date: 2022-06-12 18:21
modification date: Sunday 12th June 2022 18:21:43
title: "2022 Talbot Talk Outline V3"
aliases: [2022 Talbot Talk Outline V3]
tags: projects/talbot-talk
status: in-progress

Last modified date: 2022-06-14 16:10

2022 Talbot Talk Outline V3

- Todos and questions to ask
 - (Are any particular theorems necessary for later talks?
 - Slogans for theorems
 - Clarifications on proofs: need to mark questions to ask Inna.
- Major goals to hit in talk:
 - Discuss Q1, Larsen-Lunts/Gromov question on piecewise isomorphism
 - Discuss Q2, $\operatorname{Ann}(\mathbb{L}) =_? 0$ and why we care.
 - Discuss Borisov's result relating it to ψ_n
 - \circ [State and sketch Thm A: description of $\mathsf{K}(\mathcal{V})$ and the sseq
 - State and prove Thm B: what the sseq measures
 - State and sketch Thm C: how Q1 and Q2 are linked
 - State and sketch Thm D: partially characterize $Ann(\mathbb{L})$
 - State Thm E: strong link to birational geometry.
 - Discuss unknowns, open questions, conjectures.
- Things to prove
 - Thm A, if time. Just show the calculation if short on time.
 - Thm B, to get a handle of d_r and ∂ .

YAML

- $\begin{array}{l} | \left[\begin{array}{c} \bullet \end{array} \right] \left[\begin{array}{c} \mathsf{Possibly skip proof of Lem 3.2 if short on time?} \\ \bullet \end{array} \right] \left[\mathsf{Thm C}, \mathsf{sketch proof (lots of auxiliary objects)} \\ \bullet \end{array} \right] \left[\mathsf{Thm D}, \mathsf{maybe okay to skip diagram chase? Emphasize how to get elements in \ker \psi_n. \end{array} \right]$

Preliminaries

- Where we are:
 - (Yesterday: classical scissors congruence.
 - \circ [Today: $SC \to K$, i.e. how can we encode/detect scissors congruence in the language of K theory using assemblers.
 - Tomorrow: $\mathsf{K} \to \operatorname{SC}$: enriching motivic measures, generalizing assemblers to other cut-and-paste problems, towards a topological approach on a generalized Hilbert's 3rd problem.
- Conventions:
 - k is a field.
 - A **variety** $X_{/k}$ means a reduced separated scheme of finite type over $\operatorname{Spec} k$.

- A **stratification** of a space X is given by a partition $X=igstyle{}_{i\in I}X_i$ into locally closed subsets over a poset I such that for each $j \in I$ we have

$$\overline{X_j} \subset igoplus_{i \leq j} X_i$$

- The parts X_i are called the *strata* of the stratification.

- X, Y are isomorphic iff they are isomorphic in Sch_{/k}.

Write this as $X \cong Y$.

- Induced by ring morphisms on an open affine cover. Not guite a morphism of ringed spaces!

- The model for Sp we use is symmetric spectra of simplicial sets, take stable model structure with levelwise cofibrations.

- $\mathcal{V}=\mathcal{V}_k$ is the aseembler of varieties over k and closed inclusions (locally closed embeddings).

- $K_0(\mathcal{V})$ is the **Grothendieck group of varieties** as in Michael's talk (Talk 7). - $\mathbb{L} = [\mathbb{A}^1_{/k}]$ is the **Lefschetz motive**, the class of the affine line.

$$\operatorname{Ann}(\mathbb{L}) \coloneqq \ker(\mathsf{K}_0(\mathcal{V}) \stackrel{\cdot \mathbb{L}}{\to} \mathsf{K}_0(\mathcal{V}))$$

