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2 Undergraduate Analysis: Uniform Convergence

1 Preface

I’d like to extend my gratitude to Peter Woolfitt for supplying many solutions and checking many
proofs of the rest in problem sessions. Many other solutions contain input and ideas from other
graduate students and faculty members at UGA, along with questions and answers posted on Math
Stack Exchange or Math Overflow. However, any mistakes are absolutely my own, either in my
own solutions or transcribing others’.

The first 12 or so sections are comprised strictly of actual past qual questions from UGA. The
remainder of the document includes other questions (and some solutions) from other sources that I
found while studying, along with a few midterms from the UGA qual course.

2 Undergraduate Analysis: Uniform
Convergence

E 2.1 Fall 2018.1 e

Let f(x) = 1
x . Show that f is uniformly continuous on (1,∞) but not on (0,∞).

Concepts Used:

• Uniform continuity:

∀ε > 0,∃δ(ε) > 0 such that |x− y| < δ =⇒ |f(x) − f(y)| < ε.

• Negating uniform continuity: ∃ε > 0 such that ∀δ(ε) there exist x, y such that |x− y| < δ
and |f(x) − f(y)| > ε.

• Archimedean property: for all x, y ∈ R there exists an n ∈ N such that nx > y. Take
x = ε, y = 1, so nε > 1 and 1

n < ε.

Strategy:
1 is the only constant around, so try to use it for uniform continuity. To negate, find a bad x: since
1/x blows up near zero, go hunting for small xs!

Solution: • Claim: f(x) = 1
x is uniformly continuous on (c,∞) for any c > 0.

Preface 8



2 Undergraduate Analysis: Uniform Convergence

– Note that

|x|, |y| > c > 0 =⇒ |xy| = |x||y| > c2 =⇒ 1
|xy|

<
1
c2 .

– Letting ε be arbitrary, choose δ < εc2.
♢ Note that δ does not depend on x, y.

– Then

|f(x) − f(y)| =
∣∣∣∣1x − 1

y

∣∣∣∣
= |x− y|

xy

≤ δ

xy

<
δ

c2

< ε.

• Claim: f is not uniformly continuous when c = 0.

– Take ε < 1, and let δ = δ(ε) be arbitrary.
– Let xn = 1

n for n ≥ 1.
– Choose n large enough such that 1

n < δ
– Then a computation:

|xn − xn+1| = 1
n

− 1
n+ 1

= 1
n(n+ 1)

<
1
n

< δ,

– Why this can be done: by the Archimedean property of R, for any δ ∈ R, one can
choose choose n such that nδ > 1. We’ve also used that n+ 1 > 1 so 1

n+1 < 1
– Note that f(xn) = n, so

|f(xn+1) − f(xn)| = (n+ 1) − n = 1 > ε.

E 2.2 Fall 2017.1 e

Let

f(x) =
∞∑

n=0

xn

n! .

2.2 Fall 2017.1 9



2 Undergraduate Analysis: Uniform Convergence

Describe the intervals on which f does and does not converge uniformly.

Concepts Used:

• fN → f uniformly ⇐⇒ ∥fN − f∥∞ → 0.

– Applied to sums:

∑
0≤k≤N

fn
u→
∑
k≥0

fn ⇐⇒

∥∥∥∥∥∥
∑

k≥N+1
fn

∥∥∥∥∥∥
∞

→ 0.

• An infinite sum is defined as the pointwise limit of its partial sums:

∞∑
n=0

cnx
n := lim

N→∞

N∑
n=0

cnx
n.

• Uniformly decaying terms for uniformly convergent series: if ∑∞
n=0 fn(x) converges

uniformly on a set A, then

∥fn∥∞,A := sup
x∈A

|fn(x)| n→∞−→ 0.

• M -test: if fn : A → C with ∥fn∥∞ < Mn and∑Mn < ∞, then∑ fn converges uniformly
and absolutely.

– If the fn are continuous, the uniform limit theorem implies ∑ fn is also continuous.

Strategy:
No real place to start, so pick the nicest place: compact intervals. Then bounded intervals, then
unbounded sets.

Solution:

• Set fN (x) = ∑N
n=1

xn

n! .

– Then by definition, fN (x) → f(x) pointwise on R.

• Claim: fN converges on compact intervals

2.2 Fall 2017.1 10



2 Undergraduate Analysis: Uniform Convergence

– For any compact interval [−M,M ], we have

∥fN (x) − f(x)∥∞ = sup
x∈[−M,M ]

∣∣∣∣∣∣
∞∑

n=N+1

xn

n!

∣∣∣∣∣∣
≤ sup

x∈[−M,M ]

∞∑
n=N+1

∣∣∣∣xn

n!

∣∣∣∣
≤

∞∑
n=N+1

Mn

n!

≤
∞∑

n=0

Mn

n! since all additional terms are positive

= eM

< ∞,

so fN → f uniformly on [−M,M ] by the M-test.
♢ Note: we’ve used that this power series converges to ex pointwise everywhere.

• This argument shows that f converges on any bounded set.

• Claim: fN does not converge uniformly on all of R.

– Uniformly convergent sums have uniformly decaying terms:∑
n≤N

gn
N→∞−→

∑
gn uniformly on A =⇒ ∥gn∥∞,A := sup

x∈A
|gn(x)| n→∞−→ 0.

– Take BN a ball of radius N about 0, then for N > 1, note that x = N on the
boundary and so ∥∥∥∥∥xk

k!

∥∥∥∥∥
∞,BN

= Nk

k!
N→∞−→ ∞.

• Conclusion: fN converges on any bounded A ⊆ R but not on all of R.

E 2.3 Spring 2017.4 e

Let f(x, y) on [−1, 1]2 be defined by

f(x, y) =


xy

(x2+y2)2 (x, y) ̸= (0, 0)
0 (x, y) = (0, 0)

Determine if f is integrable.

2.3 Spring 2017.4 11



2 Undergraduate Analysis: Uniform Convergence

Concepts Used:

• Just Calculus.
• 1/r is not integrable on (0, 1).

Solution:
Switching to polar coordinates and integrating over the quarter of the unit disc D ∩Q1 ⊆ I2

in quadrant 1, we have∫
I2
f dA ≥

∫
D
f dA

=
∫ π/2

0

∫ 1

0

r2 cos(θ) sin(θ)
r4 r dr dθ

=
∫ π/2

0

∫ 1

0

cos(θ) sin(θ)
r

dr dθ

=
(∫ 1

0

1
r
dr

)(∫ π/2

0
cos(θ) sin(θ) dθ

)

=
(∫ 1

0

1
r
dr

)(∫ 1

0
u du

)
u = sin(θ)

= 1
2

(∫ 1

0

1
r
dr

)
−→ ∞.

E 2.4 Fall 2014.1 e

Let {fn} be a sequence of continuous functions such that ∑ fn converges uniformly.

Prove that ∑ fn is also continuous.

Concepts Used:

• The uniform limit theorem.
• ε/3 trick.

Solution:

Claim: If FN → F uniformly with each FN continuous, then F is continuous.

2.4 Fall 2014.1 12



2 Undergraduate Analysis: Uniform Convergence

Proof (of claim).

• Follows from an ε/3 argument:

|F (x) − F (y| ≤ |F (x) − FN (x)| + |FN (x) − FN (y)| + |FN (y) − F (y)| ≤ ε → 0.

– The first and last ε/3 come from uniform convergence of FN → F .
– The middle ε/3 comes from continuity of each FN .

■

• Now setting FN := ∑N
n=1 fn yields a finite sum of continuous functions, which is contin-

uous.
• Each FN is continuous and FN → F uniformly, so F is continuous.

E 2.5 Spring 2015.1 e

Let (X, d) and (Y, ρ) be metric spaces, f : X → Y , and x0 ∈ X.

Prove that the following statements are equivalent:

1. For every ε > 0 ∃δ > 0 such that ρ(f(x), f(x0)) < ε whenever d(x, x0) < δ.
2. The sequence {f(xn)}∞

n=1 → f(x0) for every sequence {xn} → x0 in X.

Concepts Used:

• What it means for a sequence to converge.
• Trading Ns for δs.

Solution:

2.5 Spring 2015.1 13



2 Undergraduate Analysis: Uniform Convergence

Proof (1 =⇒ 2).

• Let {xn} n→∞→ x0 be arbitrary; we want to show {f(xn)} n→∞→ f(x0).

– We thus want to show that for every ε > 0, there exists an N(ε) such that

n ≥ N(ε) =⇒ ρ(f(xn), f(x0)) < ε.

• Let ε > 0 be arbitrary, then by (1) choose δ such that ρ(f(x), f(x0)) < ε when
d(x, x0) < δ.

• Since xn → x, there is some N such that n ≥ N =⇒ d(xn, x0) < δ
• Then for n ≥ N , d(xn, x0) < δ and thus ρ(f(xn), f(x0)) < ε, so f(xn) → f(x0) by

definition.

■

Proof (2 =⇒ 1).
The direct implication is not a good idea here,
since you need a handle on all x in a neighbor-
hood of x0, not just a specific sequence.

• By contrapositive, show that ̸ 1 =⇒ ̸ 2.
• Need to show: if f is not ε-δ continuous at x0, then there exists a sequence xn → x0

where f(xn) ̸→ f(x0).
• Negating 1, we have that there exists an ε > 0 such that for all δ, there exists an x

with d(x, x0) < δ but ρ(f(x), f(x0)) > ε
• So take a sequence of deltas δn = 1

n , apply this to produce a sequence xn with
d(xn, x0) < δn := 1

n −→ 0 and ρ(f(xn), f(x0)) > ε for all n.
• This yields a sequence xn → x0 where f(xn) ̸→ f(x0).

■

E 2.6 Fall 2014.2 e

Let I be an index set and α : I → (0,∞).

a. Show that ∑
i∈I

a(i) := sup
J⊂I

J finite

∑
i∈J

a(i) < ∞ =⇒ I is countable.

b. Suppose I = Q and ∑q∈Q a(q) < ∞. Define

f(x) :=
∑
q∈Q
q≤x

a(q).

2.6 Fall 2014.2 14



2 Undergraduate Analysis: Uniform Convergence

Show that f is continuous at x ⇐⇒ x ̸∈ Q.

Concepts Used:

• Can always filter sets X with a function X → R.
• Countable union of countable sets is still countable.
• Continuity: limy→x f(y) = f(x) from either side.
• Trick: pick enumerations of countable sets and reindex sums

Solution:

Proof (of a).

• Set S := ∑
i∈I α(i), we will show that S < ∞ =⇒ I is countable.

• Write

I =
⋃

n≥0
Sn, Sn :=

{
i ∈ I

∣∣∣ α(i) ≥ 1
n

}
.

– Note that Sn ⊆ S for all n, so ∑i∈I α(i) ≥
∑

i∈Sn
α(i) for all n.

– It suffices to show that Sn is countable, since I is a countable union of Sn.

• There is an inequality

∞ > S :=
∑
i∈I

α(i)

≥
∑
i∈Sn

α(i)

≥
∑
i∈Sn

1
n

= 1
n

∑
i∈Sn

1

=
( 1
n

)
#Sn

=⇒ ∞ > nS ≥ #Sn.

■

2.6 Fall 2014.2 15



3 Undergraduate Analysis: Uniform Convergence

Proof (of b).

• We’ll prove something more general: let Q = {qk} be countable and {αk := α(qk)}
be summable, and define

f(x) :=
∑

qk≤x

αk.

– f is always discontinuous precisely on the countable set Q and continuous on
R \Q.

– f is always left-continuous, is right-continuous at x ∈ R \ Q, and not right-
continuous at x ∈ Q

– f has jump discontinuities at every qm, where the jump is precisely αm.

• This follows from computing the left and right limits:

f(x+) = lim
h→0

∑
qk≤x+h

αk =
∑

qk≤x

αk =
∑

qk<x

αk +
∑

qk=x

αk

f(x−) = lim
h→0

∑
qk≤x−h

αk =
∑

qk<x

αk,

where we’ve used that {qk ≤ x} = {qk < x}
∐

{x} in the first equality.

• Then if x = qm for some m,

f(x+) = f(q+
m) =

∑
qk<qm

αk + αm

f(x−) = f(a−
m) =

∑
qk<qm

αk,

which clearly differ if αm ̸= 0.

• Taking x ̸∈ Q, we have {qk ≤ x} = {qk < x}, since {qk = x} = ∅, so

f(x+) =
∑

qk≤x

αk =
∑

qk<x

αk

f(x−) =
∑

qk<x

αk,

so the limits agree.

• To recover the result in the problem, let Q = {qk} be any enumeration of the
rationals.

■

2.6 Fall 2014.2 16



3 General Analysis

3 General Analysis

E 3.1 Fall 2021.1 e

Problem 3.1.1 (?)
Let {xn}∞

n−1 be a sequence of real numbers such that x1 > 0 and

xn+1 = 1 − (2 + xn)−1 = 1 + xn

2 + xn
.

Prove that the sequence {xn} converges, and find its limit.

Solution:
If a limit L exists, we have xn → L for all n, so

L = 1 + L

2 + L
=⇒ L2 + L− 1 = 0 =⇒ L = −1

2
(
−1 ±

√
5
)
.

Noting that
√

5 > 1, the condition x1 > 0 and a small induction noting that if xn > 0 then
1+xn
2+xn

> 0, the only solution can be L = −1 +
√

5. To see that this does converge, write
f(z) = 1 − (2 + z)−1 so that xn+1 = f(xn). The claim is that f is a contracting map on a
metric space, which implies it has a unique fixed point z0 by the Banach fixed point theorem,
and if f(z0) = z0 then z0 = L. This follows from the mean value theorem, since

|f(z) − f(w)| =
∣∣f ′(ξ)

∣∣|z − w| < |z − w| for some ξ ∈ (z, w).

Since f ′(z) = (2 + z)−2 satisfies 0 < f ′(z) < 1 for all z, we have

|f(z) − f(w)| ≤ |z − w|.

E 3.2 Fall 2020.1 e

Problem 3.2.1 (?)
Show that if xn is a decreasing sequence of positive real numbers such that ∑∞

n=1 xn converges,
then

lim
n→∞

nxn = 0.

General Analysis 17



3 General Analysis

Solution:
See this MSE post for many solutions: https: //
math. stackexchange. com/ questions/ 4603/
if-a-n-subset0-infty-is-non-increasing-and-sum-a-n-infty-then-lim
Note that the “obvious” thing here is fiddly: there
are bounds on the slices

(N −M ± 1)xN ≤
∑

M≤k≤N

ak ≤ (N −M ± 1)xM ,

but arranging it so that the constants match the in-
dices in (N−M±1)xN ≈ NxN requires something
clever.

Fix ε > 0, we’ll find n ≫ 1 so that nxn < ε. Find n,m with n > m large enough so that

ε >
∑

m+1≤k≤n

xk ≥
∑

m+1≤k≤n

xn = (m− n)xn.

Then rearrange:

ε > (m− n)xn =⇒ nxn < ε+mxn.

Now choose n large enough so that xn < ε, which holds since ∑xn < ∞, to obtain

nxn < ε+mε = ε(1 +m) → 0.

E 3.3 Spring 2020.1 e

Prove that if f : [0, 1] → R is continuous then

lim
k→∞

∫ 1

0
kxk−1f(x) dx = f(1).

Concepts Used:

• DCT
• Weierstrass Approximation Theorem

– If f : [a, b] → R is continuous, then for every ε > 0 there exists a polynomial pε(x)
such that ∥f − pε∥∞ < ε.

Solution:

3.3 Spring 2020.1 18
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3 General Analysis

• Suppose p is a polynomial, then integrate by parts:

lim
k→∞

∫ 1

0
kxk−1p(x) dx = lim

k→∞

∫ 1

0

(
∂

∂x
xk
)
p(x) dx

= lim
k→∞

[
xkp(x)

∣∣∣1
0

−
∫ 1

0
xk
(
∂p

∂x
(x)
)
dx

]
IBP

= p(1) − lim
k→∞

∫ 1

0
xk
(
∂p

∂x
(x)
)
dx,

• Thus it suffices to show that

lim
k→∞

∫ 1

0
xk
(
∂p

∂x
(x)
)
dx = 0.

• Integrating by parts a second time yields

lim
k→∞

∫ 1

0
xk
(
∂p

∂x
(x)
)
dx = lim

k→∞

xk+1

k + 1
∂p

∂x
(x)
∣∣∣1
0

−
∫ 1

0

xk+1

k + 1

(
∂2p

∂x2 (x)
)
dx

= lim
k→∞

p′(1)
k + 1 − lim

k→∞

∫ 1

0

xk+1

k + 1

(
∂2p

∂x2 (x)
)
dx

= − lim
k→∞

∫ 1

0

xk+1

k + 1

(
∂2p

∂x2 (x)
)
dx

= −
∫ 1

0
lim

k→∞

xk+1

k + 1

(
∂2p

∂x2 (x)
)
dx by DCT

= −
∫ 1

0
0
(
∂2p

∂x2 (x)
)
dx

= 0.

– The DCT can be applied here because polynomials are smooth and [0, 1] is compact,
so ∂2p

∂x2 is bounded on [0, 1] by some constant M and

∫ 1

0

∣∣∣∣∣xk ∂
2p

∂x2 (x)
∣∣∣∣∣ ≤

∫ 1

0
1 ·M = M < ∞.

• So the result holds when f is a polynomial.

• Now use the Weierstrass approximation theorem:

– If f : [a, b] → R is continuous, then for every ε > 0 there exists a polynomial pε(x)
such that ∥f − pε∥∞ < ε.
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• Thus ∣∣∣∣∫ 1

0
kxk−1pε(x) dx−

∫ 1

0
kxk−1f(x) dx

∣∣∣∣ =
∣∣∣∣∫ 1

0
kxk−1 (pε(x) − f(x)) dx

∣∣∣∣
≤
∣∣∣∣∫ 1

0
kxk−1∥pε − f∥∞ dx

∣∣∣∣
= ∥pε − f∥∞ ·

∣∣∣∣∫ 1

0
kxk−1 dx

∣∣∣∣
= ∥pε − f∥∞ · xk

∣∣∣1
0

= ∥pε − f∥∞

ε→0→ 0

and the integrals are equal.

• By the first argument, ∫ 1

0
kxk−1pε(x) dx = pε(1) for each ε

• Since uniform convergence implies pointwise convergence, pε(1) ε→0→ f(1).

E 3.4 Fall 2019.1 e

Let {an}∞
n=1 be a sequence of real numbers.

a. Prove that if lim
n→∞

an = 0, then

lim
n→∞

a1 + · · · + an

n
= 0

b. Prove that if
∞∑

n=1

an

n
converges, then

lim
n→∞

a1 + · · · + an

n
= 0

Solution:
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Concepts Used:

• Cesaro mean/summation.
• Break series apart into pieces that can be handled separately.
• Idea: once N is large enough, ak ≈ S, and all smaller terms will die off as N → ∞.

– See this MSE answer.

Proof (of a).

• Prove a stronger result:

ak → S =⇒ SN := 1
N

N∑
k=1

ak → S.

• For any ε > 0, use convergence ak → S: choose (and fix) M = M(ε) large enough
such that

k ≥ M + 1 =⇒ |ak − S| < ε.

• With M fixed, choose N = N(M, ε) large enough so that 1
N

∑M
k=1 |ak − S| < ε.

• Then ∣∣∣∣∣
(

1
N

N∑
k=1

ak

)
− S

∣∣∣∣∣ = 1
N

∣∣∣∣∣
(

N∑
k=1

ak

)
−NS

∣∣∣∣∣
= 1
N

∣∣∣∣∣
(

N∑
k=1

ak

)
−

N∑
k=1

S

∣∣∣∣∣
= 1
N

∣∣∣∣∣
N∑

k=1
(ak − S)

∣∣∣∣∣
≤ 1
N

N∑
k=1

|ak − S|

= 1
N

M∑
k=1

|ak − S| +
N∑

k=M+1
|ak − S|

≤ 1
N

M∑
k=1

|ak − S| +
N∑

k=M+1
ε since ak → S

= 1
N

M∑
k=1

|ak − S| + (N −M)ε

≤ ε+ (N(M, ε) −M(ε))ε.

■

3.4 Fall 2019.1 21

https://math.stackexchange.com/questions/514802/convergence-of-series-implies-convergence-of-cesaro-mean
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Revisit, not so clear that the last line can be made smaller than ε, since M, N both depend on ε...

#todo
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Proof (of b).

• Define

Γn :=
∞∑

k=n

ak

k
.

• Γ1 = ∑n
k=1

ak
k is the original series and each Γn is a tail of Γ1, so by assumption

Γn
n→∞→ 0.

• Compute

1
n

n∑
k=1

ak = 1
n

(Γ1 + Γ2 + · · · + Γn−Γn+1)

.

• This comes from consider the following summation:

Γ1 : a1 +a2
2 +a3

3 + · · ·

Γ2 : a2
2 +a3

3 + · · ·

Γ3 : a3
3 + · · ·

∑n
i=1 Γi : a1 +a2 +a3 + · · · an +an+1

n+1 + · · ·

• Use part (a): since Γn
n→∞→ 0, we have 1

n

∑n
k=1 Γk

n→∞→ 0.

• Also a minor check: Γn → 0 =⇒ 1
nΓn → 0.

• Then

1
n

n∑
k=1

ak = 1
n

(Γ1 + Γ2 + · · · + Γn−Γn+1)

=
(

1
n

n∑
k=0

Γk

)
−
( 1
n

Γn+1

)
n→∞→ 0.

■
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E 3.5 Fall 2018.4 e

Let f ∈ L1([0, 1]). Prove that

lim
n→∞

∫ 1

0
f(x)|sinnx| dx = 2

π

∫ 1

0
f(x) dx

Hint: Begin with the case that f is the characteristic
function of an interval.

Ask someone to check the last approximation part.

#todo

Solution:

Concepts Used:

• Converting floor/ceiling functions to inequalities: x− 1 ≤ ⌊x⌋ ≤ x.

Case of a characteristic function of an interval [a, b]:

• First suppose f(x) = χ[a,b](x).

• Note that sin(nx) has a period of 2π/n, and thus
⌊

(b−a)
(2π/n)

⌋
=
⌊

n(b−a)
2π

⌋
full periods in

[a, b].

• Taking the absolute value yields a new function with half the period

– So |sin(nx)| has a period of π/n with
⌊

n(b−a)
π

⌋
full periods in [a, b].

• We can compute the integral over one full period (which is independent of which period
is chosen)

– We can use translation invariance of the integral to compute this over the period 0
to π/n.

– Since sin(nx) is positive, it equals |sin(nx)| on its first period, so we have∫
One Period

|sin(nx)| dx =
∫ π/n

0
sin(nx) dx

= 1
n

∫ π

0
sin(u) du u = nx

= 1
n

(
− cos(u)

∣∣∣π
0

)
= 2
n
.

• Then break the integral up into integrals over full periods P1, P2, · · · , PN where N :=
⌊n(b− a)/π⌋
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• Noting that each period is of length π
n , so letting Ln be the regions falling outside of a

full period, we have

• Thus
∫ b

a
|sin(nx)| dx =

 N∑
j=1

∫
Pj

|sin(nx)| dx

+
∫

Ln

|sin(nx)| dx

=

 N∑
j=1

2
n

+
∫

Ln

|sin(nx)| dx

= N

( 2
n

)
+
∫

Ln

|sin(nx)| dx

:=
⌊(b− a)n

π

⌋ 2
n

+Rn

:= (b− a)Cn +Rn

where (claim) Cn
n→∞→ 2

π and R(n) n→∞→ 0.

• Cn → 2
π :

n− 1
n

( 2
π

)
= n− 1

π

( 2
n

)
≤
⌊
n

π

⌋( 2
n

)
≤ n

π

( 2
n

)
= 2
π
,

then use the fact that n−1
n → 1.

– Then equality follows by the Squeeze theorem.

• Rn → 0:

– We use the fact that m(Ln) → 0, then
∫

Ln
|sin(nx)| ≤

∫
Ln

1 = m(Ln) → 0.
– This follows from the fact that Ln is the complement of ∪jPj , the set of full periods,

so

m(Ln) = m(b− a) −
∑

m(Pj)

= (b− a) −
⌊
n(b− a)

π

⌋(
π

n

)
n→∞→ (b− a) − (b− a)
= 0.

where we’ve used the fact that(
π

n

)((b− a)n− 1
π

)
≤
⌊
n(b− a)

π

⌋(
π

n

)
≤
(
π

n

)((b− a)n
π

)
= (b− a),

then taking n → ∞ sends the LHS to b− a, forcing the middle term to be b− a by
the Squeeze theorem.
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General case:

• By linearity of the integral, the result holds for simple functions:

– If f = ∑
cjχEj where Ej = [aj , bj ], we have∫ 1

0
f(x)|sin(nx)| dx =

∫ 1

0

∑
cjχEj (x)|sin(nx)| dx

=
∑

cj

∫ 1

0
χEj (x)|sin(nx)| dx

=
∑

cj(bj − aj) 2
π

= 2
π

∑
cj(bj − aj)

= 2
π

∑
cjm(Ej)

:= 2
π

∫ 1

0
f.

• Since f ∈ L1, where simple functions are dense, choose sn ↗ f where ∥sN − f∥1 < ε,
then∣∣∣∣∫ 1

0
f(x)|sin(nx)| dx−

∫ 1

0
sN (x)|sin(nx)| dx

∣∣∣∣ =
∣∣∣∣∫ 1

0
(f(x) − sN (x)) |sin(nx)| dx

∣∣∣∣
≤
∫ 1

0
|f(x) − sN (x)||sin(nx)| dx

= ∥(f − sN ) |sin(nx)|∥1
≤ ∥f − sN ∥1 · ∥|sin(nx)|∥∞ by Holder
≤ ε · 1,

• So the integrals involving sN converge to the integral involving f , and

lim
n→∞

∫
f(x)|sin(nx)| = lim

n→∞
lim

N→∞

∫
sN (x)|sin(nx)|

= lim
N→∞

lim
n→∞

∫
sN (x)|sin(nx)| because ?

= lim
N→∞

2
π

∫
sN (x)

= 2
π

∫
f,

which is the desired result.

E 3.6 Fall 2017.4 e
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Let

fn(x) = nx(1 − x)n, n ∈ N.

a. Show that fn → 0 pointwise but not uniformly on [0, 1].

b. Show that

lim
n→∞

∫ 1

0
n(1 − x)n sin x dx = 0

Hint for (a): Consider the maximum of fn.

Solution:

Concepts Used:

• ∑
fn < ∞ ⇐⇒ sup fn → 0.

• Negating uniform convergence: fn ̸→ f uniformly iff ∃ε such that ∀N(ε) there
exists an xN such that |f(xN ) − f(x)| > ε.

• Exponential inequality: 1 + y ≤ ey for all y ∈ R.

a.

fn → 0 pointwise:

• Finding the maximum: can check that ∂fn

∂x = x(1 − x)n−1 (1 + (n2 − 1)x
)

• This has critical points x = 0, 1, −1
n2+1 , and the latter is a global max on [0, 1].

• Set xn := −1
n2+1

• Compute

lim fn(xn) = lim
n→∞

−n
n2 + 1 (1 + xn)n = 0 · 1 = 0.

• So sup fn → 0, forcing fn → 0 pointwise.

The convergence is not uniform:

• Let xn = 1
n and ε > e−1, then

∥nx(1 − x)n − 0∥∞ ≥ |nxn(1 − xn)n|

=
∣∣∣∣(1 − 1

n

)n∣∣∣∣
> e−1

> ε.

– Here we’ve used that (1 + x
n)n ≤ ex for all x ∈ R and all n.
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– Follows from 1 + y ≤ ey applied to y = x/n.

• Thus ∥fn − 0∥∞ = ∥fn∥∞ > e−1 > 0.

b. ?

Possible to use part a with sin(x) ≤ x on [0, π/2]?

#todo

• Noting that sin(x) ≤ 1, we have∣∣∣∣∫ 1

0
n(1 − x)n sin(x)

∣∣∣∣ ≤
∫ 1

0
|n(1 − x)n sin(x)|

≤
∫ 1

0
|n(1 − x)n|

= n

∫ 1

0
(1 − x)n

= −n(1 − x)n+1

n+ 1
n→∞−→ 0.

E 3.7 Spring 2017.3 e

Let

fn(x) = ae−nax − be−nbx where 0 < a < b.

Show that

a. ∑∞
n=1 |fn| is not in L1([0,∞),m)

Hint: fn(x) has a root xn.

b.
∞∑

n=1
fn is in L1([0,∞),m) and

∫ ∞

0

∞∑
n=1

fn(x) dm = ln b

a

Not complete.

Add concepts.

Walk through.
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Solution:

Concepts Used:

a.

• fn has a root:

ae−nax = be−nbx ⇐⇒ 1
n

= e−nbxenax = en(b−a)x ⇐⇒ x =
ln
(

a
b

)
n(a− b)

:= xn.

• Thus fn only changes sign at xn, and is strictly positive on one side of xn.

• Then ∫
R

∑
n

|fn(x)| dx =
∑

n

∫
R

|fn(x)| dx

≥
∑

n

∫ ∞

xn

fn(x) dx

=
∑

n

1
n

(
e−bnx − e−anx

∣∣∣∞
xn

)
=
∑

n

1
n

(
e−bnxn − e−anxn

)
.

b.

?

E 3.8 Fall 2016.1 e

Define

f(x) =
∞∑

n=1

1
nx
.

Show that f converges to a differentiable function on (1,∞) and that

f ′(x) =
∞∑

n=1

( 1
nx

)′
.

Hint: (
1
nx

)′

= − 1
nx

lnn
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Add concepts.

Solution:

Concepts Used:

• ?

• Set fN (x) := ∑N
n=1 n

−x, so f(x) = limN→∞ fN (x).

• If an interchange of limits is justified, we have

∂

∂x
lim

N→∞

N∑
n=1

n−x = lim
h→0

lim
N→∞

1
h

[(
N∑

n=1
n−x

)
−
(

N∑
n=1

n−(x+h)
)]

=
?

lim
N→∞

lim
h→0

1
h

[(
N∑

n=1
n−x

)
−
(

N∑
n=1

n−(x+h)
)]

= lim
N→∞

lim
h→0

1
h

[
N∑

n=1
n−x − n−(x+h)

]
(1)

= lim
N→∞

N∑
n=1

lim
h→0

1
h

[
n−x − n−(x+h)

]
since this is a finite sum

:= lim
N→∞

N∑
n=1

∂

∂x

( 1
nx

)

= lim
N→∞

N∑
n=1

− ln(n)
nx

,

where the combining of sums in (1) is valid because ∑n−x is absolutely convergent for
x > 1 by the p-test.

• Thus it suffices to justify the interchange of limits and show that the last sum converges
on (1,∞).

• Claim: ∑n−x ln(n) converges.

– Use the fact that for any fixed ε > 0,

lim
n→∞

ln(n)
nε

L.H.= lim
n→∞

1/n
εnε−1 = lim

n→∞
1
εnε

= 0,

– This implies that for a fixed ε > 0 and for any constant c > 0 there exists an N
large enough such that n ≥ N implies ln(n)/nε < c, i.e. ln(n) < cnε.

