3.4, Tie’s Extra

Questions: Fall 2015 e

Problem 13.7.1 (?)
Let f(z) be a non-constant analytic function in |z| > 0 such that f(zn) = 0 for infinite many
points zn with limn→∞ zn = 0.
Show that z = 0 is an essential singularity for f(z).

Hint: an example of such a function is f(z) =
sin(1/z).
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Solution:
Note that z = 0 can not be a removable singularity, since then f would extend to a holomorphic
function over z = 0, and by continuity 0 = lim f(zn) = f(lim zn) = f(0). By the identity
principle, this would force f ≡ 0, contradicting that f is nonconstant.
It can not be a pole, because then f(zn) → ∞, but |f(zn)| = 0 < ε for any ε infinitely many
times.

14 Computing Integrals

E 14.1 Rational, wedge e

14.1.1 Fall 2021.3

Problem 14.1.1 (?)
Suppose n ≥ 2. Use a wedge of angle 2π

n to evaluate the integral

I =
∫ ∞

0

1
1 + xn

dx

Solution (Newer, sketch):
By the ML estimate,

∫
CR

f → 0.
The residue contribution: note the simple pole at ωn := e

iπ
n ,

Res
z=ωn

f(z) = 1
nωn−1

n
= ω

nωn
= −ωn

n
.

The segment contributions:
∫
γ1
f → I, and

∫
γ2
f(z) dz =

∫ 0

∞

1
1 + (ζnt)n

ζn dt = −ζnI,

so the contour contributions sum to (1 − ζn)I.
Solving:

I = − 2πiωn
n(1 − ζn) = −2πi 1

ω−1
n − ωn

= −2πi 1
2i sin

(
π
n

) = π

n
csc

(
π

n

)
.

Solution (Older, detailed):
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Write ωn,k = exp
(

(2k+1)iπ
n

)
and factor zn + 1 as

zn + 1 =
∏

1≤k≤n
(z − ωn,k) = (z − e

iπ
n )(z − e

3iπ
n ) · · · (z − e

(2n−1)iπ
n ).

Note that only the root e iπ
n lies in the 2π/n wedge, so it is the only (simple) pole of f(z) := 1

1+zn

in this region. Since the pole is simple, we can compute the residue easily. Write r0 := e
eπ
n ,

then By L’Hopital,

Res
z=r0

1
1 + zn

= lim
z→r0

z − r0
1 + zn

= lim
z→r0

1
nzn−1

= 1
nrn−1

0

= 1
ne

iπ(n−1)
n

= n−1exp
(−iπ(n− 1)

n

)
.

Take a contour Γ comprised of

• γ1 = [0, R] ⊆ R
• γ2 =

{
Reit

∣∣∣ t ∈ [0, 2π/n]
}

• γ3 = ζn[0, R]

By the residue theorem

2πi Res
z=r0

f(z) = I :=
∫

Γ
f =

(∫
γ1

+
∫
γ2

+
∫
γ3

)
f.

Claim: Taking orientations into account,∫
γ3
f = −ζn

∫
γ1
f.

Claim: ∫
γ2
f
R→∞−→ 0.
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so in the limit we have

2πi Res
z=r0

f(z) = (1 − ζn)
∫
γ1
f

=⇒
∫
γ1
f = 2πiResz=r0 f(z)

1 − ζn

= 2πie
−π(n−1)

n

n
(
1 − e

2πi
n

)
= 2πi

n

[
eiπe

−iπ
n

(
1 − e

2πi
n

)]−1

= 2πi
n

[
−1
(
e

−iπ
n − e

πi
n

)]−1

= 2πi
n

[
2i sin

(
π

n

)]−1

= π

n sin
(
π
n

) .
Proof (of claim 1).
Parameterize the curves:

• γ1 :=
{
t
∣∣∣ t ∈ [0, R]

}
, dz = dt

• γ3 :=
{
tζn

∣∣∣ t ∈ [0, R]
}
, dz = ζn dt

Then, a direct check: ∫
γ3
f(z) dz =

∫ R

0

1
1 + (ζnt)n

ζn dt

= ζn

∫ R

0

1
1 + tn

dt

= ζn

∫
γ1
f(z) dz.

■

Proof (of claim 2).
Parameterize γ2 =

{
Reit

∣∣∣ t ∈ [0, 2π/n]
}

and apply the ML estimate:

1
1 + (Reit)n ≤ 1

Rn − 1 =⇒
∫
γ2
f ≤ 1

Rn − 1

(2πR
n

)
= O(Rn−1) R→∞−→ 0.

■
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14.1.2 Spring 2020 HW 3, SS 3.8.2

Evaluate the integral ∫
R

dx

1 + x4 .

What are the poles of 1
1+z4 ?

14.1.3 Spring 2020 HW 3, SS 3.8.6

Show that ∫ ∞

−∞

dx

(1 + x2)n+1 = 1 · 3 · 5 · · · (2n− 1)
2 · 4 · 6 · · · (2n) · π.

14.1.4 Quadratic over quartic

Problem 14.1.2 (?)
Let a > 0 and calculate ∫ ∞

0

x2

(x2 + a2)2 dx.

14.1.5 Rational function

Problem 14.1.3 (?)
Calculate ∫ ∞

−∞

1 + x2

1 + x4 dx.

14.1.6 Denominator polynomial

Problem 14.1.4 (?)
Calculate ∫ ∞

0

1
(1 + z)2(z + 9x2) dx.

14.1 Rational, wedge 72



14 Computing Integrals

E 14.2 Rational, branch cut e

14.2.1 Standard example

Problem 14.2.1 (?)
Show that ∫

R≥0

x−s

x+ 1 = π

sin(πs) .

Solution:
Sketch: see here.

14.2.2 Fall 2019.1

Show that ∫ ∞

0

xa−1

1 + xn
dx = π

n sin aπ
n

using complex analysis, 0 < a < n. Here n is a positive integer.

14.2.3 Spring 2020 HW 3.7

Let 0 < a < 4 and evaluate ∫ ∞

0

xα−1

1 + x3 dx

14.2.4 Tie’s Extra Questions: Fall 2011, Spring 2015

Show that ∫ ∞

0

xa−1

1 + xn
dx = π

n sin aπ
n

.

using complex analysis, 0 < a < n. Here n is a positive integer.
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14.2.5 Fall 2020.3, Spring 2019.2

Problem 14.2.2 (?)
Let a ∈ R with 0 < a < 3. Evaluate ∫ ∞

0

xa−1

1 + x3dx.

Solution:
Write I for the integral, ζ3 := e

2πi
3 , ω3 := e

iπ
3 . Take a indented semicircular wedge Γ at an

angle of 2π/3, noting the pole at ω3 := e
iπ
3 :

Choosing a branch cut of log along θ = −π/2, so arg(z) ∈ (−π/2, 3π/2), this makes f(z) :=
zα−1/(1 + z3) meromorphic on Γ.
By the ML estimate, the integrals along Cε, CR will vanish in the limit.
The contribution from the contour: parameterize γ2 as

{
ζ3t

∣∣∣ t ∈ [ε,R]
}

, then

∫
γ2
f(z) dz =

∫ ε

R

(ζ3t)α−1

1 + (ζ3t)3 ζ3 dt

= ζ3ζ
α−1
3

∫ ε

R

tα−1

1 + t3
dt

→ −ζα3 I,
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so the total contribution is ∮
Γ
f →

(∫
γ1

+
∫
γ2

)
f = (1 − ζα3 )I.

Computing the contributions from residues:

Res
z=ω3

f(z) = lim
z→ω3

(z − ω3)zα−1

1 + z3

LH= lim
z→ω3

zα−1

3z2

= 1
3ω

α−3
3

= −1
3ω

α
3 .

Combining it all using the residue theorem:

2πi Res
z=ω3

f(z) =
∮
γ
f

=⇒ I = −2πi
3

ωα3
1 − ζα3

= −2πi
3

1
ω−α

3 − ωα3

= −2πi
3

1
−2i sin

(
πα
3
)

= π

3 csc
(
απ

3

)
.

E 14.3 Rational Functions of sin or cos e

14.3.1 Cosine in denominator

Problem 14.3.1 (?)
Show ∫ 2π

0

1
a+ cos(θ) dθ = 2π√

a2 − 1
, a > 1.

Solution:
Sketch:
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• Set z = eiθ to get

2
i

∫
|z|=1

dz
z2 + 2az + 1 .

• Factor into two roots r1, r2. Use that without loss of generality, r1 ∈ D and r2 ∈ Dc,
with neither on S1 to compute the residue 4π/(r1 − r2)

14.3.2 Spring 2020 HW 2, SS 2.6.1

Show that ∫ ∞

0
sin
(
x2
)
dx =

∫ ∞

0
cos

(
x2
)
dx =

√
2π
4 .

Hint: integrate e−x2 over the following contour, using
the fact that

∫∞
−∞ e−x2

dx =
√
π:
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14.3.3 Spring 2020 HW 3, SS 3.8.8

Show that if a, b ∈ R with a > |b|, then∫ 2π

0

dθ

a+ b cos θ = 2π√
a2 − b2

.

14.3.4 Fresnel

Problem 14.3.2 (?)
Suppose a > b > 0 and calculate ∫ 2π

0

1
(a+ b cos(θ))2 dθ.

14.3.5 Fresnel

Problem 14.3.3 (?)
Let n ∈ Z≥1 and 0 < θ < π and show that

1
2πi

∫
|z|=2

zn

1 − 3z cos(θ) + z2 dz = sin(nθ)
sin(θ) .

14.3.6 Spring 2020 HW 3.10

For a > 0, evaluate ∫ π/2

0

dθ

a+ sin2 θ

14.3.7 Spring 2020 HW 3, SS 3.8.7

Show that ∫ 2π

0

dθ

(a+ cos θ)2 = 2πa
(a2 − 1)3/2 , whenever a > 1.
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E 14.4 Rectangles e

14.4.1 Spring 2021.2

Problem 14.4.1 (?)
Let ξ ∈ R, evaluate ∫

R

eiξx

cosh(x) dx.

Solution:
Note cosh(z) := 1

2(ez + e−z), and

cosh(z) = 0
⇐⇒ ez + e−z = 0

⇐⇒ e−z(e2z + 1) = 0
⇐⇒ e2z = −1 since

∣∣e−z∣∣ = eℜ(z) > 0
⇐⇒ 2z = (2k + 1)iπ

⇐⇒ z ∈
{

· · · , −3iπ
2 ,

−iπ
2 ,

iπ

2 ,
3iπ
2 , · · ·

}
.

So take the following rectangular contour enclosing the singularity z = iπ/2:
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Then letting Γ be the entire contour and I be the desired integral, we can solve for I:∫
Γ
f =

∫ R

−R
f +

∫
γR1

f +
∫
γ2
f +

∫
γR2

f∫
Γ
f = I +

∫
γR1

f +
∫
γ2
f +

∫
γR2

f

I =
∫
γR1

f +
∫
γ2
f +

∫
γR2

f −
∫

Γ
f,

being very sloppy about the fact that we’re going to take R → ∞.
Computing the residue term

∫
Γ f = 2πiResz=iπ/2 f(z):

1
2 pii

∫
Γ
f = Res

z=iπ/2
f(z)

= Res
z=iπ/2

eiξz

cosh(z)

= eiξz

∂
∂t cosh(z)

∣∣∣
iπ/2

= eiξ·iπ/2

sinh(iπ/2)

= e−ξπ/2

i

=⇒ 2πi Res
z=iπ/2

f(z) = 2πe−ξπ/2.

using that 2 sinh(iπ/2) = eiπ/2 − e−iπ/2 = i− (−i) = 2i.
The γ2 term: parameterize γ2 =

{
t+ iπ

∣∣∣ t ∈ [−R,R]
}

, then
∫
γ2
f = −

∫
−γ2

f

= −
∫ R

−R

eiz

cosh(t+ iπ) dz, z = t+ iπ, dz = dt

= −
∫ R

−R

eiξ(t+iπ)

cosh(t+ iπ) dt

= −e−ξπ
∫ R

−R

eiξt

cosh(t+ iπ) dt

= e−ξπ
∫ R

−R

eiξt

cosh(t) dt

:= e−ξπI,

using that cosh(z + iπ) = − cosh(z).
The two γRi terms: the claim is that these vanish in the limit R → ∞. Parameterize
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γR2 =
{
R = iπt

∣∣∣ t ∈ [0, 1]
}

, then
∣∣∣∣∣
∫
γR2

f

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1

0

eiξ(R+iπt)

cosh(R+ iπt) dt
∣∣∣∣∣

=
∣∣∣∣∣2eiξR

∫ 1

0

e−ξπt

eR+iπt + e−R−iπt dt

∣∣∣∣∣
≤ 2

∫ 1

0

∣∣∣∣∣ e−ξπt

eR+iπt + e−R−iπt

∣∣∣∣∣ dt
≤ 2

∫ 1

0

e−ξπt

|eR+iπt| − |e−R−iπt|
dt

= 2
∫ 1

0

e−ξπt

eR − e−R

= 2
eR − e−R

∫ 1

0
e−ξπt dt

= 2
eR − e−R

(−1
ξπ

)
eξπt

∣∣∣t=1

t=0

= 2
eR − e−R

(
1 − e−πξ

ξπ

)
R→∞−→ 0.

Putting it all together:

(1 + e−ξπ)I = 2πe−ξπ/2

=⇒ I = 2πe−ξπ/2

1 + e−ξπ

= 2π
eξπ/2(1 + e−ξπ)

= 2π
eξπ/2 + e−ξπ/2

= 2π
2 cosh(ξπ/2)

= π

cosh
(
ξπ
2

)

= πsech
(
ξπ

2

)
.
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14.4.2 Spring 2020 HW 3, SS 3.8.9

Show that ∫ 1

0
log(sin πx)dx = − log 2.

Hint: use the following contour.

E 14.5 Branch Cuts e

14.5.1 Tie’s Extra Questions: Spring 2015

Compute the following integrals:

•
∫ ∞

0

xa−1

1 + xn
dx, 0 < a < n

•
∫ ∞

0

log x
(1 + x2)2 dx

14.5.2 Spring 2020 HW 3, SS 3.8.10

Show that if a > 0, then ∫ ∞

0

log x
x2 + a2dx = π

2a log a.
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Hint: use the following contour.

14.5.3 Spring 2020.2

Problem 14.5.1 (?)
Compute the following integral carefully justifying each step:

∫ ∞

0

log x
1 + x3 .

14.5.4 Square root in numerator

Problem 14.5.2 (?)
Calculate ∫ ∞

0

√
x

(x+ 1)2 dx.

14.5.5 Square root

Problem 14.5.3 (?)
Calculate ∫ ∞

0

√
x

1 + x2 dx.
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E 14.6 Trigonometric transforms e

14.6.1 Spring 2020 HW 3, SS 3.8.4

Show that ∫ ∞

−∞

x sin x
x2 + a2dx = πe−a, for all a > 0.

14.6.2 Spring 2020 HW 2, 2.6.2

Show that

∫ ∞

0

sin x
x

dx = π

2 .

Hint: use the fact that this integral eexercises
1
2i

∫∞
−∞

eix−1
x dx, and integrate around an indented

semicircle.

14.6.3 Spring 2020 HW 3, SS 3.8.5

Show that if ξ ∈ R, then ∫ ∞

−∞

e−2πixξ

(1 + x2)2dx = π

2 (1 + 2π|ξ|)e−2π|ξ|.

14.6.4 sin in numerator

Problem 14.6.1 (?)
Let a > 0 and calculate ∫ ∞

0

x sin(x)
x2 + a2 dx.
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14.6.5 sin in numerator

Problem 14.6.2 (?)
Calculate ∫ ∞

0

sin(x)
x(x2 + 1) dx.

14.6.6 sinc

Problem 14.6.3 (?)
Calculate ∫ ∞

0

sin(x)
x

dx.

14.6.7 cos in numerator

Problem 14.6.4 (?)
Let a > 0 and calculate ∫ ∞

0

cos(x)
(x2 + a2)2 dx.

14.6.8 sin in numerator

Problem 14.6.5 (?)
Calculate ∫ ∞

0

sin3(x)
x3 dx.

14.6.9 sin in numerator

14.6 Trigonometric transforms 84



14 Computing Integrals

Problem 14.6.6 (?)
Evaluate ∫ ∞

0

x sin x
x2 + a2 dx.

14.6.10 Tie’s Extra Questions: Fall 2009

Evaluate ∫ ∞

0

x sin x
x2 + a2 dx.

14.6.11 Cosine over quadratic

Problem 14.6.7 (?)
Show that ∫ ∞

0

cos(x)
x2 + b2 dx = πe−b

2b .

Solution:

• Let I be the integral over R. Since f(x) is even, the original integral is 1
2I.

• Write f(z) = eiz/(z2 + b2). Take a semicircular contour Γ := γ1 + γ2 where γ1 is [−R,R]
on R and γ2 is the usual half-circle of radius R.

• Claim:
∫
γ2
f
R→∞−→ 0, so

∫
Γ →

∫
R f(z).

– Easy estimate, just be careful with the i in the exponent:

|f | =
∣∣eiz∣∣

|z2 + b2|
= e−ℜz

|z2 + b2|
≤ 1

|z2 + b2|
R→∞−→ 0.

• Compute
∫

Γ f by residues: factor z2 + b2 = (z + ib)(z − ib), so the contour only contains
the order 1 pole z0 = ib.

• Compute the residue:

Res
z=ib

f = lim
z→ib

(z − ib) eiz

(z + ib)(z − ib) = eiz

z + ib

∣∣∣
z=ib

= ei(ib)

2ib = e−b

2ib .

• So the intermediate integral is I is 2πi times this, i.e. I = πe−b/b.

• And the original integral is
1
2 I=πe−b

2b .
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14.6.12 Tie’s Extra Questions: Fall 2016

Compute the integral
∫ ∞

−∞

e−2πixξ

cosh πxdx where cosh z = ez + e−z

2 .

14.6.13 Tie’s Extra Questions: Fall 2015

Prove by justifying all steps that for all ξ ∈ C we have e−πξ2 =
∫ ∞

−∞
e−πx2

e2πixξdx .

Hint: You may use that fact in Example 1 on p. 42
of the textbook without proof, i.e., you may assume
the above is true for real values of ξ.

14.6.14 Multiple cosines in numerator

Problem 14.6.8 (?)
Calculate ∫ ∞

0

cos(x) − cos(4x)
x2 dx.

14.6.15 Tie’s Extra Questions: Fall 2011

Evaluate
∫ ∞

0

x sin x
x2 + a2 dx.

E 14.7 Unsorted e

14.7.1 Spring 2020 HW 3.6

a. Show (without using 3.8.9 in the S&S) that∫ 2π

0
log

∣∣∣1 − eiθ
∣∣∣ dθ = 0

b. Show that this identity is equivalent to S&S 3.8.9:∫ 1

0
log(sin(πx)) dx = − log 2.
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14.7.2 Tie’s Extra Questions: Spring 2015

Compute the following integrals.

(i)
∫ ∞

0

1
(1 + xn)2 dx, n ≥ 1

(ii)
∫ ∞

0

cosx
(x2 + a2)2 dx, a ∈ R

(iii)
∫ π

0

1
a+ sin θ dθ, a > 1

(iv)
∫ π

2

0

dθ

a+ sin2 θ
, a > 0.

(v)
∫

|z|=2

1
(z5 − 1)(z − 3) dz

(vi)
∫ ∞

−∞

sin πa
cosh πx+ cosπae

−ixξ dx, 0 < a < 1, ξ ∈ R

(vii)
∫

|z|=1
cot2 z dz.

E 14.8 Conceptual e

14.8.1 Spring 2020 HW 3, SS 3.8.1

Use the following formula to show that the complex zeros of sin(πz) are exactly the integers, and
they are each of order 1:

sin πz = eiπz − e−iπz

2i .

Calculate the residue of 1
sin(πz) at z = n ∈ Z.

14.8.2 Zeros using residue theorem

Problem 14.8.1 (?)
Suppose that f is an analytic function in the region D which contains the point a. Let

F (z) = z − a− qf(z), where q is a complex parameter.
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14 Computing Integrals

1. Let K ⊂ D be a circle with the center at point a and also we assume that f(z) ̸= 0 for
z ∈ K. Prove that the function F has one and only one zero z = w on the closed disc
K whose boundary is the circle K if

|q| < min
z∈K

|z − a|
|f(z)| ..

2. Let G(z) be an analytic function on the disk K. Apply the residue theorem to prove
that

G(w)
F ′(w) = 1

2πi

∫
K

G(z)
F (z)dz,

where w is the zero from (1).

14.8.3 Tie’s Extra Questions: Fall 2009

Suppose that f is an analytic function in the region D which contains the point a. Let
F (z) = z − a− qf(z), where q is a complex parameter.

(1) Let K ⊂ D be a circle with the center at point a and also we assume that f(z) ̸= 0 for z ∈ K.
Prove that the function F has one and only one zero z = w on the closed disc K whose
boundary is the circle K if |q| < min

z∈K

|z − a|
|f(z)| .

(2) Let G(z) be an analytic function on the disk K. Apply the residue theorem to prove that
G(w)
F ′(w) = 1

2πi

∫
K

G(z)
F (z)dz, where w is the zero from (1).

(3) If z ∈ K, prove that the function 1
F (z) can be represented as a convergent series with respect

to q: 1
F (z) =

∞∑
n=0

(qf(z))n
(z − a)n+1 .

14.8.4 Tie’s Extra Questions: Spring 2015

Problem 14.8.2 (?)
Let ψα(z) = α− z

1 − αz
with |α| < 1 and D = {z : |z| < 1}. Prove that

a.
1
π

∫∫
D

|ψ′
α|2dxdy = 1.
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15 Cauchy’s Theorem

b.

1
π

∫∫
D

|ψ′
α|dxdy = 1 − |α|2

|α|2
log 1

1 − |α|2
.