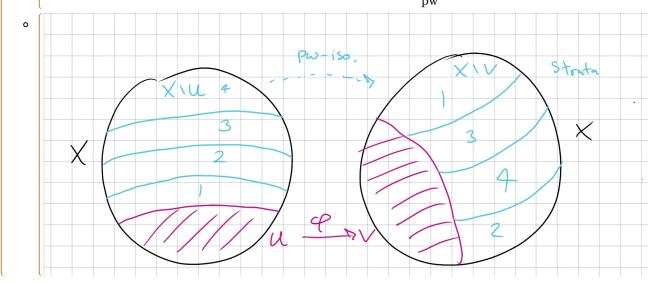
where $\cdot \mathbb{L}$ is the map induced by $X \mapsto X {\mathop{ imes}\limits_{k}} \mathbb{A}^1_{/k}.$ - CA fact: \mathbb{L} is a zero divisor $\iff \operatorname{Ann}(\mathbb{L}) = 0$.

- Examples of working with \mathbb{L} .
 - $ig| extsf{If } \mathcal{E} o X$ is a rank n vector bundle (Zariski-locally trivial fibration with fibers \mathbb{A}^n) then $[\mathcal{E}] = [X] \cdot [\mathbb{A}^n] = [X] \cdot \mathbb{L}^n.$

- X, Y are **birational** iff there is an isomorphism $\phi: U \xrightarrow{\sim} V$ of dense open subschemes. Write this as $X \xrightarrow{\sim} Y$.
 - (So in equations ϕ is given by rational functions.
 - Birational maps: "almost isomorphisms" which allow not just polynomial but rational functions, and are isomorphisms away from an exceptional set of e.g. poles or a branch locus
 - (Motivations: MMP!
- X, Y are stably birational iff $X \times \mathbb{P}^N \xrightarrow{\sim} Y \times \mathbb{P}^M$ for some N, M. Write this as $X \xrightarrow{\sim \text{Stab}} Y$.
 - Lots of interesting aspects of birational geometry: $h^0(X; \Omega_X), \pi_1(X^{an}), \operatorname{CH}_0(X)$ are stable birational invariants (see recent 2010s work of Claire Voisin)

 $egin{aligned} X,Y & ext{are piecewise isomorphic} & ext{if there are stratifications} & X = igoplus_{i \in I} X_i & ext{and} \ Y = igoplus_{i \in I} Y_i & ext{with each} & X_i \cong Y_i. \end{aligned}$ Write this as $X \cong Y_i$.

- (Think of this as cut-and-paste equivalence for varieties.
- $\circ ig(extsf{Note} \ X \cong _{ extsf{pw}} Y \implies [X] = [Y] \in \mathsf{K}_0(\mathcal{V}).$
- $\circ \ \Big(\text{If} \ X \xrightarrow{\sim} Y \text{ and additionally} \ X \setminus U \cong Y \setminus V \text{, then } X \underset{\text{pw}}{\cong} Y \text{ and } [X] = [Y].$



Motivation

Reference: Zak17b, Annihilator of the Lefschetz Motive

- Summary of big questions:
 - When is $K_0(\mathcal{V}) \to K_0(\mathcal{V})[\frac{1}{\mathbb{L}}]$ injective? So are equations in the localization still valid in the original ring?
 - \circ [What does equality in $K_0(\mathcal{V})$ mean geometrically? What does an equation in this ring mean?

• Summary of big structural questions about $K_0(\mathcal{V})$ we're looking at in this paper:

Q1: Larsen-Lunts/Gromov, PW Isos

• There is a filtration on $\mathsf{K}_0(\mathcal{V}_k)$ where $\operatorname{\mathsf{gr}}_n$ is induced by the image of

$$\mathsf{gr}\,_n\mathsf{K}_0(\mathcal{V}) = \mathrm{im}\left(rac{\mathbb{Z}ig[Xig|\dim X \leq nig]}{\langle [X] = [Y] + [Xackslash Y]
angle} \stackrel{\psi_n}{\longrightarrow} \mathsf{K}_0(\mathcal{V}_k)
ight)$$

- Q, Gromov: if $U, V \hookrightarrow X$ with $X \setminus U \cong X \setminus V$, how far are U and V from being birational?
- Q, Larsen-Lunts: $[X] = [Y] \stackrel{???}{\Longrightarrow} X \underset{\mathrm{pw}}{\cong} Y?$
- **Answer**: No! Borisov and Karzhemanov construct counterexamples for $k \hookrightarrow \mathbb{C}$, Inna shows that this fails for *convenient* fields.
- (Conjecture: this is almost true, and the only obstructions come from $Ann(\mathbb{L})$.
- (Conjecture: for certain varieties, $[X] = [Y] \implies X, Y$ are stably birational.
- Encode these as injectivity of ψ_n , so $\ker \psi_n = 0$ -- when does $X \xrightarrow{\sim} Y$ extend to $X \cong Y$?