– Taking c = 1, we have n ≥ N =⇒ ln(n) < nε
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– We thus break up the sum:

∑
n∈N

ln(n)
nx

=
N−1∑
n=1

ln(n)
nx

+
∞∑

n=N

ln(n)
nx

≤
N−1∑
n=1

ln(n)
nx

+
∞∑

n=N

nε

nx

:= Cε +
∞∑

n=N

nε

nx
with Cε < ∞ a constant

= Cε +
∞∑

n=N

1
nx−ε

,

where the last term converges by the p-test if x− ε > 1.
– But ε can depend on x, and if x ∈ (1,∞) is fixed we can choose ε < |x− 1| to

ensure this.

• Claim: the interchange of limits is justified.
?

E 3.9 Fall 2016.5 e

Let φ ∈ L∞(R). Show that the following limit exists and satisfies the equality

lim
n→∞

(∫
R

|φ(x)|n
1 + x2 dx

) 1
n

= ∥φ∥∞.

Add concepts.

Solution:

Concepts Used:

• ?

Let L be the LHS and R be the RHS.
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Claim: L ≤ R. - Since |φ| ≤ ∥φ∥∞ a.e., we can write

L
1
n :=

∫
R

|φ(x)|n

1 + x2

≤
∫

R

∥φ∥n
∞

1 + x2

= ∥φ∥n
∞

∫
R

1
1 + x2

= ∥φ∥n
∞ arctan(x)

∣∣∣∞
−∞

= ∥φ∥n
∞

(
π

2 − −π
2

)
= π∥φ∥n

∞

=⇒ L
1
n ≤ n

√
π∥φ∥n

∞

=⇒ L ≤ π
1
n ∥φ∥∞

n→∞→ ∥φ∥∞,

where we’ve used the fact that c 1
n

n→∞→ 1 for any constant c.
Actually true? Need conditions?

Claim: R ≤ L.

• We will show that R ≤ L+ ε for every ε > 0.
• Set

Sε :=
{
x ∈ Rn

∣∣∣ |φ(x)| ≥ ∥φ∥∞ − ε
}
.

• Then we have ∫
R

|φ(x)|n

1 + x2 dx ≥
∫

Sε

|φ(x)|n

1 + x2 dx Sε ⊂ R

≥
∫

Sε

(∥φ∥∞ − ε)n

1 + x2 dx by definition of Sε

= (∥φ∥∞ − ε)n
∫

Sε

1
1 + x2 dx

= (∥φ∥∞ − ε)nCε where Cε is some constant

=⇒
(∫

R

|φ(x)|n

1 + x2 dx

) 1
n

≥ (∥φ∥∞ − ε)C
1
n
ε

n→∞→ (∥φ∥∞ − ε) · 1
ε→0→ ∥φ∥∞,

where we’ve again used the fact that c 1
n → 1 for any constant.
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E 3.10 Fall 2016.6 e

Let f, g ∈ L2(R). Show that

lim
n→∞

∫
R
f(x)g(x+ n) dx = 0

Rewrite solution.

Concepts Used:

• Cauchy Schwarz: ∥fg∥1 ≤ ∥f∥1∥g∥1.
• Small tails in Lp.

Solution:

• Use the fact that Lp has small tails: if h ∈ L2(R), then for any ε > 0,

∀ε, ∃N ∈ N suchthat
∫

|x|≥N
|h(x)|2 dx < ε.

• So choose N large enough so that ∫
∥x∥≥N

|g(x)|2 < ε∫
∥x∥≥N

|f(x)|2 < ε

.

• Then write∫
Rd
f(x)g(x+ n) dx =

∫
∥x∥≤N

f(x)g(x+ n) dx+
∫

∥x∥≥N
f(x)g(x+ n) dx.

• Bounding the second term: apply Cauchy-Schwarz

∫
∥x∥≥N

f(x)g(x+ n) dx ≤
(∫

∥x∥≥N
|f(x)|2

) 1
2

·
(∫

∥x∥≥N
|g(x)|2

) 1
2

≤ ε
1
2 · ∥g∥2.
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• Bounding the first term: also Cauchy-Schwarz, after variable changes∫
∥x∥≤N

f(x)g(x+ n) dx =
∫ N

−N
f(x)g(x+ n) dx

=
∫ N+n

−N+n
f(x− n)g(x) dx

≤
∫ ∞

−N+n
f(x− n)g(x) dx

≤
(∫ ∞

−N+n
|f(x− n)|2

) 1
2

·
(∫ ∞

−N+n
|g(x)|2

) 1
2

≤ ∥f∥2 · ε
1
2 .

• Then as long as n ≥ 2N , we have∫
|f(x)g(x+ n)| ≤ (∥f∥2 + ∥g∥2) · ε

1
2 .

E 3.11 Spring 2016.1 e

For n ∈ N, define

en =
(

1 + 1
n

)n

and En =
(

1 + 1
n

)n+1

Show that en < En, and prove Bernoulli’s inequality:

(1 + x)n ≥ 1 + nx −1 < x < ∞, n ∈ N.

Use this to show the following:

1. The sequence en is increasing.
2. The sequence En is decreasing.
3. 2 < en < En < 4.
4. limn→∞ en = limn→∞En.

E 3.12 Fall 2015.1 e

Define

f(x) = c0 + c1x
1 + c2x

2 + . . .+ cnx
n with n even and cn > 0.

Show that there is a number xm such that f(xm) ≤ f(x) for all x ∈ R.
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E 3.13 Spring 2014.2 e

Let {an} be a sequence of real numbers such that

{bn} ∈ ℓ2(N) =⇒
∑

anbn < ∞.

Show that ∑ a2
n < ∞.

Note: Assume an, bn are all non-negative.

Have someone check!

Solution:

• Define a sequence of operators

TN : ℓ2 → ℓ1

{bn} 7→
N∑

n=1
anbn.

• By assumption, these are well defined: the image is ℓ1 since |TN ({bn})| < ∞ for all N
and all {bn} ∈ ℓ2.

• So each TN ∈
(
ℓ2
) ∨ is a linear functional on ℓ2.

• For each x ∈ ℓ2, we have ∥TN (x)∥R = ∑N
n=1 anbn < ∞ by assumption, so each TN is

pointwise bounded.

• By the Uniform Boundedness Principle, supN ∥TN ∥op < ∞.

• Define T = limN→∞ TN , then ∥T∥op < ∞.

• By the Riesz Representation theorem,√∑
a2

n := ∥{an}∥ℓ2 = ∥T∥(ℓ2)∨ = ∥T∥op < ∞.

• So ∑ a2
n < ∞.
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4 Measure Theory: Sets

E 4.1 Fall 2021.3 e

Recall that a set E ⊂ Rd is measurable if for every c > 0 there is an open set U ⊆ Rd such that
m∗(U \ E) < ϵ.

a. Prove that if E is measurable then for all ϵ > 0 there exists an elementary setF , such that
m(E∆F ) < ϵ.

Here m(E) denotes the Lebesgue measure of E, a set F is called elementary if it is a finite
union of rectangles and E∆F denotes the symmetric difference of the sets E and F .

b. Let E ⊂ R be a measurable set, such that 0 < m(E) < ∞. Use part (a) to show that

lim
n→∞

∫
E

sin(nt)dt = 0

E 4.2 Spring 2020.2 e

Let m∗ denote the Lebesgue outer measure on R.

a.. Prove that for every E ⊆ R there exists a Borel set B containing E such that

m∗(B) = m∗(E).

b.. Prove that if E ⊆ R has the property that

m∗(A) = m∗(A
⋂
E) +m∗(A

⋂
Ec)

for every set A ⊆ R, then there exists a Borel set B ⊆ R such that E = B \N with m∗(N) = 0.

Be sure to address the case when m∗(E) = ∞.

Concepts Used:

• Definition of outer measure:
m∗(E) = inf

{Qj}⇒E

∑
|Qj |

where {Qj} is a countable collection of closed cubes.
• Break R into ∐n∈Z[n, n+ 1), each with finite measure.
• Theorem: m∗(Q) = |Q| for Q a closed cube (i.e. the outer measure equals the volume).
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Solution:

Proof .

• m∗(Q) ≤ |Q|:

• Since Q ⊆ Q, Q⇒ Q and m∗(Q) ≤ |Q| since m∗ is an infimum over such coverings.

• |Q| ≤ m∗(Q):

• Fix ε > 0.

• Let {Qi}∞
i=1 ⇒ Q be arbitrary, it suffices to show that

|Q| ≤
( ∞∑

i=1
|Qi|

)
+ ε.

• Pick open cubes Si such that Qi ⊆ Si and |Qi| ≤ |Si| ≤ (1 + ε)|Qi|.

• Then {Si} ⇒ Q, so by compactness of Q pick a finite subcover with N elements.

• Note

Q ⊆
N⋃

i=1
Si =⇒ |Q| ≤

N∑
i=1

|Si| ≤
N∑

i=1
(1 + ε)|Qj | ≤ (1 + ε)

∞∑
i=1

|Qi|.

• Taking an infimum over coverings on the RHS preserves the inequality, so

|Q| ≤ (1 + ε)m∗(Q)

• Take ε → 0 to obtain final inequality.

■

a.

• If m∗(E) = ∞, then take B = Rn since m(Rn) = ∞.

• Suppose N := m∗(E) < ∞.

• Since m∗(E) is an infimum, by definition, for every ε > 0 there exists a covering by
closed cubes {Qi(ε)}∞

i=1 ⇒ E depending on ε such that

∞∑
i=1

|Qi(ε)| < N + ε.

• For each fixed n, set εn = 1
n to produce such a covering {Qi(εn)}∞

i=1 and set Bn :=⋃∞
i=1Qi(εn).
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• The outer measure of cubes is equal to the sum of their volumes, so

m∗(Bn) =
∞∑

i=1
|Qi(εn)| < N + εn = N + 1

n
.

• Now set B := ⋂∞
n=1Bn.

– Since E ⊆ Bn for every n, E ⊆ B
– Since B is a countable intersection of countable unions of closed sets, B is Borel.
– Since Bn ⊆ B for every n, we can apply subadditivity to obtain the inequality

E ⊆ B ⊆ Bn =⇒ N ≤ m∗(B) ≤ m∗(Bn) < N + 1
n

forall n ∈ Z≥1.

• This forces m∗(E) = m∗(B).

b.

Suppose m∗(E) < ∞.

• By (a), find a Borel set B ⊇ E such that m∗(B) = m∗(E)
• Note that E ⊆ B =⇒ B

⋂
E = E and B

⋂
Ec = B \ E.

• By assumption,

m∗(B) = m∗(B
⋂
E) +m∗(B

⋂
Ec)

m∗(E) = m∗(E) +m∗(B \ E)
m∗(E) −m∗(E) = m∗(B \ E) since m∗(E) < ∞
=⇒ m∗(B \ E) = 0.

• So take N = B \ E; this shows m∗(N) = 0 and E = B \ (B \ E) = B \N .

If m∗(E) = ∞:

• Apply result to ER := E
⋂[R,R+ 1)n ⊂ Rn for R ∈ Z, so E = ∐

RER

• Obtain BR, NR such that ER = BR \NR, m∗(ER) = m∗(BR), and m∗(NR) = 0.
• Note that

– B := ⋃
R BR is a union of Borel sets and thus still Borel

– E = ⋃
R ER

– N := B \ E
– N ′ := ⋃

R NR is a union of null sets and thus still null

• Since ER ⊂ BR for every R, we have E ⊂ B
• We can compute

N = B \ E =
(⋃

R

BR

)
\
(⋃

R

ER

)
⊆
⋃
R

(BR \ ER) =
⋃
R

NR := N ′

where m∗(N ′) = 0 since N ′ is null, and thus subadditivity forces m∗(N) = 0.

4.2 Spring 2020.2 38



4 Measure Theory: Sets

E 4.3 Fall 2019.3. e

Let (X,B, µ) be a measure space with µ(X) = 1 and {Bn}∞
n=1 be a sequence of B-measurable

subsets of X, and

B :=
{
x ∈ X

∣∣∣ x ∈ Bn for infinitely many n
}
.

a. Argue that B is also a B-measurable subset of X.

b. Prove that if ∑∞
n=1 µ(Bn) < ∞ then µ(B) = 0.

c. Prove that if ∑∞
n=1 µ(Bn) = ∞ and the sequence of set complements {Bc

n}∞
n=1 satisfies

µ

(
K⋂

n=k

Bc
n

)
=

K∏
n=k

(1 − µ (Bn))

for all positive integers k and K with k < K, then µ(B) = 1.

Hint: Use the fact that 1 − x ≤ e−x for all x.

Concepts Used:

• Borel-Cantelli: for a sequence of sets Xn,{
x
∣∣∣ x ∈ Xn for infinitely many n

}
=
⋂

N≥1

⋃
n≥N

Xn = lim sup
n

Xn{
x
∣∣∣ x ∈ Xn for all but finitely many n

}
=
⋃

N≥1

⋂
n≥N

Xn = lim inf Xn.

• Properties of logs and exponentials:

∏
n

exn = eΣnxn and
∑

n

log(xn) = log
(∏

n

xn

)
.

• Tails of convergent sums vanish.

• Continuity of measure: Bn ↘ B and µ(B0) < ∞ implies limn µ(Bn) = µ(B), and
Bn ↗ B =⇒ limn µ(Bn) = µ(B).

Solution:
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Proof (of a).

• The Borel σ-algebra is closed under countable unions/intersections/complements,
• B = lim supnBn = ∩N≥1 ∪n≥N Bn is an intersection of unions of measurable sets.

■

Proof (of b).

• Tails of convergent sums vanish, so∑
n≥N

µ(Bn) N→∞−−−−→ 0.

• Also,

BM :=
M⋂

N=1

⋃
n≥N

Bn ↘ B.

• A computation:

µ(B) := µ

 ⋂
N≥1

⋃
n≥N

Bn


≤ µ

 ⋃
n≥N

Bn

 ∀N

≤
∑

n≥N

µ(Bn) ∀N

N→∞−→ 0,

where we’ve used that we’re intersecting over fewer sets and this can only increase
measure.

■
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Proof (of c).

• Since µ(X) = 1, in order to show µ(B) = 1 it suffices to show µ(X \B) = 0.

• A computation:

µ(Bc) = µ

(( ∞⋂
N=1

∞⋃
n=N

Bn

)c)

= µ

( ∞⋃
N=1

∞⋂
n=N

Bc
n

)

≤
∞∑

N=1
µ

( ∞⋂
n=N

Bc
n

)

=
∞∑

N=1
lim

K→∞
µ

(
K⋂

n=N

Bc
n

)
continuity of measure from above

=
∞∑

N=1
lim

K→∞

K∏
n=N

(1 − µ(Bn)) by assumption

≤
∞∑

N=1
lim

K→∞

K∏
n=N

e−µ(Bn) by hint

=
∞∑

N=1
lim

K→∞
e−
∑K

n=N
µ(Bn)

=
∞∑

N=1
e− limK→∞

∑K

n=N
µ(Bn) by continuity of f(x) = ex

=
∞∑

N=1
e−
∑∞

n=N
µ(Bn)

=
∞∑

N=1
0

= 0.

• Here we’ve used that every tail of a divergent sum is divergent: if ∑∞
n=1 an → ∞

then for every N , the tail ∑∞
n=N an → ∞ as well.

• We’ve also use that if bn → ∞ then e−bn → 0.

■

E 4.4 Spring 2019.2 e
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Let B denote the set of all Borel subsets of R and µ : B → [0,∞) denote a finite Borel measure on
R.

a. Prove that if {Fk} is a sequence of Borel sets for which Fk ⊇ Fk+1 for all k, then

lim
k→∞

µ (Fk) = µ

( ∞⋂
k=1

Fk

)

b. Suppose µ has the property that µ(E) = 0 for every E ∈ B with Lebesgue measure m(E) = 0.
Prove that for every ϵ > 0 there exists δ > 0 so that if E ∈ B with m(E) < δ, then µ(E) < ε.

Concepts Used:

• Proof of continuity of measure.
• Using limsup/liminf sets (intersections of unions and vice-versa) and (sub)additivity to

bound measures.

– Control over lower bound: use tails of convergent sums
– Control over upper bound: use rapidly converging coefficients like ∑ 1/2n

• Convergent sums have vanishing tails.
• Intersecting over more sets can only lose measure, taking a union over more can only

gain measure.
• Similarly intersecting over fewer sets can only gain measure, and taking a union over

fewer sets can only lose measure.

Strategy:
Use a limsup or liminf of sets and continuity of measure. Note that choosing a limsup vs a liminf is
fiddly – for one choice, you can only get one of the bounds you need, for the other choice you can
get both.

Proof (of a). • Observation: µ finite means µ(E) < ∞ for all E ∈ B, which we’ll need in
several places.

• Prove a more general statement: for any measure µ,

µ(F1) < ∞, Fk ↘ F =⇒ lim
k→∞

µ(Fk) = µ(F ),

where Fk ↘ F means F1 ⊇ F2 ⊇ · · · with ⋂∞
k=1 Fk = F .

– Note that µ(F ) makes sense: each Fk ∈ B, which is a σ-algebra and closed under
countable intersections.

• Take disjoint annuli by setting Ek := Fk \ Fk+1
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• Funny step: write

F1 = F
∐ ∞∐

k=1
Ek.

– This is because x ∈ F1 iff x is in every Fk, so in F , or
– x ̸∈ F1 but x ∈ F2, noting incidentally x ∈ F3, F4, · · ·, or,
– x ̸∈ F2 but x ∈ F3, and so on.

• Now take measures, and note that we get a telescoping sum:

µ(F1) = µ(F ) +
∞∑

k=1
µ(Ek)

= µ(F ) + lim
N→∞

N∑
k=1

µ(Ek)

:= µ(F ) + lim
N→∞

N∑
k=1

µ(Fk \ Fk+1)

:= µ(F ) + lim
N→∞

N∑
k=1

µ(Fk) − µ(Fk+1) to be justified

= µ(F ) + lim
N→∞

[(µ(F1) − µ(F2)) + (µ(F2) − µ(F3)) + · · ·

+ (µ(FN−1) − µ(FN )) + (µ(FN ) − µ(FN+1))]

= µ(F ) + lim
N→∞

µ(F1) − µ(FN+1)

= µ(F ) + µ(F1) − lim
N→∞

µ(FN+1).

• Justifying the measure subtraction: the general statement is that for any pair of sets
A ⊆ X, µ(X \A) = µ(X) − µ(A) when µ(A) < ∞:

X = A
∐(X \A)

=⇒ µ(X) = µ(A) + µ(X \A) countable additivity
=⇒ µ(X) − µ(A) = µ(X \A) if µ(A) < ∞.

• Now use that µ(F1) < ∞ to justify subtracting it from both sides:

µ(F1) = µ(F ) + µ(F1) − lim
N→∞

µ(FN+1)

=⇒ 0 = µ(F1) − lim
N→∞

µ(FN+1)

lim
N→∞

µ(FN+1) = µ(F1).

• Now use that limN→∞ µ(FN+1) = limN→∞ µ(FN ) to conclude.
■
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Proof (of b).

• Toward a contradiction, negate the implication: there exists an ε > 0 such that for all δ,
there exists an E ∈ B

m(E) < δ but µ(E) > ε.

– Goal: produce a set A with m(A) = 0 but µ(A) ̸= 0.

• Take a sequence δn = α(n), some function to be determined later, produce sets En with

m(En) < δn but µ(En) > ε ∀n.

• Set

AM :=
M⋂

N=1

∞⋃
n=N

En :=
M⋂

N=1
FN FN :=

∞⋃
n=N

En.

– Observation: FN ⊇ FN+1 for all N , since the right-hand side involves taking a
union over fewer sets.

– Notation: define

A∞ :=
∞⋂

N=1

∞⋃
n=N

En.

• Bounding the Lebesgue measure m from above:

m(A∞) := m

( ∞⋂
N=1

∞⋃
n=N

En

)

≤ m

( ∞⋃
n=N

En

)
∀N

≤
∞∑

n=N

m(En) ∀N by countable subadditivity

≤
∞∑

n=N

α(n)

N→∞−→ 0,

where we’ve used that intersecting over fewer sets (i.e. none) can only increase measure
in the first bound.

– We have control over the sequence α(n), so we can choose it to be summable so
that the tails converge to zero as rapidly as we’d like.

– So e.g. for any ε1 > 0, we can choose α(n) := ε1/2n, then
∞∑

n=N

α(n) ≤
∞∑

n=1

ε1
2n

= ε1 → 0.
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• Bounding the µ measure from below:

µ(A∞) := µ

( ∞⋂
N=1

FN

)
= lim

N→∞
µ(FN ) by part (1)

= lim
N→∞

µ

( ∞⋃
n=N

En

)
≥ lim

N→∞
µ(EN )

≥ lim
N→∞

ε

= ε

> 0,

where we’ve used that taking a union over fewer sets can only make the measure smaller.

■

E 4.5 Fall 2018.2 e

Let E ⊂ R be a Lebesgue measurable set. Show that there is a Borel set B ⊂ E such that
m(E \B) = 0.

Move this to review notes to clean things up.

What a mess, redo!!

Concepts Used:

• Definition of measurability: there exists an open O ⊃ E such that m∗(O \E) < ε for all
ε > 0.

• Theorem: E is Lebesgue measurable iff there exists a closed set F ⊆ E such that
m∗(E \ F ) < ε for all ε > 0.

• Every Fσ, Gδ is Borel.
• Claim: E is measurable ⇐⇒ for every ε there exist Fε ⊂ E ⊂ Gε with Fε closed and
Gε open and m(Gε \ E) < ε and m(E \ Fε) < ε.

– Proof: existence of Gε is the definition of measurability.
– Existence of Fε: ?

• Claim: E is measurable =⇒ there exists an open O ⊇ E such that m(O \ E) = 0.

– Since E is measurable, for each n ∈ N choose Gn ⊇ E such that m∗(Gn \ E) < 1
n .

– Set ON := ⋂N
n=1Gn and O := ⋂∞

n=1Gn.

4.5 Fall 2018.2 45



4 Measure Theory: Sets

– Suppose E is bounded.
♢ Note ON ↘ O and m∗(O1) < ∞ if E is bounded, since in this case

m∗(Gn \ E) = m∗(G1) −m∗(E) < 1 ⇐⇒ m∗(G1) < m∗(E) + 1
n
< ∞.

♢ Note ON \ E ↘ O \ E since ON \ E := ON
⋂
Ec ⊇ ON+1

⋂
Ec for all N , and

again m∗(O1 \ E) < ∞.
♢ So it’s valid to apply continuity of measure from above:

m∗(O \ E) = lim
N→∞

m∗(ON \ E)

≤ lim
N→∞

m∗(GN \ E)

= lim
N→∞

1
N

= 0,

where the inequality uses subadditivity on ⋂N
n=1Gn ⊆ GN

– Suppose E is unbounded.
♢ Write Ek = E

⋂[k, k + 1]d ⊂ Rd as the intersection of E with an annulus, and
note that E = ∐

k∈NEk.
♢ Each Ek is bounded, so apply the previous case to obtain Ok ⊇ Ek with
m(Ok \ Ek) = 0.

♢ So write Ok = Ek
∐
Nk where Nk := Ok \ Ek is a null set.

♢ Define O = ⋃
k∈NOk, note that E ⊆ O.

♢ Now note

O \ E = (∐kOk) \ (∐KEk)
⊆
∐

k (Ok \ Ek)
=⇒ m∗(O \ E) ≤ m∗ (∐ (Ok \ Ek)) = 0,

since any countable union of null sets is again null.
– So O ⊇ E with m(O \ E) = 0.

• Theorem: since E is measurable, Ec is measurable

– Proof: It suffices to write Ec as the union of two measurable sets, Ec = S
⋃(Ec −S),

where S is to be determined.
– We’ll produce an S such that m∗(Ec − S) = 0 and use the fact that any subset of

a null set is measurable.
– Since E is measurable, for every ε > 0 there exists an open Oε ⊇ E such that
m∗(Oε \ E) < ε.

– Take the sequence
{
εn := 1

n

}
to produce a sequence of sets On.

– Note that each Oc
n is closed and

On ⊇ E ⇐⇒ Oc
n ⊆ Ec.

– Set S := ⋃
n Oc

n, which is a union of closed sets, thus an Fσ set, thus Borel, thus
measurable.

– Note that S ⊆ Ec since each On ⊆ Ec.
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– Note that

Ec \ S := Ec \
( ∞⋃

n=1
Oc

n

)

:= Ec
⋂( ∞⋃

n=1
Oc

n

)c

definition of set minus

= Ec
⋂( ∞⋂

n=1
On

)c

De Morgan’s law

= Ec
⋃( ∞⋂

n=1
On

)

:=
( ∞⋂

n=1
On

)
\ E

⊆ ON \ E for every N ∈ N.

– Then by subadditivity,

m∗(Ec \ S) ≤ m∗(ON \ E) ≤ 1
N

∀N =⇒ m∗(Ec \ S) = 0.

– Thus Ec \ S is measurable.

Solution:

• Since E is measurable, Ec is measurable.
• Since Ec is measurable exists an open O ⊇ Ec such that m(O \ Ec) = 0.
• Set B := Oc, then O ⊇ Ec ⇐⇒ Oc ⊆ E ⇐⇒ B ⊆ E.
• Computing measures yields

E \B := E \ Oc := E
⋂

(Oc)c = E
⋂

O = O
⋂

(Ec)c := O \ Ec,

thus m(E \B) = m(O \ Ec) = 0.
• Since O is open, B is closed and thus Borel.

d.irect Proof (Todo)
Try to construct the set.

E 4.6 Spring 2018.1 e

Define

E :=
{
x ∈ R :

∣∣∣∣x− p

q

∣∣∣∣ < q−3 for infinitely many p, q ∈ N
}
.
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Prove that m(E) = 0.

Concepts Used:

• Borel-Cantelli: If {Ek}k∈Z ⊂ 2R is a countable collection of Lebesgue measurable sets
with ∑k∈Zm(Ek) < ∞, then almost every x ∈ R is in at most finitely many Ek.

– Equivalently (?), m(lim supk→∞Ek) = 0, where lim supk→∞Ek = ⋂∞
k=1

⋃
j≥k Ej ,

the elements which are in Ek for infinitely many k.

Solution:

• Strategy: Borel-Cantelli.

• We’ll show that m(E)⋂[n, n+ 1] = 0 for all n ∈ Z; then the result follows from

m(E) = m

(⋃
n∈Z

E
⋂

[n, n+ 1]
)

≤
∞∑

n=1
m(E

⋂
[n, n+ 1]) = 0.

• By translation invariance of measure, it suffices to show m(E⋂[0, 1]) = 0.

– So WLOG, replace E with E
⋂[0, 1].

• Define

Ej :=
{
x ∈ [0, 1]

∣∣∣ ∃p ∈ Z≥0 s.t.
∣∣∣∣x− p

j

∣∣∣∣ < 1
j3

}
.

– Note that Ej ⊆
∐

p∈Z≥0Bj−3

(
p
j

)
, i.e. a union over integers p of intervals of radius

1/j3 around the points p/j. Since 1/j3 < 1/j, this union is in fact disjoint.

• Importantly, note that

lim sup
j→∞

Ej :=
∞⋂

n=1

∞⋃
j=n

Ej = E

since

x ∈ lim sup
j

Ej ⇐⇒ x ∈ Ej for infinitely many j

⇐⇒ there are infinitely many j for which there exist a p such that
∣∣∣∣x− p

j

∣∣∣∣ < j−3

⇐⇒ there are infinitely many such pairs p, j
⇐⇒ x ∈ E.

• Intersecting with [0, 1], we can write Ej as a union of intervals:

Ej =
(
0, j−3

) ∐
Bj−3

(1
j

)∐
Bj−3

(2
j

)∐
· · ·
∐
Bj−3

(
j − 1
j

) ∐ (1 − j−3, 1),

where we’ve separated out the “boundary” terms to emphasize that they are balls about
0 and 1 intersected with [0, 1].
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• Since Ej is a union of open sets, it is Borel and thus Lebesgue measurable.

• Computing the measure of Ej :

– For a fixed j, there are exactly j + 1 possible choices for a numerator (0, 1, · · · , j),
thus there are exactly j + 1 sets appearing in the above decomposition.

– The first and last intervals are length 1
j3

– The remaining (j + 1) − 2 = j − 1 intervals are twice this length, 2
j3

– Thus

m(Ej) = 2
( 1
j3

)
+ (j − 1)

( 2
j3

)
= 2
j2

• Note that ∑
j∈N

m(Ej) = 2
∑
j∈N

1
j2 < ∞,

which converges by the p-test for sums.

• But then

m(E) = m(lim sup
j

Ej)

= m(
⋂

n∈N

⋃
j≥n

Ej)

≤ m(
⋃

j≥N

Ej) for every N

≤
∑
j≥N

m(Ej)

N→∞→ 0 .

• Thus E is measurable as a subset of a null set and m(E) = 0.

E 4.7 Fall 2017.2 e

Let f(x) = x2 and E ⊂ [0,∞) := R+.

1. Show that

m∗(E) = 0 ⇐⇒ m∗(f(E)) = 0.

2. Deduce that the map
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φ : L(R+) → L(R+)
E 7→ f(E)

is a bijection from the class of Lebesgue measurable sets of [0,∞) to itself.

Walk through.

Solution:

a.

It suffices to consider the bounded case, i.e. E ⊆ BM (0) for some M . Then write En =
Bn(0)⋂E and apply the theorem to En, and by subadditivity, m∗(E) = m∗(⋃nEn) ≤∑

nm
∗(En) = 0.

Lemma: f(x) = x2, f−1(x) =
√
x are Lipschitz on any compact subset of [0,∞).

Proof: Let g = f or f−1. Then g ∈ C1([0,M ]) for any M , so g is differentiable and g′ is
continuous. Since g′ is continuous on a compact interval, it is bounded, so |g′(x)| ≤ L for all
x. Applying the MVT,

|f(x) − f(y)| = f ′(c)|x− y| ≤ L|x− y|.

Lemma: If g is Lipschitz on Rn, then m(E) = 0 =⇒ m(g(E)) = 0.
Proof: If g is Lipschitz, then

g(Br(x)) ⊆ BLr(x),

which is a dilated ball/cube, and so

m∗(BLr(x)) ≤ Ln ·m∗(Br(x)).

Now choose {Qj} ⇒ E; then {g(Qj)} ⇒ g(E).
By the above observation,

|g(Qj)| ≤ Ln|Qj |,

and so

m∗(g(E)) ≤
∑

j

|g(Qj)| ≤
∑

j

Ln|Qj | = Ln
∑

j

|Qj | → 0.

Now just take g(x) = x2 for one direction, and g(x) = f−1(x) =
√
x for the other.

b.

Lemma: E is measurable iff E = K
∐
N for some

K compact, N null.
Write E = K

∐
N where K is compact and N is null.