Solution:
Part 1: S&S claim this can be done without a calculation – maybe |ψ′

a(z)|
2 is constant on a

circle of radius r. . . ?
Part 2:

1
π

∫∫
D

∣∣ψ′
a(z)

∣∣ dz = 1
π

∫∫
D

∣∣∣∣∣ 1 − |a|2

(1 − az)2

∣∣∣∣∣ dz
= 1 − |a|2

π

∫ 1

0

∫ 2π

0

1
|1 − areit|2

r dt dr

= 1 − |a|2

π

∫ 1

0

∫ 2π

0

1
(1 − areit)(1 − are−it)r dt dr

= 1 − |a|2

π

∫ 1

0

∮
∂D

1
(1 − arz)(1 − arz)

r

iz
dz dr

= 1 − |a|2

π

∫ 1

0

∮
∂D

1
(1 − arz)(1 − arz−1)

r

iz
dz dr

= 1 − |a|2

π

∫ 1

0

r

i
·
∮
∂D

1
(1 − arz)(z − ar) dz dr

= 1 − |a|2

π

∫ 1

0

r

i
· 2πi Res

z=ar
1

(1 − arz)(z − ar) dr

= 1 − |a|2

π

∫ 1

0

r

i
· 2πi 1

(1 − arz)
∣∣∣
z=ar

dr

=
2π
(
1 − |a|2

)
π

∫ 1

0

r

1 − |a|2r2
dr

= 1 − |a|2

|a|2
log

(
1

1 − |a|2

)
.

15 Cauchy’s Theorem

E
15.1 Entire and O of polynomial implies

polynomial e

Cauchy’s Theorem 89



15 Cauchy’s Theorem

Problem 15.1.1 (?)
Let f(z) be entire and assume that |f(z)| ≤ M |z|2 outside of some disk for some constant M .
Show that f(z) is a polynomial in z of degree ≤ 2.

Solution:

• Prove a more general statement: if |f(z)| ≤ M |z|n, then f is a polynomial of degree at
most n.

• Since f is entire, it is analytic everywhere, so f(z) = ∑
k≥0 ckz

k where ck = f (k)(0)/n!
is given by the coefficient of its Taylor expansion about z = 0.

• Applying Cauchy’s estimate, on a circle of radius R,
∣∣∣f (k)(0)

∣∣∣ ≤
supγ |f(z)|n!

Rk
≤ M |z|nn!

Rk
= MRnn!

Rk
.

• So for k ≥ n+ 1, this goes to zero as R → ∞, so
∣∣∣fk(0)

∣∣∣ = 0 for all such k.

• But then f is a power series annihilated by taking n+ 1 derivatives, so it is a polynomial
of degree at most n.

E
15.2 Uniform sequence implies uniform

derivatives
e

Problem 15.2.1 (?)

Let an(z) be an analytic sequence in a domain D such that
∞∑
n=0

|an(z)| converges uniformly on

bounded and closed sub-regions of D. Show that
∞∑
n=0

|a′
n(z)| converges uniformly on bounded

and closed sub-regions of D.

E 15.3 Tie’s Extra Questions: Spring 2014 e

Problem 15.3.1 (?)
The question provides some insight into Cauchy’s theorem. Solve the problem without using
the Cauchy theorem.
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15 Cauchy’s Theorem

1. Evaluate the integral
∫
γ
zndz for all integers n. Here γ is any circle centered at the origin

with the positive (counterclockwise) orientation.

2. Same question as (a), but with γ any circle not containing the origin.

3. Show that if |a| < r < |b|, then
∫
γ

dz

(z − a)(z − b)dz = 2πi
a− b

. Here γ denotes the circle
centered at the origin, of radius r, with the positive orientation.

Solution:

∫
γ
zn dz =

∫ 2π

0
Rneitn · iReit dt = Rn+1

∫ 2π

0
ei(t+1)n dt = iRn+1

i(n+ 1)δn+1=0.

About a point a and R < |a|,∫
|z−a|=R

zn dz =
∫ 2π

0
(a+ reit)n · ireit dt

=
∫ 2π

0

∑
1≤k≤n

(
n

k

)
akR

n−k+1eit(n−k) · ireit dt

= i

∫ 2π

0

∑
1≤k≤n

(
n

k

)
akR

n−k+1eit(n−k+1) dt

= i
∑

1≤k≤n

(
n

k

)
akR

n−k+1
∫ 2π

0
eit(n−k+1) dt

= i
∑

1≤k≤n

(
n

k

)
akR

n−k+1 · 0

= 0,

provided n ̸= 0, in which case
∫
γ dz = 2π.

For the third computation, this follows from partial fraction decomposition.

E
15.4 Fall 2019.3, Spring 2020 HW 2.9

(Cauchy’s Formula for Exterior
Regions)

e

Problem 15.4.1 (?)
Let γ be a piecewise smooth simple closed curve with interior Ω1 and exterior Ω2. Assume f ′

15.4 Fall 2019.3, Spring 2020 HW 2.9 (Cauchy’s Formula for Exterior Regions) 91



15 Cauchy’s Theorem

exists in an open set containing γ and Ω2 with limz→∞ f(z) = A. Show that

F (z) := 1
2πi

∫
γ

f(ξ)
ξ − z

dξ =
{
A, if z ∈ Ω1
−f(z) +A, if z ∈ Ω2

.

NOTE (DZG): I think there is a typo in this ques-
tion. . . .probably this should equal f(z) for z ∈ Ω1,
which is Cauchy’s formula. . .

Solution:
Note that Gz(ξ) := f(ξ)

ξ−z has a pole of order one at ξ = z and also a pole at ξ = ∞. If z ∈ Ω1,
then γ encloses just the pole ξ = z, so apply the residue theorem:

F (z) := 1
2πi

∮
γ

f(ξ)
ξ − z

dξ

= 1
2πi

∮
γ
Gz(ξ) dξ

= Res
ξ=z

Gz(ξ)

= lim
ξ→z

(ξ − z)Gz(ξ)

= lim
ξ→z

(ξ − z) f(ξ)
ξ − z

= lim
ξ→z

f(ξ)

= f(z).

Now if z ∈ Ω2, then γ encloses both ξ = z,∞, and is oriented negatively,so

F (z) = 1
2πi

∮
γ
Gz(ξ) dξ

= −
(

Res
ξ=z

Gz(ξ) + Res
ξ=∞

Gz(ξ)
)

= −
(
f(z) + Res

ξ=∞
Gz(ξ)

)
,

where the last line proceeds by the same calculation as above. It remains to compute the
unknown residue. Residues at ξ = ∞ are computed as residues at ξ = 0, and the change of
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15 Cauchy’s Theorem

variables Gz(ξ) dξ 7→ Gz(w) dw for w := 1/ξ yields Gz(ξ) dξ → Gz
(

1
ξ

)
(−1/ξ2) dξ. Thus

Res
ξ=∞

Gz(ξ) = − Res
ξ=0

Gz
(
ξ−1

)
ξ−2

= − Res
ξ=0

f(ξ−1)
ξ2(ξ−1 − z)

= − Res
ξ=0

f(ξ−1)
ξ(1 − zξ)

= − lim
ξ→0

f(ξ−1)
1 − zξ

= − lim
ξ→0

f(ξ−1)

= − lim
ξ→∞

f(ξ)

= −A.

So combining this yields

F (z) = − (f(z) −A) = −f(z) +A.

E
15.5 Tie’s Extra Questions: Fall 2009

(Proving Cauchy using Green’s) e

Problem 15.5.1 (?)
State and prove Green’s Theorem for rectangles. Use this to prove Cauchy’s Theorem for
functions that are analytic in a rectangle.

Problem 15.5.2 (Variant)
Suppose f ∈ C1

C(Ω) and T ⊂ Ω is a triangle with T ◦ ⊂ Ω.

• Apply Green’s theorem to show that
∫
T f(z) dz = 0.

• Assume that f ′ is continuous and prove Goursat’s theorem.

Hint: Green’s theorem states∫
T

Fdx+Gdy =
∫

T ◦

(
∂G

∂x
− ∂F

∂y

)
dxdy.

Solution:
Green’s theorem: if Ω is a domain with positively oriented boundary with u, v continuously
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differentiable in Ω, then ∫
∂Ω
u dx+ v dy =

∫∫
Ω

(vx − uy) dx dy.

Now use that if f = u+ iv is analytic in a region, it satisfies Cauchy-Riemann:

ux = vy uy = −vx.

Now integrating f :∮
∂Ω
f(z) dz =

∮
∂Ω

(u+ iv)( dx+ i dy)

=
∮
∂Ω

(u dx− v dy) + i

∮
∂Ω

(v dx+ u dy)

=
∫∫

Ω
(vx + uy) dx dy +

∫∫
Ω

(ux − vy) dx dy

=
∫∫

Ω
(vx − vx) dx dy +

∫∫
Ω

(ux − ux) dx dy

= 0.

E
15.6 No polynomials converging uniformly

to 1/z
e

Problem 15.6.1 (?)
Prove that there is no sequence of polynomials that uniformly converge to f(z) = 1

z on S1.

Solution: • By Cauchy’s integral formula,
∫
S1 f = 2πi

• If pj is any polynomial, then pj is holomorphic in D, so
∫
S1 pj = 0.

• Contradiction: compact sets in C are bounded, so∣∣∣∣∫ f −
∫
pj

∣∣∣∣ ≤
∫

|pj − f |

≤
∫

∥pj − f∥∞

= ∥pj − f∥∞

∫
S1

1 dz

= ∥pj − f∥∞ · 2π
→ 0

which forces
∫
f =

∫
pj = 0.

E 15.7 Eventually sublinear implies constant e
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15 Cauchy’s Theorem

Problem 15.7.1 (?)
Suppose f : C → C is entire and

|f(z)| ≤ |z|
1
2 when |z| > 10.

Prove that f is constant.

Solution:
Let R > 10, then by Cauchy:

2π
∣∣f ′(z)

∣∣ ≤
∮

|ξ|=R

|f(ξ)|
|ξ|2

dξ

≤
∮

|ξ|=R
R−2|ξ|

1
2 dξ

= R− 3
2 · 2πR

∼ R− 1
2

R→∞−→ 0.

E
15.8 The Cauchy pole function is

holomorphic e

Problem 15.8.1 (?)
Let γ be a smooth curve joining two distinct points a, b ∈ C.
Prove that the function

f(z) :=
∫
γ

g(w)
w − z

dw

is analytic in C \ γ.

Solution:
Toward applying Morera, let T ⊆ C \ γ be a triangle, so that z ∈ T and w ∈ γ implies
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z − w ̸= 0. Then ∮
T
f(z) dz =

∮
T

∫
γ

g(w)
w − z

dw dz

=
∫
γ

∮
T

g(w)
w − z

dz dw

=
∫
γ
g(w)

(∮
T

1
w − z

dz

)
dw

=
∫
γ
g(w) · 0 dw

= 0,

where the exchange of integrals is justified by compactness of γ, T , and the inner integral
vanishes because for a fixed w ∈ γ, the function z 7→ 1

w−z has a simple pole at w, and so is
holomorphic in γc and vanishes by Goursat.

E 15.9 Schwarz reflection proof e

Problem 15.9.1 (?)
Suppose that f : C → C is continuous everywhere and analytic on C \ R and prove that f is
entire.

Solution:
Just reproducing the proof of holomorphicity in the Schwarz reflection theorem.

• Note f is continuous on C since analytic implies continuous (f equals its power series,
where the partials sums uniformly converge to it, and uniform limit of continuous is
continuous).

• Strategy: take D a disc centered at a point x ∈ R, show f is holomorphic in D by
Morera’s theorem.

• Let ∆ ⊂ D be a triangle in D.
• Case 1: If ∆ ∩ R = 0, then f is holomorphic on ∆ and

∫
∆ f = 0.

• Case 2: one side or vertex of ∆ intersects R, and wlog the rest of ∆ is in H+.

– Then let ∆ε be the perturbation ∆ + iε =
{
z + iε

∣∣∣ z ∈ ∆
}

; then ∆ε ∩ R = 0 and∫
∆ε
f = 0.

– Now let ε → 0 and conclude by continuity of f (???)
♢ We want ∫

∆ε

f =
∫ b

a
f(γε(t))γ′

ε(t) dt
ε→0→

∫ b

a
f(γ(t))γ′

ε(t) dt =
∫

∆
f

where γε, γ are curves parametrizing ∆ε,∆ respectively.
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♢ Since γ, γε are closed and bounded in C, they are compact subsets. Thus it
suffices to show that f(γε(t))γ′

ε(t) converges uniformly to f(γ(t))γ′(t).
♢ ??

• Case 3: ∆ intersects both H+ and H−.

– Break into smaller triangles, each of which falls into one of the previous two cases.

E 15.10 Prove Liouville e

Problem 15.10.1 (?)
Prove Liouville’s theorem: suppose f : C → C is entire and bounded. Use Cauchy’s formula
to prove that f ′ ≡ 0 and hence f is constant.

Solution:
The main idea:

∣∣f ′(z)
∣∣ ≤ 1

2π

∮
R

|f(ξ)|
|ξ|2

dξ

= 1
2π

∮
R

|f(ξ)|R−2 dξ

≤ 1
2π

∮
R
MR−2 dξ

= 1
2πMR−2 · 2πR

= MR−1

R→∞−→ 0.

So f ′ ≡ 0.

E
15.11 Tie’s Extra Questions Fall 2009

(Fractional residue formula) e

Problem 15.11.1 (?)
Assume f is continuous in the region:

0 < |z − a| ≤ R, 0 ≤ Arg(z − a) ≤ β0 β0 ∈ (0, 2π].

and the following limit exists:

lim
z→a

(z − a)f(z) = A.
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15 Cauchy’s Theorem

Show that

lim
r→0

∫
γr

f(z)dz = iAβ0 ,

where

γr := {z | z = a+ reit, 0 ≤ t ≤ β0}..

Problem 15.11.2 (Alternative version)
Let f be a continuous function in the region

D = {z
∣∣∣ |z| > R, 0 ≤ arg z ≤ θ} where 1 ≤ θ ≤ 2π.

If there exists k such that lim
z→∞

zf(z) = k for z in the region D. Show that

lim
R′→∞

∫
L
f(z)dz = iθk,

where L is the part of the circle |z| = R′ which lies in the region D.

Solution:
Without loss of generality take a = 0. Since zf(z) → A as z → 0, z = 0 is a simple pole of f
and we can write f(z) = c−1z

−1 + c0 + c1z + · · ·. Then∫
γr

f(z) dz =
∫
γr

∑
k≥−1

ckz
k dz

=
∑
k≥−1

ck

∫
γr

zk dz

= c−1

∫
γr

1
z
dz

= c−1

∫ β0

0

1
reit

ireit dt z = reit, dz = ireit dt

= ic−1

∫ β0

0
dt

= ic−1β0.

Now use that

zf(z) = c−1 + c0z + · · · z→0−→ c−1 = A,

so the integral is iAβ0.

E 15.12 Spring 2020 HW 2, 2.6.7 e
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15 Cauchy’s Theorem

Suppose f : D → C is holomorphic and let d := supz,w∈D |f(z) − f(w)| be the diameter of the image
of f . Show that 2|f ′(0)| ≤ d, and that equality holds iff f is linear, so f(z) = a1z + a2.

Hint:

2f ′(0) = 1
2πi

∫
|ξ|=r

f(ξ) − f(−ξ)
ξ2 dξ

whenever 0 < r < 1.

E 15.13 Spring 2020 HW 2, 2.6.8 e

Suppose that f is holomorphic on the strip S =
{
x+ iy

∣∣∣ x ∈ R, −1 < y < 1
}

with |f(z)| ≤
A (1 + |z|)ν for ν some fixed real number. Show that for all z ∈ S, for each integer n ≥ 0 there
exists an An ≥ 0 such that

∣∣∣f (n)(x)
∣∣∣ ≤ An(1 + |x|)ν for all x ∈ R.

Hint: Use the Cauchy inequalities.

E 15.14 Spring 2020 HW 2, 2.6.9 e

Let Ω ⊂ C be open and bounded and φ : Ω → Ω holomorphic. Prove that if there exists a point
z0 ∈ Ω such that φ(z0) = z0 and φ′(z0) = 1, then φ is linear.

Hint: assume z0 = 0 (explain why this can be done)
and write φ(z) = z + anz

n + O(zn+1) near 0. Let
φk = φ ◦ φ ◦ · · · ◦ φ and prove that φk(z) = z +
kanz

n + O(zn+1). Apply Cauchy’s inequalities and
let k → ∞ to conclude.

E 15.15 Spring 2020 HW 2, 6 e

Show by example that there exists a function f(z) that is holomorphic on
{
z ∈ C

∣∣∣ 0 < |z| < 1
}

and for all r < 1, ∫
|z|=r

f(z) dz = 0,

but f is not holomorphic at z = 0.
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E 15.16 Spring 2020 HW 2, 7 e

Let f be analytic on a region R and suppose f ′(z0) ̸= 0 for some z0 ∈ R. Show that if C is a circle
of sufficiently small radius centered at z0, then

2πi
f ′ (z0) =

∫
C

dz

f(z) − f (z0) .

Hint: use the inverse function theorem.

E 15.17 Spring 2020 HW 2, 8 e

Assume two functions u, b : R2 → R have continuous partial derivatives at (x0, y0). Show that
f := u+ iv has derivative f ′(z0) at z0 = x0 + iy0 if and only if

lim
r→0

1
πr2

∫
|z−z0|=r

f(z)dz = 0.

E 15.18 Spring 2020 HW 2, 10 e

Let f(z) be bounded and analytic in C. Let a ̸= b be any fixed complex numbers. Show that the
following limit exists:

lim
R→∞

∫
|z|=R

f(z)
(z − a)(z − b) dz.

Use this to show that f(z) must be constant.

E 15.19 Spring 2020 HW 2, 11 e

Suppose f(z) is entire and

lim
z→∞

f(z)
z

= 0.

Show that f(z) is a constant.
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E 15.20 Spring 2020 HW 2, 12 e

Let f be analytic in a domain D and γ be a closed curve in D. For any z0 ∈ D not on γ, show
that ∫

γ

f ′(z)
(z − z0)dz =

∫
γ

f(z)
(z − z0)2dz.

Give a generalization of this result.

E 15.21 Spring 2020 HW 2, 13 e

Compute ∫
|z|=1

(
z + 1

z

)2n dz

z

and use it to show that ∫ 2π

0
cos2n(θ) dθ = 2π

(1 · 3 · 5 · · · (2n− 1)
2 · 4 · 6 · · · (2n)

)
.

16 Maximum Modulus

E 16.1 Spring 2020 HW 3.8 e

Problem 16.1.1 (?)
Prove the fundamental theorem of Algebra using the maximum modulus principle.

E 16.2 Spring 2020.7 e

Problem 16.2.1 (?)
Let f be analytic on a bounded domain D, and assume also that f that is continuous and
nowhere zero on the closure D.
Show that if |f(z)| = M (a constant) for z on the boundary of D, then f(z) = eiθM for z in
D, where θ is a real constant.
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16 Maximum Modulus

Solution:
By the maximum modulus principle, |f | ≤ M in D. Since f has no zeros in D, g := 1/f is
holomorphic on D and continuous on D. So the maximum modulus principle applies to g, and
M−1 ≥ |g| = 1/|f |, so |f | ≤ M . Combining these, |f(z)| = M , so f(z) = λM where λ is some
constant with |λ| = 1. This is on the unit circle, so λ = eiθ for some fixed angle θ.

E 16.3 Fall 2020.6 e

Problem 16.3.1 (?)
Suppose that U is a bounded, open and simply connected domain in C and that f(z) is a
complex-valued non-constant continuous function on U whose restriction to U is holomorphic.

• Prove the maximum modulus principle by showing that if z0 ∈ U , then

|f (z0)| < sup{|f(z)| : z ∈ ∂U}.

• Show furthermore that if |f(z)| is constant on ∂U , then f(z) has a zero in U (i.e., there
exists z0 ∈ U for which f (z0) = 0 ).

Solution:
Let M := supz∈∂U |f(z)|. If M = 0, then f must be the constant zero function, so assume
M > 0.
Suppose toward a contradiction that there exists a z0 ∈ U with |f(z0)| = M . Note that the
map z 7→ |z| is an open in discs that don’t intersect z = 0. Since f is holomorphic, by the
open mapping theorem f is an open map, so consider Dε(z0) a small disk not containing 0.
Then f(Dε(z0)) is open, and the composition z 7→ f(z) 7→ |f(z)| is an open map Dε(z0) → R.
Now if f is nonconstant, |f(Dε(z0))| ⊇ (M − ε,M + ε) contains some open interval about M ,
which contradicts maximality of f at z0.

See notes for a proof using the mean value theorem.
Suppose toward a contradiction that f has no zeros in U . Then g(z) := 1/f(z) is holomorphic
in U . Now if |f(z)| = C on ∂U , we have |g(z)| =

∣∣∣ 1
f(z)

∣∣∣ = 1
C on ∂U , so maxz∈U |f(z)| = C

and min|f(z)| = 1
C . Since |f(z)| is constant on the boundary, we must have max |f(z)| =

min |f(z)| = C, so f is constant on ∂U . By the identity principle, f is constant on U , a
contradiction.
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16 Maximum Modulus

E 16.4 Spring 2020 HW 3, SS 3.8.15 e

Problem 16.4.1 (?)
Use the Cauchy inequalities or the maximum modulus principle to solve the following problems:

a. Prove that if f is an entire function that satisfies

sup
|z|=R

|f(z)| ≤ ARk +B

for all R > 0, some integer k ≥ 0, and some constants A,B > 0, then f is a polynomial
of degree ≤ k.

b. Show that if f is holomorphic in the unit disc, is bounded, and converges uniformly to
zero in the sector θ < arg(z) < φ as |z| → 1, then f ≡ 0.

c. Let w1, · · ·wn be points on S1 ⊂ C. Prove that there exists a point z ∈ S1 such that
the product of the distances from z to the points wj is at least 1. Conclude that there
exists a point w ∈ S1 such that the product of the above distances is exactly 1.

d. Show that if the real part of an entire function is bounded, then f is constant.