Q2: $\operatorname{Ann}(\mathbb{L}) \stackrel{?}{=} 0$

- When is $\mathrm{Ann}(\mathbb{L})$ nonzero?
 - (Important for motivic measures, rationality questions.
- Answer (Borisov): \mathbb{L} generally is a zero divisor, Borisov and Karzhemanov elements in $Ann(\mathbb{L})$ and seemingly coincidentally constructs elements in ker ψ_n .
 - In case not covered in previous talk
 - Shows an equality in K_0 :

Theorem 2.13. The cut-and-paste conjecture of Larsen and Lunts fails.

Proof. The equality

$$[X_W](L^2 - 1)(L - 1)L^7 = [Y_W](L^2 - 1)(L - 1)L^7$$

implies that trivial $GL(2, \mathbb{C}) \times \mathbb{C}^6$ bundles over X_W and Y_W have the same class in the Grothendieck ring. If it were possible to cut them into unions of isomorphic varieties, then $X_W \times GL(2, \mathbb{C}) \times \mathbb{C}^6$ would be birational to $Y_W \times GL(2, \mathbb{C}) \times \mathbb{C}^6$. This implies that X_W and Y_W are stably birational, and thus birational, in contradiction with Proposition 2.2.

- Shows that certain bundles over X, Y are birational, so X, Y are stably birational
- Picks a special mirror pair where stably birational implies birational
- Show the bundles are pw-iso, so stably birational.
- Use that X, Y are known not to be birational.
- $({ t Q}: { t How} ext{ and } { t why} ext{ are } { t Ann}({ t L}) ext{ and } \ker \psi_n ext{ related}?$

Outline of Results

- Slogans for what's shown in this paper:
 - **Thm A:** Constructs a stable (filtered) homodtopy type $K(\mathcal{V})$ where gr $K(\mathcal{V})$ is simpler than gr $K_0(\mathcal{V})$.
 - **Thm B**: The associated spectral sequence is an obstruction theory for birational auts extending to pw auts (so detects ker ψ_n for various n)
 - **(Thm C:** Q1 and Q2 are linked: elements in $Ann(\mathbb{L})$ yield elements in $ker(\psi_n)$.
 - **(Thm D**: Partial characterizations of $Ann(\mathbb{L})$.
 - (Thm E: Identification of $K_0(\mathcal{V})/\langle \mathbb{L} \rangle$ in terms of stable birational geometry.
- Conclusions:
 - $\circ~({ t Elements}$ in ${
 m Ann}({\mathbb L})$ always produce elements in $\ker \psi_n$

Theorems

Thm A: There is a homotopical enrichment of $K_0(\mathcal{V})$ with a simple associated graded

Theorem

Let

- $\left(\mathcal{V}_k^{(n)}
 ight)$ be the nth filtered assembler of $\mathcal V$ generated by varieties of dimension $d\leq n.$
- $(\operatorname{Aut}_k k(X))$ be the group of birational automorphisms of the variety X.
- $(B_n$ be the set of birational isomorphism classes of varieties of dimension d=n.