Then φ−1(E) = φ−1(K∐N) = φ−1(K)∐φ−1(N).
Since φ−1(N) is null by part (a) and φ−1(K) is the preimage of a compact set under a
continuous map and thus compact, φ−1(E) = K ′∐N ′ where K ′ is compact and N ′ is null, so
φ−1(E) is measurable.
So φ is a measurable function, and thus yields a well-defined map L(R) → L(R) since it
preserves measurable sets. Restricting to [0,∞), f is bijection, and thus so is φ.
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E 4.8 Spring 2017.1 e

Let K be the set of numbers in [0, 1] whose decimal expansions do not use the digit 4.

We use the convention that when a decimal number
ends with 4 but all other digits are different from
4, we replace the digit 4 with 399 · · ·. For example,
0.8754 = 0.8753999 · · ·.

Show that K is a compact, nowhere dense set without isolated points, and find the Lebesgue
measure m(K).

Concepts Used:

• Definition: A is nowhere dense ⇐⇒ every interval I contains a subinterval S ⊆ Ac.

– Equivalently, the interior of the closure is empty,
(
K
)◦

= ∅.

Solution:
Claim: K is compact.

• It suffices to show that Kc := [0, 1] \K is open; Then K will be a closed and bounded
subset of R and thus compact by Heine-Borel.

• Strategy: write Kc as the union of open balls (since these form a basis for the Euclidean
topology on R).

– Do this by showing every point x ∈ Kc is an interior point, i.e. x admits a neigh-
borhood Nx such that Nx ⊆ Kc.

• Identify Kc as the set of real numbers in [0, 1] whose decimal expansion does contain a
4.

– We will show that there exists a neighborhood small enough such that all points in
it contain a 4 in their decimal expansions.

• Let x ∈ Kc, suppose a 4 occurs as the kth digit, and write

x = 0.d1d2 · · · dk−1 4 dk+1 · · · =

 k∑
j=1

dj10−j

+
(
4 · 10−k

)
+

 ∞∑
j=k+1

dj10−j

 .
• Set rx < 10−k and let y ∈ [0, 1]⋂Brx(x) be arbitrary and write

y =
∞∑

j=1
cj10−j .

• Thus |x− y| < rx < 10−k, and the first k digits of x and y must agree:
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– We first compute the difference:

x− y =
∞∑

i=1
dj10−j −

∞∑
i=1

cj10−j =
∞∑

i=1
(dj − cj) 10−j

– Thus (claim)

|x− y| ≤
∞∑

j=1
|dj − cj |10j < 10−k ⇐⇒ |dj − cj | = 0 ∀j ≤ k.

– Otherwise we can note that any term |dj − cj | ≥ 1 and there is a contribution to
|x− y| of at least 1 · 10−j for some j < k, whereas

j < k ⇐⇒ 10−j > 10−k,

a contradiction.

• This means that for all j ≤ k we have dj = cj , and in particular dk = 4 = ck, so y has a
4 in its decimal expansion.

• But then Kc = ⋃
xBrx(x) is a union of open sets and thus open.

Claim: K is nowhere dense and m(K) = 0:

• Strategy: Show
(
K
)◦

= ∅.

• Since K is closed, K = K, so it suffices to show that K does not properly contain any
interval.

• It suffices to show m(Kc) = 1, since this implies m(K) = 0 and since any interval has
strictly positive measure, this will mean K can not contain an interval.

• As in the construction of the Cantor set, let

– K0 denote [0, 1] with 1 interval
(

4
10 ,

5
10

)
of length 1

10 deleted, so

m(Kc
0) = 1

10 .

– K1 denote K0 with 9 intervals
(

1
100 ,

5
100

)
,
(

14
100 ,

15
100

)
, · · ·

(
94
100 ,

95
100

)
of length 1

100
deleted, so

m(Kc
1) = 1

10 + 9
100 .

– Kn denote Kn−1 with 9n such intervals of length 1
10n+1 deleted, so

m(Kc
n) = 1

10 + 9
100 + · · · + 9n

10n+1 .
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• Then compute

m(Kc) =
∞∑

j=0

9n

10n+1 = 1
10

∞∑
j=0

( 9
10

)n

= 1
10

(
1

1 − 9
10

)
= 1.

Claim: K has no isolated points:

• A point x ∈ K is isolated iff there there is an open ball Br(x) containing x such that
Br(x) ⊊ Kc.

– So every point in this ball should have a 4 in its decimal expansion.

• Strategy: show that if x ∈ K, every neighborhood of x intersects K.

• Note that m(Kn) =
(

9
10

)n n→∞→ 0

• Also note that we deleted open intervals, and the endpoints of these intervals are never
deleted.

– Thus endpoints of deleted intervals are elements of K.

• Fix x. Then for every ε, by the Archimedean property of R, choose n such that
(

9
10

)n
< ε.

• Then there is an endpoint xn of some deleted interval In satisfying

|x− xn| ≤
( 9

10

)n

< ε.

• So every ball containing x contains some endpoint of a removed interval, and thus an
element of K.

E 4.9 Spring 2017.2 e

a. Let µ be a measure on a measurable space (X,M) and f a positive measurable function.

Define a measure λ by

λ(E) :=
∫

E
f dµ, E ∈ M

Show that for g any positive measurable function,∫
X
g dλ =

∫
X
fg dµ

b. Let E ⊂ R be a measurable set such that∫
E
x2 dm = 0.
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Show that m(E) = 0.

Concepts Used:

• Absolute continuity of measures: λ ≪ µ ⇐⇒ E ∈ M, µ(E) = 0 =⇒ λ(E) = 0.
• Radon-Nikodym: if λ ≪ µ, then there exists a measurable function ∂λ

∂µ
:= f where

λ(E) =
∫

E f dµ.
• Chebyshev’s inequality:

Ac :=
{
x ∈ X

∣∣∣ |f(x)| ≥ c
}

=⇒ µ(Ac) ≤ c−p
∫

Ac

|f |p dµ ∀0 < p < ∞.

Solution:

a.

• Strategy: use approximation by simple functions to show absolute continuity and apply
Radon-Nikodym

• Claim: λ ≪ µ, i.e. µ(E) = 0 =⇒ λ(E) = 0.

– Note that if this holds, by Radon-Nikodym, f = ∂λ
∂µ =⇒ dλ = fdµ, which would

yield ∫
g dλ =

∫
gf dµ.

• So let E be measurable and suppose µ(E) = 0.

• Then

λ(E) :=
∫

E
f dµ = lim

n→∞


∫

E
sn dµ

∣∣∣ sn :=
∞∑

j=1
cjµ(Ej), sn ↗ f


where we take a sequence of simple functions increasing to f .

• But since each Ej ⊆ E, we must have µ(Ej) = 0 for any such Ej , so every such sn must
be zero and thus λ(E) = 0.

What is the final step in this approximation?

b.

• Set g(x) = x2, note that g is positive and measurable.

• By part (a), there exists a positive f such that for any E ⊆ R,∫
E
g dm =

∫
E
gf dµ

– The LHS is zero by assumption and thus so is the RHS.
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– m ≪ µ by construction.
– Note that gf is positive.

• Define Ak =
{
x ∈ X

∣∣∣ gf · χE > 1
k

}
, for k ∈ Z≥0

• Then by Chebyshev with p = 1, for every k we have

µ(Ak) ≤ k

∫
E
gf dµ = 0

• Then noting that Ak ↘ A :=
{
x ∈ X

∣∣∣ gf · χE(x) > 0
}

, we have µ(A) = 0.

• Since gf is positive, we have

x ∈ E ⇐⇒ gfχE(x) > 0 ⇐⇒ x ∈ A

so E = A and µ(E) = µ(A).

• But m ≪ µ and µ(E) = 0, so we can conclude that m(E) = 0.

E 4.10 Fall 2016.4 e

Let (X,M, µ) be a measure space and suppose {En} ⊂ M satisfies

lim
n→∞

µ (X\En) = 0.

Define

G :=
{
x ∈ X

∣∣∣ x ∈ En for only finitely many n
}
.

Show that G ∈ M and µ(G) = 0.

Add concepts.

Solution:

• Claim: G ∈ M.

– Claim:

G =
( ∞⋂

N=1

∞⋃
n=N

En

)c

=
∞⋃

N=1

∞⋂
n=N

Ec
n.
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♢ This follows because x is in the RHS ⇐⇒ x ∈ Ec
n for all but finitely many n

⇐⇒ x ∈ En for at most finitely many n.
– But M is a σ-algebra, and this shows G is obtained by countable unions/intersec-

tions/complements of measurable sets, so G ∈ M.

• Claim: µ(G) = 0.

– We have

µ(G) = µ

( ∞⋃
N=1

∞⋂
n=N

Ec
n

)

≤
∞∑

N=1
µ

( ∞⋂
n=N

Ec
n

)

≤
∞∑

N=1
µ(Ec

M )

:=
∞∑

N=1
µ(X \ EN )

N→∞→ 0.

Last step seems wrong!

E 4.11 Spring 2016.3 e

Let f be Lebesgue measurable on R and E ⊂ R be measurable such that

0 < A =
∫

E
f(x)dx < ∞.

Show that for every 0 < t < 1, there exists a measurable set Et ⊂ E such that∫
Et

f(x)dx = tA.

E 4.12 Spring 2016.5 e

Let (X,M, µ) be a measure space. For f ∈ L1(µ) and λ > 0, define

φ(λ) = µ({x ∈ X|f(x) > λ}) and ψ(λ) = µ({x ∈ X|f(x) < −λ})

4.11 Spring 2016.3 56



4 Measure Theory: Sets

Show that φ,ψ are Borel measurable and∫
X

|f | dµ =
∫ ∞

0
[φ(λ) + ψ(λ)] dλ

E 4.13 Spring 2016.2 e

Let 0 < λ < 1 and construct a Cantor set Cλ by successively removing middle intervals of length
λ.

Prove that m(Cλ) = 0.

E 4.14 Fall 2015.2 e

Let f : R → R be Lebesgue measurable.

1. Show that there is a sequence of simple functions sn(x) such that sn(x) → f(x) for all x ∈ R.
2. Show that there is a Borel measurable function g such that g = f almost everywhere.

E 4.15 Spring 2015.3 e

Let µ be a finite Borel measure on R and E ⊂ R Borel. Prove that the following statements are
equivalent:

1. ∀ε > 0 there exists G open and F closed such that

F ⊆ E ⊆ G and µ(G \ F ) < ε.

2. There exists a V ∈ Gδ and H ∈ Fσ such that

H ⊆ E ⊆ V and µ(V \H) = 0

E 4.16 Spring 2014.3 e

Let f : R → R and suppose

∀x ∈ R, f(x) ≥ lim sup
y→x

f(y)

Prove that f is Borel measurable.
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E 4.17 Spring 2014.4 e

Let (X,M, µ) be a measure space and suppose f is a measurable function on X. Show that

lim
n→∞

∫
X
fn dµ =

{
∞ or
µ(f−1(1)),

and characterize the collection of functions of each type.

5 Measure Theory: Functions

E 5.1 Spring 2021.1 e

Problem 5.1.1 (Spring 2021, 1)
Let (X,M, µ) be a measure space and let En ∈ M be a measurable set for n ≥ 1. Let
fn := χEn be the indicator function of the set E and show that

a. fn
n→∞→ 1 uniformly ⇐⇒ there exists N ∈ N such that En = X for all n ≥ N .

b. fn(x) n→∞→ 1 for almost every x ⇐⇒

µ

⋂
n≥0

⋃
k≥n

(X \ Ek)

 = 0.

Solution:
Part a:
=⇒ :

• Suppose χEn → 1 uniformly, we want to produce an N such that n ≥ N =⇒ x ∈ En

for all x ∈ X.
• Take ε := 1/2. By uniform convergence, for N large enough,

∀n ≥ N |χEn(x) − 1| < 1/2 ∀x ∈ X

⇐⇒ ∀n ≥ N χEn(x) = 1 ∀x ∈ X

⇐⇒ ∀n ≥ N x ∈ En ∀x ∈ X ⇐⇒ ∀n ≥ N En = X,

where we’ve used that En ⊆ X by definition and this shows X ⊆ En. So this N suffices.

⇐= :

• Let ε > 0 be arbitrary.
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• Choose N such that n ≥ N =⇒ X = En. Then

∀n ≥ N x ∈ En ∀x ∈ X

∀n ≥ N χEn(x) = 1 ∀x ∈ X

∀n ≥ N |χEn(x) − 1| = 0 < ε ∀x ∈ X,

so χEn → 1 uniformly.

Part b:

• Define

S :=
{
x ∈ X

∣∣∣ χEk
(x) → 1

}
:=
{
x ∈ X

∣∣∣ ∀ε, ∃N s.t. |χEk
(x) − 1| < ε,∀k ≥ N

}
L :=

⋂
n≥0

⋃
k≥n

(X \ Ek) ,

so S is the set where fn → f and X \ S is the exceptional set where fn ̸→ f doesn’t
converge pointwise.

• Claim: L = X \ S, so if x ∈ S ⇐⇒ x ∈ X \ L.

• Proof of claim: Suppose there exists an N such that the first line below is true. Then
for a fixed x, there are equivalent statements:

x ∈ S

⇐⇒ ∃N s.t. ∀ε > 0, |χEk
(x) − 1| < ε ∀k ≥ N

⇐⇒ ∃N s.t. |χEk
(x) − 1| = 0 ∀k ≥ N

⇐⇒ ∃N s.t. χEk
(x) = 1 ∀k ≥ N

⇐⇒ ∃N s.t. x ∈ Ek ∀k ≥ N

⇐⇒ ∃N s.t. x ̸∈ X \ Ek ∀k ≥ N

⇐⇒ ∃N s.t. x ̸∈
⋃

k≥N

X \ Ek

⇐⇒ x ̸∈
⋂

n≥0

⋃
k≥n

X \ Ek

⇐⇒ x ̸∈ L

⇐⇒ x ∈ X \ L.

• Proving the iff: fn → f almost everywhere ⇐⇒ µ(X \ S) = 0 ⇐⇒ µ(L) = 0.
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E 5.2 Spring 2021.3 e

Let (X,M, µ) be a finite measure space and let {fn}∞
n=1 ⊆ L1(X,µ). Suppose f ∈ L1(X,µ) such

that fn(x) n→∞→ f(x) for almost every x ∈ X. Prove that for every ε > 0 there exists M > 0 and a
set E ⊆ X such that µ(E) ≤ ε and |fn(x)| ≤ M for all x ∈ X \ E and all n ∈ N.

E 5.3 Fall 2020.2 e

a. Let f : R → R. Prove that

f(x) ≤ lim inf
y→x

f(y) for each x ∈ R ⇐⇒ {x ∈ R
∣∣∣ f(x) > a} is open for all a ∈ R

b. Recall that a function f : R → R is called lower semi-continuous iff it satisfies either condition
in part (a) above.

Prove that if F is any family of lower semi-continuous functions, then

g(x) = sup{f(x)
∣∣∣ f ∈ F}

is Borel measurable.

Note that F need not be a countable family.

E 5.4 Fall 2016.2 e

Let f, g : [a, b] → R be measurable with∫ b

a
f(x) dx =

∫ b

a
g(x) dx.

Show that either

1. f(x) = g(x) almost everywhere, or
2. There exists a measurable set E ⊂ [a, b] such that∫

E
f(x) dx >

∫
E
g(x) dx

Concepts Used:
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• Monotonicity of the Lebesgue integral: f ≤ g on A =⇒
∫

A f ≤
∫

A g

Strategy:
Take the assumption and the negation of (1) and show (2). The obvious move: define the set A
where they differ. The non-obvious move: split A itself up to get a strict inequality.

Solution:

• Write X := [a, b],
• Suppose it is not the case that f = g almost everywhere; then letting A :={

x ∈ X
∣∣∣ f(x) ̸= g(x)

}
, we have m(A) > 0.

• Write

A = A1
∐
A2 := {f > g}

∐
{f < g} .

• Both Ai are measurable:

– Since f, g are measurable functions, so is h := f − g.
– We can write

A1 :=
{
x ∈ X

∣∣∣ h > 0
}

= h−1((0,∞))

A2 :=
{
x ∈ X

∣∣∣ h < 0
}

= h−1((−∞, 0)),

and pullbacks of Borel sets by measurable functions are measurable.

• Then on E, we have f(x) > g(x) pointwise. This is preserved by monotonicity of the
integral, thus

f(x) > g(x) on E =⇒
∫

E
f(x) dx >

∫
E
g(x) dx.

E 5.5 Spring 2016.4 e

Let E ⊂ R be measurable with m(E) < ∞. Define

f(x) = m(E ∩ (E + x)).

Show that

1. f ∈ L1(R).
2. f is uniformly continuous.
3. lim|x|→∞ f(x) = 0.
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Hint:

χE∩(E+x)(y) = χE(y)χE(y − x)

6 Integrals: Convergence

E 6.1 Fall 2020.3 e

Problem 6.1.1 (?)
Let f be a non-negative Lebesgue measurable function on [1,∞).

a. Prove that

1 ≤
(

1
b− a

∫ b

a
f(x) dx

)(
1

b− a

∫ b

a

1
f(x) dx

)

for any 1 ≤ a < b < ∞.

b. Prove that if f satisfies ∫ t

1
f(x) dx ≤ t2 log(t)

for all t ∈ [1,∞), then ∫ ∞

1

1
f(x) dx = ∞.

Hint: write∫ ∞

1

1
f(x) dx =

∞∑
k=0

∫ 2k+1

2k

1
f(x) dx.

Solution:
Part 1: By Holder with p = q = 2 on L1[a, b],

(b− a)2 = ∥id∥2
1 =

∥∥∥f 1
2 f− 1

2

∥∥∥2

1
≤
∥∥∥f 1

2

∥∥∥2

2
·
∥∥∥f− 1

2

∥∥∥2

2
=
∫ b

a
f(x) dx ·

∫ b

a

1
f(x) dx.

Part 2: It suffices to show ∫ 2k+1

2k

1
f
> ck where

∑
k≥0

ck = ∞.
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Manipulate the given inequality a bit:

∫ b

a
f ≤

∫ b

1
f ≤ b2 log(b) =⇒

(∫ b

a
f

)−1

≥ 1
b2 log(b)

=⇒ .

Rewrite the bound in part 1:

∫ b

a

1
f

≥
(∫ b

a
f

)−1

(b− a)2 ≥ (b− a)2

b2 log(b) .

Now set a = 2k, b = 2k+1:∫ 2k+1

2k

1
f(x) dx ≥ (2k+1 − 2k)2

22(k+1)(k + 1) log(2)
= 22k

22k · 4(k + 1) log(2) = O(1/k),

and ∑ 1/k = ∞.

E 6.2 Spring 2021.2 e

Problem 6.2.1 (?)
Calculate the following limit, justifying each step of your calculation:

L := lim
n→∞

∫ n

0

cos
(

x
n

)
x2 + cos

(
x
n

) dx.
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Solution: • If interchanging a limit and integral is justified, we have

L := lim
n→∞

∫
(0,n)

cos
(

x
n

)
x2 + cos

(
x
n

) dx
= lim

n→∞

∫
(0,∞)

χ(0,n)(x)
cos

(
x
n

)
x2 + cos

(
x
n

) dx
DCT=

∫
(0,∞)

lim
n→∞

χ(0,n)(x)
cos

(
x
n

)
x2 + cos

(
x
n

) dx
=
∫

(0,∞)
χ(0,∞)(x) lim

n→∞

cos
(

x
n

)
x2 + cos

(
x
n

) dx
=
∫

(0,∞)

limn→∞ cos
(

x
n

)
limn→∞ x2 + cos

(
x
n

) dx
=
∫

(0,∞)

cos
(
limn→∞

x
n

)
x2 + cos

(
limn→∞

x
n

) dx
=
∫

(0,∞)

1
x2 + 1 dx

= arctan(x)
∣∣∣∞
0

= π

2 ,

where we’ve used that cos(θ) is continuous on R to pass a limit inside, noting that x is
fixed in the integrand.

• Justifying the interchange: DCT. Write fn(x) := cos(x/n)/(x2 + cos(x/n)).

• On (α,∞) for any α > 1:

– We have

|fn(x)| ≤
∣∣∣∣ 1
x2 + cos(x/n)

∣∣∣∣ ≤ 1
x2 − 1 ,

where we’ve used that −1 ≤ cos(x/n) ≤ 1 for every x, and so the denominator is
minimized when cos(x/n) = −1, and this maximizes the quantity.

– Setting g(x) := 1/(x2 − 1), we have g ∈ L1(α,∞) by the limit comparison test with
h(x) := x2:

g(x)
h(x)

:= x2 − 1
x2 = 1 − 1

x2
x→∞−→ 1 < ∞,

and so g, h either both converge or both diverge. But
∫∞

α
1

x2 dx < ∞ by the p-test
for integrals since α > 1.

• On (0, α):

– Just use that fn(x) is bounded by a constant:

|fn(x)| =
∣∣∣∣ cos(x/n)
x2 + cos(x/n)

∣∣∣∣ ≤
∣∣∣∣cos(x/n)
cos(x/n)

∣∣∣∣ = 1,

where we’ve used that x2 is positive, and removing it from the denominator only
makes the quantity larger.
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– Then check that
∫ α

0 1 dx = α < ∞, so 1 ∈ L1(0, α).

E 6.3 Spring 2021.5 e

Problem 6.3.1 (?)
Let fn ∈ L2([0, 1]) for n ∈ N, and assume that

• ∥fn∥2 ≤ n
−51
100 for all n ∈ N,

• f̂n is supported in the interval [2n, 2n+1], so

f̂n(ξ) :=
∫ 1

0
fn(x)e2πiξ·x dx = 0 for ξ ̸∈ [2n, 2n+1].

Prove that ∑n∈N fn converges in the Hilbert space L2([0, 1]).
Hint: Plancherel’s identity may be helpful.

△! Warning 6.3.1
Although this mentions Plancherel, probably what is needed is Parseval’s identity:

∑
k∈Z

∣∣∣f̂(k)
∣∣∣2 =

∫ 1

0
|f(x)|2 dx.

E 6.4 Fall 2019.2 e

Prove that ∣∣∣∣ dn

dxn

sin x
x

∣∣∣∣ ≤ 1
n

for all x ̸= 0 and positive integers n.

Hint: Consider
∫ 1

0
cos(tx)dt

Solution:
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Concepts Used:

• DCT
• Bounding in the right place. Don’t evaluate the actual integral!

• By induction on the number of limits we can pass through the integral.

• For n = 1 we first pass one derivative into the integral: let xn → x be any sequence
converging to x, then

∂

∂x

sin(x)
x

= ∂

∂x

∫ 1

0
cos(tx) dt

= lim
xn→x

1
xn − x

(∫ 1

0
cos(txn) dt−

∫ 1

0
cos(tx) dt

)
= lim

xn→x

(∫ 1

0

cos(txn) − cos(tx)
xn − x

dt

)
= lim

xn→x

(∫ 1

0

(
t sin(tx)

∣∣∣
x=ξn

)
dt

)
where ξn ∈ [xn, x] by MVT, ξn → x

= lim
ξn→x

(∫ 1

0
t sin(tξn) dt

)
=DCT

∫ 1

0
lim

ξn→x
t sin(tξn) dt

=
∫ 1

0
t sin(tx) dt

.

• Taking absolute values we obtain an upper bound∣∣∣∣ ∂∂x sin(x)
x

∣∣∣∣ =
∣∣∣∣∫ 1

0
t sin(tx) dt

∣∣∣∣
≤
∫ 1

0
|t sin(tx)| dt

≤
∫ 1

0
1 dt = 1,

since t ∈ [0, 1] =⇒ |t| < 1, and |sin(xt)| ≤ 1 for any x and t.

• Note that this bound also justifies the DCT, since the functions fn(t) = t sin(tξn) are
uniformly dominated by g(t) = 1 on L1([0, 1]).
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Note: integrating by parts here yields the actual
formula:∫ 1

0
t sin(tx) dt =IBP

(
−t cos(tx)

x

) ∣∣∣t=1

t=0
−
∫ 1

0

cos(tx)
x

dt

= − cos(x)
x

− sin(x)
x2

= x cos(x) − sin(x)
x2 .

• For the inductive step, we assume that we can pass n− 1 limits through the integral and
show we can pass the nth through as well.

∂n

∂xn

sin(x)
x

= ∂n

∂xn

∫ 1

0
cos(tx) dt

= ∂

∂x

∫ 1

0

∂n−1

∂xn−1 cos(tx) dt

= ∂

∂x

∫ 1

0
tn−1fn−1(x, t) dt

– Note that fn(x, t) = ± sin(tx) when n is odd and fn(x, t) = ± cos(tx) when n is
even, and a constant factor of t is multiplied when each derivative is taken.

• We continue as in the base case:

∂

∂x

∫ 1

0
tn−1fn−1(x, t) dt = lim

xk→x

∫ 1

0
tn−1

(
fn−1(xn, t) − fn−1(x, t)

xn − x

)
dt

=IVT lim
xk→x

∫ 1

0
tn−1∂fn−1

∂x
(ξk, t) dt where ξk ∈ [xk, x], ξk → x

=DCT

∫ 1

0
lim

xk→x
tn−1∂fn−1

∂x
(ξk, t) dt

:=
∫ 1

0
lim

xk→x
tnfn(ξk, t) dt

:=
∫ 1

0
tnfn(x, t) dt.

– We’ve used the fact that f0(x) = cos(tx) is smooth as a function of x, and in
particular continuous

– The DCT is justified because the functions hn,k(x, t) = tnfn(ξk, t) are again uni-
formly (in k) bounded by 1 since t ≤ 1 =⇒ tn ≤ 1 and each fn is a sin or
cosine.
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• Now take absolute values∣∣∣∣ ∂n

∂xn

sin(x)
x

∣∣∣∣ =
∣∣∣∣∫ 1

0
−tnfn(x, t) dt

∣∣∣∣
≤
∫ 1

0
|tnfn(x, t)| dt

≤
∫ 1

0
|tn||fn(x, t)| dt

≤
∫ 1

0
|tn| · 1 dt

≤
∫ 1

0
tn dt since t is positive

= 1
n+ 1

<
1
n
.

– We’ve again used the fact that fn(x, t) is of the form ± cos(tx) or ± sin(tx), both
of which are bounded by 1.

E 6.5 Spring 2020.5 e

Compute the following limit and justify your calculations:

lim
n→∞

∫ n

0

(
1 + x2

n

)−(n+1)

dx.

Not finished, flesh out.

Walk through.

Solution:

Concepts Used:

• DCT
• Passing limits through products and quotients
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6 Integrals: Convergence

Note that

lim
n

(
1 + x2

n

)−(n+1)

= 1

limn

(
1 + x2

n

)1 (
1 + x2

n

)n

= 1
1 · ex2

= e−x2
.

If passing the limit through the integral is justified, we will have

lim
n→∞

∫ n

0

(
1 + x2

n

)−(n+1)

dx = lim
n→∞

∫
R
χ[0,n]

(
1 + x2

n

)−(n+1)

dx

=
∫

R
lim

n→∞
χ[0,n]

(
1 + x2

n

)−(n+1)

dx bytheDCT

=
∫

R
lim

n→∞

(
1 + x2

n

)−(n+1)

dx

=
∫ ∞

0
e−x2

=
√
π

2 .

Computing the last integral:

(∫
R
e−x2

dx

)2
=
(∫

R
e−x2

dx

)(∫
R
e−y2

dx

)
=
∫

R

∫
R
e−(x+y)2

dx

=
∫ 2π

0

∫ ∞

0
e−r2

r dr dθ u = r2

= 1
2

∫ 2π

0

∫ ∞

0
e−u du dθ

= 1
2

∫ 2π

0
1

= π,

and now use the fact that the function is even so
∫∞

0 f = 1
2
∫

R f .
Justifying the DCT:

• Apply Bernoulli’s inequality:

1 + x2

n

n+1
≥ 1 + x2

n

(
1 + x2

)
≥ 1 + x2,

where the last inequality follows from the fact that 1 + x2

n ≥ 1
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E 6.6 Spring 2019.3 e

Let {fk} be any sequence of functions in L2([0, 1]) satisfying ∥fk∥2 ≤ M for all k ∈ N.

Prove that if fk → f almost everywhere, then f ∈ L2([0, 1]) with ∥f∥2 ≤ M and

lim
k→∞

∫ 1

0
fk(x)dx =

∫ 1

0
f(x)dx

Hint: Try using Fatou’s Lemma to show that ∥f∥2 ≤
M and then try applying Egorov’s Theorem.

Solution:

Concepts Used:

• Definition of L+: space of measurable function X → [0,∞].
• Fatou: For any sequence of L+ functions,

∫
lim inf fn ≤ lim inf

∫
fn.

• Egorov’s Theorem: If E ⊆ Rn is measurable, m(E) > 0, fk : E → R a sequence
of measurable functions where limn→∞ fn(x) exists and is finite a.e., then fn →
f almost uniformly: for every ε > 0 there exists a closed subset Fε ⊆ E with
m(E \ F ) < ε and fn → f uniformly on F .

L2 bound:

• Since fk → f almost everywhere, lim infn fn(x) = f(x) a.e.
• ∥fn∥2 < ∞ implies each fn is measurable and thus |fn|2 ∈ L+, so we can apply Fatou:

∥f∥2
2 =

∫
|f(x)|2

=
∫

lim inf
n

|fn(x)|2

≤
Fatou

lim inf
n

∫
|fn(x)|2

≤ lim inf
n

M

= M.

• Thus ∥f∥2 ≤
√
M < ∞ implying f ∈ L2.

What is the "right" proof here that uses the first part?

Equality of Integrals:

• Take the sequence εn = 1
n
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6 Integrals: Convergence

• Apply Egorov’s theorem: obtain a set Fε such that fn → f uniformly on Fε and
m(I \ Fε) < ε.

lim
n→∞

∣∣∣∣∫ 1

0
fn − f

∣∣∣∣ ≤ lim
n→∞

∫ 1

0
|fn − f |

= lim
n→∞

(∫
Fε

|fn − f | +
∫

I\Fε

|fn − f |
)

=
∫

Fε

lim
n→∞

|fn − f | + lim
n→∞

∫
I\Fε

|fn − f | by uniform convergence

= 0 + lim
n→∞

∫
I\Fε

|fn − f |,

so it suffices to show
∫

I\Fε
|fn − f | n→∞→ 0.

• We can obtain a bound using Holder’s inequality with p = q = 2:∫
I\Fε

|fn − f | ≤
(∫

I\Fε

|fn − f |2
)(∫

I\Fε

|1|2
)

=
(∫

I\Fε

|fn − f |2
)
µ(Fε)

≤ ∥fn − f∥2µ(Fε)
≤ (∥fn∥2 + ∥f∥2)µ(Fε)
≤ 2M · µ(Fε)

where M is now a constant not depending on ε or n.

• Now take a nested sequence of sets Fε with µ(Fε) → 0 and applying continuity of measure
yields the desired statement.

E 6.7 Fall 2018.6 e

Compute the following limit and justify your calculations:

lim
n→∞

∫ n

1

dx(
1 + x

n

)n n
√
x

Add concepts.