Solution (Part 1):

|f(z0)| =
∣∣∣∣∣ 1
2πi

∮
|z−z0|=R

f(z)
(z − z0)n+1 dz

∣∣∣∣∣
≤ 1

2π

∮
|z−z0|=R

|f(z)|R−(n+1) dz

≤ 1
2π sup

|z−z0|=R
|f(z)|R−(n+1) · 2πR

= sup
|z−z0|=R

|f(z)|R−n

≤ (ARk +B)R−n if z0 = 0
= ARk−n +BR−n

→ 0,

provided k − n < 0, so n > k. Since f is entire, write

f(z) =
∑
n≥0

f (n)(0)z
n

n! =
∑

0≤n≤k
f (n)(0)z

n

n! ,

making f a polynomial of degree at most k.
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16 Maximum Modulus

Solution (Part 2):
Write Sφ := {0 < Arg(z) < φ} and choose n large enough so that

D ⊆ S ∪ ζnS ∪ ζ2
nS ∪ · · · ∪ ζn−1

n S,

i.e. so that the rotated sectors cover the disc. By uniform convergence of f to 0 on S, choose
r < 1 small enough so that |f(z)| < ε for |z| < r in S. Note that Dr ⊆

⋃n−1
k=0 ζ

k
nSr, where

Sr :=
{
z ∈ S

∣∣∣ |z| ≤ r
}

is a subsector of radius r.
By the MMP, let M be the maximum of f on D, which is attained at some point on S1. Then
|f | < M on every ζknSr. Now define

g(z) := f(z)
n−1∏
k=1

f(ζknz) := f(z)
n−1∏
k=1

fk(z).

Note that |f(z)| ≤ ε and |fk(z)| ≤ M , so

|g(z)| ≤ ε ·Mn−1 ε→0−→ 0.

since M is a constant. So g(z) ≡ 0 on Dr, and by the identity principle, on D. Thus some
factor fk(z) is identically zero. But if f(ζknz) ≡ 0 on D, then f(z) ≡ 0 on D, since every z ∈ D
can be written as ζknw for some w ∈ D.

Solution (Part 3):
Consider

f(z) :=
∏

1≤k≤n
(wk − z).

Then f is holomorphic and nonconstant on D, so attains a maximum M on S1. Moreover,
|f(z)| = ∏

|wk − z| is exactly the product of distances from z to the wk. Moreover, since
|f(0)| = ∏

|wk| = 1, we must have M > 1.
Now note that f(wk) = 0 and f is continuous in D. So |f(z)| ∈ [0,M ] ⊆ R where M > 1, so
by the intermediate value theorem, |f(z)| = 1 for some z.

Solution (Part 4, using MMP):
Write f = u+ iv where by assumption u is bounded. Both u and v are harmonic, so if |u| ≤ M
on C, then there is some disc where |u| = M for some point in the interior. By the MMP for
harmonic functions, u is constant on C. So ux, uy = 0, and by Cauchy-Riemann, vx, vy = 0,
so v′ = 0 and v is constant, making f constant.

Solution (Part 4, using Liouville):
Consider g(z) := ef(z), then |g(z)| = eℜ(z) is entire and bounded and thus constant by
Liouville’s theorem. So g′(z) = 0, but on the other hand g′(z) = f ′(z)ef(z) = 0, so f ′(z) = 0
and f must be constant since ef is nonvanishing.
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16 Maximum Modulus

E 16.5 Spring 2020 HW 3, 3.8.17 e

Let f be non-constant and holomorphic in an open set containing the closed unit disc.

a. Show that if |f(z)| = 1 whenever |z| = 1, then the image of f contains the unit disc.

Hint: Show that f(z) = w0 has a root for every
w0 ∈ D, for which it suffices to show that f(z) = 0
has a root. Conclude using the maximum modulus
principle.

b. If |f(z)| ≥ 1 whenever |z| = 1 and there exists a z0 ∈ D such that |f(z0)| < 1, then the image
of f contains the unit disc.

E 16.6 Spring 2020 HW 3, 3.8.19 e

Prove that maximum principle for harmonic functions, i.e.

a. If u is a non-constant real-valued harmonic function in a region Ω, then u can not attain a
maximum or a minimum in Ω.

b. Suppose Ω is a region with compact closure Ω. If u is harmonic in Ω and continuous in Ω,
then

sup
z∈Ω

|u(z)| ≤ sup
z∈Ω−Ω

|u(z)|.

Hint: to prove (a), assume u attains a local maximum
at z0. Let f be holomorphic near z0 with ℜ(f) = u,
and show that f is not an open map. Then (a) implies
(b).

E 16.7 Spring 2020 HW 3.9 e

Let f be analytic in a region D and γ a rectifiable curve in D with interior in D.

Prove that if f(z) is real for all z ∈ γ, then f is constant.
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17 Maximum Modulus

E 16.8 Spring 2020 HW 3.14 e

Let f be nonzero, analytic on a bounded region Ω and continuous on its closure Ω.

Show that if |f(z)| ≡ M is constant for z ∈ ∂Ω, then f(z) ≡ Meiθ for some real constant θ.

E 16.9 Tie’s Extra Questions: Spring 2015 e

Let ψα(z) = α− z

1 − αz
with |α| < 1 and D = {z : |z| < 1}. Prove that

• 1
π

∫∫
D

|ψ′
α|2dxdy = 1.

• 1
π

∫∫
D

|ψ′
α|dxdy = 1 − |α|2

|α|2
log 1

1 − |α|2
.

E 16.10 Tie’s Extra Questions: Spring 2015 e

Let Ω be a simply connected open set and let γ be a simple closed contour in Ω and enclosing a
bounded region U anticlockwise. Let f : Ω → C be a holomorphic function and |f(z)| ≤ M for all
z ∈ γ. Prove that |f(z)| ≤ M for all z ∈ U .

E 16.11 Tie’s Extra Questions: Fall 2015 e

Assume f(z) is analytic in region D and Γ is a rectifiable curve in D with interior in D. Prove that
if f(z) is real for all z ∈ Γ, then f(z) is a constant.
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17 Liouville’s Theorem

17 Liouville’s Theorem

E 17.1 Spring 2020.3, Extras Fall 2009 e

Problem 17.1.1 (?)

• Assume f(z) = ∑∞
n=0 cnz

n converges in |z| < R. Show that for r < R,

1
2π

∫ 2π

0

∣∣∣f (reiθ)∣∣∣2 dθ =
∞∑
n=0

|cn|2 r2n

• Deduce Liouville’s theorem from (a).

Solution:
Computing the LHS:∫

[0,2π]

∣∣∣f(reiθ)
∣∣∣2 dθ =

∫
[0,2π]

f(reiθ)f(reiθ) dθ

=
∫

[0,2π]

∑
k≥0

ckr
keikθ

∑
j≥0

cjr
je−ijθ dθ

=
∫

[0,2π]

∑
k,j≥0

ckcjr
k+jei(k−j)θ dθ

=
∑
k,j≥0

ckcjr
k+j

∫
[0,2π]

ei(k−j)θ dθ

=
∑
k,j≥0

ckcjr
k+jχi=j · 2π

=
∑
k≥0

ckckr
2k · 2π

= 2π
∑
k≥0

|ck|2r2k,

where we’ve used that the series converges uniformly in its radius of convergence to commute
sums and integrals.
Now supposing |f(z)| ≤ M for all z ∈ C, if f is entire then ∑k≥0 ckz

k converges for all r, so∑
k≥0

|ck|2r2k = 1
2π

∫
[0,2π]

∣∣∣f(reiθ)
∣∣∣2 dθ ≤ 1

2π

∫
[0,2π]

M2 dθ = M2.

Thus for all r,
|c0|2 + |c1|2r2 + |c2|2r4 + · · · ≤ M2,

and taking r → ∞ forces |c1|2 = |c2|2 = · · · = 0. So f(z) = c0 is constant.
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17 Liouville’s Theorem

E 17.2 FTA via Liouville e

Problem 17.2.1 (?)
Prove the Fundamental Theorem of Algebra (using complex analysis).

Solution:

• Strategy: By contradiction with Liouville’s Theorem
• Suppose p is non-constant and has no roots.
• Claim: 1/p(z) is a bounded holomorphic function on C.

– Holomorphic: clear? Since p has no roots.
– Bounded: for z ̸= 0, write

P (z)
zn

= an +
(
an−1
z

+ · · · + a0
zn

)
.

– The term in parentheses goes to 0 as |z| → ∞
– Thus there exists an R > 0 such that

|z| > R =⇒
∣∣∣∣P (z)
zn

∣∣∣∣ ≥ c := |an|
2 .

– So p is bounded below when |z| > R

– Since p is continuous and has no roots in |z| ≤ R, it is bounded below when |z| ≤ R.
– Thus p is bounded below on C and thus 1/p is bounded above on C.

• By Liouville’s theorem, 1/p is constant and thus p is constant, a contradiction.

E
17.3 Entire functions satisfying an

inequality e

Problem 17.3.1 (?)
Find all entire functions that satisfy

|f(z)| ≥ |z| ∀z ∈ C.

Prove this list is complete.

Concepts Used:

• If f is bounded in a neighborhood of a singularity z0, then z0 is removable.
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17 Liouville’s Theorem

Solution:

• Suppose f is entire and define g(z) := z
f(z) .

• By the inequality, |g(z)| ≤ 1, so g is bounded.
• g potentially has singularities at the zeros Zf := f−1(0), but since f is entire, g is

holomorphic on C \ Zf .
• Claim: Zf = {0}.

– If f(z) = 0, then |z| ≤ |f(z)| = 0 which forces z = 0.

• We can now apply Riemann’s removable singularity theorem:

– Check g is bounded on some open subset D\{0}, clear since it’s bounded everywhere
– Check g is holomorphic on D \ {0}, clear since the only singularity of g is z = 0.

• By Riemann’s removable singularity theorem, the singularity z = 0 is removable and g
has an extension to an entire function g̃.

• By continuity, we have |g̃(z)| ≤ 1 on all of C

– If not, then |g̃(0)| = 1 + ε > 1, but then there would be a domain Ω ⊆ C \ {0} such
that 1 < |g̃(z)| ≤ 1 + ε on Ω, a contradiction.

• By Liouville, g̃ is constant, so g̃(z) = c0 with |c0| ≤ 1
• Thus f(z) = c−1

0 z := cz where |c| ≥ 1

Thus all such functions are of the form f(z) = cz for some c ∈ C with |c| ≥ 1.

E
17.4 Entire functions with an asymptotic

bound
e

Problem 17.4.1 (?)
Find all entire functions satisfying

|f(z)| ≤ |z|
1
2 for |z| > 10.

Solution:
Since f is entire, take a Laurent expansion at z = 0, so f(z) = ∑

k≥0 ckz
k where 2πi

k! ck = f (k)(0)
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17 Liouville’s Theorem

by Cauchy’s integral formula. Take a Cauchy estimate on a disc of radius R > 10:

|ck| ≤ k!
2π

∫
|z|=R

∣∣∣∣ f(ξ)
(ξ − 0)k+1

∣∣∣∣ dξ
≤ k!

2π

∫
|z|=R

|ξ|
1
2

|ξ|k+1 dξ

= k!
2π · 1

Rk+ 1
2

· 2πR

= O(1/Rk− 1
2 ).

So in particular, if k ≥ 1 then k − 1
2 > 0 and ck = 0. This forces f = c0 to be constant.

E 17.5 Tie’s Extra Questions: Fall 2009 e

Problem 17.5.1 (?)
Let f(z) be entire and assume values of f(z) lie outside a bounded open set Ω. Show without
using Picard’s theorems that f(z) is a constant.

Solution:
We have |f(z)| ≥ M for some M , so |1/f(z)| ≤ M−1 is bounded, and we claim it is entire
as well. This follows from the fact that 1/f has singularities at the zeros of f , but these are
removable since 1/f is bounded in every neighborhood of each such zero. So 1/f extends to a
holomorphic function. But now 1/f = c is constant by Liouville, which forces f = 1/c to be
constant.

E 17.6 Tie’s Extra Questions: Fall 2015 e

Problem 17.6.1 (?)
Let f(z) be bounded and analytic in C. Let a ̸= b be any fixed complex numbers. Show that
the following limit exists:

lim
R→∞

∫
|z|=R

f(z)
(z − a)(z − b)dz.

Use this to show that f(z) must be a constant (Liouville’s theorem).

Solution:
Apply PFD and use that f is holomorphic to apply Cauchy’s formula over a curve of radius
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18 Polynomials

R enclosing a and b:∫
γ

f(z)
(z − a)(z − b) dz =

∫
γ
f(z)

(
a− b

z − a
+ b− a

z − b

)
dz

= (a− b)−1
∫
γ

f(z)
z − a

dz + (b− a)−1
∫
γ

f(z)
z − b

dz

= (a− b)−1 · 2πif(a) + (b− a) · 2πif(b)

= 2πi
(
f(a) − f(b)

a− b

)
.

Since f is bounded, this number is finite and independent of R, so taking R → ∞ preserves
this equality. On the other hand, if |f(z)| ≤ M , then we can estimate this integral directly as

I ≤
∫

|z|=R

M

|R− a| · |R− b|
= M · 2πR

|R− a| · |R− b|
≪ 1

R
→ 0,

which forces f(a) = f(b). Since a, b were arbitrary, f must be constant.

18 Polynomials

E 18.1 Big O Estimates e

18.1.1 Tie’s Extra Questions: Fall 2011, Fall 2009 (Polynomial upper bound, d = 2)

Problem 18.1.1 (?)
Let f(z) be entire and assume that f(z) ≤ M |z|2 outside some disk for some constant M .
Show that f(z) is a polynomial in z of degree ≤ 2.

Solution:
Take a Laurent expansion at zero:

f(z) =
∑
k≥0

ckz
k, ck = 1

k!f
(k)(0) = 1

2πi

∮
|ξ|=R

f(ξ)
ξk+1 dξ.

The usual estimate:

2πi|ck| ≤
∮

|ξ|=R
R−(k+1)|f(ξ)| dξ ≤

∮
|ξ|=R

R−(k+1)MR2 dξ

= MR−(k−1) · 2πR
= 2πMR−k+2

R→∞−→ 0,
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provided −k + 2 < 0 ⇐⇒ k > 2.

18.1.2 Tie’s Extra Questions: Spring 2015, Fall 2016 (Polynomial upper bound, d arbitrary)

Problem 18.1.2 (?) a. Let Let f : C → C be an entire function. Assume the existence of
a non-negative integer m, and of positive constants L and R, such that for all z with
|z| > R the inequality

|f(z)| ≤ L|z|m

holds. Prove that f is a polynomial of degree ≤ m.

b. Let f : C → C be an entire function. Suppose that there exists a real number M such
that for all z ∈ C,ℜ(f) ≤ M . Prove that f must be a constant.

Solution:

∣∣∣f (n)(z)
∣∣∣ =

∣∣∣∣ 1
2πi

∮
γ

f(ξ)
(ξ − z)n+1 dξ

∣∣∣∣
≤ 1

2πi

∮
γ

|f(ξ)|
|ξ − z|n+1 dξ

≤ 1
2πi

∮
γ

LRm

Rn+1 dξ

= L

2πiR
m−(n+1) · 2πR

= LRm−n

R→∞−→ 0 ⇐⇒ m− n < 0 ⇐⇒ n > m,

so f is a polynomial of degree at most m.
Now if f is entire, g(z) := ef(z) is entire and

|g(z)| =
∣∣∣ef(z)

∣∣∣ = eℜ(f) ≤ eM ,

so g is an entire bounded function and thus constant by Liouville, making f constant. Why
this is true:

ef = C =⇒ ef · f ′ = 0 =⇒ f ′ ≡ 0,

since ef is nonvanishing, and f ′ ≡ 0 implies f is constant.
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18.1.3 Asymptotic to zn

Problem 18.1.3 (?)
Suppose f is entire and suppose that for some integer n ≥ 1,

lim
z→∞

f(z)
zn

= 0.

Prove that f is a polynomial of degree at most n− 1.

Solution:
Choose |z| large enough so that |f(z)|/|z|n < ε. Then write f(z) = ∑

k≥0 ckz
k and estimate

2π|ck| ≤
∮

|z|=R

f(ξ)
ξk+1 dξ

≤
∮

|z|=R

ε|ξ|n

|ξ|k+1 dξ

= εRn−(k+1) · 2πR
= εCRn−k

ε→0−→ 0

provided n− k ≤ 0 ⇐⇒ k ≥ n, since ε → 0 forces R → ∞.

18.1.4 Spring 2021.3, Tie’s Extra Questions: Spring 2014, Fall 2009 (Polynomial lower bound,
d arbitrary)

Problem 18.1.4 (?)
Suppose f is entire and there exist A,R > 0 and natural number N such that

|f(z)| ≥ A|z|N for |z| ≥ R.

Show that

• f is a polynomial and
• the degree of f is at least N .

Solution:
The easier version of this question: when |f | ≤ A|z|N , f is a polynomial of degree at most N
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by Cauchy’s integral formula:∣∣∣f (n)(z)
∣∣∣ =

∣∣∣∣ 1
2πi

∮
γ

f(ξ)
(ξ − z)n+1 dξ

∣∣∣∣
≤ 1

2πi

∮
γ

|f(ξ)|
|ξ − z|n+1 dξ

≤ 1
2πi

∮
γ

ARN

Rn+1 dξ

= A

2πiR
N−(n+1) · 2πR

= ARN−n

R→∞−→ 0 ⇐⇒ N − n < 0 ⇐⇒ n > N.

Now rearrange the given equality∣∣∣∣f(z)
zN

∣∣∣∣ ≥ A |z| =⇒
∣∣∣∣∣ zNf(z)

∣∣∣∣∣ ≤ A−1.

A priori, f is equal to its power series at z = 0, so f(z) = ∑
k≥0 ckz

k. Since DR is compact, f
has finitely many zeros in this region, say {zk}k≤m. This set must be finite, since an infinite
subset of a compact set has a limit point, and being zero on a set with a limit point implies
being identically zero by the identity principle.
Define

p(z) :=
∏

1≤k≤m
(z − zk) = zm + O(zm−1),

the product of these roots. Increase R if necessary to ensure that∣∣∣∣p(z)zm

∣∣∣∣ < 1 =⇒ |p(z)| < |z|m.

Now define

G(z) := p(z)zN
f(z) =⇒ |G(z)| =

∣∣∣∣∣p(z)zNf(z)

∣∣∣∣∣ =
∣∣∣∣∣ zNf(z)

∣∣∣∣∣ · |p(z)| ≤ A−1|z|m.

Issue: this might not be entire? There could be
poles at the zeros of f outside of DR. . .

By the previous result, G is a polynomial of degree at most m. Now consider leading terms:
on one hand,

f(z)G(z) = p(z)zN ∼ (zm + · · ·) · zN = zN+m + · · · .

On the other hand,

f(z)G(z) = f(z) (zm + · · ·)
∼
∑
k≥0

ckz
k+m + zm−1f(z) + · · ·

= (zm + · · · + cNz
N+m + · · · ) + zm−1f(z) + · · · ,
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18 Polynomials

and by the previous expression, this must be a polynomial of degree at most N + m. This
forces ck = 0 for all k > N , otherwise these would contribute higher order terms.

Note: maybe not quite right!
Alternatively, note that the inequality can be rewritten as

|G(z)| ≤ A−1|z|m =⇒
∣∣∣∣ p(z)f(z)

∣∣∣∣ ≤ A−1|z|m−N .

• If m − N = 0, then p/f is an entire bounded function and thus constant, making
p(z) = λf(z) and f is a polynomial of degree exactly N . -If m−N > 0, then p/f is a
polynomial of degree at most m − N by the previous result. But p/f is a polynomial
with no zeros, since Zp = Zf , and the only nonvanishing polynomial is a constant, so
again p = λf .

• If m−N < 0, then use the inequality∣∣∣∣∣zN−mp(z)
f(z)

∣∣∣∣∣ ≤ A−1,

so the LHS is an entire bounded function and thus constant, so zN−mp(z) = λf(z). But
the LHS is evidently a polynomial of degree (N −m) +m = m.

Solution (Older):
Note that the analogue of this problem where |f(z)| ≤ A|z|N implies f is a polynomial of
degree at most N is easy by the Cauchy estimate:

|f(z)| =

∣∣∣∣∣∣
∑
k≥0

ckz
k

∣∣∣∣∣∣ =⇒ |cn| =
∣∣∣f (n)(0)

∣∣∣ =
∣∣∣∣ n!
2πi

∫
γ

f(ξ)
(ξ − a)n+1 dξ

∣∣∣∣ at a = 0

≤ n!
2π

∫
γ

|f(ξ)|
|ξ|n+1 dξ

≤ n!
2π

∫
γ

A|ξ|N

|ξ|n+1 dξ

= An!
2π

∫
γ

RN

Rn+1 dξ

= An!
2π · 2πR

Rn+1−N

= An!
Rn−N

R→∞−→ 0 ⇐⇒ n−N > 0 ⇐⇒ n > N,

so f(z) = ∑
0≤k≤N ckz

k.
For the case at hand, a solution I liked from MSE:

• Write g(z) := f(1/z), so g has a singularity at z = 0. The claim is that this is a pole.

• It can’t be removable:

|g(z)| ≥ A

∣∣∣∣1z
∣∣∣∣n → ∞ for |1/z| ≥ R ( ⇐⇒ |z| < 1/R),
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so g is unbounded near z = 0.

• It can’t be essential: if so, take the neighborhood of z = 0 given by U := D 1
R

(0) \

{0} =
{
z
∣∣∣ 0 < |z| < 1

R

}
. Then g(U) ⊆ C would be dense by Casorati-Weierstrass,

but note that g(z) = w ∈ g(U) =⇒ |w| := |g(z)| ≥ A|1/z|n since |z| < 1/R, so
g(U) ⊆ (C \D A

Rn
(0)) and in particular does not intersect the interior of D A

Rn
(0).

• Since z = 0 is a pole, it has some finite order m, so write

g(z) =
(
c−mz

−m + · · · + c−1z
−1
)

+ (c0 + c1z + · · ·) := p(1/z) + h(z),

where p is polynomial of degree exactly m (since c−m ̸= 0) and h is entire. In particular,
z = 0 is not a singularity of h.

• Now

g(z) = p(1/z) + h(z) =⇒ f(z) = p(z) + h(1/z).

• Then

f(z) − p(z) = h(1/z) |z|→∞−→ c0 := h(0),

since holomorphic functions are continuous.

• Then h is an entire function with a finite limit L at ∞. h is bounded by c0 in a
neighborhood U∞ of ∞ and takes on a maximum on U c∞ by compactness and the
maximum modulus principle. So h is bounded on all of C, and thus constant by Liouville,
and thus h(1/z) = L for all z.

• So

f(z) = p(z) + h(1/z) = p(z) + c0

=⇒ f(z) = (c−1z + · · · + c−mz
m) + c0,

which is a polynomial of degree exactly m := deg p.