There is a spectrum $K(\mathcal{V})$ such that $K_0(\mathcal{V}) \coloneqq \pi_0 K(\mathcal{V})$ coincides with the Grothendieck group of varieties discussed previously, and $\mathcal{V}^{(n)}$ induces a filtration on the $K(\mathcal{V})$ such that

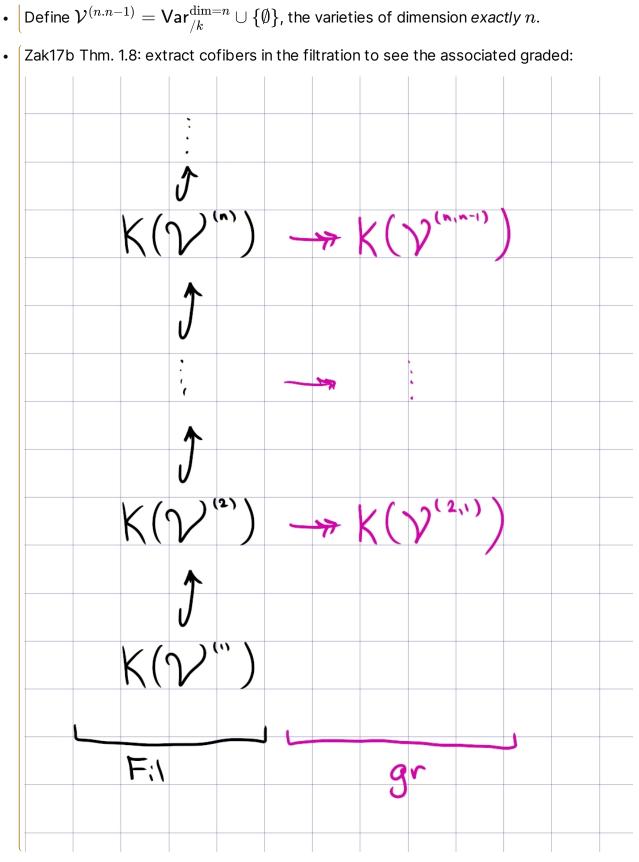
$${\operatorname{\mathsf{gr}}}_n{\operatorname{\mathsf{K}}}({\mathcal V}) = igvee_{[X]\in B_n} \Sigma^\infty_+ {\operatorname{\mathbf{B}}}\operatorname{Aut}_k\,k(X),$$

with an associated spectral sequence

$$E^1_{p,q} = igvee_{[X]\in B_n} \left(\pi_p \Sigma^\infty_+ {f B}\operatorname{Aut}_k \, k(X) \oplus \pi_p \mathbb{S}
ight) \Rightarrow {\sf K}_p(\mathcal{V})$$

Note that the p=0 column converges to $\mathsf{K}_0(\mathcal{V})$.

Proof



• (Finish by a computation:

$$egin{aligned} \mathsf{K}(\mathcal{V}^{(n,n-1)})&\simeq ilde{\mathsf{K}}(\mathcal{V}^{(n,n-1)})\ &\simeq \mathsf{K}(\mathsf{C})\ &\simeq \mathsf{K}\left(igcolowbreak \bigvee_{lpha\in B_n}\mathsf{C}_{X_lpha}
ight)\ &\simeq \bigvee_{lpha\in B_n}\mathsf{K}(\mathsf{C}_{X_lpha})\ &\cong \bigvee_{lpha\in B_n}\Sigma^\infty_+\mathbf{B}\operatorname{Aut}_kk(X_lpha) &= \operatorname{Zak17a}\ &\coloneqq \bigvee_{lpha\in B_n}\Sigma^\infty_+\mathbf{B}\operatorname{Aut}(lpha). \end{aligned}$$

where

- $[ilde{\mathsf{K}}(\mathcal{V}^{(n,n-1)}):$ the full subassembler of irreducible varieties.
 - **Why the reduction works:** general theorem (Zak17b Thm. 1.9) on subassemblers with enough disjoint open covers
 - $\int \mathsf{C} \leq \mathcal{V}^{(n,n-1)}$: subvarieties of some X_lpha representing some lpha, as lpha ranges over $B_n.$
 - **(Why the reduction works:** apply (Zak17b Thm. 1.9) again
- $\Big(\mathsf{C}_{X_{\alpha}} \Big)$ is the subassembler of only those varieties admitting a (unique) morphism to X_{α} for a fixed α .
 - **Why the reduction works:** each nonempty variety admits a morphism to exactly one X_{α} representing some α -- otherwise, if $X \mapsto X_{\alpha}, X_{\beta}$ then X_{α} and X_{β} are forced to be birational (the morphisms are inclusions of dense opens) implying $\alpha = \beta$
- $\operatorname{(Aut}(lpha):=\operatorname{Aut}_k k(X)$ for any X representing $lpha\in B_n.$