Solution:
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6 Integrals: Convergence

Concepts Used:

• ?

• Note that x 1
n

n→∞→ 1 for any 0 < x < ∞.
• Thus the integrand converges to 1

ex , which is integrable on (0,∞) and integrates to 1.
• Break the integrand up:∫ ∞

0

1(
1 + x

n

)n
x

1
n

dx =
∫ 1

0

1(
1 + x

n

)n
x

1
n

dx =
∫ ∞

1

1(
1 + x

n

)n
x

1
n

dx.

E 6.8 Fall 2018.3 e

Suppose f(x) and xf(x) are integrable on R. Define F by

F (t) :=
∫ ∞

−∞
f(x) cos(xt)dx

Show that

F ′(t) = −
∫ ∞

−∞
xf(x) sin(xt)dx.

Walk through.

Solution:

Concepts Used:

• Mean Value Theorem
• DCT

∂

∂t
F (t) = ∂

∂t

∫
R
f(x) cos(xt) dx

DCT=
∫

R
f(x) ∂

∂t
cos(xt) dx

=
∫

R
xf(x) cos(xt) dx,

so it only remains to justify the DCT.

• Fix t, then let tn → t be arbitrary.
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6 Integrals: Convergence

• Define

hn(x, t) = f(x)
(cos(tx) − cos(tnx)

tn − t

)
n→∞→ ∂

∂t
(f(x) cos(xt))

since cos(tx) is differentiable in t and this is the limit definition of differentiability.

• Note that

∂

∂t
cos(tx) := lim

tn→t

cos(tx) − cos(tnx)
tn − t

MV T= ∂

∂t
cos(tx)

∣∣∣
t=ξn

for some ξn ∈ [t, tn] or [tn, t]

= x sin(ξnx)

where ξn
n→∞→ t since wlog tn ≤ ξn ≤ t and tn ↗ t.

• We then have

|hn(x)| = |f(x)x sin(ξnx)| ≤ |xf(x)| since |sin(ξnx)| ≤ 1

for every x and every n.

• Since xf(x) ∈ L1(R) by assumption, the DCT applies.

E 6.9 Spring 2018.5 e

Suppose that

• fn, f ∈ L1,
• fn → f almost everywhere, and
•
∫

|fn| →
∫

|f |.

Show that
∫
fn →

∫
f .

Solution:
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Concepts Used:

•
∫

|fn − f | → ⇐⇒
∫
fn =

∫
f .

• Fatou: ∫
lim inf fn ≤ lim inf

∫
fn∫

lim sup fn ≥ lim sup
∫
fn.

• Since
∫

|fn| n→∞→
∫

|f |, define

hn = |fn − f | n→∞→ 0 a.e.
gn = |fn| + |f | n→∞→ 2|f | a.e.

– Note that gn − hn
n→∞→ 2|f | − 0 = 2|f |.

• Then ∫
2|f | =

∫
lim inf

n
(gn − hn)

=
∫

lim inf
n

(gn) +
∫

lim inf
n

(−hn)

=
∫

lim inf
n

(gn) −
∫

lim sup
n

(hn)

=
∫

2|f | −
∫

lim sup
n

(hn)

≤
∫

2|f | − lim sup
n

∫
hn by Fatou,

• Since f ∈ L1,
∫

2|f | = 2∥f∥1 < ∞ and it makes sense to subtract it from both sides,
thus

0 ≤ − lim sup
n

∫
hn

:= − lim sup
n

∫
|fn − f |.

which forces lim supn

∫
|fn − f | = 0, since

– The integral of a nonnegative function is nonnegative, so
∫

|fn − f | ≥ 0.
– So (−

∫
|fn − f |) ≤ 0.

– But the above inequality shows (−
∫

|fn − f |) ≥ 0 as well.

• Since lim infn
∫
hn ≤ lim supn

∫
hn = 0, limn

∫
hn exists and is equal to zero.

• But then ∣∣∣∣∫ fn −
∫
f

∣∣∣∣ =
∣∣∣∣∫ fn − f

∣∣∣∣ ≤
∫

|fn − f |,
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6 Integrals: Convergence

and taking limn→∞ on both sides yields

lim
n→∞

∣∣∣∣∫ fn −
∫
f

∣∣∣∣ ≤ lim
n→∞

∫
|fn − f | = 0,

so limn→∞
∫
fn =

∫
f .

E 6.10 Spring 2018.2 e

Let

fn(x) := x

1 + xn
, x ≥ 0.

a. Show that this sequence converges pointwise and find its limit. Is the convergence uniform
on [0,∞)?

b. Compute

lim
n→∞

∫ ∞

0
fn(x)dx

Add concepts.

Solution:

Concepts Used:

• ?

Part a Claim: fn does not converge uniformly to its limit.

• Note each fn(x) is clearly continuous on (0,∞), since it is a quotient of continuous
functions where the denominator is never zero.

• Note

x < 1 =⇒ xn n→∞→ 0 and x > 1 =⇒ xn n→∞→ ∞.

• Thus

fn(x) = x

1 + xn

n→∞−→ f(x) :=


x, 0 ≤ x < 1
1
2 , x = 1
0, x > 1

.
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6 Integrals: Convergence

• If fn → f uniformly on [0,∞), it would converge uniformly on every subset and thus
uniformly on (0,∞).

– Then f would be a uniform limit of continuous functions on (0,∞) and thus con-
tinuous on (0,∞).

– By uniqueness of limits, fn would converge to the pointwise limit f above, which is
not continuous at x = 1, a contradiction.

Part b - If the DCT applies, interchange the limit and integral:

lim
n→∞

∫ ∞

0
fn(x) dx =

∫ ∞

0
lim

n→∞
fn(x) dx DCT

=
∫ ∞

0
f(x) dx

=
∫ 1

0
x dx+

∫ ∞

1
0 dx

= 1
2x

2
∣∣∣1
0

= 1
2 .

• To justify the DCT, write ∫ ∞

0
fn(x) =

∫ 1

0
fn(x) +

∫ ∞

1
fn(x).

• fn restricted to (0, 1) is uniformly bounded by g0(x) = 1 in the first integral, since

x ∈ [0, 1] =⇒ x

1 + xn
<

1
1 + xn

< 1 := g(x)

so ∫ 1

0
fn(x) dx ≤

∫ 1

0
1 dx = 1 < ∞.

Also note that g0 · χ(0,1) ∈ L1((0,∞)).

• The fn restricted to (1,∞) are uniformly bounded by g1(x) = 1
x2 on [1,∞), since

x ∈ (1,∞) =⇒ x

1 + xn
≤ x

xn
= 1
xn−1 ≤ 1

x2 ∈ L1([1,∞) when n ≥ 3,

by the p-test for integrals.

• So set

g := g0 · χ(0,1) + g1 · χ[1,∞),

then by the above arguments g ∈ L1((0,∞)) and fn ≤ g everywhere, so the DCT applies.
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E 6.11 Fall 2016.3 e

Let f ∈ L1(R). Show that

lim
x→0

∫
R

|f(y − x) − f(y)| dy = 0

Missing some stuff.

Solution:

Concepts Used:

• C∞
c ↪→ Lp is dense.

• If f . . . ?

• Fixing notation, set τxf(y) := f(y − x); we then want to show

∥τxf − f∥L1
x→0→ 0.

• Claim: by an ε/3 argument, it suffices to show this for compactly supported functions:

– Since f ∈ L1, choose gn ⊂ C∞
c (R1) smooth and compactly supported so that

∥f − g∥L1 < ε.

– Claim: ∥τxf − τxg∥ < ε.
♢ Proof 1: translation invariance of the integral.
♢ Proof 2: Apply a change of variables:

∥τxf − τxg∥1 :=
∫

R
|τxf(y) − τxg(y)| dy

=
∫

R
|f(y − x) − g(y − x)| dy

=
∫

R
|f(u) − g(u)| du (u = y − x, du = dy)

= ∥f − g∥1
< ε.

– Then

∥τxf − f∥1 = ∥τxf − τxg + τxg − g + g − f∥1
≤ ∥τxf − τxg∥1 + ∥τxg − g∥1 + ∥g − f∥1
≤ 2ε+ ∥τxg − g∥1.

• To show this for compactly supported functions:
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– Let g ∈ C∞
c (R1), let E = supp(g), and write

∥τxg − g∥1 =
∫

R
|g(y − x) − g(y)| dy

=
∫

E
|g(y − x) − g(y)| dy +

∫
Ec

|g(y − x) − g(y)| dy

=
∫

E
|g(y − x) − g(y)| dy.

– But g is smooth and compactly supported on E, and thus uniformly continuous on
E, so

lim
x→0

∫
E

|g(y − x) − g(y)| dy =
∫

E
lim
x→0

|g(y − x) − g(y)| dy

=
∫

E
0 dy

= 0.

E 6.12 Fall 2015.3 e

Problem 6.12.1 (?)
Compute the following limit:

lim
n→∞

∫ n

1

ne−x

1 + nx2 sin
(
x

n

)
dx

Solution:

I = lim
n→∞

∫ ∞

1

e−x

1
n + x2 sin

(
x

n

)
χ[1,n] dx =

∫ ∞

1

e−x

x2 lim
n→∞

sin
(
x

n

)
χ[1,n] dx = 0,

since sin(x/n) → 0. Passing the limit through the integral is justified by the DCT: write

fn(x) := ne−x

1 + nx2 sin
(
x

n

)
χ[1,n].

Then

|fn(x)| ≤ g(x) := e−x

x2 ∈ L1(1,∞),

since

∥f∥L1(1,∞) =
∫ ∞

1

∣∣∣∣ 1
x2ex

∣∣∣∣ dx ≤
∫ ∞

1

∣∣∣∣ 1
x2

∣∣∣∣ dx = 1 < ∞.
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E 6.13 Fall 2015.4 e

Let f : [1,∞) → R such that f(1) = 1 and

f ′(x) = 1
x2 + f(x)2

Show that the following limit exists and satisfies the equality

lim
x→∞

f(x) ≤ 1 + π

4

7 Integrals: Approximation

E 7.1 Fall 2021.2 e

Problem 7.1.1 (?) a. Let F ⊂ R be closed, and define

δF (y) := inf
x∈F

|x− y|.

For y /∈ F , show that ∫
F

|x− y|−2dx ≤ 2
δF (y) ,

b. Let F ⊂ R be a closed set whose complement has finite measure, i.e. m(R \ F ) < ∞.
Define the function

I(x) :=
∫
R

δF (y)
|x− y|2

dy

Prove that I(x) = ∞ if x ̸∈ F , however I(x) < ∞ for almost every x ∈ F .
Hint: investigate

∫
F
I(x)dx.

Solution (Part a):
Let y ∈ F c which is open, then one can find an epsilon ball about y avoiding F . We can
take ε := δF (y) to define A := Bε(y), and we still have A ⊆ F c and F ⊆ Ac. Note that
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|x− y|2 = (x− y)2 since this is always positive, then∫
F

|x− y|−2 dx ≤
∫

Ac
|x− y|−2 dx

=
∫ −ε

−∞
(x− y)−2 dx+

∫ ∞

ε
(x− y)−2 dx

=
∫ −ε

−∞
u−2 dx+

∫ ∞

ε
u−2 dx

= −u−1
∣∣∣u=−∞

u=−ε
− u−1

∣∣∣u=ε

u=∞

= 2
ε

:= 2
δF (y) .

Solution (Part b):
Estimate: ∫

F
I(x) dx :=

∫
F

∫
R

δF (y)
(x− y)2 dy dx

=
∫

R
δF (y)

∫
F

1
(x− y)2 dx dy

=
∫

F
δF (y)

∫
F

1
(x− y)2 dx dy +

∫
F c
δF (y)

∫
F

1
(x− y)2 dx dy

= 0 +
∫

F c
δF (y)

∫
F

1
(x− y)2 dx dy

≤
∫

F c
2 dy

= 2µ(F c)
< ∞,

where we’ve used that y ∈ F =⇒ δF (y) = 0 and applied the bound from the first part. We’ve
also implicitly used Fubini-Tonelli to change the order of integration, justified by positivity of
the integrand and the finite iterated integral. This forces I(x) < ∞ for almost every x ∈ F ,
since if I(x) is unbounded on any positive measure set then this integral would diverge.
If x ̸∈ F , pick an ε-ball A about x avoiding F so that |x− y| > ε for any y ∈ Ac and thus
(x− y)−2 ≤ ε−2. Note that δF (y) ≥ ε, so

I(x) =
∫

R
δF (y)(x− y)−2 dy

≥
∫

Ac
δF (y)(x− y)−2 dy

≥
∫

Ac
δF (y)ε−2 dy

≥
∫

Ac
ε−1 dy

= µ(Ac)ε−1,
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which can be made arbitrarily large by taking ε → 0.
#todo: Not great, Ac depends on ε so this ratio has a competing numerator. . .

E 7.2 Spring 2018.3 e

Let f be a non-negative measurable function on [0, 1].

Show that

lim
p→∞

(∫
[0,1]

f(x)pdx

) 1
p

= ∥f∥∞.

Concepts Used:

• ∥f∥∞ := inft

{
t
∣∣∣ m ({x ∈ Rn

∣∣∣ f(x) > t
})

= 0
}

, i.e. this is the lowest upper bound that
holds almost everywhere.

Solution:

• ∥f∥p ≤ ∥f∥∞:

– Note |f(x)| ≤ ∥f∥∞ almost everywhere and taking pth powers preserves this in-
equality.

– Thus

|f(x)| ≤ ∥f∥∞ a.e. by definition
=⇒ |f(x)|p ≤ ∥f∥p

∞ for p ≥ 0

=⇒ ∥f∥p
p =

∫
X

|f(x)|p dx

≤
∫

X
∥f∥p

∞ dx

= ∥f∥p
∞

∫
X

1 dx

= ∥f∥p
∞ ·m(X) since the norm doesn’t depend on x

= ∥f∥p
∞ since m(X) = 1.

♢ Thus ∥f∥p ≤ ∥f∥∞ for all p and taking limp→∞ preserves this inequality.

• ∥f∥p ≥ ∥f∥∞:

– Fix ε > 0.
– Define

Sε :=
{
x ∈ Rn

∣∣∣ |f(x)| ≥ ∥f∥∞ − ε
}
.
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♢ Note that m(Sε) > 0; otherwise if m(Sε) = 0, then t := ∥f∥∞ − ε < ∥f∥ε. But
this produces a smaller upper bound almost everywhere than ∥f∥ε, contradict-
ing the definition of ∥f∥ε as an infimum over such bounds.

– Then

∥f∥p
p =

∫
X

|f(x)|p dx

≥
∫

Sε

|f(x)|p dx since Sε ⊆ X

≥
∫

Sε

|∥f∥∞ − ε|p dx since on Sε, |f | ≥ ∥f∥∞ − ε

= |∥f∥∞ − ε|p ·m(Sε) since the integrand is independent of x
≥ 0 since m(Sε) > 0

– Taking pth roots for p ≥ 1 preserves the inequality, so

=⇒ ∥f∥p ≥ |∥f∥∞ − ε| ·m(Sε)
1
p

p→∞−→ |∥f∥∞ − ε| ε→0−→ ∥f∥∞

where we’ve used the fact that above arguments work
– Thus ∥f∥p ≥ ∥f∥∞.

E 7.3 Spring 2018.4 e

Let f ∈ L2([0, 1]) and suppose∫
[0,1]

f(x)xndx = 0 for all integers n ≥ 0.

Show that f = 0 almost everywhere.

Concepts Used:

• Weierstrass Approximation: A continuous function on a compact set can be uniformly
approximated by polynomials.

• C1([0, 1]) is dense in L2([0, 1])
• Polynomials are dense in Lp(X,M, µ) for any X ⊆ Rn compact and µ a finite measure,

for all 1 ≤ p < ∞.

– Use Weierstrass Approximation, then uniform convergence implies Lp(µ) conver-
gence by DCT.

Solution:
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Proof (using Fourier transforms).

• Fix k ∈ Z.

• Since e2πikx is continuous on the compact interval [0, 1], it is uniformly continuous.

• Thus there is a sequence of polynomials Pℓ such that

Pℓ,k
ℓ→∞−→ e2πikx uniformly on [0, 1].

• Note applying linearity to the assumption
∫
f(x)xn, we have∫

f(x)xn dx = 0 ∀n =⇒
∫
f(x)p(x) dx = 0

for any polynomial p(x), and in particular for Pℓ,k(x) for every ℓ and every k.

• But then

⟨f, ek⟩ =
∫ 1

0
f(x)e−2πikx dx

=
∫ 1

0
f(x) lim

ℓ→∞
Pℓ(x)

= lim
ℓ→∞

∫ 1

0
f(x)Pℓ(x) by uniform convergence on a compact interval

= lim
ℓ→∞

0 by assumption

= 0 ∀k ∈ Z,

so f is orthogonal to every ek.

• Thus f ∈ S⊥ := spanC {ek}⊥
k∈Z ⊆ L2([0, 1]), but since this is a basis, S is dense

and thus S⊥ = {0} in L2([0, 1]).

• Thus f ≡ 0 in L2([0, 1]), which implies that f is zero almost everywhere.

■
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Proof (Alternative).

• By density of polynomials, for f ∈ L2([0, 1]) choose pε(x) such that ∥f − pε∥ < ε
by Weierstrass approximation.

• Then on one hand,

∥f(f − pε)∥1 =
∥∥∥f2

∥∥∥
1

− ∥f · pε∥1

=
∥∥∥f2

∥∥∥
1

− 0 by assumption

= ∥f∥2
2.

– Where we’ve used that
∥∥f2∥∥

1 =
∫ ∣∣f2∣∣ =

∫
|f |2 = ∥f∥2

2.

• On the other hand

∥f(f − pε)∥ ≤ ∥f∥1∥f − pε∥∞ by Holder
≤ ε∥f∥1

≤ ε∥f∥2

√
m(X)

= ε∥f∥2 since m(X) = 1.

– Where we’ve used that ∥fg∥1 =
∫

|fg| =
∫

|f ||g| ≤
∫

∥f∥∞|g| = ∥f∥∞∥g∥1.

• Combining these,

∥f∥2
2 ≤ ∥f∥2ε =⇒ ∥f∥2 < ε → 0, .

so ∥f∥2 = 0, which implies f = 0 almost everywhere.

■

E 7.4 Spring 2015.2 e

Let f : R → C be continuous with period 1. Prove that

lim
N→∞

1
N

N∑
n=1

f(nα) =
∫ 1

0
f(t)dt ∀α ∈ R \ Q.

Hint: show this first for the functions f(t) = e2πikt

for k ∈ Z.
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E 7.5 Fall 2014.4 e

Problem 7.5.1 (?)
Let g ∈ L∞([0, 1]) Prove that∫

[0,1]
f(x)g(x) dx = 0 for all continuous f : [0, 1] → R =⇒ g(x) = 0 almost everywhere.

Concepts Used:

• Polar decomposition: f = sign(f) · |f |.
• L∞[0, 1] ⊆ L1[0, 1].

Solution:
Use that L∞[0, 1] ⊆ L1[0, 1], so fixing g, choose a sequence of compactly supported continuous
functions fk converging to sign(g) in L1. We can arrange so that |gk| ≤ 1. Then∫

|g| =
∫

sign(g) · g

=
∫

lim
k
gk · g

DCT= lim
k

∫
gk · g

= lim
k

0

= 0,

where the DCT applies since defining hk := gk · g we have |hk| ≤ g ∈ L1[0, 1], and each integral
is zero since gk is continuous (and we use the hypothesis).

8 L1

E 8.1 Spring 2021.4 e

Let f, g be Lebesgue integrable on R and let gn(x) := g(x− n). Prove that

lim
n→∞

∥f + gn∥1 = ∥f∥1 + ∥g∥1.
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Concepts Used:

• For f ∈ L1(X), ∥f∥1 :=
∫

X |f(x)| dx < ∞.

• Small tails in L1: if f ∈ L1(Rn), then for every ε > 0 exists some radius R such that

∥f∥L1(Bc
R) < ε.

• Shift g to the right far enough so that the two densities are mostly disjoint:

Figure 1: Shifting density

• Any integral
∫ b

a f can be written as ∥f∥1 −O(err).

• Bounding technique:

a− ε ≤ b ≤ a+ ε =⇒ b = a.

Solution:

• Fix ε.

• Using small tails for f, g ∈ L1, choose R1, R2 ≫ 0 so that∫
BR1 (0)c

|f | < ε∫
BR2 (0)c

|g| < ε.
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– Note that this implies ∫ R1

−R1
|f | = ∥f∥1 − 2ε∫ R2

−R2
|gN | = ∥gN ∥ − 2ε.

– Also note that by translation invariance of the Lebesgue integral, ∥g∥1 = ∥gN ∥1.

• Now use N to make the densities almost disjoint: choose N ≫ 1 so that N −R2 > R1:

Figure 2: Shifting density

• Consider the change of variables x 7→ x−N :∫ R2

−R2
|g(x)| dx =

∫ N+R2

N−R2
|g(x−N)| dx :=

∫ N+R2

N−R2
|gN (x)| dx.

– Use this to conclude that ∫ N+R2

N−R2
|gN | = ∥gN ∥ − 2ε.

• Now split the integral in the problem statement at R1:

∥f + gN ∥1 =
∫

R
|f + gN | =

∫ R1

−∞
|f + gN | +

∫ ∞

R1
|f + gN | := I1 + I2.

• Idea: from the picture,

– On I1, f is big and gN is small
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– On I2, f is small and gN is big

• Casework: estimate I1, I2 separately, bounding from above and below.

• I1 upper bound:

I1 :=
∫ R1

−∞
|f + gN |

≤
∫ R1

−∞
|f | + |gN |

=
∫ R1

−∞
|f | +

∫ R1

−∞
|gN |

≤
∫ R1

−∞
|f | +

∫ N−R2

−∞
|gN | R1 < N −R2

= ∥f∥1 −
∫ ∞

R1
|f | +

∫ N−R2

−∞
|gN |

≤ ∥f∥1 −
∫ ∞

R1
|f | + ε

≤ ∥f∥1 + ε.

– In the last step we’ve used that we’re subtracting off a positive number, so forgetting
it only makes things larger.

– We’ve also used monotonicity of the Lebesgue integral: if A ≤ B, then (c, A) ⊆ (c,B)
and

∫ A
c |f | ≤

∫ B
c |f | since |f | is positive.

• I1 lower bound:

I1 :=
∫ R1

−∞
|f + gN |

≥
∫ R1

−∞
|f | − |gN |

=
∫ R1

−∞
|f | −

∫ R1

−∞
|gN |

≥
∫ R1

−∞
|f | −

∫ N−R2

−∞
|gN | R1 < N −R2

= ∥f∥1 −
∫ ∞

R1
|f | −

∫ N−R2

−∞
|gN |

≥ ∥f∥1 − ε− ε

= ∥f∥1 − 2ε.

– Now we’ve used that the integral with gN comes in with a negative sign, so extending
the range of integration only makes things smaller. We’ve also used the ε bound
on both f and gN here, and both are tail estimates.

• Taken together we conclude

∥f∥1 − 2ε ≤ I1 ≤ ∥f∥1 ε → 0 =⇒ I1 = ∥f∥1.
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• I2 lower bound:

I2 :=
∫ ∞

R1
|f + gN |

≤
∫ ∞

R1
|f | +

∫ ∞

R1
gN

≤
∫ ∞

R1
|f | + ∥gN ∥1 −

∫ R1

−∞
|gN |

≤ ε+ ∥gN ∥1 −
∫ R1

−∞
|gN |

≤ ε+ ∥gN ∥1
= ε+ ∥g∥1.

– Here we’ve again thrown away negative terms, only increasing the bound, and used
the tail estimate on f .

• I2 upper bound:

I2 :=
∫ ∞

R1
|f + gN |

=
∫ ∞

R1
|gN + f |

≥
∫ ∞

R1
|gN | −

∫ ∞

R1
|f |

= ∥gN ∥ −
∫ R1

−∞
|gN | −

∫ ∞

R1
|f |

≥ ∥gN ∥ − 2ε.

• Here we’ve swapped the order under the absolute value, and used the tail estimates on
both g and f .

• Taken together:

∥g∥1 − ε ≤ I2 ≤ ∥g∥1 + 2ε.

• Note that we have two inequalities:

∥f∥1 − 2ε ≤
∫ R1

−∞
|f − gN | ≤ ∥f∥1 + ε

∥g∥1 − 2ε ≤
∫ ∞

R1
|f − gN | ≤ ∥g∥1 + ε.

• Add these to obtain

∥f∥1 + ∥g∥1 − 4ε ≤ I1 + I2 := ∥f − gN ∥1 ≤ ∥f∥ + ∥g∥1 + 2ε.

• Check that as N → ∞ as ε → 0 to yield the result.
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Problem 8.2.1 (?)
Prove that if xf(x) ∈ L1(R), then

F (y) :=
∫
f(x) cos(yx) dx

defines a C1 function.

Solution: • Fix y0, we’ll show F ′ exists and is continuous at y0.

• Fix a sequence yn ↘ y0 and define

hn(x) := h(x, yn) − h(x, y0)
yn − y0

h(x, y) := f(x) cos(yx).

• We can then write

∂h

∂y
(x, y0) = lim

n→∞
hn(x).

• Apply the MVT:

hn(x) := h(x, yn) − h(x, y0)
yn − y0

= ∂h

∂y
(x, ỹ) for some ỹ ∈ [y0, yn].

• Use this to get a bound for DCT:

|hn(x)| :=
∣∣∣∣h(x, yn) − h(x, y0)

yn − y0

∣∣∣∣
=
∣∣∣∣∂h∂y (x, ỹ)

∣∣∣∣
≤ sup

y∈[y0,yn]

∣∣∣∣∂h∂y (x, y)
∣∣∣∣

≤ sup
y∈[y0,yn]

|xf(x) sin(yx)|

≤ |xf(x)|,

and by assumption xf(x) ∈ L1.
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• So this justifies commuting an integral and a limit:

F ′(y0) := lim
yn→y0

F (yn) − F (y0)
yn − y0

= lim
n→0

∫
hn(x) dx

DCT=
∫

lim
n→∞

hn(x) dx

:=
∫
∂h

∂y
(x, y0) dx

:= −
∫
xf(x) sin(yx) dx,

and since this limit exists and is finite, F is differentiable at y0.

• That F is continuous:

lim
yn→y0

F ′(yn) = lim
yn→y0

∫
∂h

∂y
(x, yn) dx

DCT=
∫

lim
yn→y0

∂h

∂y
(x, yn) dx

= −
∫

lim
yn→y0

xf(x) sin(ynx) dx

= −
∫
xf(x) sin(y0x) dx,

where we’ve used that y 7→ sin(yx) is clearly continuous.

E 8.3 Spring 2020.3 e

Problem 8.3.1 (?)

a. Prove that if g ∈ L1(R) then

lim
N→∞

∫
|x|≥N

|f(x)| dx = 0,

and demonstrate that it is not necessarily the case that f(x) → 0 as |x| → ∞.

b. Prove that if f ∈ L1([1,∞]) and is decreasing, then limx→∞ f(x) = 0 and in fact
limx→∞ xf(x) = 0.

c. If f : [1,∞) → [0,∞) is decreasing with limx→∞ xf(x) = 0, does this ensure that
f ∈ L1([1,∞))?

8.3 Spring 2020.3 91



8 L1

Concepts Used:

• Limits
• Cauchy Criterion for Integrals:

∫∞
a f(x) dx converges iff for every ε > 0 there exists an

M0 such that A,B ≥ M0 implies
∣∣∣∫ B

A f
∣∣∣ < ε, i.e.

∣∣∣∫ B
A f

∣∣∣ A→∞→ 0.

• Integrals of L1 functions have vanishing tails:
∫∞

N |f | N→∞−→ 0.
• Mean Value Theorem for Integrals:

∫ b
a f(t) dt = (b− a)f(c) for some c ∈ [a, b].

Proof (of a).
Stated integral equality:

• Let ε > 0
• Cc(Rn) ↪→ L1(Rn) is dense so choose {fn} → f with ∥fn − f∥1 → 0.
• Since {fn} are compactly supported, choose N0 ≫ 1 such that fn is zero outside of
BN0(0).

• Then

N ≥ N0 =⇒
∫

|x|>N
|f | =

∫
|x|>N

|f − fn + fn|

≤
∫

|x|>N
|f − fn| +

∫
|x|>N

|fn|

=
∫

|x|>N
|f − fn|

≤
∫

|x|>N
∥f − fn∥1

= ∥fn − f∥1

(∫
|x|>N

1
)

n→∞−→ 0
(∫

|x|>N
1
)

= 0
N→∞−→ 0.

To see that this doesn’t force f(x) → 0 as |x| → ∞:

• Take f(x) to be a train of rectangles of height 1 and area 1/2j centered on even integers.
• Then ∫

|x|>N
|f | =

∞∑
j=N

1/2j N→∞−→ 0

as the tail of a convergent sum.
• However f(x) = 1 for infinitely many even integers x > N , so f(x) ̸→ 0 as |x| → ∞.

■
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Proof (of b, Solution 1, a slight trick).

• Since f is decreasing on [1,∞), for any t ∈ [x− n, x] we have

x− n ≤ t ≤ x =⇒ f(x) ≤ f(t) ≤ f(x− n).

• Integrate over [x, 2x], using monotonicity of the integral:∫ 2x

x
f(x) dt ≤

∫ 2x

x
f(t) dt ≤

∫ 2x

x
f(x− n) dt

=⇒ f(x)
∫ 2x

x
dt ≤

∫ 2x

x
f(t) dt ≤ f(x− n)

∫ 2x

x
dt

=⇒ xf(x) ≤
∫ 2x

x
f(t) dt ≤ xf(x− n).

• By the Cauchy Criterion for integrals, limx→∞
∫ 2x

x f(t) dt = 0.

• So the LHS term xf(x) x→∞−→ 0.

• Since x > 1, |f(x)| ≤ |xf(x)|

• Thus f(x) x→∞−→ 0 as well.

■

Proof (of b, Solution 2: Variation on the trick).

• Use mean value theorem for integrals:∫ 2x

x
f(t) dt = xf(cx) for some cx ∈ [x, 2x] depending on x.

• Since f is decreasing,

x ≤ cx ≤ 2x =⇒ f(2x) ≤ f(cx) ≤ f(x)
=⇒ 2xf(2x) ≤ 2xf(cx) ≤ 2xf(x)

=⇒ 2xf(2x) ≤ 2x
∫ 2x

x
f(t) dt ≤ 2xf(x)

.

• By Cauchy Criterion,
∫ 2x

x f → 0.

• So 2xf(2x) → 0, which by a change of variables gives uf(u) → 0.

• Since u ≥ 1, f(u) ≤ uf(u) so f(u) → 0 as well.

■
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Proof (of b, Solution 3: Contradiction).
Just showing f(x) x→∞−→ 0:

• Toward a contradiction, suppose not.