• Why m ≥ N : if not, m < N so N −m > 0. Then for large z,

A ≤
∣∣∣∣f(z)
zN

∣∣∣∣ =
∣∣∣∣c0 + c−1z + · · · + c−mz

m

zN

∣∣∣∣
=
∣∣∣∣ c0
zN

+ c−1
zN−1 + · · · + c−m

zN−m

∣∣∣∣
|z|→∞−→ 0,

since every term has a factor of z in the denominator. This contradicts A > 0. E
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E 18.2 Misc e

18.2.1 Spring 2021.4

Problem 18.2.1 (?)
Let f = u+ iv be an entire function such that ℜ(f(x+ iy)) is polynomial in x and y. Show
that f(z) is polynomial in z.

Solution:
To clear up notation: write f(z) = u(x, y) + iv(x, y), here we’re assuming that u is polynomial
in x and y.

Claim: If u is polynomial in x, y, then so is v.

Proof (?).
This follows from the fact that u is a harmonic conjugate of v, and the explicit process
computing the conjugate will result in a polynomial. Gamelin describes this process in
detail, see Ch.2 Section 5 on Harmonic functions where he proves the formula

v(x, y) =
∫ y

y0

∂u

∂x
(x, t) dt−

∫ x

x0

∂u

∂y
(s, y0) ds+ C.

■

Claim: Since f(x, y) is a polynomial in x, y, f(z) must be a polynomial in z.

Proof (?).
Since f is entire, it’s equal to its Laurent series everywhere, so

f(z) =
∑
k≥0

ckz
k, ck = f (k)(0)

k! = 1
2πi

∫
S1

f(ξ)
ξk+1 dξ.

Thus f will be a polynomial if cN = 0 for all N large enough, which will be true if
f (N)(z) = 0 for large enough N . But we can write

∂

∂z
f(z) = ∂

∂x
f(x, y) =⇒ 0 =

(
∂N

∂xN

)
f(x, y) =

(
∂N

∂zN

)
f(z) := f (N)(z),

■
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18.2.2 Spring 2019.4 (Eventually bounded implies rational)

Problem 18.2.2 (?)
Let f be a meromorphic function on the complex plane with the property that |f(z)| ≤ M for
all |z| > R, for some constants M > 0, R > 0.
Prove that f(z) is a rational function, i.e., there exist polynomials p, q so that f = p

q .

Solution:
Note that f must have finitely many poles – either z = ∞ is a pole or a removable singularity,
and since poles are isolated, there is some R ≫ 0 such that all other poles of f are in |z| ≤ R.
The set Pf of poles is a closed set and DR is compact, so if Pf is infinite it has an accumulation
point, contradicting that poles are isolated.
So enumerate Pf as {pk}k≤N , define g(z) := ∏

k≤N (z − pk), and set F (z) := g(z)f(z). Then
F is an entire function, and the claim is that F is bounded and thus constant by Liouville.
Proving the bound: take |z| > R, then

|G(z)| = |f(z)||g(z)|
≤ MC|z|N ,

using that g is a polynomial of degree N , so
∣∣∣g(z)
zN

∣∣∣ → 1 as |z| → ∞ since g is monic. So after
possibly increasing R, we can choose |z| large enough so that

∣∣∣g(z)
zN

∣∣∣ < C for, say, some constant
C < 2. In any case, by a common qual question, if |G| ∈ O(|z|N ) for |z| large enough then G
is a polynomial of degree at most N . Then f(z) := G(z)/g(z) is a rational function.

18.2.3 Spring 2020 HW 3.5, Tie’s Extra Questions: Fall 2015

Problem 18.2.3 (?)
Let f be entire and suppose that limz→∞ f(z) = ∞. Show that f is a polynomial.

Solution:
Note that f has finitely many zeros: since f is unbounded, there is some R such that f(DcR) ⊆
Dc, so in particular f is nonvanishing on DcR. So Zf is a closed subset of a compact set, so is
either finite or has an accumulation point. In the latter case, f ≡ 0 by the identity principle,
so suppose not.
Write Zf = {zk}k≤n for the n many zeros of f , included with multiplicity, and set

Φ(z) :=
∏
k≤n

(z − zk), F (z) := Φ(z)
f(z) .

Now F is a nonvanishing entire function.

Claim: F is bounded on C.
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Proof (of claim).
Choose R ≫ 1 so that all of zk are in DR, so |ξ − zk| < R for all ξ ∈ DR and all k. By
Cauchy’s integral formula,

|F (z)| ≤ 1
2π

∮
|ξ|=R

∣∣∣∣F (ξ)
ξ

∣∣∣∣ dξ
= 1

2π

∮
|ξ|=R

∣∣∣∣ Ψ(ξ)
f(ξ) · ξ

∣∣∣∣ dξ
≤ 1

2π

∮
|ξ|=R

Rm

|f(ξ)|R dξ

≤ 1
2π

∮
|ξ|=R

Rm−1 dξ

= Rm,

where R is increased if necessary to ensure
∣∣∣ 1
f(z)

∣∣∣ < 1, which can be done since |f(z)| → ∞
as R → ∞. So |F (z)| ≤ C|z|m in DR

c for R large enough, making F a polynomial of
degree at most m. Since F is continuous in DR which is compact, F is bounded in here
as well, making F bounded on all of C.

■

Given this, F is entire and bounded and thus constant by Liouville. So F (z) = c, and as a
result f(z) = cΦ(z) which is a polynomial of degree n.

18.2.4 Spring 2020 HW 2, SS 2.6.13

Problem 18.2.4 (?)
Suppose f is analytic, defined on all of C, and for each z0 ∈ C there is at least one coefficient
in the expansion f(z) = ∑∞

n=0 cn(z − z0)n is zero. Prove that f is a polynomial.
Hint: use the fact that cnn! = f (n)(z0) and use a
countability argument.

Solution:
Write Zn :=

{
z ∈ C

∣∣∣ f (n)(z) = 0
}

, then by hypothesis ⋃n≥0 Zn = C. A version of the Baire
category theorem is that if X is a complete metric space and X is a countable union of closed
sets, then at least one such set has a nonempty interior. Thus some Zn has an interior point z0,
and as a result there is some disc Dε(z0) on which f (n)(z0) ≡ 0. This implies that f (k)(z0) ≡ 0
on Dε(z0) for every k ≥ n, so f is a polynomial of degree at most n.
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19 Rouché’s Theorem

E 19.1 Standard Applications e

19.1.1 Tie’s Extra Questions: Fall 2009, Fall 2011, Spring 2014 (FTA)

Problem 19.1.1 (?)
Use Rouche’s theorem to prove the Fundamental Theorem of Algebra.

Solution:
Write f(z) = ∑

k≤n ckz
k. Big: M(z) = cnz

n. Small: m(z) = f(z) −M(z) = ∑
k≤n−1 ckz

k.
Now use that ∣∣∣∣m(z)

M(z)

∣∣∣∣ :=

∣∣∣∣∣∣c−1
n

∑
k≤n−1

ckz
k−n

∣∣∣∣∣∣
=
∣∣∣∣c−1
n

(
c1
zn

+ c2
zn−1 + · · · + cn−1

z

)∣∣∣∣
|z|→∞−→ 0,

so choose R large enough such that for |z| ≥ R,
∣∣∣M(z)
m(z)

∣∣∣ < 1. Then on |z| = R,
∣∣∣∣m(z)
M(z)

∣∣∣∣ < 1 =⇒ |m(z)| < |M(z)| =⇒ ♯n = ♯ZM = ♯ZM+m = ♯Zf ,

since cnzn has z = 0 as a root with multiplicity n.

Solution (Explicit bound):
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An estimate: write f(z) = ∑
k≤n ckz

k with cn = 1, then for R > 1, on |z| = R we have

|f(z) − zn| ≤
∑

k≤n−1

∣∣∣ckzk∣∣∣
≤

∑
k≤n−1

|ck|Rk

≤
∑

k≤n−1
|ck|Rn−1

= Rn−1 ∑
k≤n−1

|ck|

:= Rn−1C

≤ Rn

= |zn|,

provided we can choose C < R, but this is possible since ∑k≤n−1 |ck| is a constant. So
n = ♯Zzn = ♯Zf .

19.1.2 Tie’s Extra Questions: Fall 2015 (Standard polynomial)

Problem 19.1.2 (?)
Find the number of roots of z4 − 6z + 3 = 0 in |z| < 1 and 1 < |z| < 2 respectively.

Solution:
On |z| ≤ 1:

• Big: M(z) = −6z
• Small: m(z) = z4 + 3

Then on |z| = 1,

|m(z)| ≤ |z|4 + 3 = 4 < 6 = |−6z| = |M(z)|,

so 1 = ZM = Zf here.
On |z| ≤ 2:

• Big: M(z) = z4

• Small: m(z) = −6z + 3.

Then on |z| = 2,

|m(z)| = |−6z + 3| ≤ 6|z| + 3 = 15 < 16 = 24 = |z|4 = |M(z)|,

so 4 = ZM = Zf here.
Thus there are 4 − 1 = 3 zeros in 1 ≤ |z| ≤ 2.
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19.1.3 Tie’s Extra Questions: Fall 2016 (Standard polynomial)

Problem 19.1.3 (?)
Prove that all the roots of the complex polynomial

f(z) = z7 − 5z3 + 12 = 0

lie between the circles |z| = 1 and |z| = 2.

Solution:
On |z| ≤ 1:

• Big: M(z) = 12
• Small: m(z) = z6 − 5z3

For |z| = 1,

|m(z)| :=
∣∣∣z7 − 5z3

∣∣∣ ≤ |z|7 + 5|z|3 = 6 < 12 := |M(z)|,

so 0 = ZM = Zf .
On |z| ≤ 2,

• Big: M(z) = z7

• Small: m(z) = −5z3 + 12

On |z| = 2,

|m(z)| :=
∣∣∣−5z3 + 12

∣∣∣ ≤ 5|z|2 + 12 = 32 < 128 = 27 := |M(z)|,

so 7 = ZM = Zf .
So f has 7 zeros in 1 ≤ |z| ≤ 2.

19.1.4 Spring 2020 HW 3.11 (Standard polynomial)

Problem 19.1.4 (?)
Find the number of roots of p(z) = z4 − 6z + 3 in |z| < 1 and 1 < |z| < 2 respectively.

Note: the original problem used 4z4 − 6z + 3, but
I don’t think it’s possible to use Rouché on that at
all!

Solution:
On |z| < 1:

19.1 Standard Applications 122



19 Rouché’s Theorem

• Small: m(z) = z4 + 3
• Big: M(z) = −6z

On |z| = 1,

|m(z)| =
∣∣∣z4 + 3

∣∣∣ ≤ |z|4 + 3 = 4 < 6 = |−6z| = |M(z)|,

so Zf = ZM = 1.
On |z| < 2:

• Small: −6z + 3
• Big: z4

On |z| = 2,

|m(z)| =≤ 6 + 3 = 9 < 24 = |M(z)|,

so Zf = ZM = 4.
Thus there are 4 − 1 = 3 zeros in 1 ≤ |z| ≤ 2.

19.1.5 Standard polynomial

Problem 19.1.5 (?)
How many roots does the following polynomial have in the open disc |z| < 1?

f(z) = z7 − 4z3 − 1.

Solution:
Big: M(z) = −4z3. Small: m(z) = z7 − 1. Then on |z| = 1,

|m(z)| =
∣∣∣z7 − 1

∣∣∣ ≤ |z|7 + 1 = 2 < 4 =
∣∣∣−4z4

∣∣∣,
so f and M have the same number of zeros: three.

19.1.6 Spring 2020 HW 1.3 (Standard polynomial)
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Problem 19.1.6 (?)
Prove that the following polynomial has its roots outside of the unit circle:

p(z) = z3 + 2z + 4.

Hint: What is the maximum value of the modulus
of the first two terms if |z| ≤ 1?

Solution:
Big: M(z) = 4 Small: m(z) = z3 + 2z. On |z| = 1,

|m(z)| ≤ |z|3 + 2|z| = 1 + 2 = 3 < 4 = |M(z)|,

so 0 = ZM = ZM+m = Zf in D.

19.1.7 Polynomials with parameters

Problem 19.1.7 (?)
Assume that |b| < 1 and show that the following polynomial has exactly two roots (counting
multiplicity) in |z| < 1:

f(z) := z3 + 3z2 + bz + b2.

Solution:
Big: M(z) = 3z2. Small: m(z) = z3 + bz + b2. Then on |z| = 1:

|m(z)| ≤ |z|3 + b|z| + b2 = 1 + b+ b2 < 3 = |M(z)|,

and M(z) has exact two roots in D.

19.1.8 Tie’s Extra Questions: Spring 2015 (Power series)

Problem 19.1.8 (?)
Let 0 < r < 1. Show that polynomials Pn(z) = 1 + 2z + 3z2 + · · · + nzn−1 have no zeros in
|z| < r for all sufficiently large n’s.

Solution:
Key observation:

Pn(z) =
∑

1≤k≤n−1
kzk−1 = ∂

∂z
Qn(z) Q(z) :=

∑
0≤k≤n

zk.

19.1 Standard Applications 124



19 Rouché’s Theorem

Note that Q(z) →
∑
k≥0 z

k = 1
1−z uniformly on |z| ≤ R < 1 since this power series has radius

of convergence 1. Similarly Pn(z) converges uniformly to ∂
∂z

1
1−z = 1

(1−z)2 , so let P (z) := 1
(1−z)2 .

Note that P is nonvanishing in D.
Strategy:

• Small: m(z) = P (z) − Pn(z), look for an upper bound |m(z)| < U
• Big: P (z), look for a lower bound L with |P (z)| > L > U .

Just by considering the geometry of circles of radius R < 1 and 1 and measuring distances to
the point 1, we can estimate

0 < 1 −R ≤ |1 − z| < 1 +R < 2 =⇒ |P (z)| = 1
|1 − z|2

≥ 1
22 = 1

4 .

Now fix ε < 1
4 and use uniform convergence of Pn → P to produce an N such that n ≥ N

implies ∥P − Pn∥∞ < ε in |z| ≤ R. Then on |z| = R, for n ≥ N ,

|m(z)| := |P (z) − Pn(z)| ≤ ∥P − Pn∥∞ < ε <
1
4 ≤ |P (z)| = |M(z)|,

so 0 = ZP = ZPn by Rouché.

E 19.2 Exponentials e

19.2.1 UMN Fall 2009 (Solutions as zeros)

Problem 19.2.1 (?)
Find the number of solutions to the following equation on |z| < 1:

6z3 + 1 = −ez.

Solution:
Write f(z) := 6z3 + 1 + ez.

• Small: m(z) = ez + 1
• Large: M(z) = 6z3

• The estimate:

|m(z)| = |ez + 1| ≤ eℜ(z) + 1 ≤ e|z| + 1 = e+ 1 < 6 =
∣∣∣6z3

∣∣∣,
so 3 = ZM = Zf .

19.2 Exponentials 125



19 Rouché’s Theorem

19.2.2 UMN Spring 2009 (Checking the equality case)

Problem 19.2.2 (?)
Find the number of roots on |z| ≤ 1 of

f(z) = z6 + 4z2ez+1 − 3.

Solution: • Small: m(z) = z6 − 3
• Big: M(z) = 4z2ez+1, which has two such zeros

Now estimate m from above:

|m(z)| =
∣∣∣z6 − 3

∣∣∣ ≤ |z|6 + 3 = 4.

and M from below:

|M(z)| =
∣∣∣4z2ez+1

∣∣∣ = 4e|z|4eℜ(z) = 4eeℜ(z) ≥ 4ee−1 = 4,

which unfortunately isn’t quite enough. But equality occurs iff ℜ(z) = −1 on S1, so z = −1,
in which case |m(−1)| = |1 − 3| = 2, so the inequality is in fact strict. So 2 = ZM = Zf .

19.2.3 Right half-plane estimate

Problem 19.2.3 (?)
Find the number of zeros z with ℜ(z) > 0 for the following function:

f(z) := z3 − z + 1.

Solution:
Take a contour γ1 :=

{
it
∣∣∣ t ∈ R

}
and γ2 :=

{
Reit

∣∣∣ t ∈ [−π, π]
}

.

• Big: M(z) = z3 + 1
• Small: m(z) = −z

On γ2, we have |z| = R, so take R large enough that the following estimate holds:

|M(z)| =
∣∣∣z3 + 1

∣∣∣ ≥
∣∣∣|z|3 − 1

∣∣∣ = R3 − 1 > R = |m(z)| = R.

In particular, this works for R > 1.
On γ1, note

• |M(z)| =
∣∣(it)3 + 1

∣∣ =
∣∣1 − it3

∣∣
• |m(z)| = |it|
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These can be interpreted geometrically: the former is the hypotenuse of a triangle and the
latter is a leg, so |M(z)| ≥ |m(z)| will hold:

Now note that z3 + 1 has roots ω3, ω
2
3, ω

3
3 = −1 for ωk := e

iπ
k , and the first two are in the right

half-plane. So 2 = ♯ZM = ♯Zf by Rouché.

19.2.4 Zeros of ez

Problem 19.2.4 (?)
Prove that for every n ∈ Z≥0 the following polynomial has no roots in the open unit disc:

fn(z) :=
n∑
k=0

zk

k! .

Hint: check n = 1, 2 directly.

Solution (Using Rouché):
For the n = 1 case, f1(z) = 0 ⇐⇒ 1 + z = 0 ⇐⇒ z = −1, so this has no roots in D. For
n = 2, factor

f2(z) = 1 + z + z2 = (z − ζ2
3 )(z − ζ−2

3 ),
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using that

ζ2
3 · ζ−2

3 = 1, −(ζ2
3 + ζ−2

3 ) = −2ℜ(ζ2
3 ) = −2 cos

(2π
3

)
= 1.

Now use that
∣∣∣ζk3 ∣∣∣ = 1, which is not in D.

For n ≥ 3: toward applying Rouche’s theorem, let M(z) = 1 + z and m(z) = 1
2z

2 + · · · + 1
n!z

n.
Note that on |z| = 1, |m(z)| = 2, and

|m(z)| =

∣∣∣∣∣∣
∑

k≥n+1

zk

k!

∣∣∣∣∣∣
≤

∑
k≥n+1

|z|k

k!

≤
∑

k≥n+1

1
k!

= e1 −
∑
k≤n

1
k! .

Suppose n ≥ 3,

|m(z)| < e− (1 + 1 + · · · ) ≈ 0.718 < 2,

then Rouché applies directly and

0 = ♯ZM (D) = ♯ZM+m(D) := ♯Zf (D),

noting that M(z) = 0 ⇐⇒ z = −1, which isn’t contained in the open disc D.

19.2.5 More ez

Problem 19.2.5 (?)
Let n ∈ Z≥0 and show that the equation

ez = azn

has n solutions in the open unit disc if |a| > e, and no solutions if |a| < 1
e .

Solution:
Note that |ez| = eℜ(z), which is maximizes on S1 at z = 1 ∈ R and minimized at z = −1.
Write f(z) = ez − azn, so solution correspond to zeros of f .
Case 1: suppose |a| > e. Big: M(z) = azn. Small: m(z) = ez. On |z| = 1,

|m(z)| = |ez| = eℜ(z) ≤ e1 < |a| = |azn| = |M(z)|,
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so f has ♯ZM = n zeros.
Case 2: suppose |a| < 1/e. Big: M(z) = ez. Small: m(z) = azn. On |z| = 1,

|m(z)| = |azn| = |a| < e−1 ≤ eℜ(z) = |ez| = |M(z)|,

and M has no zeros in D (and in fact none in C), so neither does f .

19.2.6 Zeros of partial sums of exponential

Problem 19.2.6 (?)
For each n ∈ Z≥1, let

Pn(z) = 1 + z + 1
2!z

2 + · · · + 1
n!z

n.

Show that for sufficiently large n, the polynomial Pn has no zeros in |z| < 10, while the
polynomial Pn(z) − 1 has precisely 3 zeros there.

Solution:
More is true: this will hold for any disc of arbitrary radius R, with n depending on R. Fix
R, then use that Pn(z) n→∞−→ ez uniformly on the compact disc |z| ≤ R. Consequently, setting
gn(z) := Pn(z)

ez , we have gn(z) → 1 uniformly on this disc, for any ε > 0 this can be used to
produce an n ≫ 1 such that |gn(z) − 1| < ε for all |z| ≤ R.
So take ε := 1 and define h(z) := 1, then for |z| = R

|gn(z) − 1| < 1 = |h(z)|,

so by Rouché,

0 = ♯Zh = ♯Zh+(gn−1) = ♯Zgn ,

since h has no zeros at all. Take R = 10 to get the stated result.
For Pn(z) − 1, note that ez − 1 = 0 has three solutions in |z| < 10, namely z = 0,±2πi. We
similarly have Pn(z) − 1 → ez − 1 uniformly, so on a disc of radius R choose n large enough
so that ∣∣∣∣Pn(z) − 1

ez − 1 − 1
∣∣∣∣ < 1

=⇒
∣∣∣∣(Pn(z) − 1) − (ez − 1)

ez − 1

∣∣∣∣ < 1

=⇒ |(Pn(z) − 1) − (ez − 1)| < |ez − 1|
:= |m(z)| < |M(z)|,

so

3 = ♯ZM = ♯ZM+m = ♯ZPn−1.
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19 Rouché’s Theorem

E 19.3 Working for the estimate e

19.3.1 Max of a polynomial on S1

Problem 19.3.1
Prove that

max
|z|=1

∣∣∣a0 + a1z + · · · + an−1z
n−1 + zn

∣∣∣ ≥ 1.

Hint: the first part of the problem asks for a state-
ment of Rouche’s theorem.

Solution:
Write p(z) := a0 + · · · + zn. Toward a contradiction, suppose not so that |p(z)| < 1 on |z| = 1.
Then

|f(z)| < 1 = |z|n on |z| = 1.

Taking m(z) := f(z) and M(z) := −zn, we have

n = ♯ZM = ♯ZM+m = ♯Zf(z)−zn ≤ n− 1,

since f(z) − zn is degree at most n− 1, a contradiction.

19.3.2 Fixed points

Problem 19.3.2 (?)
Let c ∈ C with |c| < 1

3 . Show that on the open set
{
z ∈ C

∣∣∣ ℜ(z) < 1
}

, the function f(z) := cez

has exactly one fixed point.