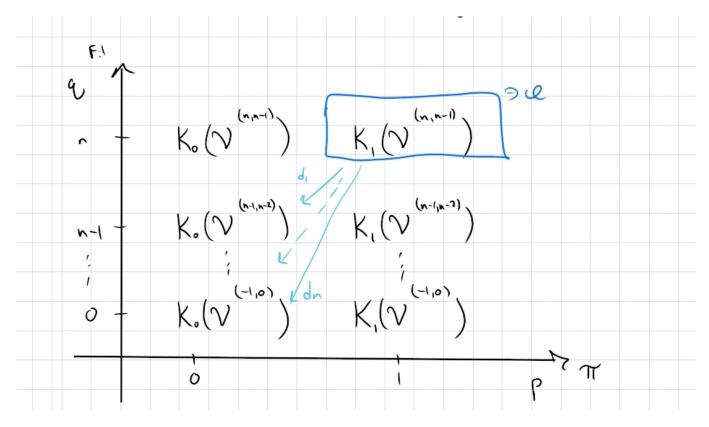
Thm B: the spectral sequence measures $\ker\psi_n$ and how birational morphisms can fail to extend to piecewise isomorphisms

🧪 Theorem

There exists nontrivial differentials d_r from column 1 to column 0 in some page of $E^* \iff igcup_n \ker \psi_n
eq 0$ (ψ_n has a nonzero kernel for some n),

More precisely, $\phi\in \operatorname{Aut}_k k(X)$ extends to a piecewise automorphism $\iff d_r[\phi]=0 \quad orall r\geq 1.$

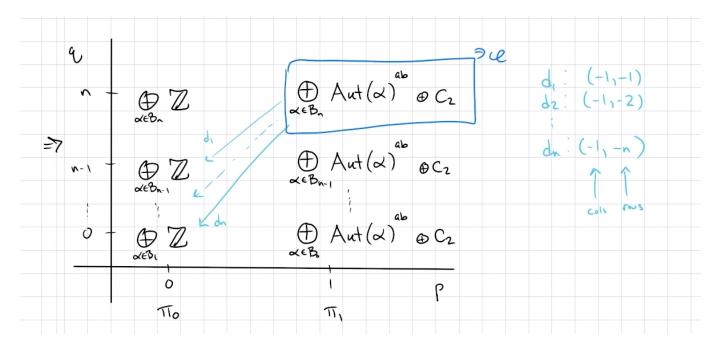
Before proving, a look at this spectral sequence:



Compute

$$egin{aligned} \mathsf{K}_p(\mathcal{V}^{(n,n-1)}) &\coloneqq \pi_p \mathsf{K}(\mathcal{V}^{(n,n-1)}) \ &\simeq \pi_p igvee_{lpha \in B_n} \Sigma^\infty_+ \mathbf{B}\operatorname{Aut}(lpha) \ &\cong igoplus_{lpha \in B_n} \pi_p \Sigma^\infty_+ \mathbf{B}\operatorname{Aut}(lpha) \end{aligned},$$

and use $\pi_p \Sigma^\infty_+ {f B} G$ is ${\Bbb Z}$ for p=0 and $G^{
m ab}\oplus C_2$ for p=2 to identify



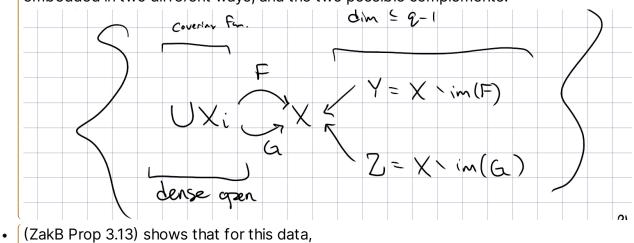
There is a boundary map ∂ coming from the connecting map in the LES in homotopy of a pair for the filtration.