• Since f is decreasing, it can not diverge to +∞

• If f(x) → −∞, then f ̸∈ L1(R): choose x0 ≫ 1 so that t ≥ x0 =⇒ f(t) < −1, then

• Then t ≥ x0 =⇒ |f(t)| ≥ 1, so∫ ∞

1
|f | ≥

∫ ∞

x0
|f(t)| dt ≥

∫ ∞

x0
1 = ∞.

• Otherwise f(x) → L ̸= 0, some finite limit.

• If L > 0:

– Fix ε > 0, choose x0 ≫ 1 such that t ≥ x0 =⇒ L− ε ≤ f(t) ≤ L
– Then ∫ ∞

1
f ≥

∫ ∞

x0
f ≥

∫ ∞

x0
(L− ε) dt = ∞

• If L < 0:

– Fix ε > 0, choose x0 ≫ 1 such that t ≥ x0 =⇒ L ≤ f(t) ≤ L+ ε.
– Then ∫ ∞

1
f ≥

∫ ∞

x0
f ≥

∫ ∞

x0
(L) dt = ∞

Showing xf(x) x→∞−→ 0.

• Toward a contradiction, suppose not.
• (How to show that xf(x) ̸→ +∞?)
• If xf(x) → −∞

– Choose a sequence Γ = {x̂i} such that xi → ∞ and xif(xi) → −∞.
– Choose a subsequence Γ′ = {xi} such that xif(xi) ≤ −1 for all i and xi ≤ xi+1.
– Choose a further subsequence S =

{
xi ∈ Γ′

∣∣∣ 2xi < xi+1
}

.
– Then since f is always decreasing, for t ≥ x0, |f | is increasing, and |f(xi)| ≤ |f(2xi)|,

so ∫ ∞

1
|f | ≥

∫ ∞

x0
|f | ≥

∑
xi∈S

∫ 2xi

xi

|f(t)| dt ≥
∑

xi∈S

∫ 2xi

xi

|f(xi)| =
∑

xi∈S

xif(xi) → ∞.

• If xf(x) → L ̸= 0 for 0 < L < ∞:

– Fix ε > 0, choose an infinite sequence {xi} such that L− ε ≤ xif(xi) ≤ L for all i.∫ ∞

1
|f | ≥

∑
S

∫ 2xi

xi

|f(t)| dt ≥
∑
S

∫ 2xi

xi

f(xi) dt =
∑
S

xif(xi) ≥
∑
S

(L− ε) → ∞.
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• If xf(x) → L ̸= 0 for −∞ < L < 0:

– Fix ε > 0, choose an infinite sequence {xi} such that L ≤ xif(xi) ≤ L+ ε for all i.∫ ∞

1
|f | ≥

∑
S

∫ 2xi

xi

|f(t)| dt ≥
∑
S

∫ 2xi

xi

f(xi) dt =
∑
S

xif(xi) ≥
∑
S

(L) → ∞.

■

Proof (of b, Solution 4: Akos’ suggestion).
For x ≥ 1,

|xf(x)| =
∣∣∣∣∫ 2x

x
f(x) dt

∣∣∣∣ ≤
∫ 2x

x
|f(x)| dt ≤

∫ 2x

x
|f(t)| dt ≤

∫ ∞

x
|f(t)| dt x→∞−→ 0

where we’ve used

• Since f is decreasing and limx→∞ f(x) = 0 from part (a), f is non-negative.
• Since f is positive and decreasing, for every t ∈ [a, b] we have |f(a)| ≤ |f(t)|.
• By part (a), the last integral goes to zero.

■

Proof (of b, Solution 5: Peter’s).

• Toward a contradiction, produce a sequence xi → ∞ with xif(xi) → ∞ and xif(xi) >
ε > 0, then ∫

f(x) dx ≥
∞∑

i=1

∫ xi+1

xi

f(x) dx

≥
∞∑

i=1

∫ xi+1

xi

f(xi+1) dx

=
∞∑

i=1
f(xi+1)

∫ xi+1

xi

dx

≥
∞∑

i=1
(xi+1 − xi)f(xi+1)

≥
∞∑

i=1
(xi+1 − xi)

ε

xi+1

= ε
∞∑

i=1

(
1 − xi−1

xi

)
→ ∞

which can be ensured by passing to a subsequence where ∑ xi−1
xi

< ∞.

■
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Proof (of c).

• No: take f(x) = 1
x ln x

• Then by a u-substitution, ∫ x

0
f = ln (ln(x)) x→∞−→ ∞

is unbounded, so f ̸∈ L1([1,∞)).
• But

xf(x) = 1
ln(x)

x→∞−→ 0.

■

E 8.4 Fall 2019.5 e

a. Show that if f is continuous with compact support on R, then

lim
y→0

∫
R

|f(x− y) − f(x)|dx = 0

b. Let f ∈ L1(R) and for each h > 0 let

Ahf(x) := 1
2h

∫
|y|≤h

f(x− y)dy

• Prove that ∥Ahf∥1 ≤ ∥f∥1 for all h > 0.

• Prove that Ahf → f in L1(R) as h → 0+.

Walk through.

Concepts Used:

• Continuity in L1 (recall that DCT won’t work! Notes 19.4, prove it for a dense subset
first).

• Lebesgue differentiation in 1-dimensional case. See HW 5.6.

Solution:
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Proof (of a). • Fix ε > 0. If we can find a set A such that the following calculation
holds for h small enough, we’re done:∫

R
|f(x− h) − f(x)| dx =

∫
A

|f(x− h) − f(x)| dx

≤
∫

A
ε

= εµ(A) −→ 0,

provided h → 0 as ε → 0, which we can arrange if |h| < ε.

• Choose A ⊇ supp f compact such that supp f ± 1 ⊆ A

– Why this can be done: supp f is compact, so closed and bounded, and con-
tained in some compact interval [−M,M ]. So e.g. A := [−M − 1,M + 1]
suffices.

• Note that f is still continuous on A, since it is zero on A\supp f , and thus uniformly
continuous (by Heine-Cantor, for example).

• We can rephrase the usual definition of uniform continuity:

∀ε∃δ = δ(ε) such that |x− y| < δ =⇒ |f(x) − f(y)| < ε ∀x, y ∈ A

as

∀ε∃δ = δ(ε) such that |h| < δ =⇒ |f(x− h) − f(x)| < ε ∀x such that x, x± h ∈ A

• So fix ε and choose such a δ for A, and choose h such that |h| < min(1, δ). Then
the desired computation goes through by uniform continuity of f on A.

■
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Proof (of b).
We have ∫

R
|Ah(f)(x)| dx =

∫
R

∣∣∣∣∣ 1
2h

∫ x+h

x−h
f(y) dy

∣∣∣∣∣ dx
≤ 1

2h

∫
R

∫ x+h

x−h
|f(y)| dy dx

=F T
1

2h

∫
R

∫ y+h

y−h
|f(y)| dx dy

=
∫

R
|f(y)| dy

= ∥f∥1,

and (rough sketch)

∫
R

|Ah(f)(x) − f(x)| dx =
∫

R

∣∣∣∣∣
(

1
2h

∫
B(h,x)

f(y) dy
)

− f(x)
∣∣∣∣∣ dx

=
∫

R

∣∣∣∣∣
(

1
2h

∫
B(h,x)

f(y) dy
)

− 1
2h

∫
B(h,x)

f(x) dy
∣∣∣∣∣ dx

≤F T
1

2h

∫
R

∫
B(h,x)

|f(y − x) − f(x)| dx dy

≤ 1
2h

∫
R

∥τxf − f∥1 dy

→ 0 by (a).

■

Remark 8.4.1: This works for arbitrary f ∈ L1, using approximation by continuous functions with
compact support:

• Choose g ∈ C0
c such that ∥f − g∥1 → 0.

• By translation invariance, ∥τhf − τhg∥1 → 0.

• Write
∥τf − f∥1 = ∥τhf − g + g − τhg + τhg − f∥1

≤ ∥τhf − τhg∥ + ∥g − f∥ + ∥τhg − g∥
→ ∥τhg − g∥,

so it suffices to show that ∥τhg − g∥ → 0.

E 8.5 Fall 2017.3 e
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Let

S = span
C

{
χ(a,b)

∣∣∣ a, b ∈ R
}
,

the complex linear span of characteristic functions of intervals of the form (a, b).

Show that for every f ∈ L1(R), there exists a sequence of functions {fn} ⊂ S such that

lim
n→∞

∥fn − f∥1 = 0

Concepts Used:

• From homework: E is Lebesgue measurable iff there exists a finite union of closed cubes
A such that m(E∆A) < ε.

Solution:

• Idea: first show this for characteristic functions, then simple functions, then for arbitrary
f .

• For characteristic functions:

– Consider χA for A a measurable set.
– By regularity of the Lebesgue measure, for every ε > 0 we can find an Iε such that
m(A∆Iε) < ε where Iε is a finite disjoint union of intervals.

– Then use

ε > m(A∆Iε) =
∫

X
|χA − χIε |,

so the χIε converge to χA in L1.
– Then just note that χIε = ∑

j≤N χIj where Iε = ∐
j≤N Ij , so χIε ∈ S.

• For simple functions:

– Let ψ = ∑
k≤N ckχEk

.
– By the argument above, for each k we can find Iε,k such that χIε,k

converges to χEk

in L1.
– So defining ψε = ∑

k≤N ckχIε,k
, the claim is that this will converge to φ in L1.

– Note that

ψε =
∑

k

ckχIε,k
=
∑

k

ck

∑
j

χIj,k
=
∑
k,j

ckχIj,k
∈ S

since now the Ij,k are indicators of intervals.
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– Moreover

∥ψε − ψ∥ =
∥∥∥∥∥∑

k

ck

(
χEk

− χIε,k

)∥∥∥∥∥ ≤
∑

k

ck

∥∥∥χEk
− χIε,k

∥∥∥,
where the last norm can be bounded by the proof for characteristic functions.

• For arbitrary functions:

– Now just use that every f ∈ L1 can be approximated by simple functions φn so
that ∥f − φn∥1 < ε for n ≫ 1.

– So find φn → f , and for each n, find gn,k ∈ S with ∥gn,k − φn∥1
k→∞−→ 0, an

approximation by functions in S.
– Then

∥f − gn,k∥ ≤ ∥f − φn∥ + ∥φn − gn,k∥,

which can be made arbitrarily small.

E 8.6 Spring 2015.4 e

Problem 8.6.1 (?)
Define

f(x, y) :=
{

x1/3

(1+xy)3/2 if 0 ≤ x ≤ y

0 otherwise

Carefully show that f ∈ L1(R2).

Solution:
Note that

∫
R2

|f | dµ =
∫ ∞

0

∫ ∞

x
x

1
3 (1 + xy)

−3
2 dy dx

=
∫ ∞

0
−2x− 2

3 (1 + xy)− 1
2

∣∣∣y=∞

y=x
dx

=
∫ ∞

0

2
x

2
3 (1 + x2) 1

2

=
∫ 1

0

2
x

2
3 (1 + x2) 1

2
+
∫ ∞

1

2
x

2
3 (1 + x2) 1

2

=
∫ 1

0

2
x

2
3

+
∫ ∞

1

2
x

5
3

< ∞,
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where

• For the first term: We’ve entirely neglected the 1 + x2 factor, since neglecting to divide
by a positive number can only make the integrand larger,

• For the second term:

1 + x2 ≥ 0 =⇒ 1√
1 + x2

≤ 1√
x2

= 1
x

• Both terms converge by the p-tests.

The use of iterated integration is justified by Tonelli’s theorem on |f | = f , since f is non-
negative and clearly measurable on R2, and if any iterated integral is finite then it is equal to∫

|f |.

E 8.7 Fall 2014.3 e

Problem 8.7.1 (?)
Let f ∈ L1(R). Show that

∀ε > 0∃δ > 0 such that m(E) < δ =⇒
∫

E
|f(x)| dx < ε

Solution (by contradiction): • Note that if m(E) = 0 then
∫

E f = 0 for any f .
• Toward a contradiction, suppose there exists an ε > 0 such that for all δ > 0 there exists

a set Eδ ⊆ R with m(E) < δ but
∫

Eδ
|f | > ε.

• Let δn ↘ 0 be any sequence converging to zero and choose En with
∫

En
|f | > ε for every

n.
• Define E := lim supnEn := ⋂

N≥1
⋃

n≥N En, then m(E) = 0 by Borel-Cantelli.
• Now estimate using Fatou: ∫

E
|f | =

∫
X
χE |f |

=
∫

X
lim sup

n
χEn |f |

≥ lim sup
n

∫
X
χEn |f |

≥ lim sup
n

∫
En

|f |

≥ lim sup
n

ε

= ε,

however
∫

E
|f | dm = 0 since m(E) = 0, a contradiction. E.
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Solution (direct):
Note that this is clear for simple functions: let φ = ∑

k≤n ckm(Ak) < ∞ be simple function.
then φ is necessarily bounded on R, so let M := supR φ and estimate∫

E
φ :=

∑
k

ckm(Ak ∩ E)

≤
∑

k

M ·m(E)

= CMm(E),

for some constant C, so choosing δ < ε
CM (and its corresponding E with m(E) < δ) bounds

this above by ε.
For arbitrary f ∈ L1, there is a sequence of simple functions φn with

∫
φn ↗

∫
f and

∥φn − f∥L1

n→∞−→ 0. Choose δ and E as above, and use the triangle inequality to estimate∫
E

|f | =
∫

E
|f − φn + φn|

≤
∫

E
|f − φn| +

∫
E

|φn|,

choose n ≫ 1 to bound the first term by ε, noting that the second term is bounded by ε by
the case for simple functions.

E 8.8 Spring 2014.1 e

Problem 8.8.1 (?) 1. Give an example of a continuous f ∈ L1(R) such that f(x) ̸→ 0
as|x| → ∞.

2. Show that if f is uniformly continuous, then

lim
|x|→∞

f(x) = 0.

Solution:
Part 1: Take a train of triangles with base points at k and k + 1, each of area 2−k. Then∫

|f | ≈
∑

k≥0 2−k < ∞, but f(x) ̸→ 0 since f(x) > 0 infinitely often.
Part 2:

• Idea: use contradiction to produce a sequence with arbitrarily large terms, and bound
below an integral in a ball about each point.

• Suppose lim|x|→∞ f(x) = L > 0.

– Then for any ε there exists an M such that x ≥ M =⇒ |f(x) − L| < ε, so
L− ε ≤ f(x) ≤ L+ ε
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– Choosing ε = L/2 yields L/2 ≤ f(x) ≤ 3L/2, and so∫
R

|f | ≥
∫

|x|≥M
|f | ≥

∫
|x|≥M

L/2 → ∞,

contradicting f ∈ L1(R). E.

• So it must be that this limit does not exist. Fix ε > 0, then there are infinitely many x
such that f(x) > ε, so choose a sequence xn → ∞ with f(xn) > ε for each n.

• Now use uniform continuity: pick a uniform δ = δ(ε) such that x ∈ Bδ(xn) =⇒
|f(x) − f(xn)| < ε/4.

• Now use that f(xn) − ε/4 ≤ f(x) ≤ f(xn) + ε/4 implies that f(x) ≥ 3ε/4 whenever
x ∈ Bδ(xn) for any n to estimate∫

Bδ(xn)
|f(x)| dx ≥ 2δ · 3ε/4 := C = Cδ,ε > 0,

where C is a constant.

• But now we’ve contradicted f ∈ L1:∫
R

|f | ≥
∑
n≥1

∫
Bδ(xn)

|f | ≥
∑
n≥1

C → ∞,

provided we pass to a further subsequence of xn such that the balls Bδ(xn) are disjoint.
E

9 Fubini-Tonelli

E 9.1 Spring 2021.6 e

△! Warning 9.1.1
This problem may be much harder than expected. Recommended skip.

Let f : R × R → R be a measurable function and for x ∈ R define the set

Ex :=
{
y ∈ R

∣∣∣ µ (z ∈ R
∣∣∣ f(x, z) = f(x, y)

)
> 0

}
.

Show that the following set is a measurable subset of R × R:

E :=
⋃

x∈R
{x} × Ex.
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Hint: consider the measurable function h(x, y, z) :=
f(x, y) − f(x, z).

E 9.2 Fall 2021.4 e

Problem 9.2.1 (?)
Let f be a measurable function on R. Show that the graph of f has measure zero in R2.

Solution:
Write

Γ :=
{

(x, f(x))
∣∣∣ x ∈ R

}
⊆ Rd.

Then

µ(Γ) =
∫

Rd
χΓ dµ

=
∫

Rd−1

∫
R
χΓ(x, y) dy dx

=
∫

Rd−1
0 dx

= 0,

using that
∫

R χΓ(x, y) dy = 0 since if x is fixed then χΓ(x, y) = {f(x)} is a point with measure
zero. Since f is measurable, Γ is a measurable set and χΓ is measurable. Since the iterated
integral was finite, the equalities are justified by Fubini-Tonelli.

E 9.3 Spring 2020.4 e

Let f, g ∈ L1(R). Argue that H(x, y) := f(y)g(x − y) defines a function in L1(R2) and deduce
from this fact that

(f ∗ g)(x) :=
∫

R
f(y)g(x− y) dy

defines a function in L1(R) that satisfies

∥f ∗ g∥1 ≤ ∥f∥1∥g∥1.

Strategy:
Just do it! Sort out the justification afterward. Use Tonelli.
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Concepts Used:

• Tonelli: non-negative and measurable yields measurability of slices and equality of
iterated integrals

• Fubini: f(x, y) ∈ L1 yields integrable slices and equality of iterated integrals
• F/T: apply Tonelli to |f |; if finite, f ∈ L1 and apply Fubini to f
• See Folland’s Real Analysis II, p. 68 for a discussion of using Fubini and Tonelli.

Solution: • If these norms can be computed via iterated integrals, we have

∥f ∗ g∥1 :=
∫

R
|(f ∗ g)(x)| dx

:=
∫

R

∣∣∣∣∫
R
H(x, y) dy

∣∣∣∣ dx
:=
∫

R

∣∣∣∣∫
R
f(y)g(x− y) dy

∣∣∣∣ dx
≤
∫

R

∫
R

|f(y)g(x− y)| dx dy

:=
∫

R

∫
R

|H(x, y)| dx dy

:=
∫

R2
|H| dµR2

:= ∥H∥L1(R2).

So it suffices to show ∥H∥1 < ∞.

• A preliminary computation, the validity of which we will show afterward:
∥H∥1 := ∥H∥L1(R2)

=
∫

R

(∫
R

|f(y)g(x− y)| dy
)
dx Tonelli

=
∫

R

(∫
R

|f(y)g(x− y)| dx
)
dy Tonelli

=
∫

R

(∫
R

|f(y)g(t)| dt
)
dy setting t = x− y, dt = −dx

=
∫

R

(∫
R

|f(y)| · |g(t)| dt
)
dy

=
∫

R
|f(y)| ·

(∫
R

|g(t)| dt
)
dy

:=
∫

R
|f(y)| · ∥g∥1 dy

= ∥g∥1

∫
R

|f(y)| dy the norm is a constant

:= ∥g∥1∥f∥1
< ∞ by assumption.

• We’ve used Tonelli twice: to equate the integral to the iterated integral, and to switch
the order of integration, so it remains to show the hypothesis of Tonelli are fulfilled.
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Claim: H is measurable on R2:

Proof (?).

• It suffices to show f̃(x, y) := f(y) and g̃(x, y) := g(x− y) are both measurable on
R2.

– Then use that products of measurable functions are measurable.

• f ∈ L1 by assumption, and L1 functions are measurable by definition.
• The function (x, y) 7→ g(x− y) is measurable on R2:

– g is measurable on R by assumption, so the cylinder function G(x, y) := g(x)
on R2 is measurable (result from course).

– Define a linear transformation

T :=
[
1 −1
0 1

]
∈ GL2(R) =⇒ T

[
x
y

]
=
[
x− y
y

]
,

and linear functions are measurable.
– Write

g̃(x− y) := G(x− y, y) := (G ◦ T )(x, y),

and compositions of measurable functions are measurable.

■

• Apply Tonelli to |H|

– H measurable implies |H| is measurable.
– |H| is non-negative.
– So the iterated integrals are equal in the extended sense
– The calculation shows the iterated integral is finite, so

∫
|H| is finite and H is thus

integrable on R2.

Note: Fubini is not needed, since we’re not calcu-
lating the actual integral, just showing H is inte-
grable.

E 9.4 Spring 2019.4 e

Let f be a non-negative function on Rn and A = {(x, t) ∈ Rn × R : 0 ≤ t ≤ f(x)}.

Prove the validity of the following two statements:

a. f is a Lebesgue measurable function on Rn ⇐⇒ A is a Lebesgue measurable subset of Rn+1
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b. If f is a Lebesgue measurable function on Rn, then

m(A) =
∫

Rn
f(x)dx =

∫ ∞

0
m ({x ∈ Rn : f(x) ≥ t}) dt

Concepts Used:

• See Stein and Shakarchi p.82 corollary 3.3.
• Tonelli
• Important trick!

{
(x, t)

∣∣∣ 0 ≤ t ≤ f(x)
}

= {f(x) ≥ t} ∩ {t ≥ 0}

Solution:
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Proof (a, =⇒ ).
=⇒ :

• Suppose f : Rn → R is a measurable function.
• Rewrite A:

A =
{

(x, t) ∈ Rd × R
∣∣∣ 0 ≤ t ≤ f(x)

}
=
{

(x, t) ∈ Rd × R
∣∣∣ 0 ≤ t < ∞

}
∩
{

(x, t) ∈ Rd × R
∣∣∣ t ≤ f(x)

}
=
(
Rd × [0,∞)

)
∩
{

(x, t) ∈ Rd × R
∣∣∣ f(x) − t ≥ 0

}
:=
(
Rd × [0,∞)

)
∩H−1 ([0,∞)) ,

where we define

H : Rd × R → R
(x, t) 7→ f(x) − t.

– Note: this is “clearly” measurable!

• If we can show both sets are measurable, we’re done, since σ-algebras are closed
under countable intersections.

• The first set is measurable since it is a Borel set in Rd+1.
• For the same reason, it suffices to show H is a measurable function.
• Define cylinder functions

F : Rd × R → R
(x, t) 7→ f(x)

and

G : Rd × R → R
(x, t) 7→ t

– F is a cylinder of f , and since f is measurable by assumption, F is measurable.
– G is a cylinder on the identity for R, which is measurable, so G is measurable.

• Define

H : Rd → R
(x, t) 7→ F (x, t) −G(x, t) := f(x) − t,

which are linear combinations of measurable functions and thus measurable.

■
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Proof (a, ⇐= ).
⇐= :

• Suppose A is a measurable set.

• A corollary of Tonelli applied to χX : if E is measurable, then for a.e. t the following
slice is measurable:

At :=
{
x ∈ Rd

∣∣∣ (x, t) ∈ A
}

=
{
x ∈ Rd

∣∣∣ f(x) ≥ t ≥ 0
}

= f−1 ([t,∞)) .

– But maybe this isn’t enough, because we need f−1 ([α,∞)) for all α

• But the other slice is also measurable for a.e. x:

Ax :=
{
t ∈ R

∣∣∣ (x, t) ∈ A
}

=
{
t ∈ R

∣∣∣ 0 ≤ t ≤ f(x)
}

=
{
t ∈ R

∣∣∣ t ∈ [0, f(x)]
}

= [0, f(x)].

• Moreover the function x 7→ m(Ax) is a measurable function of x

• Now note m(Ax) = f(x) − 0 = f(x), so f must be measurable.

■
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Proof (of b).

• Writing down what the slices are

A =
{

(x, t) ∈ Rn × R
∣∣∣ 0 ≤ t ≤ f(x)

}
At =

{
x ∈ Rn

∣∣∣ t ≤ f(x)
}
.

• Then ∫
Rn

f(x) dx =
∫

Rn

∫ f(x)

0
1 dt dx

=
∫

Rn

∫ ∞

0
χA dt dx

F.T.=
∫ ∞

0

∫
Rn

χA dx dt

=
∫ ∞

0
m(At) dt,

where we just use that
∫ ∫

χA = m(A)

• By Tonelli, all of these integrals are equal.

– This is justified because f was assumed measurable on Rn, thus by (a) A is a
measurable set and thus χA is a measurable function on Rn × R.

■

E 9.5 Fall 2018.5 e

Let f ≥ 0 be a measurable function on R. Show that∫
R
f =

∫ ∞

0
m({x : f(x) > t})dt

Concepts Used:

• Claim: If E ⊆ Ra × Rb is a measurable set, then for almost every y ∈ Rb, the slice Ey

is measurable and

m(E) =
∫

Rb
m(Ey) dy.

– Set g = χE , which is non-negative and measurable, so apply Tonelli.
– Conclude that gy = χEy is measurable, the function y 7→

∫
gy(x) dx is measurable,

and
∫ ∫

gy(x) dx dy =
∫
g.

– But
∫
g = m(E) and

∫ ∫
gy(x) dx dy =

∫
m(Ey) dy.
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Solution:
Note: f is a function R → R in the original prob-
lem, but here I’ve assumed f : Rn → R.

• Since f ≥ 0, set

E :=
{

(x, t) ∈ Rn × R
∣∣∣ f(x) > t

}
=
{

(x, t) ∈ Rn × R
∣∣∣ 0 ≤ t < f(x)

}
.

• Claim: since f is measurable, E is measurable and thus m(E) makes sense.

– Since f is measurable, F (x, t) := t− f(x) is measurable on Rn × R.
– Then write E = {F < 0} ∩ {t ≥ 0} as an intersection of measurable sets.

• We have slices

Et :=
{
x ∈ Rn

∣∣∣ (x, t) ∈ E
}

=
{
x ∈ Rn

∣∣∣ 0 ≤ t < f(x)
}

Ex :=
{
t ∈ R

∣∣∣ (x, t) ∈ E
}

=
{
t ∈ R

∣∣∣ 0 ≤ t ≤ f(x)
}

= [0, f(x)].

– Et is precisely the set that appears in the original RHS integrand.
– m(Ex) = f(x).

• Claim: χE satisfies the conditions of Tonelli, and thus m(E) =
∫
χE is equal to any

iterated integral.

– Non-negative: clear since 0 ≤ χE ≤ 1
– Measurable: characteristic functions of measurable sets are measurable.

• Conclude:

1. For almost every x, Ex is a measurable set, x 7→ m(Ex) is a measurable function,
and m(E) =

∫
Rn m(Ex) dx

2. For almost every t, Et is a measurable set, t 7→ m(Et) is a measurable function,
and m(E) =

∫
R m(Et) dt

• On one hand,

m(E) =
∫

Rn+1
χE(x, t)

=
∫

R

∫
Rn

χE(x, t) dt dx by Tonelli

=
∫

Rn
m(Ex) dx first conclusion

=
∫

Rn
f(x) dx.

• On the other hand,

m(E) =
∫

Rn+1
χE(x, t)

=
∫

R

∫
Rn

χE(x, t) dx dt by Tonelli

=
∫

R
m(Et) dt second conclusion.
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9 Fubini-Tonelli

• Thus ∫
Rn

f dx = m(E) =
∫

R
m(Et) dt =

∫
R
m
({
x
∣∣∣ f(x) > t

})
.

E 9.6 Fall 2015.5 e

Problem 9.6.1 (?)
Let f, g ∈ L1(R) be Borel measurable.

• Show that

– The function

F (x, y) := f(x− y)g(y)

is Borel measurable on R2, and
– For almost every x ∈ R, the function f(x− y)g(y) is integrable with respect to y

on R.

• Show that f ∗ g ∈ L1(R) and

∥f ∗ g∥1 ≤ ∥f∥1∥g∥1

Solution:

• F ∈ B(R2):

– Write a function f̃(x, y) := f(x)

– Write a linear transformation T =
[
1 0
0 −1

]
∈ GL2, so T [x, y] = [x− y, 0]

– Write f(x− y) := (f̃ ◦ T )(x, y), which is a composition of measurable functions and
thus measurable.

– A product of measurable functions is measurable.

• f ∗ g ∈ L1(R): estimate∫
|f ∗ g|dµ =

∫
R

∫
R

|f(x− y)g(y)| dx dy

=
∫

R

∫
R

|f(x− y)||g(y)| dx dy

=
∫

R
|g(y)|

∫
R

|f(x− y)| dx dy

= ∥g∥1∥f∥1,

where we’ve used translation invariance of the L1 norm and Fubini-Tonelli justified by
the finite result.
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10 L2 and Fourier Analysis

• Fx(y) := f(x− y)g(y) is integrable with respect to y for almost every x:

– This follows from Fubini-Tonelli, which says that if F (x, y) is integrable, the slices
F x(y) are integrable for almost every x. Here take F (x, y) := f(x− y)g(y).

E 9.7 Spring 2014.5 e

Problem 9.7.1 (?)
Let f, g ∈ L1([0, 1]) and for all x ∈ [0, 1] define

F (x) :=
∫ x

0
f(y) dy and G(x) :=

∫ x

0
g(y) dy.

Prove that ∫ 1

0
F (x)g(x) dx = F (1)G(1) −

∫ 1

0
f(x)G(x) dx

10 L2 and Fourier Analysis

E 10.1 Fall 2020.5 e

Problem 10.1.1 (?)
Suppose φ ∈ L1(R) with ∫

φ(x) dx = α.

For each δ > 0 and f ∈ L1(R), define

Aδf(x) :=
∫
f(x− y)δ−1φ

(
δ−1y

)
dy.

a. Prove that for all δ > 0,

∥Aδf∥1 ≤ ∥φ∥1∥f∥1.

b. Prove that

Aδf → αf in L1(R) as δ → 0+.
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10 L2 and Fourier Analysis

Hint: you may use without proof the fact that for
all f ∈ L1(R),

lim
y→0

∫
R

|f(x− y) − f(x)| dx = 0.

Remark 10.1.1: See Folland 8.14.

Solution (Part 1):
This is a direct application of Fubini-Tonelli:

∥Aδf∥ :=
∫ ∣∣∣∣∫ f(x− y)δ−1φ(δ−1y) dy

∣∣∣∣ dx
≤
∫ ∫ ∣∣∣f(x− y)δ−1φ(δ−1y)

∣∣∣ dy dx
F T=
∫ ∫

|f(x− y)| ·
∣∣∣δ−1φ(δ−1y)

∣∣∣ dx dy
=
∫ ∣∣∣δ−1φ(δ−1y)

∣∣∣ (∫ |f(x− y)| dx
)
dy

=
∫ ∣∣∣δ−1φ(δ−1y)

∣∣∣ · ∥f∥ dy

= ∥f∥ ·
∫ ∣∣∣δ−1φ(δ−1y)

∣∣∣ dy
= ∥f∥ · ∥φ∥.

Here we’ve used translation and dilation invariance of the Lebesgue integral.