Solution:
The boundary region is

{
1 + it

∣∣∣ t ∈ R
}

, write g(z) = cez − z so that fixed points of f are
zeros of g.
Big: M(z) = z. Small: m(z) = cez. Then for z = 1 + it,

|m(z)| = |c|eℜ(z) < ce < 1 ≤
√

12 + t2 = |1 + it| = |z|,

so M and g have the same number of zeros, and M has a unique zero.
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19 Rouché’s Theorem

19.3.3 z sin(z) = 1

Problem 19.3.3 (?)
Show that z sin(z) = a has only real solutions.

Solution:
Consider f(z) := z sin(z) − a.
Big: M(z) := z sin(z). Small: m(z) := −a.
Use the following estimate:

|z sin(z)|2 =
∣∣∣∣z2
∣∣∣∣2∣∣∣eiz − e−iz

∣∣∣2
≥
∣∣∣∣z2
∣∣∣∣2∣∣∣|e|iz∣∣∣− ∣∣∣e−iz

∣∣∣2
=
∣∣∣∣z2
∣∣∣∣2∣∣∣e−ℑ(z) − eℑ(z)

∣∣∣
ℑ(z)→∞−→ ∞,

and so in particular a radius R can be chosen large enough so that |z sin(z)| > a for any a.
Thus for |z| = R,

|m(z)| = |a| ≤ |z sin(z)| < |M(z)| =⇒ ♯ZM = ♯ZM+m = ♯Zf .

To count the number of zeros of z sin(z), note that this equals zero at z = 0 with multiplicity
two and z = kπ for k ∈ Z. Choosing R = π

2 + nπ for n large enough, there are exactly 2n+ 2
such zeros (with multiplicity) to z sin(z), and thus 2n+ 2 zeros to z sin(z) −a. Now using that
z sin(z) − a has exactly 2n+ 2 real roots (??), this must be all of them.

Unsure how to find any roots of this thing, real or
not!

#stuck

19.3.4 Spring 2020 HW 3.13 #stuck

Problem 19.3.4 (?)
Prove that for a > 0, z tan z − a has only real roots.
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20 Argument Principle

19.3.5 UMN Spring 2011 (Constant coefficient trick)

Problem 19.3.5 (?)
Let a ∈ C and n ≥ 2. Show that the following polynomial has one root in |z| ≤ 2:

f(z) = azn + z + 1.

Solution:
The key step: getting the following inequality to work

|azn| = |a||z|n < c ≤ 1 = ||z| − |1|| ≤ |z + 1|.

If this is true, then 1 = ♯Zz+1 = ♯Zf . If |a| < 2n, this holds because |a||z|n < 1
2n 2n = 1, so

taking c := 1 works.
Otherwise, suppose |a| ≥ 2n. Letting zk be the roots of f and considering the constant
coefficient, we have

a
∏
k≤n

zk = 1 =⇒

∣∣∣∣∣∣
∏
k≤n

zk

∣∣∣∣∣∣ =
∣∣∣∣1a
∣∣∣∣ ≤ 2n,

so not every zk can satisfy |zk| > 2 and at least one is in |z| ≤ 2.

20 Argument Principle

E
20.1 Spring 2020 HW 3.12, Tie’s Extra

Questions Fall 2015 (Root counting
with argument principle)

e

Problem 20.1.1 (?)
Prove that f(z) = z4 + 2z3 − 2z + 10 has exactly one root in each open quadrant.

Solution:
Take a large semicircle

• γ1 = [0, R]

• γ2 =
{
Reit

∣∣∣ t ∈ [0, π/2]
}

• γ3 = i[0, R]
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• ∆ Arg(f, γ1) = 0: The only way f ◦ γ1 can change argument is by changing sign, since
it’s real valued. Use that f(0) = 10, f(1) = 11 and f ′(t) = 4t3 + 6t − 2 > 0 so f is
increasing on [1,∞). Then by Rouché, on |z| = 1 we have

∣∣z4 + 2z3 − 2
∣∣ ≤ 5 < 10 = |10|,

so f has no zeros on |z| ≤ 1.

• ∆ Arg(f, γ2) = 2π: parameterize γ2(t) = Reit, then f(γ(t)) ∼ R4eit for large R, which
changes argument by 2π for t in [0, π/2].

• ∆ Arg(f, γ3) = 0: check f(it) = t4 + 10 + i(−2t3 − 2t) and we let t range through [0, R].
For t > 0, the real part is strictly positive, so this can not wind about the origin.

By the argument principle, ♯Zf = 1
2π∆ Arg(f,Γ) = 1.

Solution (older):
It suffices to show there’s only one root in the open quadrant Q1, since they come in conjugate
pairs. Assume that there are no roots on R or iR. Since polynomials are entire, the argument
principle can be used to count zeros:

Zf = 1
2πi

∫
γ
∂logf(z) dz = ∆γ Arg(f).

To take the curve γ comprised of

• γ1 = [0, R],
• γ2 = Reit for t ∈ [0, π/2]
• γ3 = i[0, R].

Then

• ∆γ1 Arg(f) = 0, since f(R≥0) ⊆ R≥0.
• ∆γ2 Arg(f) = 4 · π2 = 2π since f ∼ z4 for large R.
• ∆γ3 Arg(f): consider

f(it) = t4 − it3 − 2it+ 10 = t4
(
1 − it−1 − 2it−2 + 10t−4

)
=⇒ Arg(f(it)) ∼ Arg(t4) = 0.

So ∆γ Arg(f) = 1, meaning there is one zero enclosed by γ for R large enough. As R → ∞,
this covers Q1.

20.1.1 n-to-one functions

Problem 20.1.2 (?)
Let f be analytic in a domain D and fix z0 ∈ D with w0 := f(z0). Suppose z0 is a zero of
f(z) − w0 with finite multiplicity m. Show that there exists δ > 0 and ε > 0 such that for
each w such that 0 < |w − w0| < ε, the equation f(z) −w = 0 has exactly m distinct solutions
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inside the disc |z − z0| < δ.

Solution:
Write g(z) := f(z) − w0, then g is holomorphic on D and thus w0 is an isolated zero. Choose
δ small enough so that g is nonvanishing on Dδ(z0) \ {z0}. Let

γ := {|ξ − z0| = δ} = ∂Dδ(z0).

Choose ε < inf {w ∈ f(δ)} so that |f(z) − w0| > ε in Dε(w0) \ {w0} for every z ∈ γ. Let

γ′ := ∂Dε(w0) = {|z − w0| = ε} ,

and define the solution counting function:

F (w) := 1
2πi

∮
γ′
∂log(g(z)) dz = 1

2πi

∮
γ′

g′(z)
g(z) dz = 1

2πi

∮
γ′

f ′(z)
f(z) − w

dz,

which counts the zeros of g (since it has no poles) and consequently the number of solutions
to f(z) = w in Dε(w0). This is now a continuous integer valued function on Dε(w0), and is
thus constant. Since f(z0) = w0 with z0 enclosed by γ and w0 enclosed by γ′, the constant is
exactly the multiplicity of the zero of f(z) − w0 at z0, which is m.

20.1.2 Blaschke products are n to one

Problem 20.1.3 (?)
For k = 1, 2, · · · , n, suppose |ak| < 1 and

f(z) :=
(
z − a1
1 − a1z

)(
z − a2
1 − a2z

)
· · ·
(
z − an
1 − anz

)
.

Show that f(z) = b has n solutions in |z| < 1.

Solution:
Note that f is holomorphic on D and S1, since the poles are at 1/ak and if |al| < 1 then
|ak| > 1. Fix b, then define gw(z) := f(z) − w and form the solution counting function

F (w) := 1
2πi

∮
S1
∂loggw(z) dz = 1

2πi

∮
S1

f ′(z)
f(z) − w

dz.
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Start by computing F (0).

F (0) = 1
2πi

∮
S1
∂log ∏

1≤k≤n
ψak

(z) dz

= 1
2πi

∮
S1

∑
1≤k≤n

∂logψak
(z) dz

= 1
2πi

∮
S1

∑
1≤k≤n

(
1 − |ak|2

(1 − akz)2

)(
z − ak
1 − akz

)−1
dz

= 1
2πi

∮
S1

∑
1≤k≤n

1 − |ak|2

(z − ak)(1 − akz)
dz

= 1
2πi

∑
1≤k≤n

∮
S1

1 − |ak|2

(z − ak)(1 − akz)
dz

= 1
2πi

∑
1≤k≤n

2πi

= n,

where we’ve used that the integrand has a simple pole at ak since 1/ak ∈ Dc. So the equation
f(z) = 0 has n solutions. Now use that F is a continuous function of w on D and integer
valued, thus constant. So F (w) = n for any w, meaning f(z) = w has n solutions in D for
every w.

Alternative: F continuously depends on the ak,
so send them all to zero to get f(z) = zn which
trivially has n zeros.

21 Morera

E 21.1 Uniform limit theorem e

Problem 21.1.1 (?)
Suppose {fn}n∈N is a sequence of analytic functions on D :=

{
z ∈ C

∣∣∣ |z| < 1
}

.
Show that if fn → g for some g : D → C uniformly on every compact K ⊂ D, then g is analytic
on D.

Solution:
By Morera’s theorem, it suffices to show

∫
T f = 0 for all triangles T ⊆ D. Noting that T is

closed and bounded and thus compact, fn → g uniformly on T . Since the fn are holomorphic,
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21 Morera

∫
T fn = 0 for all n, and thus∫

T
g =

∫
T

lim fn = lim
n

∫
T
fn = lim

n
0 = 0,

where moving the limit through the integral is justified by uniform convergence.

E 21.2 Fourier transforms are entire e

Problem 21.2.1 (?)
Suppose that f : R → R is a continuous function that vanishes outside of some finite interval.
For each z ∈ C, define

g(z) =
∫ ∞

−∞
f(t)e−izt dt.

Show that g is entire.

Solution:
By Fubini: ∮

T
g(z) dz :=

∮
T

∫
R
f(t)e−izt dt dz

:=
∫

R

∮
T
f(t)e−izt dz dt

:=
∫

R
f(t)

(∮
T
e−izt dz

)
dt

:=
∫

R
f(t) · 0 dt

= 0,

where the inner integral vanishes because z 7→ e−izt is entire by Goursat’s theorem. So g is
entire by Morera.

E
21.3 Tie’s Extra Questions: Fall 2009, Fall

2011
e

Problem 21.3.1 (?)
Let f(z) be analytic in an open set Ω except possibly at a point z0 inside Ω. Show that if f(z)
is bounded in near z0, then

∫
∆
f(z)dz = 0 for all triangles ∆ in Ω.
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Solution:
Write Dε(z0) for a disc in which f is bounded, say by |f | ≤ M here. Note that if z0 is not in
the region enclosed by ∆, then

∫
∆ f = 0 since f is holomorphic throughout ∆, so suppose z0

is in this region.
Since f is holomorphic in Ω\{z0}, ∆ can be deformed to ∂Dε(z0) without changing the integral.
So ∣∣∣∣∮

∆
f

∣∣∣∣ =
∣∣∣∣∣
∮
∂Dε(z0)

f

∣∣∣∣∣
≤
∮
∂Dε(z0)

|f |

≤
∮
∂Dε(z0)

M

= M · 2πε
ε→0−→ 0,

noting that the bound M is constant and remains an upper bound on smaller discs by the
maximum modulus principle.

E 21.4 Fall 2021.2 e

Problem 21.4.1 (?)
Let γ(t) be a piecewise smooth curve in C, t ∈ [0, 1]. Let F (w) be a continuous function on γ.
Show that f(z) defined by

f(z) :=
∫
γ

F (w)
w − z

dw

is analytic on the complement of the curve γ.

Solution (Using Morera):
By Morera’s theorem, it suffices to show

∫
∆ f(z) dz = 0 for all triangles ∆ ⊆ γc. Claim:∫

∆
f(z) dz =

∫
∆

∫
γ

F (w)
w − z

dw dz

=
∫
γ

∫
∆

F (w)
w − z

dz dw

=
∫
γ
F (w)

(∫
∆

1
w − z

dz

)
dw

=
∫
γ
F (w) · 0 dw

= 0.
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That the inner integral is zero follows from the fact that the function z 7→ 1
w−z is holomorphic

on γc, since it has only a simple pole at w where w ∈ γ is fixed.
That the interchange of integrals is justified follows from Fubini’s theorem: these are continuous
functions on compact sets, which are uniformly bounded and thus Lebesgue measurable and
integrable.

Solution (Using limit definition):
The claim is that f is complex differentiable, thus smooth, thus holomorphic and equal to its
Taylor series expansion. The quick justification:

∂

∂z
f(z) = ∂

∂z

∫
γ

F (w)
w − z

dw

=
∫
γ

∂

∂z

F (w)
w − z

dw

=
∫
γ

F (w)
(w − z)2 dw,

where differentiating through the integral is justified since the integrand is a continuous function
of z on γ since w ̸= z on γ, and γ is a compact set.
Slightly more rigorously, one can equivalently pass a limit through the integral to show that
the defining limit exists:

f(z + h) − f(z) =
∫
γ

F (w)
w + h− z

dw −
∫
γ

F (w)
w − z

dw

=
∫
γ

(w − z)F (w) − (w + h− z)F (w)
(w + h− z)(w − z) dw

=
∫
γ
F (w) h

(w + h− z)(w − z) dw

h→0−→
∫
γ

F (w)
(w − z)2 dw,

since the term involving h goes to 1.

E 21.5 Spring 2020 HW 2, SS 2.6.6 e

Problem 21.5.1 (?)
Suppose that f is holomorphic on a punctured open set Ω \ {w0} and let T ⊂ Ω be a triangle
containing w0. Prove that if f is bounded near w0, then

∫
T f(z) dz = 0.

Solution:
Without loss of generality assume w0 = 0. If |f(z)| ≤ M for |z| < ε, pick T contained in Dε,
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22 Half-planes, discs, strips

then ∣∣∣∣∮
T
f(z) dz

∣∣∣∣ ≤
∮
T

|f(z)| dz ≤
∮
T
M dz = Mµ(T ),

and by homotopy invariance, this integral doesn’t change as T is perturbed. Shrinking T , we
can make µ(T ) → 0.

See also conformal map exercises.

E 21.6 Classifying conformal maps e

Problem 21.6.1 (?)
Define

G :=
{
z ∈ C

∣∣∣ ℜ(z) > 0, |z − 1| > 1
}
.

Find all of the injective conformal maps G → D. These may be expressed as compositions of
maps, but explain why this list is complete.

Solution:
Use that every element of Aut(D) is of the form f(z) = λψa(z), and the region G is conformally
equivalent to D. Thus every element of Aut(G) can be conjugated to an element of Aut(D) by
a conformal map F : G → D. One such map is gotten by rotating z 7→ iz to get H ∩ |z| > 1,
then applying a Joukowski map z 7→ z + z−1 to get H. So

f ∈ Aut(G) =⇒ f = F−1 ◦ ψa ◦ F for some ψa ∈ Aut(D).

22 Half-planes, discs, strips

E
22.1 Tie’s Extra Questions: Spring 2015

(Good Practice) e

Problem 22.1.1 (?)
Find a conformal map

1. from {z : |z − 1/2| > 1/2,Re(z) > 0} to H

2. from {z : |z − 1/2| > 1/2, |z| < 1} to D
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22 Half-planes, discs, strips

3. from the intersection of the disk |z + i| <
√

2 with H to D.

4. from D\[a, 1) to D\[0, 1) (0 < a < 1).
Short solution possible using Blaschke factors.

5. from {z : |z| < 1,Re(z) > 0}\(0, 1/2] to H.

Solution:
Part 1: this is a bigon with vertices 0,∞, so send 0 → ∞ with 1/z. Orient iR and the
circle S positively, note that both will be mapped to generalized circles. To find the resulting
region, use handedness – it’s on the right of iR and the right of S. The map preserves iR
and as t traces out (−∞, 0−, 0+,∞), f(it) traces out (0+,∞,−∞, 0−), so this preserves the
orientation of iR. For S, let z0 := 1

2(1 + i) ∈ S, then f(z0) = 1 − i. So the arc (1, z0, 0) maps
to (1, 1 − i,∞), so this is a vertical line through ℜ(z) = 1 oriented downward. The region is
to the right of S, so we have

The rest is standard:

• Dilate and rotate to 0 < ℑ(z) < π using z 7→ iπz.
• Exponentiate using z 7→ ez to get H.
• Apply the Cayley map z 7→ z−i

z+i to get D.

Part 2: a bigon with vertex 1, i.e. a lune. Send 1 → ∞ with f(z) := 1
z−1 , and check that

• 1 7→ ∞
• 1

2(1 + i) 7→ −(1 + i)
• 0 7→ −1
• i 7→ −1

2(1 + i)
• −1 7→ −1

2

By tracking tangent/normal vectors, this results in the region −1 < ℜ(z) < −1
2 :
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The rest is standard:

• Translate to the right by z 7→ z + 1
2 to get −1

2 < ℜ(z) < 0.
• Rotate and dilate by z 7→ −2iπz to get 0 < ℑ(z) < π
• Exponentiate by z 7→ ez to get H,
• Cayley map z 7→ z−i

z+i to get D.

Part 3: a bigon in H with vertices ±1, with an arc passing through z3 := i(
√

2 − 1). Take
z 7→ z+1

z−1 to obtain

• −1 7→ 0
• 1 7→ ∞
• 0 7→ −1

Claim: z3 7→ w0 where arg(w0) = −3π/4
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Proof (?).
Let z3 = ic where c :=

√
2 − 1, then

f(z3) = −1 + z3
1 − z3

= −1 + ic

1 − ic

= −(1 + ic)2

1 + c2

= −
(

1 − c2

1 + c2 + i
2c

1 + c2

)
.

Now check that c2 = 3 − 2
√

2 and 1 − c2 = −2 + 2
√

2, so

2c
1 − c2 = 2(

√
2 − 1)

−2 + 2
√

2
= 1,

so the argument is arctan(1) = π
4 or −3π

4 . Since 1 − c2 > 0, 2c > 0, noting the negative
sign above, f(z3) is in Q3, so take −3π

4 .
■

Orienting the bigon positively, we have (−1, 0, 1) 7→ (0,−1,∞), i.e. the real axis oriented from
+∞ → −∞. Similarly (1, z3,−1) 7→ (∞, ω3

4, 0), which is a line passing through ω3
4, oriented

from Q3 → Q1. Since the original region was on the left of both curves, we get

Now

• Flip this to Q1 with z 7→ −z to get 0 < Arg(z) < π/4.
• Rotate clockwise with z 7→ e

−iπ
8 to get −π/8 < Arg(z) < π/8.

• Dilate the argument to a half-plane with z 7→ z
π

2θ0 where θ0 = π/8 to get −π/2 <
Arg(z) < π/2.

• Rotate with z 7→ iz to get H.
• Cayley map, z 7→ z−i

z+i .

Part 4: See part 5. The critical step is a Blaschke map ψa which sends a → 0. For a ∈ R,
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ψa(R) = R and this will map the partial slit from a to the boundary to a usual slit from 0 to
the boundary.
Part 5: Dealing with the slit:

• Use a Blaschke factor to send a := −1/2 → 0, so z 7→ a−z
1−az . Checking that (−1/2, 0, 1) →

(0,−1/2,−1), the image is D \ (−1, 0].
• Rotate with z 7→ e−iπz to get D \ [0, 1).
• Unfold with z 7→ z

1
2 to get D∩H, noting that the slit becomes [−1, 1] and is erased here.

• Use z 7→ −1/z to get Dc ∩ H.
• Use the Joukowski map z 7→ z + z−1 to map to Q34
• Use z 7→ −z to get H.

E
22.2 Tie’s Extra Questions: Fall 2016

(Half-strip) e

Problem 22.2.1 (?)
Find the conformal map that takes the upper half-plane conformally onto the half-strip{

w = x+ iy
∣∣∣ − π/2 < x < π/2, y > 0

}
.
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23 Lunes, Bigons

Solution:
It’s well known that z 7→ sin(z) sends −π/2 < ℜ(z) < π/2 with ℑ(z) > 0 to H:

So take z 7→ arcsin(z).

23 Lunes, Bigons

E
23.1 Fall 2019.5, Tie’s extra questions: Fall

2009, Fall 2011, Spring 2014, Spring
2015

e

Problem 23.1.1 (?)
Find a conformal map from

D =
{
z ∈ C

∣∣∣ |z| < 1 and
∣∣∣∣z − 1

2

∣∣∣∣ > 1
2

}
to the unit disk ∆ = {z : |z| < 1}.

Solution:
This is a lune-type region:
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23 Lunes, Bigons

The usual strategy is to blow up the tangency, so send 1 → ∞ with

f(z) := 1
z − 1 .

Claim: f has the following effect:
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Proof (of claim).
Write C1 for S1 and C2 for the smaller circle. Computing the image of C1: parameterize
as γ1(t) = eit for t ∈ [−π, π], then

f(γ1(t)) = 1
eit − 1

= e−it/2

eit/2 − e−it/2

= e−it/2

2i sin(t/2)

= − i

2 csc(t/2) (cos(t/2) − i sin(t/2))

= − i

2 (cot(t/2) − i)

= 1
2 (−1 − i cot(t/2))

= −1
2 − i · 1

2 cot(t/2).

Some analysis on cot(t/2):

• −π ↗ 0⇝ 0 ↘ −∞
• 0 ↗ π ⇝∞ ↘ 0

Thus for − cot(t/2),

• −π ↗ 0⇝ 0 ↗ ∞
• 0 ↗ π ⇝ −∞ ↗ 0

So the image is a vertical line through ℜ(z) = −1
2 oriented from −∞ → ∞.

For the image of C2: parameterize as γ2(t) = 1
2
(
1 + eit

)
, then

f(γ2(t)) = 1
1
2 (1 + eit) − 1

= 1
−1

2 + 1
2e
it

= 1
1
2 (eit − 1)

= 2e−it/2

eit/2 − e−it/2

= 2e−it/2

2i sin(t/2)
= −i csc(t/2) (cos(−t/2) + i sin(−t/2))
= −i csc(t/2) (cos(t/2) − i sin(t/2))
= −i (cot(t/2) − i)
= −1 − i cot(t/2).

By the same argument as above, this traces out a vertical line at ℜ(z) = −1.
By handedness, since the original region is on the left with respect to C1 and the right
with respect to C2, the new region is to the left of ℜ(z) = −1

2 and the right of ℜ(z) = −1
(since both are oriented from −∞ to ∞).