 \mathbf{v}

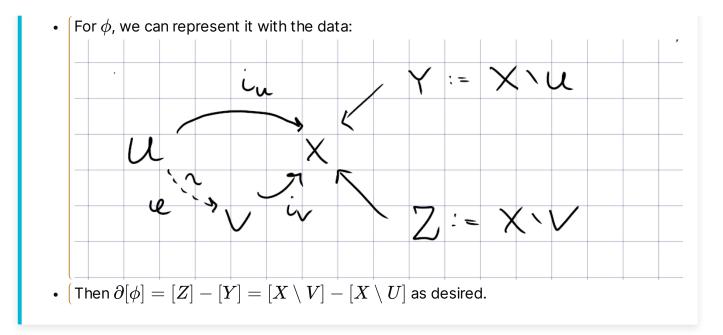


Proof of Lemma

• In general, $x \in K_1(\mathcal{V}^{(q,q-1)})$ corresponds to data: X a variety, a dense open subset embedded in two different ways, and the two possible complements:



 $\partial[x] = [Z] - [Y] \in \mathsf{K}_0(\mathcal{V}^{(q-1)})$



Proof of Theorem

 \Longrightarrow : suppose ϕ extends to a piecewise automorphism.

- ig| Then $[X\setminus U]=[X\setminus V]\in {\sf K}_0({\mathcal V}^{q-1})$ since $X\setminus U\stackrel{\sim}{ o} X\setminus V$ by assumption
- By Lem 3.2 above,

$$\partial[\phi] = [X \setminus V] - [X \setminus U] = 0$$

• $\Big($ (Zak17B Lemma 2.1): d_1 and higher d_r are built using ∂ , so $\partial(x) = 0 \implies d_r(x) = 0$ for all $r \ge 1$ (permanent boundary).

 \Longleftarrow : suppose $d_r[\phi]=0$ for all $r\geq 1.$

- $\left[\, {
m Since} \; d_1[\phi] = 0 \, {
m in} \, {
m particular}, \,
ight.$

$$[X\setminus U]=[X\setminus V]\in {\sf K}_0({\mathcal V}^{(q,q-1)})$$

since $d_1 = \partial \circ p$ for some map p.

- (An inductive argument allows one to write $X = U_r \uplus X'_r = V_r \uplus Y'_r$ where

$$U_r \mathop{\cong}\limits_{\mathrm{pw}} V_r, \quad \dim X'_r, \, \dim Y'_r < n-r, \quad \partial[\phi] = [Y'_r] - [X'_r]$$

• Take r = n to get

$$\dim X'_n, \dim Y'_n < 0 \implies X'_n = Y'_n = \emptyset \quad ext{and} \quad X = U_n = V_n$$

• Then

$$\partial[\phi] = [\emptyset] - [\emptyset] = 0 \implies \phi ext{extends}.$$

• $[extsf{A} extsf{ general remark on why } \partial [\phi] = 0$ implies it extends:

 $\circ \; \left(\partial [\phi] \; ext{measures the failure of } \phi \; ext{to extend to a piecewise isomorphism:}
ight.$

$$\partial[\phi]=0\implies [X\setminus V]=[X\setminus U]\implies \exists\psi:X\setminus V\cong _{\mathrm{pw}}X\setminus U$$

 \circ (If additionally $U\cong V$ then $\phi \uplus \psi$ assemble to a piecewise automorphism of X.

Thm C: There is a direct link between $igcup_{n\geq 0} \ker \psi_n$ and $\operatorname{Ann}(\mathbb{L})$

Theorem C

Let k be a **convenient field**, e.g. $\operatorname{ch} k = 0$. Then \mathbb{L} is a zero divisor in $\mathsf{K}_0(\mathcal{V}) \implies \psi_n$ is not injective for some n.