Solution (Part 2):
Write φδ(y) := δ−1φ(δ−1y), then

∥Aδf − αf∥1 :=
∫

|Aδf(x) − αf(x)| dx

=
∫ ∣∣∣∣∫ f(x− y)φδ(y) dy − αf(x)

∣∣∣∣ dx
=
∫ ∣∣∣∣∫ τyf(x)φδ(y) dy −

∫
f(x)φδ(y) dy

∣∣∣∣ dx
≤
∫ ∫

|τyf(x) − f(x)| · |φδ(y)| dy dx

=
∫ ∫

|τyf(x) − f(x)| · |φδ(y)| dx dy

=
∫

|φδ(y)| · ∥τyf − f∥1 dy,

where the interchange of integration order is justified by Tonelli since the integrands are
positive. The goal is to now make this small when δ is small.
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One way to do this immediately: make a change of variables y = tz to get

∥Aδf − αf∥1 ≤
∫

|φ(z)|∥τtzf − f∥1 dz,

use that ∥τtzf − f∥1 ≤ 2∥f∥1 < ∞ by the triangle inequality and apply the DCT:

lim
t→0

∫
|φ(z)| · ∥τtzf − f∥1 dz =

∫
|φ(z)| lim

t→0
∥τtzf − f∥1 dz = 0.

More directly, use continuity in L1 (as per the hint) to pick a h > 0 such that

∥τyf − f∥ < ε for y ∈ A :=
{
y
∣∣∣ |y| ≤ h

}
.

Now choose δ0 ≫ 1 large enough so that∫
Ac

|φδ(y)| dy < ε for all δ > δ0.

Now ∫
R

|φδ(y)| · ∥τyf − f∥1 dy =
∫

A
|φδ(y)| · ∥τyf − f∥1 dy +

∫
Ac

|φδ(y)| · ∥τyf − f∥1 dy

≤
∫

A
|φδ(y)| · ε dy +

∫
Ac

|φδ(y)| · 2∥f∥1 dy

≤ ε∥φδ∥1 + 2ε∥f∥1
−→ 0.

E 10.2 Spring 2020.6 e

Problem 10.2.1 (?)

a. Show that

L2([0, 1]) ⊆ L1([0, 1]) and ℓ1(Z) ⊆ ℓ2(Z).

b. For f ∈ L1([0, 1]) define

f̂(n) :=
∫ 1

0
f(x)e−2πinx dx.

Prove that if f ∈ L1([0, 1]) and
{
f̂(n)

}
∈ ℓ1(Z) then

SNf(x) :=
∑

|n|≤N

f̂(n)e2πinx.

converges uniformly on [0, 1] to a continuous function g such that g = f almost every-
where.
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10 L2 and Fourier Analysis

Hint: One approach is to argue that if f ∈
L1([0, 1]) with

{
f̂(n)

}
∈ ℓ1(Z) then f ∈ L2([0, 1]).

Concepts Used:
From Neil:

1. f̂ in ℓ1 ensures that SN converges uniformly to something, call it g.
2. f̂ ∈ ℓ1 Implies f̂ ∈ ℓ2 which (by characterization of an o.n.b.) implies f is in L2 (Parseval)

and (again by characterization of an o.n.b.) that SN converges to f in L2 (and hence a
subsequence converges to f a.e.)

3. By uniqueness of limits f = g.

Other stuff:

• For en(x) := e2πinx, the set {en} is an orthonormal basis for L2([0, 1]).
• For any orthonormal sequence in a Hilbert space, we have Bessel’s inequality:

∞∑
k=1

|⟨x, ek⟩|2 ≤ ∥x∥2.

• When {en} is a basis, the above is an equality (Parseval)
• Arguing uniform convergence: since

{
f̂(n)

}
∈ ℓ1(Z), we should be able to apply the M

test.

Solution (From Neil):
Claim: if f ∈ L1[0, 1] and f̂ ∈ ℓ1(Z), then SNf → f uniformly.

• Since f̂ ∈ ℓ1(Z), we have SNf → g uniformly for some continuous g by the M -test.

• Now consider ĝ. We have

ĝ(n) =
∫ 1

0

∑
m

(
f̂(m)em(x)

)
e−n(x) dx = f̂(n),

using that
∫ 1

0 en(x) dx = χn=0.

• We’ll now show f − g = 0 a.e. by mollifying against an approximate identity φ ∈ L1,
setting

φε(x) := ε−1φ(ε−1x) ∈ L1[0, 1].

• A computation:

f̂ ∗ φε(n) = f̂ · φ̂ε(n)
= ĝ · φ̂ε(n)
= ĝ ∗ φε(n),
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so

̂(f − g) ∗ φε = 0 ∀n =⇒ (f − g) ∗ φε ≡ 0,

using that (f − g) ∗ φε ∈ L2 and {en} for a complete orthonormal basis of L2.

• Now use that (f − g) ∗φε → (f − g) in L1 and (f − g) ∗φε ≡ 0 to conclude f − g = 0 a.e.

Solution (Part 1):

Claim: ℓ1(Z) ⊆ ℓ2(Z).

Proof (?).

• Set c =
{
ck

∣∣∣ k ∈ Z
}

∈ ℓ1(Z).
• It suffices to show that if ∑k∈Z |ck| < ∞ then ∑k∈Z |ck|2 < ∞.
• Let S =

{
ck

∣∣∣ |ck| ≤ 1
}

, then ck ∈ S =⇒ |ck|2 ≤ |ck|
• Claim: Sc can only contain finitely many elements, all of which are finite.

– If not, either Sc := {cj}∞
j=1 is infinite with every |cj | > 1, which forces

∑
ck∈Sc

|ck| =
∞∑

j=1
|cj | >

∞∑
j=1

1 = ∞.

– If any cj = ∞, then ∑k∈Z |ck| ≥ cj = ∞.

• So Sc is a finite set of finite integers, let N = max
{

|cj |2
∣∣∣ cj ∈ Sc

}
< ∞.

• Rewrite the sum∑
k∈Z

|ck|2 =
∑

ck∈S

|ck|2 +
∑

ck∈Sc

|ck|2

≤
∑

ck∈S

|ck| +
∑

ck∈Sc

|ck|2

≤
∑
k∈Z

|ck| +
∑

ck∈Sc

|ck|2 since the |ck| are all positive

= ∥c∥ℓ1 +
∑

ck∈Sc

|ck|2

≤ ∥c∥ℓ1 + |Sc| ·N
< ∞.

■

Claim: L2([0, 1]) ⊆ L1([0, 1]).

10.2 Spring 2020.6 117



10 L2 and Fourier Analysis

Proof (?).

• It suffices to show that
∫

|f |2 < ∞ =⇒
∫

|f | < ∞.

• Define S =
{
x ∈ [0, 1]

∣∣∣ |f(x)| ≤ 1
}

, then x ∈ Sc =⇒ |f(x)|2 ≥ |f(x)|.

• Break up the integral:∫
R

|f | =
∫

S
|f | +

∫
Sc

|f |

≤
∫

S
|f | +

∫
Sc

|f |2

≤
∫

S
|f | + ∥f∥2

≤ sup
x∈S

{|f(x)|} · µ(S) + ∥f∥2

= 1 · µ(S) + ∥f∥2 by definition of S
≤ 1 · µ([0, 1]) + ∥f∥2 since S ⊆ [0, 1]
= 1 + ∥f∥2
< ∞.

■

Note: this proof shows L2(X) ⊆ L1(X) whenever
µ(X) < ∞.

Solution (Part 2):

• First, SNf converges in H to something, say g := limn→∞ Snf , since

∥g − SNf∥ =

∥∥∥∥∥∥
∑

|n|≥N

f̂(n)en(x)

∥∥∥∥∥∥ ≤
∑

|n|≥N

∣∣∣f̂(n)
∣∣∣ N→∞−→ 0,

where the last term is the tail of a convergent sum since
{
f̂(n)

}
∈ ℓ1.

• This also shows that SN → g uniformly.

• g is continuous, as the uniform limit of continuous functions.

• Showing that g = f a.e.: it suffices to show that SN converges to f in Lp for some p,
since this will provide a subsequence that converges to f a.e..

• Claim: f̂ ∈ ℓ1 ⊆ ℓ2 implies that f ∈ L2. This follows from Parseval:

∞ >
∥∥∥f̂∥∥∥2

ℓ2
=
∑
n∈Z

∣∣∣f̂(n)
∣∣∣2 =

∫ 1

0
|f(z)|2 dz = ∥f∥2

L2 .

• Claim: SN → f in L2.
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– This follows from the fact that {en}n∈Z is a complete orthonormal basis, so f =∑
⟨f, en⟩en uniquely, recognizing f̂(n) = ⟨f, en⟩, and writing

f =
∑

n

⟨f, en⟩en =
∑

n

f̂(n)en := lim
N→∞

SNf.

• So a subsequence {SNk
}k≥0 converges to f a.e.. Since SN → g a.e., f = g a.e. by

uniqueness of limits.

E 10.3 Fall 2017.5 e

Let φ be a compactly supported smooth function that vanishes outside of an interval [−N,N ] such
that

∫
R φ(x) dx = 1.

For f ∈ L1(R), define

Kj(x) := jφ(jx), f ∗Kj(x) :=
∫

R
f(x− y)Kj(y) dy

and prove the following:

1. Each f ∗Kj is smooth and compactly supported.

2.

lim
j→∞

∥f ∗Kj − f∥1 = 0

Hint:

lim
y→0

∫
R

|f(x− y) − f(x)|dy = 0

Add concepts.

Solution:

Concepts Used:

• ?

Part a
Lemma: If φ ∈ C1

c , then (f ∗ φ)′ = f ∗ φ′ almost everywhere.

10.3 Fall 2017.5 119



10 L2 and Fourier Analysis

Silly Proof:

F((f ∗ φ)′) = 2πiξ F(f ∗ φ)
= 2πiξ F(f) F(φ)
= F(f) · (2πiξ F(φ))
= F(f) · F(φ′)
= F(f ∗ φ′).

Actual proof :

(f ∗ φ)′(x) = (φ ∗ f)′(x)

= lim
h→0

(φ ∗ f)′(x+ h) − (φ ∗ f)′(x)
h

= lim
h→0

∫
φ(x+ h− y) − φ(x− y)

h
f(y)

DCT=
∫

lim
h→0

φ(x+ h− y) − φ(x− y)
h

f(y)

=
∫
φ′(x− y)f(y)

= (φ′ ∗ f)(x)
= (f ∗ φ′)(x).

To see that the DCT is justified, we can apply the MVT on the interval [0, h] to f to obtain

φ(x+ h− y) − φ(x− y)
h

= φ′(c) c ∈ [0, h],

and since φ′ is continuous and compactly supported, φ′ is bounded by some M < ∞ by the
extreme value theorem and thus∫ ∣∣∣∣φ(x+ h− y) − φ(x− y)

h
f(y)

∣∣∣∣ =
∫ ∣∣φ′(c)f(y)

∣∣
≤
∫

|M ||f |

= |M |
∫

|f | < ∞,

since f ∈ L1 by assumption, so we can take g := |M ||f | as the dominating function.
Applying this theorem infinitely many times shows that f ∗ φ is smooth.
To see that f ∗φ is compactly supported, approximate f by a continuous compactly supported
function h, so ∥h− f∥1

L1
→ 0.

Now let gx(y) = φ(x− y), and note that supp(g) = x− supp(φ) which is still compact.
But since supp(h) is bounded, there is some N such that

|x| > N =⇒ Ax := supp(h) ∩ supp(gx) = ∅

10.3 Fall 2017.5 120



10 L2 and Fourier Analysis

and thus

(h ∗ φ)(x) =
∫

R
φ(x− y)h(y) dy

=
∫

Ax

gx(y)h(y)

= 0,

so
{
x
∣∣∣ f ∗ g(x) = 0

}
is open, and its complement is closed and bounded and thus compact.

Part b

∥f ∗Kj − f∥1 =
∫ ∣∣∣∣∫ f(x− y)Kj(y) dy − f(x)

∣∣∣∣ dx
=
∫ ∣∣∣∣∫ f(x− y)Kj(y) dy −

∫
f(x)Kj(y) dy

∣∣∣∣ dx
=
∫ ∣∣∣∣∫ (f(x− y) − f(x))Kj(y) dy

∣∣∣∣ dx
≤
∫ ∫

|(f(x− y) − f(x))| · |Kj(y)| dy dx

F T=
∫ ∫

|(f(x− y) − f(x))| · |Kj(y)| dx dy

=
∫

|Kj(y)|
(∫

|(f(x− y) − f(x))| dx
)
dy

=
∫

|Kj(y)| · ∥f − τyf∥1 dy.

We now split the integral up into pieces.

1. Chose δ small enough such that |y| < δ =⇒ ∥f − τyf∥1 < ε by continuity of translation
in L1, and

2. Since φ is compactly supported, choose J large enough such that

j > J =⇒
∫

|y|≥δ
|Kj(y)| dy =

∫
|y|≥δ

|jφ(jy)| = 0

Then

∥f ∗Kj − f∥1 ≤
∫

|Kj(y)| · ∥f − τyf∥1 dy

=
∫

|y|<δ
|Kj(y)| · ∥f − τyf∥1 dy +

∫
|y|≥δ

|Kj(y)| · ∥f − τyf∥1 dy

= ε

∫
|y|≥δ

|Kj(y)| + 0

≤ ε(1) → 0.

E 10.4 Spring 2017.5 e
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Let f, g ∈ L2(R). Prove that the formula

h(x) :=
∫ ∞

−∞
f(t)g(x− t) dt

defines a uniformly continuous function h on R.

E 10.5 Spring 2015.6 e

Let f ∈ L1(R) and g be a bounded measurable function on R.

1. Show that the convolution f ∗ g is well-defined, bounded, and uniformly continuous on R.
2. Prove that one further assumes that g ∈ C1(R) with bounded derivative, then f ∗ g ∈ C1(R)

and

d

dx
(f ∗ g) = f ∗

(
d

dx
g

)

E 10.6 Fall 2014.5 e

1. Let f ∈ C0
c (Rn), and show

lim
t→0

∫
Rn

|f(x+ t) − f(x)| dx = 0.

2. Extend the above result to f ∈ L1(Rn) and show that

f ∈ L1(Rn), g ∈ L∞(Rn) =⇒ f ∗ g is bounded and uniformly continuous.

11 Functional Analysis: General

E 11.1 Fall 2019.4 e
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Problem 11.1.1 (?)
Let {un}∞

n=1 be an orthonormal sequence in a Hilbert space H.

a. Prove that for every x ∈ H one has
∞∑

n=1
|⟨x, un⟩|2 ≤ ∥x∥2

b. Prove that for any sequence {an}∞
n=1 ∈ ℓ2(N) there exists an element x ∈ H such that

an = ⟨x, un⟩ for all n ∈ N

and

∥x∥2 =
∞∑

n=1
|⟨x, un⟩|2

Concepts Used:

• Bessel’s Inequality
• Pythagoras
• Surjectivity of the Riesz map
• Parseval’s Identity
• Trick – remember to write out finite sum SN , and consider ∥x− SN ∥.

Proof (of a).

• Equivalently, we can show

∥x∥2 −
∞∑

n=1
|⟨x, un⟩|2 ≥ 0.

• Claim: the LHS is the norm of an element in H, and thus non-negative. More precisely,
set SN := ∑N

n=1 ⟨x, un⟩un, then the above is equal to∥∥∥∥x− lim
N→∞

SN

∥∥∥∥2
.

Note that if this is true, we’re done.
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• To see this, expand the norm in terms of inner products:

∥x− SN ∥2 = ⟨x− SN , x− SN ⟩
= ⟨x, x⟩ − ⟨x, SN ⟩ − ⟨SN , x⟩ + ⟨SN , SN ⟩

= ∥x∥2 + ∥SN ∥2 −
(
⟨x, SN ⟩ + ⟨x, SN ⟩

)
= ∥x∥2 + ∥SN ∥2 − 2ℜ (⟨x, SN ⟩)

= ∥x∥2 + ∥SN ∥2 − 2ℜ
(〈

x,
N∑

n=1
⟨x, un⟩un

〉)

= ∥x∥2 + ∥SN ∥2 − 2ℜ
(

N∑
n=1

⟨x, ⟨x, un⟩un⟩
)

= ∥x∥2 + ∥SN ∥2 − 2ℜ
(

N∑
n=1

⟨x, un⟩⟨x, un⟩
)

= ∥x∥2 + ∥SN ∥2 − 2ℜ
N∑

n=1
|⟨x, un⟩|2

= ∥x∥2 + ∥SN ∥2 − 2
N∑

n=1
|⟨x, un⟩|2

= ∥x∥2 +
∥∥∥∥∥

N∑
n=1

⟨x, un⟩un

∥∥∥∥∥
2

− 2
N∑

n=1
|⟨x, un⟩|2

= ∥x∥2 +
〈

N∑
n=1

⟨x, un⟩un,
N∑

m=1
⟨x, um⟩um

〉
− 2

N∑
n=1

|⟨x, un⟩|2

= ∥x∥2 +
∑

n,m≤N

⟨x, un⟩⟨x, um⟩⟨un, um⟩ − 2
N∑

n=1
|⟨x, un⟩|2

= ∥x∥2 +
∑

n,m≤N

⟨x, un⟩⟨x, um⟩δmn − 2
N∑

n=1
|⟨x, un⟩|2

= ∥x∥2 +
∑

n≤N

|⟨x, un⟩|2 − 2
N∑

n=1
|⟨x, un⟩|2

= ∥x∥2 −
N∑

n=1
|⟨x, un⟩|2.

• Now take limN→∞ and use that ∥−∥ is continuous.

■

Proof (of b).
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• Set

x :=
∑
n∈N

anun.

• Checking the first desired property:

⟨x, um⟩ =
〈∑

n≥1
anun, um

〉

=
∑
n≥1

an⟨un, um⟩

=
∑
n≥1

anδmn

= am.

• That x ∈ H: this would follow from

∥x∥2 =
∑

n

|⟨x, un⟩|2 =
∑

n

|an|2 < ∞.

The inequality holds by assumption since {an} ∈ ℓ2, so it suffices to show the first
equality:

∥x∥2 := ⟨x, x⟩

=
〈∑

n

anun,
∑
m

amum

〉
=
∑
n,m

anam⟨un, um⟩

=
∑
n,m

anamδmn

=
∑

n

anan

=
∑

n

|an|2

=
∑

n

|⟨x, un⟩|2.

■

E 11.2 Spring 2019.5 e
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11 Functional Analysis: General

a. Show that L2([0, 1]) ⊆ L1([0, 1]) and argue that L2([0, 1]) in fact forms a dense subset of
L1([0, 1]).

b. Let Λ be a continuous linear functional on L1([0, 1]).

Prove the Riesz Representation Theorem for L1([0, 1]) by following the steps below:

i. Establish the existence of a function g ∈ L2([0, 1]) which represents Λ in the sense that

Λ(f) = f(x)g(x)dx for all f ∈ L2([0, 1]).

Hint: You may use, without proof, the Riesz Repre-
sentation Theorem for L2([0, 1]).

ii. Argue that the g obtained above must in fact belong to L∞([0, 1]) and represent Λ in the
sense that

Λ(f) =
∫ 1

0
f(x)g(x)dx for all f ∈ L1([0, 1])

with

∥g∥L∞([0,1]) = ∥Λ∥L1([0,1])∨

Concepts Used:

• Holders’ inequality: ∥fg∥1 ≤ ∥f∥p∥f∥q

• Riesz Representation for L2: If Λ ∈ (L2)∨ then there exists a unique g ∈ L2 such that
Λ(f) =

∫
fg.

• ∥f∥L∞(X) := inf
{
t ≥ 0

∣∣∣ |f(x)| ≤ t almost everywhere
}

.

• Lemma: m(X) < ∞ =⇒ Lp(X) ⊂ L2(X).
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11 Functional Analysis: General

Proof .

– Write Holder’s inequality as ∥fg∥1 ≤ ∥f∥a∥g∥b where 1
a + 1

b = 1, then

∥f∥p
p = ∥|f |p∥1 ≤ ∥|f |p∥a ∥1∥b.

– Now take a = 2
p and this reduces to

∥f∥p
p ≤ ∥f∥p

2 m(X)
1
b

=⇒ ∥f∥p ≤ ∥f∥2 ·O(m(X)) < ∞.

■

Proof (of a).

• Note X = [0, 1] =⇒ m(X) = 1.

• By Holder’s inequality with p = q = 2,

∥f∥1 = ∥f · 1∥1 ≤ ∥f∥2 · ∥1∥2 = ∥f∥2 ·m(X)
1
2 = ∥f∥2,

• Thus L2(X) ⊆ L1(X)

• Since they share a common dense subset (simple functions), L2 is dense in L1

■

Proof (of b, Existence of g representing Λ).
For all of part b, let Λ ∈ L1(X)∨ be arbitrary. Let f ∈ L2 ⊆ L1 be arbitrary.
Claim: Λ ∈ L1(X)∨ =⇒ Λ ∈ L2(X)∨.

• Suffices to show that ∥Γ∥L2(X)∨ := sup∥f∥2=1 |Γ(f)| < ∞, since bounded implies continu-
ous.

• By the lemma, ∥f∥1 ≤ C∥f∥2 for some constant C ≈ m(X).

• Note

∥Λ∥L1(X)∨ := sup
∥f∥1=1

|Λ(f)|

• Define f̂ = f
∥f∥1

so
∥∥∥f̂∥∥∥

1
= 1

• Since ∥Λ∥1∨ is a supremum over all f ∈ L1(X) with ∥f∥1 = 1,∣∣∣Λ(f̂)
∣∣∣ ≤ ∥Λ∥(L1(X))∨ ,
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11 Functional Analysis: General

• Then

|Λ(f)|
∥f∥1

=
∣∣∣Λ(f̂)

∣∣∣ ≤ ∥Λ∥L1(X)∨

=⇒ |Λ(f)| ≤ ∥Λ∥1∨ · ∥f∥1
≤ ∥Λ∥1∨ · C∥f∥2 < ∞ by assumption,

• So Λ ∈ (L2)∨.

Now apply Riesz Representation for L2: there is a g ∈ L2 such that

f ∈ L2 =⇒ Λ(f) = ⟨f, g⟩ :=
∫ 1

0
f(x)g(x) dx.

■

Proof (of b, g is in L∞).

• It suffices to show ∥g∥L∞(X) < ∞.

• Since we’re assuming ∥Γ∥L1(X)∨ < ∞, it suffices to show the stated equality.
Is this assumed..? Or did we show it..?

• Claim: ∥Λ∥L1(X)∨ = ∥g∥L∞(X)

– The result will follow since Λ was assumed to be in L1(X)∨, so ∥Λ∥L1(X)∨ < ∞.
– ≤:

∥Λ∥L1(X)∨ = sup
∥f∥1=1

|Λ(f)|

= sup
∥f∥1=1

∣∣∣∣∫
X
fg

∣∣∣∣ by (i)

= sup
∥f∥1=1

∫
X

|fg|

:= sup
∥f∥1=1

∥fg∥1

≤ sup
∥f∥1=1

∥f∥1∥g∥∞ by Holder with p = 1, q = ∞

= ∥g∥∞,

– ≥:
♢ Suppose toward a contradiction that ∥g∥∞ > ∥Λ∥1∨ .
♢ Then there exists some E ⊆ X with m(E) > 0 such that

x ∈ E =⇒ |g(x)| > ∥Λ∥L1(X)∨ .
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11 Functional Analysis: General

♢ Define

h = 1
m(E)

g

|g|
χE .

♢ Note ∥h∥L1(X) = 1.
♢ Then

Λ(h) =
∫

X
hg

:=
∫

X

1
m(E)

gg

|g|
χE

= 1
m(E)

∫
E

|g|

≥ 1
m(E)∥g∥∞m(E)

= ∥g∥∞
> ∥Λ∥L1(X)∨ ,

a contradiction since ∥Λ∥L1(X)∨ is the supremum over all hα with ∥hα∥L1(X) = 1.

■

E 11.3 Spring 2016.6 e

Without using the Riesz Representation Theorem, compute

sup
{∣∣∣∣∫ 1

0
f(x)exdx

∣∣∣∣ ∣∣∣ f ∈ L2([0, 1],m), ∥f∥2 ≤ 1
}

E 11.4 Spring 2015.5 e

Let H be a Hilbert space.

1. Let x ∈ H and {un}N
n=1 be an orthonormal set. Prove that the best approximation to x in H

by an element in spanC {un} is given by

x̂ :=
N∑

n=1
⟨x, un⟩un.

2. Conclude that finite dimensional subspaces of H are always closed.
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12 Banach and Hilbert Spaces

E 11.5 Fall 2015.6 e

Let f : [0, 1] → R be continuous. Show that

sup
{

∥fg∥1
∣∣∣ g ∈ L1[0, 1], ∥g∥1 ≤ 1

}
= ∥f∥∞

E 11.6 Fall 2014.6 e

Let 1 ≤ p, q ≤ ∞ be conjugate exponents, and show that

f ∈ Lp(Rn) =⇒ ∥f∥p = sup
∥g∥q=1

∣∣∣∣∫ f(x)g(x)dx
∣∣∣∣

12 Banach and Hilbert Spaces

E 12.1 Fall 2021.5 e

Consider the Hilbert space H = L2([0, 1]).

a. Prove that of E ⊂ H is closed and convex then E contains an element of smallest norm.

Hint: Show that if ∥fn∥2 → min {f ∈ E : ∥f∥2} then
{fn} is a Cauchy sequence.

b. Construct a non-empty closed subset E ⊂ H which does not contain an element of smallest
norm.

E 12.2 Spring 2019.1 e

Let C([0, 1]) denote the space of all continuous real-valued functions on [0, 1].

a. Prove that C([0, 1]) is complete under the uniform norm ∥f∥u := sup
x∈[0,1]

|f(x)|.

b. Prove that C([0, 1]) is not complete under the L1-norm ∥f∥1 =
∫ 1

0
|f(x)| dx.
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12 Banach and Hilbert Spaces

Add concepts.

Solution:
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12 Banach and Hilbert Spaces

Proof (of a).

• Let {fn} be a Cauchy sequence in C(I, ∥−∥∞), so limn limm ∥fm − fn∥∞ = 0, we
will show it converges to some f in this space.

• For each fixed x0 ∈ [0, 1], the sequence of real numbers {fn(x0)} is Cauchy in R
since

x0 ∈ I =⇒ |fm(x0) − fn(x0)| ≤ sup
x∈I

|fm(x) − fn(x)| := ∥fm − fn∥∞
m>n→∞→ 0,

• Since R is complete, this sequence converges and we can define f(x) :=
limk→∞ fn(x).

• Thus fn → f pointwise by construction

• Claim: ∥f − fn∥ n→∞→ 0, so fn converges to f in C([0, 1], ∥−∥∞).

– Proof:
♢ Fix ε > 0; we will show there exists an N such that n ≥ N =⇒

∥fn − f∥ < ε
♢ Fix an x0 ∈ I. Since fn → f pointwise, choose N1 large enough so that

n ≥ N1 =⇒ |fn(x0) − f(x0)| < ε/2.

♢ Since ∥fn − fm∥∞ → 0, choose and N2 large enough so that

n,m ≥ N2 =⇒ ∥fn − fm∥∞ < ε/2.

♢ Then for n,m ≥ max(N1, N2), we have

|fn(x0) − f(x0)| = |fn(x0) − f(x0) + fm(x0) − fm(x0)|
= |fn(x0) − fm(x0) + fm(x0) − f(x0)|
≤ |fn(x0) − fm(x0)| + |fm(x0) − f(x0)|

< |fn(x0) − fm(x0)| + ε

2
≤ sup

x∈I
|fn(x) − fm(x)| + ε

2
< ∥fn − fm∥∞ + ε

2
≤ ε

2 + ε

2
=⇒ |fn(x0) − f(x0)| < ε

=⇒ sup
x∈I

|fn(x0) − f(x0)| ≤ sup
x∈I

ε by order limit laws

=⇒ ∥fn − f∥ ≤ ε

.

• f is the uniform limit of continuous functions and thus continuous, so f ∈ C([0, 1]).

■
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12 Banach and Hilbert Spaces

Proof (of b).

• It suffices to produce a Cauchy sequence that does not converge to a continuous
function.

• Take the following sequence of functions:

– f1 increases linearly from 0 to 1 on [0, 1/2] and is 1 on [1/2, 1]
– f2 is 0 on [0, 1/4] increases linearly from 0 to 1 on [1/4, 1/2] and is 1 on [1/2, 1]
– f3 is 0 on [0, 3/8] increases linearly from 0 to 1 on [3/8, 1/2] and is 1 on [1/2, 1]
– f3 is 0 on [0, (1/2−3/8)/2] increases linearly from 0 to 1 on [(1/2−3/8)/2, 1/2]

and is 1 on [1/2, 1]

Idea: take sequence starting points for the tri-
angles: 0, 0 + 1

4 , 0 + 1
4 + 1

8 , · · · which converges
to 1/2 since

∑∞
k=1

1
2k = − 1

2 +
∑∞

k=0
1

2k .

• Then each fn is clearly integrable, since its graph is contained in the unit square.

• {fn} is Cauchy: geometrically subtracting areas yields a single triangle whose area
tends to 0.

• But fn converges to χ[ 1
2 ,1] which is discontinuous.

show that
∫ 1

0
|fn(x) − fm(x)| dx → 0 rigorously, show that no g ∈ L1([0, 1]) can converge to this indicator function.

■

E 12.3 Spring 2017.6 e

Show that the space C1([a, b]) is a Banach space when equipped with the norm

∥f∥ := sup
x∈[a,b]

|f(x)| + sup
x∈[a,b]

∣∣f ′(x)
∣∣ .

Add concepts.

Concepts Used:

• See https://math.stackexchange.com/questions/507263/
prove-that-c1a-b-with-the-c1-norm-is-a-banach-space/
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12 Banach and Hilbert Spaces

Solution:

• Denote this norm ∥−∥u

• Let fn be a Cauchy sequence in this space, so ∥fn∥u < ∞ for every n and ∥fj − fk∥u

j,k→∞→
0.

and define a candidate limit: for each x ∈ I, set

f(x) := lim
n→∞

fn(x).

• Note that

∥fn∥∞ ≤ ∥fn∥u < ∞∥∥f ′
n

∥∥
∞ ≤ ∥fn∥u < ∞.

– Thus both fn, f
′
n are Cauchy sequences in C0([a, b], ∥−∥∞), which is a Banach space,

so they converge.

• So

– fn → f uniformly (by uniqueness of limits),
– f ′

n → g uniformly for some g, and
– f, g ∈ C0([a, b]).

• Claim: g = f ′

– For any fixed a ∈ I, we have

fn(x) − fn(a) u→ f(x) − f(a)∫ x

a
f ′

n
u→
∫ x

a
g.

– By the FTC, the left-hand sides are equal.
– By uniqueness of limits so are the right-hand sides, so f ′ = g.

• Claim: the limit f is an element in this space.

– Since f, f ′ ∈ C0([a, b]), they are bounded, and so ∥f∥u < ∞.

• Claim: ∥fn − f∥u
n→∞→ 0

• Thus the Cauchy sequence {fn} converges to a function f in the u-norm where f is an
element of this space, making it complete.
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13 Extras

E 12.4 Fall 2017.6 e

Let X be a complete metric space and define a norm
∥f∥ := max{|f(x)| : x ∈ X}.