■
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From here, it’s a standard exercise. In steps:

• Map R to the vertical strip −1 < ℜ(z) < −1
2 using z 7→ 1

z−1 .
• Shift using z 7→ z + 1

2 to send this to −1
2 < ℜ(z) < 0.

• Rotate using z 7→ −iz to get 0 < ℑ(z) < i
2 , a horizontal strip.

• Dilate using z 7→ 2πz, which sends i
2 → πi, so the resulting region is 0 < ℑ(z) < π.

• Apply z 7→ ez to map the horizontal strip to H.
• Apply the Cayley map z 7→ z−i

z+i to map H → D.

E 23.2 Fall 2021.7 e

Problem 23.2.1 (?)
Find a conformal map from the intersection of |z − 1| < 2 and |z + 1| < 2 to the upper half
plane.

△! Warning 23.2.1
DZG: I’m 90% sure this is meant to be |z − 1|, |z + 1| <

√
2 or |z − 1|2, |z + 1|2 < 2. Otherwise

computing the argument of the resulting lines is tricky. . .

Solution:
The region:

Note that you can find that i,−i are the intersection points by noting that iR is the perpen-
dicular bisector through the line segment connecting the centers of the circles, then expanding
|z − 1|2 = (x− 1)2 + y2 = 2 and setting x = 0 to get y = ±i.
First rotate this by π/2:
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Call the upper circle C1 and the lower C2. Send −1 → 0, 1 → ∞ by taking

f(z) := z + 1
z − 1 .

This sends the circles to lines through zero, and the lune now spans a triangular sector. Finding
the angles of the lines: write c := 1 +

√
2. Note that f fixes R, so the image regions are

symmetric about R, and it suffices to find the angle of the line f(C1). Note that C1 ∩ iR = ic,
so we compute Arg(f(ic)):

f(ic) = ic+ 1
ic− 1

= (1 + ic)2

c2 + 1

= −1 + c2 − 2ic
c2 + 1

= c2 − 1
c2 + 1 − i

2c
c2 + 1 ,
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so

Arg(f(ic)) = arctan
( 2c

−1 + c2

)
= arctan

(
2(1 +

√
2)

1 − (3 +
√

2)

)
= arctan(−1)

= π

4 or 3π
4 .

Thus f(C1) =
{
te

−iπ
4

∣∣∣ t ∈ (−∞,∞)
}

. Note that f(ic) ∈ Q4, since c2 − 1, c2 + 1 > 0 and
−2c
c2+1 < 0. For the orientation of f(C1), note that (1, ic,−1) 7→ (∞, f(ic), 0), so the line is
oriented from Q4 to Q2.
A similar computation shows

f(−ic) = c2 − 1
c2 + 1 + i

2
c2 + 1 ∈ Q1,

and (−1,−ic, 1) 7→ (0, f(−ic),∞), so f(C2) is oriented from Q3 to Q1.
Since the origin region was to the left of the curves, it remains to the left, so the resulting
region is

{
z
∣∣∣ 3π/4 < Arg(z) < 5π/4

}
:
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From here, it’s a standard exercise, so to sum up:

• Rotate R → R̃ by z 7→ iz to get a horizontal lune with intersection points ±1.
• Send −1 → ∞, 1 → 0 by z 7→ z+1

z−1 to send R̃ → 3π/4 < Arg(z) < 5π/4.
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• Reflect by z 7→ −z to get −π/4 < Arg(z) < π/4.
• “Open” by z 7→ z

π
2θ0 to map to −π/2 < Arg(z) < π/2, where here θ0 := π

4 .
• Rotate by z 7→ iz to get 0 < Arg(z) < π

2 , i.e. H.
• Use the Cayley map z 7→ z−i

z+i to send H → D.

E 23.3 Spring 2020.5, Spring 2019.6 e

Problem 23.3.1 (Spring 2020.5)
Find a conformal map that maps the region

R =
{
z
∣∣∣ ℜ(z) > 0,

∣∣∣∣z − 1
2

∣∣∣∣ > 1
2

}
to the upper half plane.

Problem 23.3.2 (Spring 2019.6)
Find a conformal map from {

z
∣∣∣ |z − 1/2| > 1/2,ℜ(z) > 0

}
to H.

Solution:
The main step: blow up the tangency.
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The individual maps:

• Send 0 → ∞ by z 7→ 1
z to map R to 0 < ℜ(z) < 1

• Rotate with z 7→ iz to map this to 0 < ℑ(z) < 1
• Dilate by z 7→ πz to get 0 < ℑ(z) < π
• Apply z 7→ ez to map to H.

That steps 1 and 2 work requires a bit of analysis. Use that f(z) := 1/z satisfies f(R) = R
and f(iR) = iR. To see where the circle C1 gets mapped to, parameterize it as

γ(t) :=
{1

2
(
1 + eit

) ∣∣∣ t ∈ [−π, π]
}
.
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Now computing its image:

f(γ(t)) = 2
1 + eit

= 2e−it
2

e
−it

2 (1 + eit)

= 2e−it

e
−it

2 + e
it
2

= 2e−it
2

2 cos
(
t
2
)

= sec
(
t

2

)(
cos

(−t
2

)
+ i sin

(−t
2

))
= sec

(
t

2

)(
cos

(
t

2

)
− i sin

(
t

2

))
= 1 − i tan

(
t

2

)
,

and as t runs from −π to π, − tan
(
t
2
)

runs from +∞ to −∞. So this is a line along z = 1,
oriented top to bottom as in the image.
Similarly, computing f(iR): parameterize γ(t) = it with t ∈ (−∞,∞), then

f(γ(t)) = 1
it

= − i

t
,

and as t runs from 0 to ∞, −1/t runs from −∞ to 0, and as t runs from −∞ to 0, −1/t runs
from 0 to ∞. So f(iR) is oriented from bottom to top, as in the image.
That the region outside the disc is mapped to the strip shown: points x ∈ R with |x| > 1 map
to |x| < 1, which is in the strip. One can also conclude this by handedness: the original region
is on the right with respect to C1 and also on the right with respect to iR, so the new region
should be on the right with respect to both f(iR) and f(C1) with their induced orientations.

E 23.4 UMN Spring 2009 e

Problem 23.4.1 (Lune, one intersection)
Find a conformal map from the region bounded by

∣∣∣z − i
2

∣∣∣ = 1
2 and |z − i| = 1 to D.

Solution:
This is a lune with a single intersection vertex at z = i. Orient the circles positively.

• Take f(z) = z+i
z−i to send

– i → ∞
– −i → 0
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– 1 → 1+i
1−i = i

– 0 → −1

So |z| = 1 is sent to the imaginary axis {it} for t ∈ (−∞,∞) oriented positively and∣∣∣z − i
2

∣∣∣ = 1
2 is sent to {−1 + it} also oriented positively. The region then maps to

−1 < ℜ(z) < 0.

• Rotate by z 7→ −iπz to get 0 < ℑ(z) < π.

• Take z 7→ ez to get H.

• Take z 7→ z−i
z+i to get D.

24 Joukowski Maps, Blaschke Factors, Slits

E 24.1 Spring 2021.7 (Slit) e

Problem 24.1.1 (?)
Let R be the intersection of the right half-plane and the outside of the circle

∣∣∣z − 1
2

∣∣∣ = 1
2 with

the line segment [1, 2] removed, i.e.

R =
{
z ∈ C

∣∣∣ ℜ(z) > 0,
∣∣∣∣z − 1

2

∣∣∣∣ > 1
2

}
\
{
z := x+ iy

∣∣∣ 1 ≤ x ≤ 2, y = 0
}
.

Find a conformal map from R to H the upper half-plane.

Concepts Used:

• Blow up the point of tangency: inverting through a circle sends inner circles to lines,
fixes the real line, and preserves regions between curves. E.g. the image of |z − i/2| = 2
is {ℑ(z) = 2}

• So z → 1/z maps the region into a half-strip.

Solution:
Note: this seems unusually difficult for a UGA question! This is a bigon with one vertex
z2 = 0, so send it to infinity and keep track of the slit.
In steps:

• Use z 7→ 1/z to get a vertical strip 0 < ℜ(z) < 1, where the slit maps to [1/2, 1].
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• Shift and dilate with z 7→ π(z − 1/2) to get −π/2 < ℜ(z) < π/2, where the slit is now
at [0, π/2].

• Apply z 7→ sin(z) to get C \ [0, 1].
• Move the slit with z 7→ 4(z − 1/2) to get C \ [−2, 2].
• Apply z 7→ z + z−1 to get C \ D, where the slit is now eliminated.
• Use z 7→ 1/z to get D
• Use the inverse Cayley map z 7→ i1−z

1+z to get H.

E 24.2 Exercises (Lune) e

Problem 24.2.1 (?)
Let λ = 1

2

(
1 + i

√
3
)

and find a map

R := {|z − λ| < 1} ∩
{∣∣∣z − λ

∣∣∣ < 1
}

−→ D.

Solution:
The region looks like the following:
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Following the general strategy for lunar regions, send the intersection points to 0 and ∞ to
get triangular sector. So choose to send 0 → 0 and 1 → ∞ by taking

f(z) := z

z − 1 .

Note: mistake here, really we need to compose with
z 7→ −z to get the picture, so take f(z) := z

1−z
instead!!

Claim:

f(R) =
{
z
∣∣∣ − θ0 < Arg(z) < θ0

}
, θ0 := π

6 .
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From here it is easy to map to the disc:

• z 7→ z
z−1 sends R to |Arg(z)| < θ0

• z 7→ z
π

2θ0 maps |Arg(z)| < θ0 → |Arg(z)| < π
2 , the right half-plane.

• z 7→ iz rotates the right half-plane into H.
• z 7→ z−i

z+i maps H → D.
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Proof (of claim).
Since both C1, C2 pass through 0, 1, their images become circles passing through f(0) =
0, f(1) = ∞, so lines through the origin. Since f fixes R and the original region is
symmetric about R, the resulting region will also be symmetric about R. As shown in
the picture, since the interior of the region is to the left of each circle, the image will be
to the left of each line. So it suffices to find the orientation of the two lines, as well as
the angle that one of them makes with the x-axis.
Consider f(C1) – it suffices to find Arg(f(z0)) for any z0 ∈ C1, so look for a point (other
than 0, 1) where Arg(f(z0)) is easy to compute. Noting that C1 intersects iR, we can
find this point:

C1 :
(
x− 1

2

)2
+
(
y −

√
3

2

)2

= 1

x = 0 =⇒ y = ±1
2

√
3 + 1

2
√

3 = 0,
√

3,

so choose z0 = i
√

3:

f(z0) = i
√

3
i
√

3 − 1
= 1

4
(
3 − i

√
3
)

=⇒ Arg(f(z0)) = −π
6 .

So C1 does get mapped to the line in the image running from Q2 → Q4.
To get the orientation of C1, use that i

√
3, 0, 1 map to f(z0), 0,∞, which gives a Q4 → Q2

orientation – oops.
Mistake here: should have chosen z 7→ z

1−z to
make the picture accurate!

Similarly for C2, setting z1 := −i
√

3 yields f(z1) = 1
4

(
3 + i

√
3
)
, so Arg(f(z1)) = π

6 . The
orientation is found from 1, 0, z0 7→ ∞, 0, f(z0), which is Q3 → Q1.

Again, mistake in the picture!
Intersecting the regions that are to the left of each image curve yields 5π/6 < Arg(z) <
7π/6, and composing with z 7→ −z yields −π/6 < Arg(z) < π/6.

■

E 24.3 Fall 2020.5, Spring 2019.6 (Joukowski) e

Problem 24.3.1 (?)
Consider the function f(z) = 1

2

(
z + 1

z

)
for z ∈ C\{0}. Let D denote the open unit disc.

a. Show that f is one-to-one on the punctured disc D\{0}. What is the image of the circle
|z| = r under this map when 0 < r < 1 ?

b. Show that f is one-to-one on the domain C\D. What is the image of this domain under
this map?
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c. Show that there exists a map g : C\[−1, 1] → D\{0} such that (g ◦ f)(z) = z for all
z ∈ D\{0}. Describe the map g by an explicit formula.

Solution:
Part a: That f : C \ {0} → D \ {0} is injective: compute the derivative as

f ′(z) = 1
2

(
1 − 1

z2

)
,

which only vanishes at z = ±1. Away from 0 in D, f ′ is nonzero and continuous, so by the
inverse function theorem f is a local homeomorphism onto its image, and in particular is
injective.
The images of circles: parameterize one as γ(t) = Reit for t ∈ [−π, π]. Note that if R = 1,
f(γ(t)) = 1

2
(
eit + e−it) = cos(t), so as t increases from −π → π, the interval [−1, 1] is covered

twice. For 0 < R < 1,

f(γ(t)) = 1
2

(
Reit + 1

Reit

)
= 1

2
(
Reit +R−1e−it

)
= 1

2
(
R cos(t) + iR sin(t) +R−1 cos(−t) + iR−1 sin(−t)

)
= 1

2
(
R cos(t) + iR sin(t) +R−1 cos(t) − iR−1 sin(−t)

)
= 1

2
(
R+R−1

)
cos(t) + i

1
2
(
R−R−1

)
sin(t)

:= HR cos(t) + iVR sin(t),

which is generally the equation of an ellipse of horizontal radius HR and vertical radius VR.
As R varies, these sweep out ellipses of vertical radii from 0 to ∞. One can compute the foci:
their distance from z = 0 is given by c, where

c2 = H2
R − V 2

R = 1
4(R+R−1)2 − 1

4(R−R−1)2 = 1,

so the foci are all at ±1 ∈ R. One can check that these are clockwise when 0 < R < 1 and
counterclockwise when R > 1.

In general, you take the coefficient for the major
axis squared minus that of the minor axis squared.
The foci are along the major axis.

Part b: The claim is that f(C \ D) = C \ [−1, 1].
Note that f(z) = f(1/z), so for z ̸= 1/z there are exactly two preimages. These points
are exactly z = ±1, so we need to take the domain Ω := C \ (D ∪ {±1}) to get injectivity.
Otherwise, for every z ∈ Ω, exactly one of z or 1/z is in D, so f(z) takes on unique values in
Ω. By part 1, the images of circles of radius R are ellipses, and these sweep out the entire
plane outside of [−1, 1]:
To be explicit, one can just solve for the two preimages. Setting w = f(z) and solving for z
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yields

w = 1
2

(
z + 1

z

)
=⇒ 2wz = z2 + 1

=⇒ z2 − 2wz + 1 = 0

=⇒ z = 2w ±
√

4w2 − 4
2

=⇒ z = w ±
√
w2 − 1,

where in order to define
√
w2 − 1, one needs a branch cut for Log along [−1, 1], which is

precisely what we’re deleting from the image.
Part c: as in a usual conformal map problem, find a map to C \ [−1, 1] → D.

• Send −1 → 0 and 1 → ∞ with z 7→ z+1
z−1 . Checking that f(0) = −1, this yields C \ R≤0.

• Unwrap with z 7→
√
z to obtain the right half-plane −π/2 < Arg(z) < π/2.

• Apply the rotated Cayley map z 7→ z−1
z+1 to map this to D.

This composes to

g(z) =

√
z+1
z−1 − 1√
z+1
z−1 + 1

=
(√
z + 1 −

√
z − 1

)2
(z + 1) − (z − 1)

= z −
√
z2 − 1,

and checking that it has the right inverse:

w = z −
√
z2 − 1

=⇒ (z − w)2 = z2 − 1
=⇒ w2 + 1 = 2wz

=⇒ z = 1
2

(
w + 1

w

)
.

E
24.4 Tie’s Extra Questions: Spring 2015

(Joukowski) e
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25 Linear Fractional Transformations

Problem 24.4.1 (?)
Prove that f(z) = −1

2

(
z + 1

z

)
is a conformal map from the half disc

{z = x+ iy : |z| < 1, y > 0}

to H := {z = x+ iy : y > 0}.

Solution:
Consider the images of arcs γR(t) := Reit for t ∈ [0, π] and 0 < R < 1, which fill out the upper
half disc:

f(Reit) = −1
2
((
R+R−1

)
cos(t) + i(R−R−1) sin(t)

)
:= HR cos(t) + VR sin(t),

where HR := −1
2R+R−1 and VR := −1

2(R−R−1). Note that HR ∈ (−∞,−1] and VR ∈ (0,∞)
– in particular, since VR > 0, as t ranges through (0, π), this traces out the top half of an ellipse
(noting that VR < 0 would trace out the bottom).
As R ranges from (0, 1), VR ranges from (0,∞), so this traces out all such elliptic arcs in H
passing through HR < 0, iVR ∈ H,−HR > 0. So these trace out all of H.

E 24.5 UMN Spring 2008 e

Problem 24.5.1 (?)
Define A := {ℜ(z) > 0,ℑ(z) > 0}. Find a conformal equivalence ∆ ∩A → A.

Solution:
In steps:

• Unfold with z 7→ z2 to get D ∩ H.
• Joukowski it with z 7→ −1

2(z + z−1) to get H.
• Fold with z 7→ z

1
2 to get Q1 = A.

25 Linear Fractional Transformations

E 25.1 Tie’s Extra Questions: Spring 2015 e
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25 Linear Fractional Transformations

Problem 25.1.1 (?)
Let C and C ′ be two circles and let z1 ∈ C, z2 /∈ C, z′

1 ∈ C ′, z′
2 /∈ C ′. Show that there is a

unique fractional linear transformation f with f(C) = C ′ and f(z1) = z′
1, f(z2) = z′

2.

Solution:
Main idea: both circles can be uniformized in ways that send z2, z

′
2 to zero. Handling C:

• f1: Uniformize by translating and scaling C to S1. Note that the image of z1 is in S1

• f2: if z2 was not enclosed by C, apply z 7→ 1/z to move z2 into D. Otherwise just take
f2 = id. In either case, z1 ∈ S1 is preserved.

• f3: apply a Blaschke factor ψa(z) to move z2 → 0 in D. Since ψa preserves S1, z1 is
moved to another point in S1.

Define F := f3 ◦ f2 ◦ f1. Similarly define g1, · · · , g3 and G for C ′, so z′
2 → 0 in D. Now

F (z1), G(z′
1) ∈ S1, so there is a rotation h : z 7→ λz that sends F (z1) → G(z′

1).
Take the final map to be f := G ◦ h ◦ F−1.

E 25.2 UMN Fall 2012 e

Problem 25.2.1 (?)
Suppose f is holomorphic on ∆∗ and ℜ(f) ≥ 0. Show that f has a removable singularity at
z = 0.

Solution:
We have f : ∆∗ → {ℜ(z) > 0}, so let T : {ℜ(z) > 0} → ∆ be the rotated Cayley map
T (z) = z−1

z+1 . Then G := T−1 ◦ f : ∆∗ → ∆, and since |T | < 1, z = 0 is a removable singularity
for F and F extends holomorphically to G : ∆ → C, since a priori G(0) may not be bounded
by 1. Supposing G is not constant, G(∆) ⊆ ∆ by continuity and G(∆) is open by the open
mapping theorem, and ∆ = f(∆) ⊆ G(∆), so G : ∆ → ∆ is a map of the disc. Then
F := T ◦ G : ∆ → {ℜ(z) > 0} is an extension of F which is bounded in neighborhoods of
z = 0, making zero a removable singularity for f .

E 25.3 UMN Fall 2009 e
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26 Schwarz Lemma

Problem 25.3.1 (?)
Suppose f is entire and f(C) ⊆ H. Show that f must be constant.

Solution:
Write T : C → D for the Cayley map, then F := f◦T satisfies F (C) = T (f(C)) ⊆ T (H) = D, so
F is a bounded entire function and thus constant. So c = F (z) = T (f(z)) =⇒ f(z) = T−1(c),
making f constant.

26 Schwarz Lemma

E
26.1 Fall 2020.4 (Schwarz double root)

#stuck e

Problem 26.1.1 (?)
Let D := {z : |z| < 1} denote the open unit disk. Suppose that f(z) : D → D is holomorphic,
and that there exists a ∈ D\{0} such that f(a) = f(−a) = 0.

• Prove that |f(0)| ≤ |a|2.

• What can you conclude when |f(0)| = |a|2?

Solution:
Part 1:
Write ψa(z) := a−z

1−az for the Blaschke factor of a, and define

g(z) := f(z)
ψa(z)ψ−a(z)

.

Claim: |g(z)| ≤ 1 on D.

Proof (of claim).
|ψa(z)| = 1 on ∂D, so limr→1 ψa(reit) = 1 for any fixed t. Then for any f with |f | ≤ 1 in
D, ∣∣∣∣∣ f(reit)

ψa(reit)

∣∣∣∣∣ ≤ 1
ψa(reit)

≤ 1
supt ψa(reit)

r→1−→ 1.

So apply this to f = g and f = g
ψa

to get it for f
ψaψ−a

.
■
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In particular, |g(0)| ≤ 1, so

1 ≥ |g(0)| = |f(0)|
|Ba(0)| · |B−a(0)| = |f(0)|

|a|2
=⇒ |a|2 ≥ |f(0)|.

Part 2: Applying Schwarz-Pick:

∣∣f ′(0)
∣∣ ≤ 1 − |f(0)|2

1 − |0|2
= 1 − |a|2 < 1,

using that a ̸= 0, so f is a contraction.
Can write fe(z) := f(a)+f(−a)

2 to write fe(z) =
g(z2). Compose with some ψa to get 0 → 0 and
apply Schwarz – unclear how to unwind what hap-
pens in the case of equality though.

E 26.2 Fall 2021.5 e

Problem 26.2.1 (?)
Assume f is an entire function such that |f(z)| = 1 on |z| = 1. Prove that f(z) = eiθzn, where
θ is a real number and n a non-negative integer.

Suggestion: First use the maximum and minimum
modulus theorem to show

f(z) = eiθ
n∏

k=1

z − zk

1 − zkz

if f has zeros.

Solution:
First show the hint: assume f has nonzero zeros. Write Z(f) := f−1(0) for the set of zeros in
D.

Claim: If we assume f is continuous on D, then ♯Z(f) < ∞

Proof (?).
Suppose ♯Z(f) = ∞, then by compactness of D there is a limit point z0. If z0 ∈ D,
then there is a sequence {zk} → z0 with f(zk) = 0 for every k, so f is zero on a set
S := {zk}k≥1 ∪{z0} with an accumulation point and this forces f ≡ 0 on D by the identity
principle, contradicting |f | = 1 on ∂D>
Otherwise, if z0 ∈ ∂D, using continuity of f we have f(zk) = 0 for all k and zk → z0 so
f(z0) = 0, again contradiicting |f | = 1 on ∂D.