Short: For k convenient

$$\operatorname{Ann}(\mathbb{L})
eq 0 \implies igcup_n \ker \psi_n
eq \emptyset.$$

Proof

- (Strategy: contrapositive. Suppose $\ker \psi_n = 0$ for all n. Write $\mathcal{V} \coloneqq \mathcal{V}_k$.
- There is a cofiber sequence

$$\mathsf{K}(\mathcal{V}) \stackrel{\cdot\mathbb{L}}{\hookrightarrow} \mathsf{K}(\mathcal{V}) \stackrel{\ell}{ o} \mathsf{K}(\mathcal{V}/\mathbb{L})$$

where \mathcal{V}/\mathbb{L} is a "cofiber assembler" (Zak17b Def 1.11)

- Take the LES to identify ker(·L) with coker(ℓ): $\stackrel{\mathsf{L}}{\Rightarrow} \operatorname{Ker}(\mathsf{K}_{\circ}(\mathsf{V}) \stackrel{\mathsf{L}}{\longrightarrow} \mathsf{K}_{\circ}(\mathsf{V})) = \operatorname{coker}(\mathsf{K}_{\circ}(\mathsf{V}) \stackrel{\mathsf{L}}{\rightarrow} \mathsf{K}_{\circ}(\mathsf{V}/\mathsf{L}))$ $\stackrel{\mathsf{L}}{\xrightarrow{}} \operatorname{K}(\mathsf{V}) \stackrel{\mathsf{L}}{\xrightarrow{}} \operatorname{K}(\mathsf{V}/\mathsf{L}) \stackrel{\mathsf{Coker}}{\xrightarrow{}} \operatorname{K}(\mathsf{V}/\mathsf{L})$ $\stackrel{\mathsf{L}}{\xrightarrow{}} \operatorname{K}(\mathsf{V}) \stackrel{\mathsf{L}}{\xrightarrow{}} \operatorname{K}(\mathsf{V}/\mathsf{L}) \stackrel{\mathsf{L}}{\xrightarrow{}} \operatorname{K}(\mathsf{V}/\mathsf{L})$
- Reduce to analyzing

$$\operatorname{coker}(E^\infty_{1,q} o ilde{E}^\infty_{1,q})$$

where $ilde{E}$ is an auxiliary sseq.

- Suppose all α extend, then all differentials from column 1 to column 0 are zero.
- The map $E^r \to \tilde{E}^r$ is surjective for all r on all components that survive to E^{∞} .
- (All differentials out of these componenets are zero, so $E^\infty woheadrightarrow ilde{E}^\infty.$
- Then $\mathsf{K}_1(\mathcal{V}) \xrightarrow{\ell} \mathsf{K}_1(\mathcal{V}/\mathbb{L})$, making $0 = \operatorname{coker}(\ell) = \ker(\cdot\mathbb{L})$ so \mathbb{L} is not a zero divisor.

Thm D: Equality in K_0 doesn't imply PW iso and elements in Ann(\mathbb{L}) give rise to elements in $[] \ker \psi_n$.

Theorem

Suppose that k is a *convenient* field. If $\chi \in \operatorname{Ann}(\mathbb{L})$ then $\chi = [X] - [Y]$ where

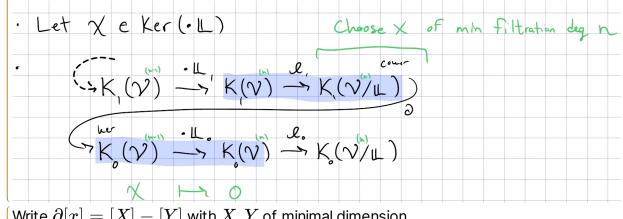
$$ig[X imes \mathbb{A}^1ig] = ig[Y imes \mathbb{A}^1ig] \quad ext{but}\ X imes \mathbb{A}^1
ot\cong Y imes \mathbb{A}^1.$$

Thus elements in $Ann(\mathbb{L})$ give rise to elements in $ker \psi_n$.