Show that (C0(R), ∥−∥) (the space of continuous functions f : X → R) is complete.

Add concepts.

Shouldn’t this be a supremum? The max may not exist?

Review and clean up.

Solution:

Let {fk} be a Cauchy sequence, so ∥fk∥ < ∞ for all k. Then for a fixed x, the sequence fk(x)
is Cauchy in R and thus converges to some f(x), so define f by f(x) := limk→∞ fk(x).
Then ∥fk − f∥ = maxx∈X |fk(x) − f(x)| k→∞→ 0, and thus fk → f uniformly and thus f is
continuous. It just remains to show that f has bounded norm.
Choose N large enough so that ∥f − fN ∥ < ε, and write ∥fN ∥ := M < ∞

∥f∥ ≤ ∥f − fN ∥ + ∥fN ∥ < ε+M < ∞.

13 Extras

Exercise 13.0.1 (?)
Compute the following limits:

• limn→∞
∑

k≥1
1

k2 sinn(k)
• limn→∞

∑
k≥1

1
ke

−k/n

Solution:
For the first, use that ∣∣∣∣∣∣

∑
k≥1

1
k2 sinn(k)

∣∣∣∣∣∣ ≤
∑
k≥1

∣∣∣∣ 1
k2 sinn(k)

∣∣∣∣∑
k≥1

∣∣∣∣ 1
k2

∣∣∣∣ < ∞,

since |sin(x)| ≤ 1 and xn < x for |x| ≤ 1. By the dominated convergence theorem, we can pass
the limit inside. Using the same fact as above, limn→∞ sinn(x) = 0,
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14 Extra Problems: Measure Theory

For the second, the claim is that it diverges (very slowly). Note that limn→∞ e−k/n = 1 for
any k. By Fatou, we have

lim inf
n→∞

∑
k≥1

e−k/n

k
≥
∑
k≥1

lim inf
n→∞

e−k/n

k
=
∑
k≥1

1
k

= ∞.

Exercise 13.0.2 (?)
Let (Ω,B) be a measurable space with a Borel σ-algebra and µn : B → [0,∞] be a σ-additive
measure for each n. Show that the following map is again a σ-additive measure on B:

µ(B) :=
∑
n≥1

µn(B).

Solution:
Apply Fubini-Tonelli to commute two sums:

µ

 ⋃
1≤k≤M

Ek

 := =
∑
n≥1

µn

 ⋃
1≤k≤M

Ek


=
∑
n≥1

∑
1≤k≤M

µn (Ek)

=
∑

1≤k≤M

∑
n≥1

µn (Ek) FT

:=
∑

1≤k≤M

µ(Ek).

14 Extra Problems: Measure Theory

E 14.1 Greatest Hits e

• ⋆: Show that for E ⊆ Rn, TFAE:

1. E is measurable
2. E = H ∪ Z here H is Fσ and Z is null
3. E = V \ Z ′ where V ∈ Gδ and Z ′ is null.

• ⋆: Show that if E ⊆ Rn is measurable then m(E) = sup
{
m(K)

∣∣∣ K ⊂ E compact
}

iff for all
ε > 0 there exists a compact K ⊆ E such that m(K) ≥ m(E) − ε.
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14 Extra Problems: Measure Theory

• ⋆: Show that cylinder functions are measurable, i.e. if f is measurable on Rs, then F (x, y) :=
f(x) is measurable on Rs × Rt for any t.

• ⋆: Prove that the Lebesgue integral is translation invariant, i.e. if τh(x) = x + h then∫
τhf =

∫
f .

• ⋆: Prove that the Lebesgue integral is dilation invariant, i.e. if fδ(x) = f( x
δ

)
δn then

∫
fδ =

∫
f .

• ⋆: Prove continuity in L1, i.e.

f ∈ L1 =⇒ lim
h→0

∫
|f(x+ h) − f(x)| = 0.

• ⋆: Show that

f, g ∈ L1 =⇒ f ∗ g ∈ L1 and ∥f ∗ g∥1 ≤ ∥f∥1∥g∥1.

• ⋆: Show that if X ⊆ R with µ(X) < ∞ then

∥f∥p
p→∞→ ∥f∥∞.

E 14.2 Topology e

• Show that every compact set is closed and bounded.
• Show that if a subset of a metric space is complete and totally bounded, then it is compact.
• Show that if K is compact and F is closed with K,F disjoint then dist(K,F ) > 0.

E 14.3 Continuity e

• Show that a continuous function on a compact set is uniformly continuous.

E 14.4 Differentiation e

• Show that if f ∈ C1(R) and both limx→∞ f(x) and limx→∞ f ′(x) exist, then limx→∞ f ′(x)
must be zero.
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14 Extra Problems: Measure Theory

E 14.5 Advanced Limitology e

• If f is continuous, is it necessarily the case that f ′ is continuous?
• If fn → f , is it necessarily the case that f ′

n converges to f ′ (or at all)?
• Is it true that the sum of differentiable functions is differentiable?
• Is it true that the limit of integrals equals the integral of the limit?
• Is it true that a limit of continuous functions is continuous?
• Show that a subset of a metric space is closed iff it is complete.
• Show that if m(E) < ∞ and fn → f uniformly, then lim

∫
E fn =

∫
E f .

E 14.6 Uniform Convergence e

• Show that a uniform limit of bounded functions is bounded.
• Show that a uniform limit of continuous function is continuous.

– I.e. if fn → f uniformly with each fn continuous then f is continuous.

• Show that

– fn : [a, b] → R are continuously differentiable with derivatives f ′
n

– The sequence of derivatives f ′
n converges uniformly to some function g

– There exists at least one point x0 such that limn fn(x0) exists,
– Then fn → f uniformly to some differentiable f , and f ′ = g.

• Prove that uniform convergence implies pointwise convergence implies a.e. convergence, but
none of the implications may be reversed.

• Show that ∑ xn

n! converges uniformly on any compact subset of R.

E 14.7 Measure Theory e

• Show that continuity of measure from above/below holds for outer measures.

• Show that a countable union of null sets is null.

Measurability

• Show that f = 0 a.e. iff
∫

E f = 0 for every measurable set E.

Integrability

• Show that if f is a measurable function, then f = 0 a.e. iff
∫
f = 0.
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14 Extra Problems: Measure Theory

• Show that a bounded function is Lebesgue integrable iff it is measurable.
• Show that simple functions are dense in L1.
• Show that step functions are dense in L1.
• Show that smooth compactly supported functions are dense in L1.

E 14.8 Convergence e

• Prove Fatou’s lemma using the Monotone Convergence Theorem.
• Show that if {fn} is in L1 and ∑∫

|fn| < ∞ then ∑ fn converges to an L1 function and∫ ∑
fn =

∑∫
fn.

E 14.9 Convolution e

• Show that if f, g are continuous and compactly supported, then so is f ∗ g.
• Show that if f ∈ L1 and g is bounded, then f ∗ g is bounded and uniformly continuous.
• If f, g are compactly supported, is it necessarily the case that f ∗ g is compactly supported?
• Show that under any of the following assumptions, f ∗ g vanishes at infinity:

– f, g ∈ L1 are both bounded.
– f, g ∈ L1 with just g bounded.
– f, g smooth and compactly supported (and in fact f ∗ g is smooth)
– f ∈ L1 and g smooth and compactly supported (and in fact f ∗ g is smooth)

• Show that if f ∈ L1 and g′ exists with ∂g
∂xi

all bounded, then

∂

∂xi
(f ∗ g) = f ∗ ∂g

∂xi

E 14.10 Fourier Analysis e

• Show that if f ∈ L1 then f̂ is bounded and uniformly continuous.
• Is it the case that f ∈ L1 implies f̂ ∈ L1?
• Show that if f, f̂ ∈ L1 then f is bounded, uniformly continuous, and vanishes at infinity.

– Show that this is not true for arbitrary L1 functions.

• Show that if f ∈ L1 and f̂ = 0 almost everywhere then f = 0 almost everywhere.

– Prove that f̂ = ĝ implies that f = g a.e.
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14 Extra Problems: Measure Theory

• Show that if f, g ∈ L1 then ∫
f̂g =

∫
fĝ.

– Give an example showing that this fails if g is not bounded.

• Show that if f ∈ C1 then f is equal to its Fourier series.

E 14.11 Approximate Identities e

• Show that if φ is an approximate identity, then

∥f ∗ φt − f∥1
t→0→ 0.

– Show that if additionally |φ(x)| ≤ c(1 + |x|)−n−ε for some c, ε > 0, then this converges
is almost everywhere.

• Show that is f is bounded and uniformly continuous and φt is an approximation to the identity,
then f ∗ φt uniformly converges to f .

Lp Spaces

• Show that if E ⊆ Rn is measurable with µ(E) < ∞ and f ∈ Lp(X) then

∥f∥Lp(X)
p→∞→ ∥f∥∞.

• Is it true that the converse to the DCT holds? I.e. if
∫
fn →

∫
f , is there a g ∈ Lp such that

fn < g a.e. for every n?
• Prove continuity in Lp: If f is uniformly continuous then for all p,

∥τhf − f∥p
h→0→ 0.

• Prove the following inclusions of Lp spaces for m(X) < ∞:

L∞(X) ⊂ L2(X) ⊂ L1(X)
ℓ2(Z) ⊂ ℓ1(Z) ⊂ ℓ∞(Z).

E 14.12 Unsorted e

Proposition 14.12.1(Volumes of Rectangles).
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15 Extra Problems from Problem Sets

If {Rj} ⇒ R is a covering of R by rectangles,

R =
◦∐
j

Rj =⇒ |R| =
∑

|R|j

R ⊆
⋃
j

Rj =⇒ |R| ≤
∑

|R|j .

• Show that any disjoint intervals is countable.
• Show that every open U ⊆ R is a countable union of disjoint open intervals.
• Show that every open U ⊆ Rn is a countable union of almost disjoint closed cubes.
• Show that that Cantor middle-thirds set is compact, totally disconnected, and perfect, with

outer measure zero.
• Prove the Borel-Cantelli lemma.

15 Extra Problems from Problem Sets

E
15.1 Continuous on compact implies

uniformly continuous e

Problem 15.1.1 (?)
Show that a continuous function on a compact set is uniformly continuous.

Solution:
Use a stronger result: a continuous function on a compact metric is uniformly continuous. Fix
ε. Suppose f is continuous, then for each z ∈ X choose δz = δ(ε, z) to ensure Bδ(z) ↪→ Bε(f(z))
and form the cover {Bδz (z)}x∈X ⇒ X. By compactness, choose a finite subcover corresponding
to {z1, · · · , zm} and choose δ = min {δ1, · · · , δm}. The claim is that this δ works for uniform
continuity: if |x− y| < δ then |x− y| < δi for all i. Note that x ∈ Bδz (z) for one of the finitely
many z above, and if we adjust δ to δ/2, we can arrange so that both x, y ∈ Bδz (z) for some
z, since

|x− y| = |x− z + z − y| ≤ |x− z| + |z − y| < δ

2 + δ

2 = δ < δz,

and similarly

|f(x) − f(y)| ≤ |f(x) − f(z)| + |f(z) − f(y)| < ε+ ε,

so just adjust the original ε chosen by the continuity of f to ε/2.
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15 Extra Problems from Problem Sets

E 15.2 2010 6.1 e

Problem 15.2.1 (?)
Show that ∫

Bn

1
|x|p

dx < ∞ ⇐⇒ p < n

∫
Rn\Bn

1
|x|p

dx < ∞ ⇐⇒ p > n.

Solution:
Todo

E 15.3 2010 6.2 e

Show that ∫
Rn

|f | =
∫ ∞

0
m(At) dt At :=

{
x ∈ Rn

∣∣∣ |f(x)| > t
}
.

Solution:
Todo

E 15.4 2010 6.5 e

Suppose F ⊆ R with m(F c) < ∞ and let δ(x) := d(x, F ) and

IF (x) :=
∫

R

δ(y)
|x− y|2

dy.

a. Show that δ is continuous.

b. Show that if x ∈ F c then IF (x) = ∞.

c. Show that IF (x) < ∞ for almost every x
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15 Extra Problems from Problem Sets

Solution:
Todo

E 15.5 2010 7.1 e

Let (X,M, µ) be a measure space and prove the following properties of L∞(X,M, µ):

• If f, g are measurable on X then

∥fg∥1 ≤ ∥f∥1∥g∥∞.

• ∥−∥∞ is a norm on L∞ making it a Banach space.

• ∥fn − f∥∞
n→∞→ 0 ⇐⇒ there exists an E ∈ M such that µ(X \E) = 0 and fn → f uniformly

on E.

• Simple functions are dense in L∞.

E 15.6 2010 7.2 e

Show that for 0 < p < q ≤ ∞, ∥a∥ℓq ≤ ∥a∥ℓp over C, where ∥a∥∞ := supj |aj |.

E 15.7 2010 7.3 e

Let f, g be non-negative measurable functions on [0,∞) with

A :=
∫ ∞

0
f(y)y−1/2 dy < ∞

B :=
(∫ ∞

0
|g(y)|

)2
dy < ∞.

Show that ∫ ∞

0

(∫ ∞

0
f(y) dy

)
g(x)
x

dx ≤ AB.
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E 15.8 2010 7.4 e

Let (X,M, µ) be a measure space and 0 < p < q < ∞. Prove that if Lq(X) ⊆ Lp(X), then X does
not contain sets of arbitrarily large finite measure.

E 15.9 2010 7.5 e

Suppose 0 < a < b ≤ ∞, and find examples of functions f ∈ Lp((0,∞)) if and only if:

• a < p < b

• a ≤ p ≤ b

• p = a

Hint: consider functions of the following form:

f(x) := x−α|log(x)|β.

E 15.10 2010 7.6 e

Define

F (x) :=
(sin(πx)

πx

)2

G(x) :=
{

1 − |x| |x| ≤ 1
0 else.

a. Show that Ĝ(ξ) = F (ξ)

b. Compute F̂ .

c. Give an example of a function g ̸∈ L1(R) which is the Fourier transform of an L1 function.

Hint: write Ĝ(ξ) = H(ξ) +H(−ξ) where

H(ξ) := e2πiξ
∫ 1

0
ye2πiyξ dy.
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E 15.11 2010 7.7 e

Show that for each ϵ > 0 the following function is the Fourier transform of an L1(Rn) function:

F (ξ) :=
(

1
1 + |ξ|2

)ϵ

.

Hint: show that

Kδ(x) := δ−n/2e
−π|x|2

δ

f(x) :=
∫ ∞

0
Kδ(x)e−πδδϵ−1 dδ

Γ(s) :=
∫ ∞

0
e−tts−1 dt

=⇒ f̂(ξ) =
∫ ∞

0
e−πδ|ξ|2e−πδδϵ−1 = π−sΓ(ϵ)F (ξ).

E
15.12 2010 7 Challenge 1: Generalized

Holder
e

Suppose that

1 ≤ pj ≤ ∞,
n∑

j=1

1
pj

= 1
r

≤ 1.

Show that if fj ∈ Lpj for each 1 ≤ j ≤ n, then∏
fj ∈ Lr,

∥∥∥∏ fj

∥∥∥
r

≤
∏

∥fj∥pj
.

E
15.13 2010 7 Challenge 2: Young’s

Inequality e

Suppose 1 ≤ p, q, r ≤ ∞ with
1
p

+ 1
q

= 1 + 1
r
.

Prove that

f ∈ Lp, g ∈ Lq =⇒ f ∗ g ∈ Lr and ∥f ∗ g∥r ≤ ∥f∥p∥g∥q.
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E 15.14 2010 9.1 e

Show that the set {uk(j) := δij} ⊆ ℓ2(Z) and forms an orthonormal system.

E 15.15 2010 9.2 e

Consider L2([0, 1]) and define

e0(x) = 1
e1(x) =

√
3(2x− 1).

a. Show that {e0, e1} is an orthonormal system.

b. Show that the polynomial p(x) where deg(p) = 1 which is closest to f(x) = x2 in L2([0, 1]) is
given by

h(x) = x− 1
6 .

Compute ∥f − g∥2.

E 15.16 2010 9.3 e

Let E ⊆ H a Hilbert space.

a. Show that E ⊥⊆ H is a closed subspace.

b. Show that (E⊥)⊥ = clH(E).

E 15.17 2010 9.5b e

Let f ∈ L1((0, 2π)).

i. Show that for an ϵ > 0 one can write f = g + h where g ∈ L2((0, 2π)) and ∥H∥1 < ϵ.
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E 15.18 2010 9.6 e

Prove that every closed convex K ⊂ H a Hilbert space has a unique element of minimal norm.

E 15.19 2010 9 Challenge e

Let U be a unitary operator on H a Hilbert space, let M :=
{
x ∈ H

∣∣∣ Ux = x
}

, let P be the
orthogonal projection onto M , and define

SN := 1
N

N−1∑
n=0

Un.

Show that for all x ∈ H,

∥SNx− Px∥H
N→∞→ 0.

E 15.20 2010 10.1 e

Let ν, µ be signed measures, and show that

ν ⊥ µ and ν ≪ |µ| =⇒ ν = 0.

E 15.21 2010 10.2 e

Let f ∈ L1(Rn) with f ̸= 0.

a. Prove that there exists a c > 0 such that

Hf(x) ≥ c

(1 + |x|)n
.

E 15.22 2010 10.3 e

Consider the function

f(x) :=


1

|x|(log( 1
x ))2 |x| ≤ 1

2

0 else.
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16 Midterm Exam 2 (December 2014)

a. Show that f ∈ L1(R).

b. Show that there exists a c > 0 such that for all |x| ≤ 1/2,

Hf(x) ≥ c

|x| log
(

1
|x|

) .
Conclude that Hf is not locally integrable.

E 15.23 2010 10.4 e

Let f ∈ L1(R) and let U :=
{

(x, y) ∈ R2
∣∣∣ y > 0

}
denote the upper half plane. For (x, y) ∈ U

define

u(x, y) := f ∗ Py(x) where Py(x) := 1
π

(
y

t2 + y2

)
.

a. Prove that there exists a constant C independent of f such that for all x ∈ R,

sup
y>0

|u(x, y)| ≤ C ·Hf(x).

Hint: write the following and try to estimate each term:

u(x, y) =
∫

|t|<y
f(x− t)Py(t) dt+

∞∑
k=0

∫
Ak

f(x− t)Py(t) dt Ak :=
{

2ky ≤ |t| < 2k+1y
}
.

b. Following the proof of the Lebesgue differentiation theorem, show that for f ∈ L1(R) and for
almost every x ∈ R,

u(x, y) y→0→ f(x).

16 Midterm Exam 2 (December 2014)

E 16.1 Fall 2014 Midterm 1.1 e

Note: (a) is a repeat.

• Let Λ ∈ L2(X)∨.

– Show that M :=
{
f ∈ L2(X)

∣∣∣ Λ(f) = 0
}

⊆ L2(X) is a closed subspace, and L2(X) =
M ⊕M ⊥.

– Prove that there exists a unique g ∈ L2(X) such that Λ(f) =
∫

X gf .
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17 Midterm Exam 1 (October 2018)

E 16.2 Fall 2014 Midterm 1.2 e

a. In parts:

• Given a definition of L∞(Rn).
• Verify that ∥−∥∞ defines a norm on L∞(Rn).
• Carefully proved that (L∞(Rn), ∥−∥∞) is a Banach space.

b. Prove that for any measurable f : Rn → C,

L1(Rn) ∩ L∞(Rn) ⊂ L2(Rn) and ∥f∥2 ≤ ∥f∥
1
2
1 · ∥f∥

1
2∞.

E 16.3 Fall 2014 Midterm 1.3 e

a. Prove that if f, g : Rn → C is both measurable then F (x, y) := f(x) and h(x, y) := f(x−y)g(y)
is measurable on Rn × Rn.

b. Show that if f ∈ L1(Rn) ∩ L∞(Rn) and g ∈ L1(Rn), then f ∗ g ∈ L1(Rn) ∩ L∞(Rn) is well
defined, and carefully show that it satisfies the following properties:

∥f ∗ g∥∞ ≤ ∥g∥1∥f∥∞∥f ∗ g∥1 ≤ ∥g∥1∥f∥1∥f ∗ g∥2 ≤ ∥g∥1∥f∥2.

Hint: first show |f ∗ g|2 ≤ ∥g∥1

(
|f |2 ∗ |g|

)
.

E 16.4 Fall 2014 Midterm 1.4 e

Note: (a) is a repeat.

Let f : [0, 1] → R be continuous, and prove the Weierstrass approximation theorem: for any ε > 0
there exists a polynomial P such that ∥f − P∥∞ < ε.

17 Midterm Exam 1 (October 2018)

E 17.1 Fall 2018 Midterm 1.1 e
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17 Midterm Exam 1 (October 2018)

Let E ⊆ Rn be bounded. Prove the following are equivalent:

1. For any ϵ > 0 there exists and open set G and a closed set F such that

F ⊆ E ⊆ G m(G \ F ) < ϵ.

2. There exists a Gδ set V and an Fσ set H such that

m(V \H) = 0.

E 17.2 Fall 2018 Midterm 1.2 e

Let {fk}∞
k=1 be a sequence of extended real-valued Lebesgue measurable functions.

a. Prove that supk fk is a Lebesgue measurable function.

b. Prove that if limk→∞ fk(x) exists for every x ∈ Rn then limk→∞ fk is also a measurable
function.

E 17.3 Fall 2018 Midterm 1.3 e

a. Prove that if E ⊆ Rn is a Lebesgue measurable set, then for any h ∈ R the set

E + h :=
{
x+ h

∣∣∣ x ∈ E
}

is also Lebesgue measurable and satisfies m(E + h) = m(E).

b. Prove that if f is a non-negative measurable function on Rn and h ∈ Rn then the function

τhd(x) := f(x− h)

is a non-negative measurable function and∫
f(x) dx =

∫
f(x− h) dx.

E 17.4 Fall 2018 Midterm 1.4 e

Let f : Rn → R be a Lebesgue measurable function.
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18 Midterm Exam 2 (November 2018)

a. Prove that for all α > 0 ,

Aα :=
{
x ∈ Rn

∣∣∣ |f(x)| > α
}

=⇒ m(Aα) ≤ 1
α

∫
|f(x)| dx.

b. Prove that ∫
|f(x)| dx = 0 ⇐⇒ f = 0 almost everywhere.

E 17.5 Fall 2018 Midterm 1.5 e

Let {fk}∞
k=1 ⊆ L2([0, 1]) be a sequence which converges in L1 to a function f .

a. Prove that f ∈ L1([0, 1]).

b. Give an example illustrating that fk may not converge to f almost everywhere.

c. Prove that {fk} must contain a subsequence that converges to f almost everywhere.

18 Midterm Exam 2 (November 2018)

E 18.1 Fall 2018 Midterm 2.1 e

Let f, g ∈ L1([0, 1]), define F (x) =
∫ x

0 f(y) dy and G(x) =
∫ x

0 g(y) dy, and show∫ 1

0
F (x)g(x) dx = F (1)G(1) −

∫ 1

0
f(x)G(x) dx.

E 18.2 Fall 2018 Midterm 2.2 e

Let φ ∈ L1(Rn) such that
∫
φ = 1 and define φt(x) = t−nφ(t−1x). Show that if f is bounded and

uniformly continuous then f ∗ φt
t→0→ f uniformly.

E 18.3 Fall 2018 Midterm 2.3 e

Let g ∈ L∞([0, 1]).
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19 Practice Exam (November 2014)

a. Prove

∥g∥Lp([0,1])
p→∞→ ∥g∥L∞([0,1]).

b. Prove that the map

Λg : L1([0, 1]) → C

f 7→
∫ 1

0
fg

defines an element of L1([0, 1])∨ with ∥Λg∥L1([0,1])∨ = ∥g∥L∞([0,1]).

E 18.4 Fall 2018 Midterm 2.4 e

See section 20.3

19 Practice Exam (November 2014)

E 19.1 Fall 2018 Practice Midterm 1.1 e

Let m∗(E) denote the Lebesgue outer measure of a set E ⊆ Rn.

a. Prove using the definition of Lebesgue outer measure that

m

 ∞⋃
j=1

Ej

 ≤
∞∑

j=1
m∗(Ej).

b. Prove that for any E ⊆ Rn and any ϵ > 0 there exists an open set G with E ⊆ G and

m∗(E) ≤ m∗(G) ≤ m∗(E) + ϵ.

E 19.2 Fall 2018 Practice Midterm 1.2 e

a. See section 17.1

b. Let fk be a sequence of extended real-valued Lebesgue measurable function.
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20 Practice Exam (November 2014)

i. Prove that infk fk, supk fk are both Lebesgue measurable function.

Hint: argue that {
x
∣∣∣ inf

k
fk(x) < a

}
=
⋃
k

{
x
∣∣∣ fk(x) < a

}
.

ii. Carefully state Fatou’s Lemma and deduce the Monotone Converge Theorem from it.

E 19.3 Fall 2018 Practice Midterm 1.3 e

a. Prove that if f, g ∈ L+(R) then ∫
(f + g) =

∫
f +

∫
g.

Extend this to establish that if {fk} ⊆ L+(Rn) then∫ ∑
k

fk =
∑

k

∫
fk.

b. Let {Ej}j∈N ⊆ M(Rn) with Ej ↗ E. Use the countable additivity of µf on M(Rn) estab-
lished above to show that

µf (E) = lim
j→∞

µf (Ej).

E 19.4 Fall 2018 Practice Midterm 1.4 e

a. Show that f ∈ L1(Rn) =⇒ |f(x)| < ∞ almost everywhere.

b. Show that if {fk} ⊆ L1(Rn) with ∑ ∥fk∥1 < ∞ then ∑ fk converges almost everywhere and
in L1.

c. Use the Dominated Convergence Theorem to evaluate

lim
t→0

∫ 1

0

etx2 − 1
t

dx.
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20 Practice Exam (November 2014)

20 Practice Exam (November 2014)

E 20.1 Fall 2018 Practice Midterm 2.1 e

a. Carefully state Tonelli’s theorem for a nonnegative function F (x, t) on Rn × R.

b. Let f : Rn → [0,∞] and define

A :=
{

(x, t) ∈ Rn × R
∣∣∣ 0 ≤ t ≤ f(x)

}
.

Prove the validity of the following two statements:

1. f is Lebesgue measurable on Rn ⇐⇒ A is a Lebesgue measurable subset of Rn+1.
2. If f is Lebesgue measurable on Rn then

m(A) =
∫
Rn
f(x)dx =

∫ ∞

0
m
({
x ∈ Rn

∣∣∣ f(x) ≥ t
})

dt.

E 20.2 Fall 2018 Practice Midterm 2.2 e

a. Let f, g ∈ L1(Rn) and give a definition of f ∗ g.

b. Prove that if f, g are integrable and bounded, then

(f ∗ g)(x) |x|→∞→ 0.

c. In parts:

1. Define the Fourier transform of an integrable function f on Rn.
2. Give an outline of the proof of the Fourier inversion formula.
3. Give an example of a function f ∈ L1(Rn) such that f̂ is not in L1(Rn).

E 20.3 Fall 2018 Practice Midterm 2.3 e

Let {un}∞
n=1 be an orthonormal sequence in a Hilbert space H.
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20 Practice Exam (November 2014)

a. Let x ∈ H and verify that∥∥∥∥∥x−
N∑

n=1
⟨x, un⟩un

∥∥∥∥∥
2

H

= ∥x∥2
H −

N∑
n=1

|⟨x, un⟩|2 .

for any N ∈ N and deduce that
∞∑

n=1
|⟨x, un⟩|2 ≤ ∥x∥2

H .

b. Let {an}n∈N ∈ ℓ2(N) and prove that there exists an x ∈ H such that an = ⟨x, un⟩ for all
n ∈ N, and moreover x may be chosen such that

∥x∥H =

∑
n∈N

|an|2
 1

2

.

c. Prove that if {un} is complete, Bessel’s inequality becomes an equality.

Solution (part b):

• Take {an} ∈ ℓ2, then note that ∑ |an|2 < ∞ =⇒ the tails vanish.

• Define x := lim
N→∞

SN where SN = ∑N
k=1 akuk

• {SN } is Cauchy and H is complete, so x ∈ H.

• By construction,

⟨x, un⟩ =
〈∑

k

akuk, un

〉
=
∑

k

ak⟨uk, un⟩ = an

since the uk are all orthogonal.

• By Pythagoras since the uk are normal,

∥x∥2 =
∥∥∥∥∥∑

k

akuk

∥∥∥∥∥
2

=
∑

k

∥akuk∥2 =
∑

k

|ak|2.

Solution (part c):
Let x and un be arbitrary.
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20 Practice Exam (November 2014)

〈
x−

∞∑
k=1

⟨x, uk⟩uk, un

〉
= ⟨x, un⟩ −

〈 ∞∑
k=1

⟨x, uk⟩uk, un

〉

= ⟨x, un⟩ −
∞∑

k=1
⟨⟨x, uk⟩uk, un⟩

= ⟨x, un⟩ −
∞∑

k=1
⟨x, uk⟩⟨uk, un⟩

= ⟨x, un⟩ − ⟨x, un⟩ = 0

=⇒ x−
∞∑

k=1
⟨x, uk⟩uk = 0 by completeness.

So

x =
∞∑

k=1
⟨x, uk⟩uk =⇒ ∥x∥2 =

∞∑
k=1

|⟨x, uk⟩|2.■.

E 20.4 Fall 2018 Practice Midterm 2.4 e

a. Prove Holder’s inequality: let f ∈ Lp, g ∈ Lq with p, q conjugate, and show that

∥fg∥p ≤ ∥f∥p · ∥g∥q.

b. Prove Minkowski’s Inequality:

1 ≤ p < ∞ =⇒ ∥f + g∥p ≤ ∥f∥p + ∥g∥p.

Conclude that if f, g ∈ Lp(Rn) then so is f + g.

c. Let X = [0, 1] ⊂ R.

1. Give a definition of the Banach space L∞(X) of essentially bounded functions of X.

2. Let f be non-negative and measurable on X, prove that

∫
X
f(x)p dx

p→∞→

∞ or

m
({
f−1(1)

}) ,
and characterize the functions of each type

Solution:
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21 May 2016 Qual

∫
fp =

∫
x<1

fp +
∫

x=1
fp +

∫
x>1

fp

=
∫

x<1
fp +

∫
x=1

1 +
∫

x>1
fp

=
∫

x<1
fp +m({f = 1}) +

∫
x>1

fp

p→∞→ 0 +m({f = 1}) +
{

0 m({x ≥ 1}) = 0
∞ m({x ≥ 1}) > 0.

E 20.5 Fall 2018 Practice Midterm 2.5 e

Let X be a normed vector space.

a. Give the definition of what it means for a map L : X → C to be a linear functional.

b. Define what it means for L to be bounded and show L is bounded ⇐⇒ L is continuous.

c. Prove that (X∨, ∥−∥op) is a Banach space.

DZG: this comes from some tex file that I found when
studying for quals, so is definitely not my own content!
I’ve just copied it here for extra practice.