■

26.2 Fall 2021.5 165



26 Schwarz Lemma

So write Z(f) = {z1, · · · , zm} and define

g(z) :=
∏

1≤k≤m

z − zk
1 − zkz

, h(z) := f(z)
g(z) .

Claim: h(z) ≡ 1 is constant on D, so that f = λg for some λ ∈ S1, i.e. λ = eiθ for some θ.

Proof (?).
Note that h cancels all zeros of f , so h is nonzero and holomorphic on D. Moreover
|g(z)| ≤ 1 on D since these are well-known to be in Aut(D). It’s also well-known that
|g(z)| = 1 on ∂D. Thus |h(z)| = 1 and

∣∣∣ 1
h(z)

∣∣∣ = 1 on ∂D, and by the maximum modulus
principle,

|h(z)| ≤ 1 and
∣∣∣∣ 1
h(z)

∣∣∣∣ ≤ 1 on D,

forcing |h(z)| ≡ 1 and thus h(z) = eiθ for some θ.
■

So we now have

f(z) = eiθ
∏

1≤k≤m

z − zk
1 − zkz

,

which has poles at points z for which zkz = 1 for some zk ∈ Z(f). However, since we assumed
f was entire, it can have no such poles, which forces zk = 0 for all k. But then

f(z) = eiθ
∏

1≤k≤m

z − 0
1 − 0 · z

= eiθzm.

E 26.3 Fall 2021.6 (Schwarz manipulation) e

Problem 26.3.1 (?)
Show that if f : D(0, R) → C is holomorphic, with |f(z)| ≤ M for some M > 0, then∣∣∣∣∣ f(z) − f(0)

M2 − f(0)f(z)

∣∣∣∣∣ ≤ |z|
MR

.

Concepts Used:
The strategy:

• Write the RHS as a. Note that we need to get rid of the M2 on the LHS, so keep the M
around and write a := z/R so z = aR.
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• Make the substitution to get ∣∣∣∣∣ f(aR) − f(0)
M2 − f(0)f(aR)

∣∣∣∣∣ ≤ M−1|a|

=⇒
∣∣∣∣∣M (f(aR) − f(0))
M2 − f(0)f(aR)

∣∣∣∣∣ ≤ |a|∣∣∣∣∣f(aR)/M − f(0)/M
1 − f(0)f(aR)/M2

∣∣∣∣∣ ≤ |a|.

– Recognize the LHS as ψw(g(a)) for w := f(0)/M and g(a) := f(aR)/M .

Solution:
Proof due to Swaroop Hegde!

Fix R,M and make a clever choice: define

F : D → C

z 7→ f(Rz)
M

.

Write a := F (0) and consider the Blaschke factor

ψa(z) := a− z

1 − az
∈ Aut(D),

and define

g : D → D
z 7→ (ψa ◦ F )(z).

Then g(0) = 0 and |g(z)| ≤ 1 for all z ∈ D, so by Schwarz we have |g(z)| ≤ |z| for all z ∈ D.
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Thus for all z ∈ D,

|g(z)| ≤ z

⇐⇒ |ψa(F (z))| ≤ |z|

⇐⇒
∣∣∣∣∣
f(Rz)
M − a

1 − af(Rz)
M

∣∣∣∣∣ ≤ |z|

⇐⇒

∣∣∣∣∣∣f(Rz) − f(0)

1 − f(0)f(Rz)
M2

∣∣∣∣∣∣ ≤ |z|

⇐⇒
∣∣∣∣∣ f(Rz) − f(0)
M2 − f(0)f(Rz)

∣∣∣∣∣ ≤ |z|
M

⇐⇒
∣∣∣∣∣ f(w) − f(0)
M2 − f(0)f(w)

∣∣∣∣∣ ≤ |w|
MR

,

which holds for all w ∈ D by replacing Rz with w (i.e. to show this equality for arbitrary
w ∈ D, write w = Rz for some z ∈ D and run this chain of inequalities backward).

E 26.4 Scaling Schwarz e

Problem 26.4.1 (?)
Let B(a, r) denote the closed disc of radius r about a ∈ C. Let f be holomorphic on an open
set containing B(a, r) and let

M := sup
z∈B(a,r)

|f(z)|.

Prove that

z ∈ B

(
a,
r

2

)
, z ̸= a,

|f(z) − f(a)|
|z − a|

≤ 2M
r
.

Solution:
Set

g(z) := f(Rz + a) − f(a)
2M ,
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so that g(0) = 0 and g : D → D so Schwarz applies,

|g(z)| ≤ |z| =⇒
∣∣∣∣f(Rz + a) − f(a)

2M

∣∣∣∣ ≤ |z|

=⇒ |f(Rz + a) − f(a)| ≤ 2M |z|

=⇒ |f(w) − f(a)| ≤ 2M
∣∣∣∣w − a

R

∣∣∣∣
=⇒

∣∣∣∣f(w) − f(a)
w − a

∣∣∣∣ ≤ 2M
R
.

E 26.5 Bounding derivatives e

Problem 26.5.1 (?)
Suppose f : D → H is analytic and satisfies f(0) = 2. Find a sharp upper bound for |f ′(0)|,
and prove it is sharp by example.

Concepts Used:
Some useful facts about the Cayley map:

• C(z) := z−i
z+i maps H → D sending i → 0.

• C−1(z) := −i z+1
z−1 maps D → H sending 0 → i.

• C ′(z) = 2i
(z+i)2 and C ′(i) = −1

2 i.
• (C−1)′(z) = 2i

(z−1)2 and C ′(0) = 2i.

• A mistake that’s useful to know: ψ′
w(z) = 1−|w|2

(1−wz)2 and ψ′
w(w) → ∞.

Solution:
Define g : H → H by g(z) = 1

2 iz, so g(2) = i. Then set F := C ◦ g ◦ f : D → D where
C(z) := z−i

z+i is the Cayley map.Since F (0) = C(g(f(0))) = C(g(2)) = C(i) = 0, Schwarz
applies to F and |F ′(z)| ≤ 1 for z ∈ D. By the chain rule,

F ′(z) = f ′((g ◦ C)(z)) · g′(C(z)) · C ′(z).
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Setting g(C(z)) = 0 yields z = C−1(g−1(0)) = C−1(0) = i.

F ′(i) = f ′(0) · g′(0) · C ′(i)

=⇒
∣∣f ′(0)

∣∣ ≤
∣∣∣∣ F ′(i)
g′(0)C ′(i)

∣∣∣∣
≤ 1

|g′(0)| · |C ′(i)|

= 1∣∣∣ i2 ∣∣∣ · ∣∣∣− i
2

∣∣∣
= 4.

By Schwarz, if |F ′(z)| = 1 for any z ∈ D, we’ll have F (z) = λz for some |λ| = 1. Unwinding
this:

F (z) = λz =⇒ (C ◦ g ◦ f)(z) = λz

=⇒ f(z) = g−1(C−1(λz)) = g−1
(

−iλz + 1
λz − 1

)
=⇒ f(z) = −2λz + 1

λz − 1 .

Moreover f ′(z) = −2
(

−2λ
(λz−1)2

)
, so

∣∣f ′(0)
∣∣ = 4|λ| = 4.

E 26.6 Schwarz for higher order zeros e

Problem 26.6.1 (?)
Suppose f : D → D is analytic, has a single zero of order k at z = 0, and satisfies
lim|z|→1 |f(z)| = 1. Give with proof a formula for f(z).

Solution:
Note |f(z)| ≤ 1, and g := f(z)/zk has a removable singularity at zero since g is bounded on
D: fixing |z| = r < 1,

|g(z)| =
∣∣∣∣f(z)
zk

∣∣∣∣ = |f(z)|r−k ≤ r−k r→1−→ 1.

So g : D → D since |g(z)| ≤ 1 on D by the MMP. Since g has no zeros on D, by the MMP
|g| ≥ 1 on D, so |g| = 1 is constant, making g(z) = λz a rotation. Then f(z) = λzn.

Alternative to MMP: if g has no zeros in D, g
admits a conjugate reflection through D by z 7→
1/f(1/z). This is bounded and entire, thus con-
stant, making g constant.

26.6 Schwarz for higher order zeros 170



26 Schwarz Lemma

E 26.7 Schwarz with an injective function e

Problem 26.7.1 (?)
Suppose f, g : D → Ω are holomorphic with f injective and f(0) = g(0).
Show that

∀ 0 < r < 1, g ({|z| < r}) ⊆ f ({|z| < r}) .

The first part of this problem asks for a statement
of the Schwarz lemma.

Solution:
Since f is injective, it has a left-inverse f−1, and F := f−1g is well-defined. Since F : D → D
and F (0) = 0, Schwarz applies and |F (z)| ≤ z on D. Unwinding:∣∣∣(f−1 ◦ g)(z)

∣∣∣ ≤ |z| =⇒ |g(z)| ≤ |f(z)| ∀D ∈ Z.

This says that g(D) ⊆ f(D), and in particular this holds on all Dr(0), so g(Dr(0)) ⊆ f(Dr(0)).

E 26.8 Reflection principle e

Problem 26.8.1 (?)
Let S :=

{
z ∈ D

∣∣∣ ℑ(z) ≥ 0
}

. Suppose f : S → C is continuous on S, real on S ∩ R, and
holomorphic on S◦.
Prove that f is the restriction of a holomorphic function on D.

Solution:
Define a function

F (z) :=
{
f(z) ℑ(z) ≥ 0
f(z) ℑ(z) < 0

.

Then F is holomorphic on S̃ :=
{
z ∈ D

∣∣∣ ℑ(z) < 0
}

– write w0 ∈ S̃ as w0 = z0 for some z0 ∈ S,
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then

f(z) =
∑
k≥0

ck(z − z0)k

=⇒ f(z) =
∑
k≥0

ck(z − z0)k

=
∑
k≥0

ck (z − z0)k

=
∑
k≥0

ck (z − w0)k ,

which yields a power series expansion of F about w0. So f is analytic at every point in S̃ and
thus holomorphic. Since f(z) = f(z) for z, f(z) ∈ R, F is a continuous extension of f to D.
By the symmetry principle, F is holomorphic, and F |S = f .

27 Blaschke Factors

E
27.1 Spring 2019.5, Spring 2021.5

(Blaschke contraction) e

Problem 27.1.1 (?)
Let f be a holomorphic map of the open unit disc D to itself. Show that for any z, w ∈ D,∣∣∣∣∣ f(w) − f(z)

1 − f(w)f(z)

∣∣∣∣∣ ≤
∣∣∣∣ w − z

1 − wz

∣∣∣∣ .
Show that this inequality is strict for z ̸= w except when f is a linear fractional transformation
from D to itself.

Concepts Used:
The Schwarz conjugation trick:

Write the RHS as a, we then want something in the form |F (a)| ≤ |a|. The choice a = ψw(z)
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is forced, so z = ψ−1
w (a). This forces the choice for the LHS

f(w) − (f ◦ ψ−1
w )(a)

1 − f(w)(f ◦ ψ−1
w )(a)

= (ψf(w) ◦ f ◦ ψ−1
w )(a) := F (a).

Solution:
This is the Schwarz–Pick lemma.

• Fix z1 and let w1 = f(z1). Define

ψa(z) := a− z

1 − az
∈ Aut(D).

– Note that inequality now reads∣∣∣ψf(w)(f(z))
∣∣∣ ≤ |ψw(z)|.

Moreover ψa is an involution that swaps a and 0.

• Now set up a situation where Schwarz’s lemma will apply:

0
ψz1−−→ z1

f−→ f(z)
ψf(z1)−−−−→ 0,

so F := ψf(z1) ◦ f ◦ ψz1 ∈ Aut(D) and F (0) = 0.

• Apply Schwarz we get |F (z)| ≤ |z| for all z, so

|F (z)| ≤ |z|

=⇒
∣∣∣∣∣ f(z1) − (f ◦ ψz1)(z)
1 − f(z1) · (f ◦ ψz1)(z)

∣∣∣∣∣ ≤ |z|

=⇒
∣∣∣∣∣ f(z1) − f(w)
1 − f(z1) · f(w)

∣∣∣∣∣ ≤ |ψz1(z)| w := ψz1(z)

=⇒
∣∣∣∣∣ f(z1) − f(w)
1 − f(z1) · f(w)

∣∣∣∣∣ ≤
∣∣∣∣ z1 − z

1 − z1z

∣∣∣∣.
• Since z1 was arbitrary and fixed and w was a free variable, this holds for all z, w ∈ D.

• Strictness: suppose equality holds, we’ll show that f(z) = az+b
cz+d
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• By Schwarz, F (z) = λz for λ ∈ S1. Thus

(ψf(z1) ◦ f ◦ ψz1)(z) = λz

=⇒ (f ◦ ψz1)(z) = ψ−1
f(z1)(λz)

=⇒ f(w) = ψ−1
f(z1)(λψ

−1
z1 (w)) w := ψz1(z)

= ψf(z1) (λψz1(w))
= λψλf(z1) (ψz1(w))
:= λψa(ψb(w))

= λ

(
a− ψb(w)
1 − aψb(w)

)
=

...

= −λ


(
ab− 1

)
z − a+ b(

a− b
)
z − ba+ 1


=

−λ
(
ab− 1

)
z + λ(a− b)(

a− b
)
z + (−ba+ 1)

 ,
which is evidently a linear fractional transformation.

E 27.2 Schwarz-Pick derivative e

Problem 27.2.1 (?)
Suppose f : D → D is analytic. Prove that

∀a ∈ D,
|f ′(a)|

1 − |f(a)|2
≤ 1

1 − |a|2
.

Solution:

Claim: Holomorphic maps on D contract Blaschke factors:

|ψw(z)| ≥
∣∣∣ψf(w)(f(z))

∣∣∣,
i.e. ∣∣∣∣∣ f(w) − f(z)

1 − f(w)f(z)

∣∣∣∣∣ ≤
∣∣∣∣ w − z

1 − wz

∣∣∣∣.
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Proof (?).
Make a change of variables a := ψw(z) so z = ψ−1

w (a) = ψw(a), then the desired inequality
follows if we can show ∣∣∣ψf(w)(f(ψw(a)))

∣∣∣ ≤ |a|.

So define F := ψf(w) ◦ f ◦ ψw, then since ψw(0) = w,

F (0) = ψf(w)(f(w)) = 0.

Moreover |F (z)| ≤ 1 since each constituent is a map D → D. So F satisfies Schwarz and
the claim follows.

■

Given this, there’s just a clever rearrangement to obtain the stated result:∣∣∣∣∣ f(w) − f(z)
1 − f(w)f(z)

∣∣∣∣∣ ≤
∣∣∣∣ w − z

1 − wz

∣∣∣∣
=⇒

∣∣∣∣∣ 1
1 − f(w)f(z)

∣∣∣∣∣ ·
∣∣∣∣f(z) − f(w)

z − w

∣∣∣∣ ≤
∣∣∣∣ 1
1 − wz

∣∣∣∣
,

and taking z → w on both sides yields∣∣∣∣∣ 1
1 − |f(w)|2

∣∣∣∣∣∣∣f ′(w)
∣∣ ≤ 1

|w|2
=⇒

∣∣f ′(w)
∣∣ ≤ 1 − |f(w)|2

1 − |w|2
.

E 27.3 Schwarz and Blaschke products e

Problem 27.3.1 (?)
Suppose f : D → D is analytic and admits a continuous extension f̃ : D → D such that
|z| = 1 =⇒ |f(z)| = 1.

a. Prove that f is a rational function.

b. Suppose that z = 0 is the unique zero of f . Show that

∃n ∈ N, λ ∈ S1 suchthat f(z) = λzn.

c. Suppose that a1, · · · , an ∈ D are the zeros of f and prove that

∃λ ∈ S1 suchthat f(z) = λ
n∏
j=1

z − aj
1 − ajz

.
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Solution:
Part 1: use the reflection principle to define

F (z) :=

f(z) |z| ≤ 1
1

f(1/z)
|z| ≥ 1 .

Now F : CP1 → CP1 is holomorphic and all such functions are rational. As a consequence, f
is rational.
Part 2: As in the proof of Schwarz, define g(z) := f(z)

zn where n = Ordf (0). Then g is
holomorphic on D since the singularity at z = 0 is removable. On |z| = r < 1,

|g(z)| = |f(z)|
|z|

= |f(z)|
r

≤ 1
r
r→1−
−→ 1,

using that |f | ≤ 1 on D. By the MMP, |g| ≤ 1 on all of D. Note that |g| = 1 when |z| = 1,
so |1/g| ≤ 1 in D by the MMP, forcing |g| = 1. Unwinding this, |f | = |z|n, go f(z) = λzn for
some |λ| = 1.
Part 3: Define Ψ(z) := ∏

k≤n ψak
(z) where ψa(z) := a−z

1−az . Set g(z) := f(z)
Ψ(z) , then by the same

argument as above, |g| ≤ 1 and |g| = 1 on |z| = 1. Then g has no zeros, since they’ve all been
divided out, and no poles since f is holomorphic on D, so 1/g is holomorphic on D. Since
|1/g| = 1 on S1, this forces g to be constant. Equality in the Schwarz lemma implies g(z) = λz
is a rotation, and unwinding this yields f(z) = λΨ(z).

27.3.1 Tie’s Extra Questions: Fall 2009

Problem 27.3.2 (?)
Let g be analytic for |z| ≤ 1 and |g(z)| < 1 for |z| = 1.

1. Show that g has a unique fixed point in |z| < 1.

2. What happens if we replace |g(z)| < 1 with |g(z)| ≤ 1 for |z| = 1? Give an example if
(a) is not true or give an proof if (a) is still true.

3. What happens if we simply assume that f is analytic for |z| < 1 and |f(z)| < 1 for
|z| < 1? Suppose that f(z) ̸≡ z. Can f have more than one fixed point in |z| < 1?

Hint: The map ψα(z) = α− z

1 − αz
may be useful.

Solution (Part 1):
Use Rouché: if |f(z)| < 1 is strict when |z| = 1, then consider F (z) := f(z) − z. Write the big
part as M(z) = z and the small as m(z) = f(z), then on |z| = 1

|m(z)| = |f(z)| < 1 = |z| = |M(z)|,
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so M(z) and m(z) +M(z) = f(z) − z have the same number of zeros in D – precisely one.

Solution (Part 2):
There is still a unique fixed point. Use the Brouwer fixed point theorem: since g is holomorphic
on D, it is in particular continuous. By the Brouwer fixed point theorem, every continuous
map D → D has a fixed point. If g is nonconstant, then the fixed point is unique by Schwarz:
without loss of generality one can assume f(0) = 0 by composing with a Blaschke factor.
Apply Schwarz to f , then if f(a) = a we have the equality clause and f(z) = λz. Since
a = f(a) = λa, λ = 1 and f is the identity. If g is constant, then |g(z)| < 1 on |z| = 1 forces
g ≡ 0.

Solution (Part 3):
Note that there is a major difference between self maps to D versus D. By the argument in
part 2, if f(z) is not the identity then f can have at most one fixed point. Moreover, not every
map f : D → D need have a fixed point: consider

g : H → H
z 7→ z + 1.

Now conjugate with the Cayley map C : H → D to define f := CgC−1 : D → D which has no
fixed points at all.

27.3.2 Tie’s Extra Questions: Fall 2015 (Blaschke factor properties)
#complex/exercises/completed
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Problem 27.3.3 (?) a. Let z, w be complex numbers, such that zw ̸= 1. Prove that∣∣∣∣ w − z

1 − wz

∣∣∣∣ < 1 if |z| < 1 and |w| < 1,

and also that ∣∣∣∣ w − z

1 − wz

∣∣∣∣ = 1 if |z| = 1 or |w| = 1.

b. Prove that for fixed w in the unit disk D, the mapping

F : z 7→ w − z

1 − wz

satisfies the following conditions:
• F maps D to itself and is holomorphic.
• F interchanges 0 and w, namely, F (0) = w and F (w) = 0.
• |F (z)| = 1 if |z| = 1.
• F : D 7→ D is bijective.

Hint: Calculate F ◦ F .

E 27.4 Tie’s Extra Questions: Spring 2015 e

Problem 27.4.1 (?)
Suppose f is analytic in an open set containing the unit disc D and |f(z)| = 1 when |z|=1.
Show that either f(z) = eiθ for some θ ∈ R or there are finite number of zk ∈ D, k ≤ n and
θ ∈ R such that

f(z) = eiθ
n∏
k=1

z − zk
1 − zkz

..

Also cf. Stein et al, 1.4.7, 3.8.17

E
27.5 Tie’s Extra Questions: Spring 2015

(Equality of modulus) e

Problem 27.5.1 (?)
Let f and g be non-zero analytic functions on a region Ω. Assume |f(z)| = |g(z)| for all z in
Ω. Show that f(z) = eiθg(z) in Ω for some 0 ≤ θ < 2π.
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Solution:
Define F (z) := f(z)

g(z) .

Claim: F is holomorphic on Ω.

Proof (of claim).
Note that g(a) = 0 iff f(a) = 0, so F has no poles. If F has a singularity at z0, noting
that |F (z0)| = 1, F is bounded in a neighborhood of z0 and thus the singularity must be
removable. By Riemann’s removable singularity theorem, F extends to a holomorphic
function.

■

Given this, note that |F (z)| = 1 for all z, so F (Ω) ⊆ S1, which is codimension 1 in C and
not open. By the open mapping theorem, F must be constant, so F (z) = λ, and in particular
since |F (z)| = 1, λ = eit ∈ S1 for some t. Then f(z) = λg(z).

28 Fixed Points

E 28.1 Fall 2020.7 e

Problem 28.1.1 (?)
Suppose that f : D → D is holomorphic and f(0) = 0. Let n ≥ 1, and define the function
fn(z) to be the n-th composition of f with itself; more precisely, let

f1(z) := f(z), f2(z) := f(f(z)), in general fn(z) := f (fn−1(z)) .

Suppose that for each z ∈ D, limn→∞ fn(z) exists and equals to g(z). Prove that either g(z) ≡ 0
or g(z) = z for all z ∈ D.