Proof (can omit)

Let $\chi\in \ker(\cdot\mathbb{L})$ and pullback in the LES to $x\in \mathsf{K}(\mathcal{V}^{(n)}/\mathbb{L})$ where n is minimal among • filtration degrees:

 \sim



- ig| Write $\partial[x]=[X]-[Y]$ with X,Y of minimal dimension.
- By (LS10 Cor 5),

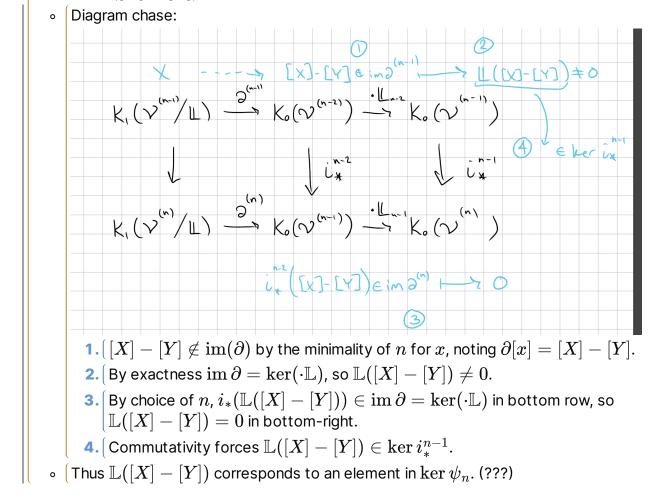
$$[X \times \mathbb{A}^1] = [Y \times \mathbb{A}^1] \Longrightarrow \dim X + 1 = \dim Y + 1$$

 $\Longrightarrow \dim X = \dim Y = d$

- Claim: d is small: d < n 1.
- Done if this claim is true: proceed by showing X and Y are not piecewise isomorphic by showing $\ker \psi_n$ is nontrivial by a diagram chase.

Proving the claim:

• **[Claim:** If $\mathbb{L}([X] - [Y]) \in \ker$? then we can produce an element in $\ker \psi_n$.



Thm E: K-theory $mod \ \mathbb{L}$ models stable birational geometry

 $\begin{array}{|c|c|c|} \checkmark & & & & & \\ \hline & & \\ \hline & & \\$

Closing Remarks

- What did we accomplish:
 - Established a precise relationship between Q1 and Q2.
- Unknowns:
 - What fields are convenient?
 - (What is the associated graded for the filtration induced by ψ_n ?
 - 0
 - (Is there a characterization of $\operatorname{Ann}(\mathbb{L})$? (Interesting) What is the kernel of the localization $\mathsf{K}_0(\mathcal{V}_k) \to \mathsf{K}_0(\mathcal{V}_k)[\frac{1}{\mathbb{L}}]$? o
 - \circ (Does ψ_n fail to be injective over every field k?

Conjecture. Suppose that X and Y are varieties over a convenient field k such that [X] = [Y] in $K_0(\mathcal{V}_k)$. Then there exist varieties X' and Y' such that $[X']
eq [Y'], ig[X' imes \mathbb{A}^1ig] = ig[Y' imes \mathbb{A}^1ig]$, and $X\!\mathrm{I}ig(X' imes \mathbb{A}^1ig)$ is piecewise isomorphic to YI $(Y' \times \mathbb{A}^1)$

Short: If [X] = [Y], there exist X^\prime, Y^\prime st

- $([X'] \neq [Y'])$
- $\begin{array}{l} \bullet \ [[X'] \neq [Y'] \\ \bullet \ \left([X' \times \mathbb{A}^1] = [X']\mathbb{L} = [Y']\mathbb{L} = [Y' \times \mathbb{A}^1] \\ \bullet \ \left(X \coprod X' \times \mathbb{A}^1 \underset{\text{pw}}{\cong} Y \coprod Y' \times \mathbb{A}^1 \end{array} \right) \end{array}$
- If the conjecture holds, when X, Y are not birational but are stably birational, then the error of birationality is measured by a power of \mathbb{L} .
- Possibly contingent upon conjecture:

$$[X] \equiv [Y] \operatorname{mod} \mathbb{L} \implies X \xrightarrow{\sim_{\operatorname{Stab}}} Y.$$