21 May 2016 Qual

E 21.1 May 2016, 1 e

Consider the function f(x) = x
1−x2 , x ∈ (0, 1).

1. By using the ϵ − δ definition of the limit only, prove that f is continuous on (0, 1). (Note:
You are not allowed to trivialize the problem by using properties of limits).

2. Is f uniformly continuous on (0, 1)? Justify your answer.

Proof .
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21 May 2016 Qual

Fix x ∈ (0, 1) and let ϵ > 0. Then we have

|f(x) − f(y)| =
∣∣∣∣ x

1 − x2 − y

1 − y2

∣∣∣∣
=
∣∣∣∣∣x(1 − y2) − y(1 − x2)

(1 − x2)(1 − y2)

∣∣∣∣∣
=
∣∣∣∣ x− y

(1 − x)(1 + x)(1 − y)(1 + y)

∣∣∣∣ .
Now, choose δ > 0 such that

δ < min{1
2(1 − x)2ϵ,

1
2(1 − x)}.

When x− δ < y < x+ δ,

|f(x) − f(y)| =
∣∣∣∣ x− y

(1 − x)(1 + x)(1 − y)(1 + y)

∣∣∣∣
≤
∣∣∣∣ x− y

(1 − x)(1 − y)

∣∣∣∣
≤
∣∣∣∣∣ x− y

(1 − x)(1 − (x+ 1
2(1 − x)))

∣∣∣∣∣
=
∣∣∣∣∣ x− y

(1 − x)(1 − (x+ 1
2(1 − x)))

∣∣∣∣∣
=
∣∣∣∣ 2
(1 − x)2

∣∣∣∣ |x− y|

< ϵ.

As our choice of x ∈ (0, 1) was arbitrary, we conclude that f is continuous on all of (0, 1).
■

Proof .
Proof. We will show that the function f is not uniformly continuous. Consider the sequence
(xn)∞

n=1 in (0, 1) defined by xn = n
n+1 . Observe that

f(xn) =
n

n+1

1 −
(

n
n+1

)2

= n(n+ 1)
(n+ 1)2 − n2

= n(n+ 1)
[(n+ 1) − n][(n+ 1) + n]

= n(n+ 1)
2n+ 1 .

Written as xn = 1 − 1
n+1 , one can more easily see that (xn)∞

n=1 converges to 1 in R, hence is
Cauchy in (0, 1). Now, let δ > 0 and choose N ∈ N such that |xn − xm| < δ when n,m ≥ N .
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For ϵ < 1
8 we have

|f(xn) − f(xn+1)| =
∣∣∣∣n(n+ 1)

2n+ 1 − (n+ 1)(n+ 2)
2n+ 3

∣∣∣∣
=
∣∣∣∣n(n+ 1)(2n+ 3) − (n+ 1)(n+ 2)(2n+ 1)

(2n+ 1)(2n+ 3)

∣∣∣∣
=
∣∣∣∣∣(2n3 + 5n2 + 3n) − (2n3 + 7n2 + 7n+ 2)

(2n+ 1)(2n+ 3)

∣∣∣∣∣
=
∣∣∣∣∣2n2 + 4n+ 2
4n2 + 8n+ 3

∣∣∣∣∣
≥
∣∣∣∣∣ 2n2

16n2

∣∣∣∣∣
= 1

8 .

So for any δ > 0, we see that there exists two points xn, xn+1 ∈ (0, 1) such that |xn −xn+1| < δ
when n is sufficiently large but f(xn) − f(xn+1)| ̸< ϵ. Therefore f(x) is not uniformly
continuous.

■

E 21.2 (May 2016, 2) e

Let {ak}∞
k=1 be a bounded sequence of real numbers and E given by:

E :=
{
s ∈ R : the set {k ∈ N : ak ≥ s} has at most finitely many elements

}
.

Prove that lim supk→∞ ak = inf E.

Proof .
Proof. Let e ∈ E. As there are only finitely many ak ≥ s, there exists some N ∈ N such that
ak < e for all k ≥ N . Define Tk := {ak : k ≥ n}. It is clear that e is thus an upper bound for
TN . So,

e ≥ supTN ≥ lim sup ak.

Thus, lim sup ak is a lower bound for E, meaning inf E ≥ lim sup an.
Conversely, suppose k ∈ N.

Tk = {an : n ≥ k}.

So, supTk ≥ an for all an ∈ Tk. Then, {ak : ak ≥ supTk} must be finite, so {k ∈ N :
ak ≥ supTk} is finite. So, supTk ∈ E for all k ∈ N. Since inf E is a lower bound for E,
inf E ≤ supTk for all k ∈ N. Thus,

inf E ≤ lim(supTk) = lim sup ak.
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We have both inequalities, therefore lim sup ak = inf E.
■

E 21.3 (May 2016, 3) e

Assume (X, d) is a compact metric space.

1. Prove that X is both complete and separable.

2. Suppose {xk}∞
k=1 ⊆ X is a sequence such that the series ∑∞

k=1 d(xk, xk+1) converges. Prove
that the sequence {xk}∞

k=1 converges in X.

E 21.4 (May 2016, 4) e

Suppose that f : [0, 2] → R is continuous on [0, 2] , differentiable on (0, 2), and such that f(0) =
f(2) = 0, f(c) = 1 for some c ∈ (0, 2). Prove that there exists x ∈ (0, 2) such that |f ′(x)| > 1.

Proof .
Proof. We will consider three cases. First, suppose c < 1. Then, by the mean value theorem,
there exists x ∈ (0, c) such that f ′(x)(c− 0) = f(c) − f(0) so f ′(x) = f(c)

c = 1
c > 1 since c < 1.

Similarly, if c > 1 then by the mean value theorem there exits y ∈ (c, 2) such that

|f ′(y)| =
∣∣∣∣f(2) − f(c)

2 − c

∣∣∣∣ =
∣∣∣∣−f(c)

2 − c

∣∣∣∣ =
∣∣∣∣ −1
2 − c

∣∣∣∣ > 1

since 1 < c < 2.
Now, suppose c = 1. If there exists x ∈ (0, 1) such that x < f(x) then by the mean value
theorem on the interval (0, x) there exists s ∈ (0, x) such that f ′(s) = f(x)

x > 1 since f(x) > x.
Likewise, if there exists x ∈ (0, 1) such that x > f(x) then the mean value theorem on (x, 1)
gives a point t ∈ (x, 1) such that |f ′(t)| =

∣∣∣f(1)−f(x)
1−x

∣∣∣ =
∣∣∣1−f(x)

1−x

∣∣∣ > 1 since x > f(x). So, on
(0, 1), if the proposition does not hold then f(x) = x. Similarly, if there exists x ∈ (1, 2) such
that f(x) > 2 − x then the mean value theorem yields a point u ∈ (x, 2) such that

|f ′(u)| =
∣∣∣∣f(2) − f(x)

2 − x

∣∣∣∣ =
∣∣∣∣−f(x)

2 − x

∣∣∣∣ > 1.

since f(x) > 2 − x. If there exists y ∈ (1, 2) such that f(y) < 2 − y then again by the mean
value theorem there exists v ∈ (1, y) such that

|f ′(v)| =
∣∣∣∣f(y) − f(1)

y − 1

∣∣∣∣ =
∣∣∣∣f(y) − 1
y − 1

∣∣∣∣ > 1.
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since f(y) < 2 − y so |f(y) − 1| > |y − 1|. So, on (1, 2) if the proposition does not hold
then f(x) = 2 − x. However, notice that since f(x) is differentiable at x = 1 we cannot have
f(x) = x on (0, 1) and f(x) = 2 − x on (1, 2).

■

E 21.5 (May 2016, 5) e

Let fn(x) = nβx(1 − x2)n, x ∈ [0, 1], n ∈ N.

1. Prove that {fn}∞
n=1 converges pointwise on [0, 1] for every β ∈ R.

2. Show that the convergence in part (a) is uniform for all β < 1
2 , but not uniform for any β ≥ 1

2 .

E 21.6 (May 2016, 6) e

1. Suppose f : [−1, 1] → R is a bounded function that is continuous at 0. Let α(x) = −1 for
x ∈ [−1, 0] and α(x) = 1 for x ∈ (0, 1]. Prove that f ∈ R(α)[−1, 1], i.e., f is Riemann
integrable with respect to α on [−1, 1], and

∫ 1
−1 fdα = 2f(0).

2. Let g : [0, 1] → R be a continuous function such that
∫ 1

0 g(x)x3k+2dx = 0 for all k = 0, 1, 2, . . ..
Prove that g(x) = 0 for all x ∈ [0, 1].

Proof .
Proof. Let ϵ > 0. Choose δ > 0 so that if |x| < δ, then |f(x) − f(0)| < ϵ. Let P be a partition
of [−1, 1] with 0 ∈ P and mesh(P ) < δ. Then

|U(f, P, α) − L(f, P, α)| = |
n∑

i=1
(Mi −mi)∆αi| = (| sup

x∈[0,xk]
f(x) − inf

x∈[0,xk]
f(x)|)2 < 4ϵ.

Thus f is integrable with respect to α. Additionally, we have L(f, P, α) ≤ 2f(0) ≤ U(f, P, α)
for all partitions P of the form described above, and so

∫ 1
−1 fdα = 2f(0).

■

Proof .
Proof. Since g(x) is continuous, so is g(x1/3). Thus by the Weierstrauss Approximation
Theorem, we can find a sequence of polynomials (pn(x)) → g(x1/3) uniformly. Since this holds
for all values x ∈ [0, 1], we have that (pn(x3)) converges to g(x) uniformly. Then we have
(x2pn(x3)) converges to x2g(x) uniformly. Note that by assumption,

∫ 1
0 g(x)x2pn(x3)dx = 0,
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and so

0 = lim
n→∞

∫ 1

0
g(x)x2pn(x3)dx =

∫ 1

0
lim

n→∞
g(x)x2pn(x3)dx =

∫ 1

0
x2g2(x)dx.

Since x2g2(x) is non-negative, and its integral is zero, we conclude that x2g2(x) = 0 for all x.
Therefore, we have g(x) = 0.

■

22 Metric Spaces and Topology

E 22.1 (May 2019, 1) e

Let (M,dM ), (N, dN ) be metric spaces. Define

dM×N : (M ×N) × (M ×N) → R

by

dM×N ((x1, y1), (x2, y2)) := dM (x1, x2) + dN (y1, y2)..

1. Prove that (M ×N, dM×N ) is a metric space.

2. Let S ⊆ M and T ⊆ N be compact sets in (M,dM ) and (N, dN ), respectively. Prove that
S × T is a compact set in (M ×N, dM×N ).

Proof .
Proof. To prove that (M ×N, dM×N ) is a metric space we must prove that dM×N is a metric
on M ×N .

• Positive Definite-

Let (x1, y1), (x2, y2) ∈ M ×N . Then since dM is a metric on M , then dM (x1, x2) ≥ 0 for all
xi, xj ∈ M and dN is a metric on N and likewise dN (y1, y2) ≥ 0 for any yi, yj ∈ N.
Then by definition

dM×N ((x1, y1), (x2, y2)) = dM (x1, x2) + dN (y1, y2) ≥ 0 + 0 = 0..

Hence since (x1, y1), (x2, y2) are arbitrary, dM×N ((x1, y1), (x2, y2)) ≥ 0 for all (xi, yi), (xj , yj) ∈
M ×N .
Suppose that dM×N ((x1, y1), (x2, y2)) = 0. By definition

dM×N ((x1, y1), (x2, y2)) = dM (x1, x2) + dN (y1, y2).
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Therefore dM (x1, x2) + dN (y1, y2) = 0, since dM , dN are metrics, then dM (x1, x2) ≥
0, dN (y1, y2) ≥ 0, which implies that dM (x1, x2) = dN (y1, y2) = 0 and also since they are
metrics we have that x1 = x2, y1 = y2. Hence, (x1, y1) = (x2, y2).
Now suppose that (x1, y1) = (x2, y2). Then x1 = x2, y1 = y2 and for the metrics dM , dN we
would have dM (x1, x2) = 0, dN (y1, y2) = 0. Thus

dM×N ((x1, y1), (x2, y2)) = dM (x1, x2) + dN (y1, y2) = 0 + 0 = 0.

Therefore dM×N ((x1, y1), (x2, y2)) = 0 if and only if (x1, y1) = (x2, y2).

• Symmetric

Let (x1, y1), (x2, y2) ∈ M ×N . Then since dM is a metric on M , then dM (x1, x2) = dM (x2, x1)
for all xi, xj ∈ M and dN is a metric on N and likewise dN (y1, y2) = dN (y2, y1) for any
yi, yj ∈ N. Therefore,

dM×N ((x1, y1), (x2, y2)) = dM (x1, x2) + dN (y1, y2)
= dM (x2, x1) + dN (y2, y1)
= dM×N ((x2, y2), (x1, y1)).

• Triangle Inequality

Since dM , dN are metrics then for all x1, x2, x3 ∈ M,y1, y2, y3 ∈ N we have that

dM (x1, x2) ≤ dM (x1, x3) + dM (x3, x2)

and that

dN (y1, y2) ≤ dN (y1, y3) + dN (y3, y2)..

Therefore,

dM×N ((x1, y1), (x2, y2)) = dM (x1, x2) + dN (y1, y2)
dM (x1, x2) + dN (y1, y2) ≤ dM (x1, x3) + dM (x3, x2) + dN (y1, y3) + dN (y3, y2)

dM (x1, x3) + dM (x3, x2) + dN (y1, y3) + dN (y3, y2) = dM (x1, x3) + dN (y1, y3) + dM (x3, x2) + dN (y3, y2)
dM (x1, x3) + dN (y1, y3) + dM (x3, x2) + dN (y3, y2) = dM ((x1, y1), (x3, y3)) + dM ((x3, y3), (x2, y2)).

Hence

dM×N ((x1, y1), (x2, y2)) ≤ dM ((x1, y1), (x3, y3)) + dM ((x3, y3), (x2, y2))..

Therefore dM×N is a metric on M ×N and (M ×N, dM×N ) is a metric space.
■

Proof .
Proof. By part a we showed that (M ×N, dM×N ) is a metric space. Let {sn, tn} be a sequence
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in S × T. Since {sn} is a sequence on a compact set S in a metric space (M,dM ) then it has a
convergent subsequence snk

. Let limk→∞ snk
= s0.

Since {tnk
} is a sequence on a compact set T in a metric space. Thus {tnk

} has a convergent
subsequence {tnkj

}. Let limj→∞ tnkj
= t0. Thus {snkj

} is a subsequence of {snk
}. And since

{snk
} converges to s0, then any subsequence also converges to s0.

Let ϵ > 0 be given. Then for ϵ/2 there exists N1, N2 ∈ N such that for all nkj
≥

N1, dM (snkj
, s0) < ϵ/2, and for all nkj

≥ N2, dN (tnkj
, t0) < ϵ/2. Choose N = Max({N1, N2}).

Then

dM×N ((snkj
, tnkj

), (s0, t0)) = dM (snkj
, s0) + dN (tnkj

, t0) < ϵ/2 + ϵ/2 = ϵ..

Therefore

dM×N ((snkj
, tnkj

), (s0, t0)) < ϵ..

Hence {(snkj
, tnkj

) converges to (s0, t0). Therefore S × T is sequentially compact and S × T is
therefore compact.

■

E 22.2 (June 2003, 1b,c) e

(b) Show by example that the union of infinitely many compact subsets of a metric space need
not be compact. (c) If (X, d) is a metric space and K ⊂ X is compact, define d(x0,K) =
infy∈K d(x0, y). Prove that there exists a point y0 ∈ K such that d(x0,K) = d(x0, y0).

E 22.3 (January 2009, 4a) e

Consider the metric space (Q, d) where Q denotes the rational numbers and d(x, y) = |x− y|. Let
E = {x ∈ Q : x > 0, 2 < x2 < 3}. Is E closed and bounded in Q? Is E compact in Q?

E 22.4 (January 2011 3a) e

Let (X, d) be a metric space, K ⊂ X be compact, and F ⊂ X be closed. If K ∩ F = ∅, prove that
there exists an ϵ > 0 so that d(k, f) ≥ ϵ for all k ∈ K and f ∈ F .

Proof .
Proof. We prove this by contrapositive. Suppose for all ϵ > 0, there exists k ∈ K, f ∈ F such
that d(k, f) < ϵ. Then for all n ∈ N, we can choose kn ∈ K, fn ∈ F such that d(kn, fn) < 1

n .
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Since kn is a sequence in K, which is compact (and therefore sequentially compact), there
exists a subsequence knj ⊆ kn with the property that knj converges to some k0 ∈ K. Find
N ∈ N such that for n ≥ N , d(knj , k0) < ϵ

2 and 1
n <

ϵ
2 . Then

d(fnj , k0) ≤ d(fnj , knj ) + d(knj , k0) < ϵ

2 + ϵ

2 = ϵ.

Thus, fnj also converges to k0, and since F is closed, k0 ∈ F . So K ∩ F ̸= ∅.
■

E 22.5 5? e

Let (X, d) be an unbounded and connected metric space. Prove that for each x0 ∈ X, the set
{x ∈ X : d(x, x0) = r} is nonempty.

23 Sequences and Series

E 23.1 (June 2013 1a) e

Let an =
√
n
(√
n+ 1 −

√
n
)
. Prove that limn→∞ an = 1/2.

E 23.2 (January 2014 2) e

1. Produce sequences {an}, {bn} of positive real numbers such that

lim inf
n→∞

(anbn) >
(
lim inf
n→∞

an

) (
lim inf
n→∞

bn

)
..

2. If {an}, {bn} are sequences of positive real numbers and {an} converges, prove that

lim inf
n→∞

(anbn) =
(

lim
n→∞

an

) (
lim inf
n→∞

bn

)
..

E 23.3 (May 2011 4a) e

Determine the values of x ∈ R for which
∞∑

n=1

xn

1 + n|x|n
converges, justifying your answer carefully.
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E 23.4 (June 2005 3b) e

If the series ∑∞
n=0 an converges conditionally, show that the radius of convergence of the power

series ∑∞
n=0 anx

n is 1.

E 23.5 (January 2011 5) e

Suppose {an} is a sequence of positive real numbers such that limn→∞ an = 0 and ∑ an diverges.
Prove that for all x > 0 there exist integers n(1) < n(2) < . . . such that ∑∞

k=1 an(k) = x.

(Note: Many variations on this problem are possible
including more general rearrangements. You may also
wish to show that if

∑
an converges conditionally then

given any x ∈ R there is a rearrangement of {bn} of
{an} such that

∑
bn = r. See Rudin Thm. 3.54 for

a further generalization.)

E 23.6 (June 2008 # 4b) e

Assume β > 0, an > 0, n = 1, 2, . . ., and the series ∑ an is divergent. Show that
∑ an

β + an
is also

divergent.

24 Continuity of Functions

25 Differential Calculus

E 25.1 (June 2005 1a) e

Use the definition of the derivative to prove that if f and g are differentiable at x, then fg is
differentiable at x.
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E 25.2 (January 2006 2b) e

Assume that f is differentiable at a. Evaluate

lim
x→a

anf(x) − xnf(a)
x− a

, n ∈ N..

E 25.3 (June 2007 3a) e

Suppose that f, g : R → R are differentiable, that f(x) ≤ g(x) for all x ∈ R, and that f(x0) = g(x0)
for some x0. Prove that f ′(x0) = g′(x0).

E 25.4 (June 2008 3a) e

Prove that if f ′ exists and is bounded on (a, b], then limx→a+ f(x) exists.

E 25.5 (January 2012 4b, extended) e

Let f : R → R be a differentiable function with f ′ ∈ C(R). Assume that there are a, b ∈ R with
limx→∞ f(x) = a and limx→∞ f ′(x) = b. Prove that b = 0. Then, find a counterexample to show
that the assumption limx→∞ f ′(x) exists is necessary.

E 25.6 (June 2012 1a) e

Suppose that f : R → R satisfies f(0) = 0. Prove that f is differentiable at x = 0 if and only if there
is a function g : R → R which is continuous at x = 0 and satisfies f(x) = xg(x) for all x ∈ R.
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26 Integral Calculus

E 26.1 (January 2006 4b) e

Suppose that f is continuous and f(x) ≥ 0 on [0, 1]. If f(0) > 0, prove that
∫ 1

0 f(x)dx > 0.

E 26.2 (June 2005 1b) e

Use the definition of the Riemann integral to prove that if f is bounded on [a, b] and is continuous
everywhere except for finitely many points in (a, b), then f ∈ R on [a, b].

E 26.3 (January 2010 5) e

Suppose that f : [a, b] → R is continuous, f ≥ 0 on [a, b], and put M = sup{f(x) : x ∈ [a, b]}. Prove
that

lim
p→∞

(∫ b

a
f(x)p dx

)1/p

= M..

E 26.4 (January 2009 4b) e

Let f be a continuous real-valued function on [0, 1]. Prove that there exists at least one point
ξ ∈ [0, 1] such that

∫ 1
0 x

4f(x) dx = 1
5f(ξ).

Proof .
Proof. Assume that f is a continuous real-valued function on [0, 1]. Then, by the Intermediate
Value Theorem we have that f attains its maximum and minimum on [0, 1]. That is, for some
a, b ∈ [0, 1],

f(a) = min
[0,1]

f(x) and f(b) = max
[0,1]

f(x)..

We now have f(a) ≤ f(x) ≤ f(b) for all x ∈ [0, 1]. This gives

f(a)
∫ 1

0
x4dx ≤

∫ 1

0
x4f(x)dx ≤ f(b)

∫ 1

0
x4dx..
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By the Fundamental Theorem of Calculus we know that

∫ 1

0
x4dx = 1

5 ..

Thus, it follows that

1
5f(a) ≤

∫ 1

0
x4f(x)dx ≤ 1

5f(b).

giving

f(a) ≤ 5
∫ 1

0
x4f(x)dx ≤ f(b)..

By the Intermediate Value Theorem, there exists ξ ∈ [0, 1] such that

f(ξ) = 5
∫ 1

0
x4f(x)dx..

Therefore, we have that there exists ξ ∈ [0, 1] such that∫ 1

0
x4f(x)dx = 1

5f(ξ).

■

E 26.5 (June 2009 5b) e

Let φ be a real-valued function defined on [0, 1] such that φ, φ′, and φ′′ are continuous on [0, 1].
Prove that ∫ 1

0
cosxxφ

′(x) − φ(x) + φ(0)
x2 dx <

3
2 ||φ′′||∞,

where ||φ′′||∞ = sup[0,1] |φ′′(x)|. Note that 3/2 may not be the smallest possible constant.
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27 Sequences and Series of Functions

E 27.1 (June 2010 6a) e

Let f : [0, 1] → R be continuous with f(0) ̸= f(1) and define fn(x) = f(xn). Prove that fn does
not converge uniformly on [0, 1].

E 27.2 (January 2008 5a) e

Let fn(x) = x
1+nx2 for n ∈ N. Let F := {fn : n = 1, 2, 3, . . .} and [a, b] be any compact subset of R.

Is F equicontinuous? Justify your answer.

E 27.3 (January 2005 4, June 2010 6b) e

If f : [0, 1] → R is continuous, prove that

lim
n→∞

∫ 1

0
f(xn) dx = f(0)..

E 27.4 (January 2020 4a) e

Let M < ∞ and F ⊆ C[a, b]. Assume that each f ∈ F is differentiable on (a, b) and satisfies
|f(a)| ≤ M and |f ′(x)| ≤ M for all x ∈ (a, b). Prove that F is equicontinuous on [a, b].

E 27.5 (June 2005 5) e

Suppose that f ∈ C([0, 1]) and that
∫ 1

0
f(x)xn dx = 0 for all n = 99, 100, 101, . . .. Show that f ≡ 0.

Note: Many variations on this problem exist. See
June 2012 6b and others.
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E 27.6 (January 2005 3b) e

Suppose fn : [0, 1] → R are continuous functions converging uniformly to f : [0, 1] → R. Either
prove that

lim
n→∞

∫ 1

1/n
fn(x) dx =

∫ 1

0
f(x) dx.

or give a counterexample.

28 Miscellaneous Topics

E Bounded Variation e

E 28.1 (January 2018) e

Let f : [a, b] → R. Suppose f ∈ BV[a, b]. Prove f is the difference of two increasing functions.

E 28.2 (January 2007, 6a) e

Let f be a function of bounded variation on [a, b]. Furthermore, assume that for some c > 0,
|f(x)| ≥ c on [a, b]. Show that g(x) = 1/f(x) is of bounded variation on [a, b].

E 28.3 (January 2017, 2a) e

Define f : [0, 1] → [−1, 1] by

f(x) :=
{
x sin

( 1
x

)
0 < x ≤ 1

0 x = 0
.

Determine, with justification, whether f is if bounded variation on the interval [0, 1].
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E 28.4 (January 2020, 6a) e

Let {an}∞
n=1 ⊆ R and a strictly increasing sequence {xn}∞

n=1 ⊆ (0, 1) be given. Assume that∑∞
n=1 an is absolutely convergent, and define α : [0, 1] → R by

α(x) :=
{
an x = xn

0 otherwise
..

Prove or disprove: α has bounded variation on [0, 1].

E Metric Spaces and Topology e

1. Find an example of a metric space X and a subset E ⊆ X such that E is closed and bounded
but not compact.

E 28.5 (May 2017 6) e

Let (X, d) be a metric space. A function f : X → R is said to be lower semi-continuous (l.s.c)
if f−1(a,∞) = {x ∈ X : f(x) > a} is open in X for every a ∈ R. Analogously, f is upper
semi-continuous (u.s.c) if f−1(−∞, b) = {x ∈ X : f(x) < b} is open in X for every b ∈ R.

1. Prove that a function f : X → R is continuous if and only if f is both l.s.c. and u.s.c.

2. Prove that f is lower semi-continuous if and only if lim infn→∞ f(xn) ≥ f(x) whenever
{xn}∞

n=1 ⊆ X such that xn → x in X.

E 28.6 (January 2017 3) e

Let (X, d) be a compact metric space. Suppose that fn : X → [0,∞) is a sequence of continuous
functions with fn(x) ≥ fn+1(x) for all n ∈ N and x ∈ X, and such that fn → 0 pointwise on X.
Prove that {fn}∞

n=1 converges uniformly on X.
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E 29.1 1. e

(June 2014 1)Define α : [−1, 1] → R by

α(x) :=
{

−1 x ∈ [−1, 0]
1 x ∈ (0, 1].

.

Let f : [−1, 1] → R be a function that is uniformly bounded on [−1, 1] and continuous at x = 0, but
not necessarily continuous for x ̸= 0. Prove that f is Riemann-Stieltjes integrable with respect to
α over [−1, 1] and that ∫ 1

−1
f(x)dα(x) = 2f(0)..

E 29.2 (June 2017 2) e

Prove : f ∈ R(α) on [a, b] if and only if for any a < c < b, f ∈ R(α) on [a, c] and on [c, b]. In
addition, if either condition holds, then we have that∫ c

a
fdα+

∫ b

c
fdα =

∫ b

a
fdα.

E 29.3 (Spring 2017 7) e

Prove that if f ∈ R on [a, b] and α ∈ C1[a, b], then the Riemann integral
∫ b

a f(x)α′(x)dx exists
and ∫ b

a
f(x)dα(x) =

∫ b

a
f(x)α′(x)dx..
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E 30.1 (January 2006 1) e

Let the power series series ∑∞
n=0 anx

n and ∑∞
n=0 bnx

n have radii of convergence R1 and R2, respec-
tively.

E 30.2 ? e

If R1 ̸= R2, prove that the radius of convergence, R, of the power series ∑∞
n=0(an + bn)xn is

min{R1, R2}. What can be said about R when R1 = R2?

E 30.3 ? e

Prove that the radius of convergence, R, of ∑∞
n=0 anbnx

n satisfies R ≥ R1R2. Show by means of
example that this inequality can be strict.

E 30.4 ? e

Show that the infinite series ∑∞
n=0 x

n2−nx converges uniformly on [0, B] for any B > 0. Does this
series converge uniformly on [0,∞)?

E 30.5 (January 2006 4a) e

Let

fn(x) =
{ 1

n x ∈ ( 1
2n+1 ,

1
2n ]

0 otherwise.
.

Show that ∑∞
n=1 fn does not satisfy the Weierstrass M-test but that it nevertheless converges

uniformly on R.
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E 30.6 ? e

Let fn : [0, 1) → R be the function defined by

fn(x) :=
n∑

k=1

xk

1 + xk
..

1. Prove that fn converges to a function f : [0, 1) → R.

2. Prove that for every 0 < a < 1 the convergence is uniform on [0, a].

3. Prove that f is differentiable on (0, 1).

E January 2019 Qualifying Exam e

1. Suppose that f : [0, 1] → R is differentiable and f(0) = 0. Assume that there is a k > 0 such
that

|f ′(x)| ≤ k|f(x)|

for all x ∈ [0, 1]. Prove that f(x) = 0 for all x ∈ [0, 1].

Proof .
Proof. Let 0 < δ1 < 1, and fix x1 ∈ (0, δ1]. Since f(x) is differentiable on all of [0, 1], f(x) is
differentiable on all of (0, δ1). So by the Mean Value Theorem, there exists x2 ∈ (0, x1) such
that

f ′(x2) = f(x1) − f(0)
x1 − 0 = f(x1)

x1
.

Solving for f(x1), we get f(x1) = f ′(x2)x1. So by hypothesis, f(x1) = f ′(x2)x1 ≤ k|f(x2)|x1.
Assume for x1, x2, . . . , xn−1 ∈ (0, 1) the following conditions are satisfied for j ∈ {1, 2, . . . , n−
1}.

xj ∈ (0, xj−1)
f(xj−1) = f ′(xj)xj−1

f(x1) ≤ kj−1|f(xj)|(xj−1 · · ·x2x1)

I now claim that this inductive process is true for j = n, given that it holds for all j ≤ n. We
apply the Mean Value Theorem to find some xn ∈ (0, xn−1) such that f ′(xn) = f(xn−1)

xn−1
, then

write f(xn−1) = f ′(xn)xn−1. By our inductive hypothesis, we have
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|f(x1)| ≤ kn−2|f(xn−1)|(xn−2 · · ·x2x1)
= kn−2|f ′(xn)xn−1|(xn−2 · · ·x2x1)
≤ kn−2(k|f(xn)|)(xn−1xn−2 · · ·x2x1)
= kn−1|f(xn)|(xn−1xn−2 · · ·x2x1).

Thus our claim holds by induction. Now, since f is a continuous function on the closed interval,
we can apply the Extreme Value Theorem to find some M > 0 for which f(x) ≤ M for all
x ∈ [0, 1]. Thus we get

|f(x1)| ≤ knM(xn · · ·x1) = (kxn)(kxn−1) · · · (kx1)M

for all n ∈ N. If k < 1
x1

, then for any ϵ > 0 we can find N ∈ N sufficiently large so that
|f(x1)| < ϵ. Otherwise, we set δ1 <

1
k so that kx1 < 1.

■
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