Solution:
Note that there is a unique fixed point. We have f(0) = 0, so there is at least one, so suppose
a is another fixed point with f(a) = a. By Schwarz, |f(z)| ≤ |z| with equality at any nonzero
point implying f is a rotation, and f(a) = a =⇒ |f(a)| = |a|, so write f(z) = eiθz. Now
f(a) = a = eiθa forces θ = 0, so f(z) = z is the identity.
Since f(0) = 0, the Schwarz lemma applies and either

• f(z) = eiθz is a rotation, or
• |f ′(0)| < 1 and |f(z)| < z for all z ∈ D.

Supposing the latter, f is a contraction, and |fn+1(z)| < |fn(z)| for all n and all z, so
|fn(z)| n→∞−→ 0 for all z. Since fn → g pointwise, this means g(z) = 0 for all z, making g ≡ 0.
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29 Open Mapping, Riemann Mapping, Casorati-Weierstrass

Otherwise, suppose f is a rotation. Then if f(z) = eiθz, fn(z) = einθz. The pointwise limit
limn→∞ einθz can only exist if θ = 0, otherwise this is periodic when θ is rational or the
points eiθz, e2iθz, · · · form form a countably infinite set of distinct points. So f(z) = z, making
limn→∞ fn(z) = z as well.

29 Open Mapping, Riemann Mapping,
Casorati-Weierstrass

E
29.1 Spring 2020.6 (Prove the open

mapping theorem) e

Problem 29.1.1 (?)
Prove the open mapping theorem for holomorphic functions: If f is a non-constant holomorphic
function on an open set U in C, then f(U) is also an open set.

Solution (using the argument principle):
Idea:

Let f : U → C. Pick w0 ∈ W with f(z0) = w0 for some z0 ∈ U ; we want to show that w0 is
an interior point of f(U), so we’re looking for a disc containing w0 and contained in f(U).
Write

g0(z) := f(z) − w0,

so g0 is holomorphic and has a zero at z0. Since zeros of holomorphic functions are isolated,
there is some U ′ := Dr(z0) where g0 is nonvanishing. The claim is that if we choose ε small
enough, we can arrange so that Wε := Dε(w0) ⊆ f(U). This will follow if for every w ∈ Wε,
the equation f(z) = w has a solution in U , i.e. Define a function that counts the number of
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29 Open Mapping, Riemann Mapping, Casorati-Weierstrass

zeros:

F (w) := 1
2πi

∫
∂U ′

f(z)
f(z) − w1

dz

= 1
2πi

∫
∂U ′

∂
∂z (f(z) − w)
f(z) − w

dz

= ♯Z(f(z) − w,U ′),

which is the number of zeros of f(z)−w in U ′ by the argument principle. Now F is a Z-valued
function, and the only obstruction to continuity is if f(z) −w = 0 in the integrand for some z.
The claim is that ε can be chosen such

z ∈ ∂U ′ =⇒ |f(z) − w| > 0 ∀w ∈ Wε.

The theorem then follows immediately: F (w) : U ′ → Wε is a continuous and Z-valued, thus
constant. Then noting that F (w0) = 1 since z0 ∈ U ′ and w0 ∈ Wε, we have F ≡ 1 > 0 for all
w.

Proof (of claim).
Choose

ε := min
z∈∂U ′

|f(z) − w0|.

Now if |w − w0| < ε and |z − z0| = r, we have |f(z) − w| > ε > 0.
■

E

29.2 Fall 2019.4, Spring 2020 HW 3 SS
3.8.14, Tie’s Extras Fall 2009,

Problem Sheet (Entire univalent
functions are linear)

e

Problem 29.2.1 (Entire univalent functions are affine/linear)
Let f : C → C be an injective analytic (also called univalent) function. Show that there exist
complex numbers a ̸= 0 and b such that f(z) = az + b.

Hint: Apply the Casorati-Weierstrass theorem to
f(1/z).

Solution:
Note that f is non-constant, since a constant function is extremely non-injective. Consider
the singularity at ∞:

• If it is removable, then f is bounded outside of a large disc, and bounded inside of it as
a continuous function on a compact set, making f entire and bounded and thus constant
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by Liouville.

• If it is essential, then by Casorati-Weierstrass there is a large disc of radius R such that
f(DR

c) ⊆ C is dense. By the open mapping theorem, f(DR) ⊆ C is open, so by density
it intersects f(DR

c), but DR ∩ DR
c is empty so this contradicts injectivity.

So we can conclude ∞ is a pole of some order N , so f
(

1
z

)
= ∑

0≤k≤N ckz
−k and thus

f(z) = ∑
0≤k≤N ckz

k is a polynomial of degree N . However, a polynomial of degree N is
generically N -to-one locally, so injectivity forces N = 1 and f(z) = c0 + c1z, where c1 ̸= 0
since f is nonconstant.

Solution (older):
Write g(z) := f(1/z), which has a singularity at z = 0. The claim is that this is a pole.
If z = 0 is a removable singularity, g is bounded on some closed disc |z| ≤ ε, so f is bounded
on |z| > ε. Moreover f is continuous and |z| ≤ ε, f is bounded on this disc. This makes f an
entire bounded function and thus constant by Liouville, contradicting injectivity.
If z = 0 is essential, then by Casorati-Weierstrass pick a punctured disc D = {|z| ≤ ε}
where g(D) is dense in C. Writing Dc := {|z| > ε}, this means that f(Dc) is dense. But
U := {|z| < ε} is open and by the open mapping theorem f(U) is open, so by density there is
a point w ∈ f(Dc) ∩ f(U) while U ∩Dc = ∅, again contradicting injectivity.
So z = 0 is a pole of g, and g admits a Laurent expansion

g(z) =
∑
k≥−N

ckz
k.

Since f is entire, it equals its Laurent expansion at z = 0, so equating the two series yields

f(z) =
∑
k≥0

dkz
k =⇒ g(z) =

∑
k≥0

dk
zk

=
∑

1≤k≤N

ck
zk

+
∑
k≥0

ckz
k

=⇒
∑
k≥0

ckz
k = 0

=⇒ f(z) =
∑

0≤k≤N
ckz

k,

making f a polynomial of degree at most N .
Now f can not be degree zero, since constant maps are not injective. Moreover f can not be
degree N ≥ 2, since any polynomial of degree N has N roots in C by the fundamental theorem
of algebra, and any two distinct roots will be points where injectivity fails. Finally, ruling out
the case of roots with multiplicity, if f(z) = c(z − a)N , then f has exactly N preimages in a
neighborhood of a. Letting p be any such point, we can find N complex points mapping to it:

p = c(z − a)N =⇒ p

c
= (z − a)N

=⇒
(
p

c

) 1
N

ζkN = z − a k = 0, 1, · · · , n− 1

=⇒ zk :=
(
p

c

) 1
N

ζkN + a
f−→ p.

So f must be degree exactly 1, i.e. f(z) = az + b.
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E 29.3 Tie’s Extra Questions: Spring 2015 e

Problem 29.3.1 (?) 1. Let f be analytic in Ω : 0 < |z − a| < r except at a sequence of poles
an ∈ Ω with limn→∞ an = a. Show that for any w ∈ C, there exists a sequence zn ∈ Ω
such that limn→∞ f(zn) = w.

2. Explain the similarity and difference between the above assertion and the Weierstrass-
Casorati theorem.

DZG: I think it’s also necessary to state that zn →
a.

Solution:

As in the proof of Casorati-Weierstrass, fix w and suppose toward a contradiction that no
sequence sequence exists. Then there is some ε,R such that

f(Dε(a)) ⊆ DR(w)c,

for otherwise one could construct the desired sequence. In particular, |f(z) − w| > R for
|z − a| < ε, so define

G(z) := 1
f(z) − w

=⇒ |G(z)| ≤ R−1 < ∞ in Dε(a).

Since G is bounded in this disc, any singularities here must be removable. Since the ak are
poles of f , they are zeros of G – this is because if |f(z)| → ∞ as z → ak then |G(z)| → 0. So
G(ak) = 0 for all k and G extends holomorphically over the removable singularity a, and by
continuity must satisfies G(a) = 0. But now G is zero on a set with a limit point, hence G ≡ 0
by the identity principle. This is a contradiction since if G ≡ 0 on an open set, f has poles on
an open set, contradicting that f is holomorphic on Ω.
The difference to Casorati-Weierstrass: the singularity at a is not essential, since in particular
it is not isolated. The conclusion is nearly the same though: this says that every w ∈ C is a
limit point for f(Ω), so w is in the closure of f(Ω), making the image dense in C.
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30 Schwarz Reflection

E 29.4 Dense images #stuck e

Problem 29.4.1 (?)
Suppose f : H ∪ R → C satisfies the following:

• f(i) = i
• f is continuous
• f is analytic on H
• f(z) ∈ R ⇐⇒ z ∈ R.

Show that f(H) is a dense subset of H.

Solution:
Ideas:

• If an entire function doesn’t have dense image, it’s constant by Liouville using the proof
idea of Casorati-Weierstrass.

• Conjugate f by T : H → D where T (z) = z−i
z+i , then f̃(0) = 0

• Use that T (R) = S1, so
∣∣∣f̃(z)

∣∣∣ = 1 when |z| = 1.
• Schwarz reflection applies to f̃ to define an entire function – if f isn’t dense, then the

extension of f̃ isn’t dense. . . ?
• No clue how to use f(i) = i, although it implies f̃(0) = 0 and Schwarz applies.

E 29.5 Tie’s Extra Questions: Spring 2015 e

Problem 29.5.1 (?)
Let f(z) be an analytic function on C\{z0}, where z0 is a fixed point. Assume that f(z) is
bijective from C\{z0} onto its image, and that f(z) is bounded outside Dr(z0), where r is
some fixed positive number. Show that there exist a, b, c, d ∈ C with ad− bc ̸= 0, c ≠ 0 such
that f(z) = az + b

cz + d
.

30 Schwarz Reflection

E
30.1 Tie’s Extra Questions: Spring 2015

(Reflection for harmonic functions) e
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30 Schwarz Reflection

Problem 30.1.1 (?) (1) Assume u is harmonic on open set O and zn is a sequence in O such
that u(zn) = 0 and lim zn ∈ O. Prove or disprove that u is identically zero. What if O
is a region?

(2) Assume u is harmonic on open set O and u(z) = 0 on a disc in O. Prove or disprove
that u is identically zero. What if O is a region?

(3) Formulate and prove a Schwarz reflection principle for harmonic functions
cf. Theorem 5.6 on p.60 of Stein et al.
Hint: Verify the mean value property for your new
function obtained by Schwarz reflection principle.

Solution:
Part 1: This is not true: take the holomorphic function f(z) = z, then u(z) := ℜ(f(z)) = ℜ(z)
is harmonic on nonzero on R but zero on iR.
Part 2: Set f := ux + iuy, then f is holomorphic on O. Since h ≡ 0 on Dε ⊆ O, g ≡ 0 on this
disc. By the identity principle for holomorphic functions, g ≡ 0 on O. So hx, hy ≡ 0, making
h constant, and since h ≡ 0 on U this forces h ≡ 0 on O.
Part 3: Let u be harmonic on S+, a region symmetric about R, and that u ≡ 0 on R ∩ S+.
Define S− =

{
z
∣∣∣ z ∈ S+

}
, and

U(z) :=
{
U(z) z ∈ S+

−U(z) z ∈ S−.
.

Then U is a harmonic extension of u to S := S+ ∪ (S+ ∩ R) ∪ S−. To see that U is harmonic
on S, it suffices to check that U satisfies the mean value property on S. Clearly this holds in
S+, so for z0 ∈ S+ we have

U(z0) = u(z0)

= 1
2π

∫ π

−π
u(z0 + reit) dt

= 1
2π

∫ π

−π
U(z0 + reit) dt

.
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30 Schwarz Reflection

So for w0 ∈ S−, write it as w0 = z0, then

U(z0) := −u(z0)

= 1
2π

∫ π

−π
−u

(
z0 + reit

)
dt

= 1
2π

∫ π

−π
−u

(
z0 + re−it

)
dt

= 1
2π

∫ π

−π
−u

(
z0 + re−it

)
dt

= 1
2π

∫ π

−π
U(z0 + reit) dt.

E 30.2 Reflection for the disc e

Problem 30.2.1 (?) a. State the standard Schwarz reflection principle involving reflection
across the real axis.

b. Give a linear fractional transformation T mapping D to H. Let g(z) = z, and show

(T−1 ◦ g ◦ T )(z) = 1/z.

c. Suppose that f is holomorphic on D, continuous on D, and real on S1. Show that f
must be constant.

Solution:
Part 1: Let Ω = Ω+ ∪ I ∪ Ω− be a region symmetric about R. If f is holomorphic on Ω+

extending continuously to I and real valued on I, then f extends to a holomorphic function
F on all of Ω defined on Ω− by F (z) = f(z).
Part 2: The map is T (z) = −i

(
z+1
z−1

)
with T−1(z) = z−i

z+i , so

(T−1 ◦ g ◦ T )(z) = T−1
(

−iz + 1
z − 1

)
= T−1

(
i
z + 1
z − 1

)

=
i
(
z+1
z−1

)
− i

i
(
z+1
z−1

)
+ i

= (z + 1) − (z − 1)
(z + 1) + (z − 1)

= 1
z
.

Part 3: Define h : H → H by h(z) = (T ◦f ◦T−1)(z). Under T−1 : D → H, we have T (S1) = R,
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31 Schwarz Reflection

so h is a holomorphic function on H that is continuous and real-valued on R. By the reflection
principle, defining H(z) := h(z) for ℑ(z) < 0 yields an entire function H : C → C Noting that
for g(z) := z, g = g−1, we can write

H := g−1 ◦ h◦ = h−1 ◦ (T−1 ◦ f ◦ T ) ◦ g.

We can then conjugate H by T to get a direct formula in terms of f , and unwinding this yields
the extension F : C → C defined by

F (z) =


f(z) z ∈ D
f−(z) := 1

fz
z ∈ Dc

f(z) = fi(z) z ∈ S1

.

In particular, H is an entire bounded function and thus constant, making F constant as well
and consequently f is constant.

E

30.3 Spring 2020 HW 2, SS 2.6.15
(Constant on boundary and

nonvanishing implies constant, using
Schwarz)

e

Problem 30.3.1 (?)
Suppose f is continuous and nonvanishing on D, and holomorphic in D. Prove that if |z| =
1 =⇒ |f(z)| = 1, then f is constant.

Hint: Extend f to all of C by f(z) = 1/f(1/z) for
any |z| > 1, and argue as in the Schwarz reflection
principle.

Solution:
First, note that the Schwarz reflection principle can be applied here: let T : D → H be the
Cayley map, and consider f̃ := T ◦ f ◦ T−1 : H → H. Now T (S1) = R, and since f(z) ∈ S1

when z ∈ S1, we have f̃(R) = R, i.e. this is a real-valued function on R. So f̃ extends
holomorphically to F̃ : C → CC, and we can pull this back to a holomorphic extension of f .
Extend f to F : C → C by f(z) = 1/f(1/z) for z ∈ Dc, which generally has poles at the
points 1/zk for zk ∈ D zeros of f . Since f is nonvanishing, F has no poles and thus defines
an entire function. By definition of F , we have F (C) ⊆ f ({|z| ≤ 1}) ∪ f ({|z| ≥ 1}), which
are both the continuous images of compact sets and thus compact and bounded. So F is a
bounded entire function and thus constant.
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31 Unsorted

E 31.1 Tie’s Extra Questions: Fall 2015 e

1. Let f(z) ∈ H(D), Re(f(z)) > 0 and f(0) = a > 0. Show that∣∣∣∣f(z) − a

f(z) + a

∣∣∣∣ ≤ |z|, |f ′(0)| ≤ 2a.

2. Show that the above is still true if Re(f(z)) > 0 is replaced with Re(f(z)) ≥ 0.

E 31.2 Tie’s Extra Questions: Spring 2015 e

(1) Let p(z) be a polynomial, R > 0 any positive number, and m ≥ 1 an integer. Let MR =
sup{|zmp(z) − 1| : |z| = R}. Show that MR > 1.

(2) Let m ≥ 1 be an integer and K = {z ∈ C : r ≤ |z| ≤ R} where r < R. Show (i) using (1) as
well as, (ii) without using (1) that there exists a positive number ε0 > 0 such that for each
polynomial p(z),

sup{|p(z) − z−m| : z ∈ K} ≥ ε0 .

E 31.3 Tie’s Extra Questions: Spring 2015 e

(1) Explicitly write down an example of a non-zero analytic function in |z| < 1 which has infinitely
zeros in |z| < 1.

(2) Why does not the phenomenon in (1) contradict the uniqueness theorem?

E 31.4 Tie’s Extra Questions: Spring 2015 e

Let f be holomorphic in a neighborhood of Dr(z0). Show that for any s < r, there exists a constant
c > 0 such that

||f ||(∞,s) ≤ c||f ||(1,r),
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31 Unsorted

where |f ||(∞,s) = supz∈Ds(z0)|f(z)| and ||f ||(1,r) =
∫
Dr(z0)

|f(z)|dxdy.

Note: Exercise 3.8.20 on p.107 in Stein et al is a
straightforward consequence of this stronger result us-
ing the integral form of the Cauchy-Schwarz inequality
in real analysis.

E 31.5 Tie’s Extra Questions: Spring 2015 e

Let f be an analytic function on a region Ω. Show that f is a constant if there is a simple closed
curve γ in Ω such that its image f(γ) is contained in the real axis.

E 31.6 Tie’s Extra Questions: Spring 2015 e

(1) Show that π2

sin2 πz
and g(z) =

∞∑
n=−∞

1
(z − n)2 have the same principal part at each integer

point.

(2) Show that h(z) = π2

sin2 πz
−g(z) is bounded on C and conclude that π2

sin2 πz
=

∞∑
n=−∞

1
(z − n)2 .

E 31.7 Tie’s Extra Questions: Spring 2015 e

Assume f(z) is analytic in D : |z| < 1 and f(0) = 0 and is not a rotation (i.e. f(z) ̸= eiθz).

Show that
∞∑
n=1

fn(z) converges uniformly to an analytic function on compact subsets of D, where

fn+1(z) = f(fn(z)).

E 31.8 Tie’s Extra Questions: Spring 2015 e

Let f be a non-constant analytic function on D with f(D) ⊆ D. Use ψa(f(z)) (where a = f(0),
ψa(z) = a− z

1 − az
) to prove that |f(0)| − |z|

1 + |f(0)||z| ≤ |f(z)| ≤ |f(0)| + |z|
1 − |f(0)||z| .
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E 31.9 Tie’s Extra Questions: Spring 2015 e

Let f be holomorphic in a neighborhood of Dr(z0). Show that for any s < r, there exists a constant
c > 0 such that

∥f∥(∞,s) ≤ c∥f∥(1,r),

where ∥f∥(∞,s) = supz∈Ds(z0)|f(z)| and ∥f∥(1,r) =
∫
Dr(z0)

|f(z)|dxdy.

E 31.10 Tie’s Extra Questions: Spring 2015 e

Let Ω be a simply connected open set and let γ be a simple closed contour in Ω and enclosing a
bounded region U anticlockwise. Let f : Ω → C be a holomorphic function and |f(z)| ≤ M for all
z ∈ γ. Prove that |f(z)| ≤ M for all z ∈ U .

E 31.11 Tie’s Extra Questions: Spring 2015 e

Let f be holomorphic in a neighborhood of Dr(z0). Show that for any s < r, there exists a constant
c > 0 such that

∥f∥(∞,s) ≤ c∥f∥(1,r),

where ∥f∥(∞,s) = supz∈Ds(z0)|f(z)| and ∥f∥(1,r) =
∫
Dr(z0)

|f(z)|dxdy.

E 31.12 Tie’s Extra Questions: Fall 2016 e

a. f(z) = u(x, y) + iv(x, y) be analytic in a domain D ⊂ C. Let z0 = (x0, y0) be a point in D
which is in the intersection of the curves u(x, y) = c1 and v(x, y) = c2, where c1 and c2 are
constants. Suppose that f ′(z0) ̸= 0. Prove that the lines tangent to these curves at z0 are
perpendicular.

b. Let f(z) = z2 be defined in C.

• Describe the level curves of Re(f) and of Im(f).

• What are the angles of intersections between the level curves Re(f) = 0 and Im(f)? Is your
answer in agreement with part a) of this question?
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E 31.13 Tie’s Extra Questions: Fall 2016 e

a. f : D → C be a continuous function, where D ⊂ C is a domain.Let α : [a, b] → D be a smooth
curve. Give a precise definition of the complex line integral∫

α
f.

b. Assume that there exists a constant M such that |f(τ)| ≤ M for all τ ∈ Image(α). Prove that

∣∣ ∫
α
f
∣∣ ≤ M × length(α).

c. Let CR be the circle |z| = R, described in the counterclockwise direction, where R > 1.
Provide an upper bound for

∣∣ ∫
CR

log (z)
z2

∣∣, which depends only on R and other constants.

E 31.14 Tie’s Extra Questions: Fall 2016 e

a. Let F be an analytic function inside and on a simple closed curve C, except for a pole of
order m ≥ 1 at z = a inside C. Prove that

1
2πi

∮
C
F (τ)dτ = lim

τ→a

dm−1

dτm−1
(
(τ − a)mF (τ))

)
.

b. Evaluate ∮
C

eτ

(τ2 + π2)2dτ

where C is the circle |z| = 4.

E
31.15 Tie’s Extra Questions: Spring 2014,

Fall 2009, Fall 2011 e

For s > 0, the gamma function is defined by Γ(s) =
∫ ∞

0
e−tts−1dt.

• Show that the gamma function is analytic in the half-plane ℜ(s) > 0, and is still given there
by the integral formula above.
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• Apply the formula in the previous question to show that

Γ(s)Γ(1 − s) = π

sin πs.

Hint: You may need Γ(1 − s) = t

∫ ∞

0
e−vt(vt)−sdv

for t > 0.

31.15.1 Tie’s Extra Questions: Fall 2011

Problem 31.15.1 (?)

• Show that the function u = u(x, y) given by

u(x, y) = eny − e−ny

2n2 sinnx for n ∈ N

is the solution on D = {(x, y) |x2 + y2 < 1} of the Cauchy problem for the Laplace
equation

∂2u

∂x2 + ∂2u

∂y2 = 0, u(x, 0) = 0, ∂u

∂y
(x, 0) = sinnx

n
.

• Show that there exist points (x, y) ∈ D such that lim sup
n→∞

|u(x, y)| = ∞.
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