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1 Goal: The Gromov-Witten Invariants

1 Goal: The Gromov-Witten Invariants

4! Warning 1.0.1
These are extremely rough and imprecise notes taken for a reading seminar. They’re very likely full
of mistakes and misunderstandings, so please use at your own risk.

Remark 1.0.2: Our long-term goal: define the Gromov-Witten invariants of (say) a symplectic
4-manifold, i.e. a complex symplectic surface. These will be notated something like GW(M,A, g, n),
where

• (M,ω, J) is a symplectic manifold with an almost-complex structure J ,
• A ∈ H2(M ;Z) is a fixed homology class,
• g, n denote the genus and number of marked points of a complex curve (Riemann surface)

Σg,n we’re mapping into M .

The point of these invariants is to take some kind of enumerative count of rigid complex curves
(J-holomorphic curves) embedded into M , up to some notion of isomorphism so that we can make
this a finite count. The J-holomorphic condition is essentially that these curves are in the kernel of
some differential operator that generalizes the usual Cauchy-Riemann equations from 1-dimensional
complex analysis. The actual count will be the number of curves that are homologically equivalent
to the fixed class A.

The rough program is to form some moduli space of curves, “rigidify” it enough to get it to be a
finite-dimensional smooth manifold, and try to relate the curve count to the dimension of the moduli
space. We’ll then relate that dimension to the analytic index of a Cauchy-Riemann operator D, and
use a mix of analysis, topology, and algebraic geometry to compute this index (either by computing
kernels/cokernels directly or relating them to other invariants like integrals, Chern classes, etc).
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1 Goal: The Gromov-Witten Invariants

Note: I’ll be writing Symn(X) everywhere for conve-
nience, but I don’t know if this is true on the nose –
in the older literature these maps are all defined to
land in M×n instead.

Remark 1.0.3: Fix M,A, J, g, n. We’ll define Mg,n(A, J) to be the moduli space of embedded
J-holomorphic curves Σ f

↪→ M with [Σ] = [A] in H2(M ;Z) where g(Σ) = g and [x1, x2, · · · , xn] ∈
Symn Σ is a collection of n (distinct?) marked points.

Remark 1.0.4: There is a well-studied moduli space Mg,n, the moduli space of curves, which
shows up in a thousand different guises with a thousand different names. It is a very good space
that a lot of people like. We’ll define it here to be the moduli space of stable embedded curves
Σ ↪→M with g(Σ) = g where again Σ carries n marked points. The stability condition is something
we’ll cover later.

In full generality,Mg,n is a smooth Deligne-Mumford stack – i.e. a somewhat complicated algebro-
geometric object. One slogan that may be helpful: the category of schemes isn’t closed under
quotients, but schemes embed into stacks and stacks are closed under taking quotients. So you
might think of a stack as the quotient of a scheme by a non-free group action, where you might
even take an algebraic group instead of just a Lie group or something. A Deligne-Mumford stack
will just be a stack that is stratified by quotient stacks.

Remark 1.0.5: It may be helpful to think ofMg,n as a complex orbifold. As a first approximation,
an orbifold is just a manifold with some exceptional collection of singular “orbifold points”, which
are the fixed points of some group action. Here’s the cartoon I usually have in mind:

For genus g = 0,M0,n will be a smooth compact complex manifold of finite dimension, so we can
run arguments from smooth/differential topology if we just map in J-holomorphic spheres.

Definition 1.0.6 (Gromov-Witten invariants, preliminary definition)
There are two natural maps floating around:

Goal: The Gromov-Witten Invariants 4



1 Goal: The Gromov-Witten Invariants

Mg,n(A, J)

Mg,n Symn(X)

π:Forget A,J ev1,ev2,··· ,evn

Link to Diagram
The evaluation maps evj are coming from the fact that every point in the moduli space upstairs
carries the data of an embedding f : Σg,n ↪→M , and if xi is a marked point we can just push
it forward and look at f(xi) ⊆M . So morally speaking, the GW invariants will be defined as

GW(M,A, g, n) : H∗(M ;Q)⊗Qn ⊗Q H
∗(Mg,n;Q)→ Q

(α1, α2, · · · , αn)⊗ β 7→
∫
Mg,n(A,J)

n∏
j=1

ev∗j (αj) ^ π∗(βPD),

where here the product denotes the n-fold cup product in (say, singular) cohomology.

Remark 1.0.7: The output will be the number of embedded J-holomorphic curves Σ

• Where g(Σ) = g
• With n marked points xi
• Where xi intersects a cycle Xi ⊆ H2(M ;Q)
• Where Xi is dual to αi
• Where [π(Σ)] = [β] ∈ H2(Mg,n).

So roughly the number of curves representing the homology class β, and we get it by “integrating
over the moduli space” in the sense of capping against a fundamental class.

4! Warning 1.0.8
This description is partially a cartoon! It will work in certain special cases, but Mg,n doesn’t
have an honest fundamental class in general to integrate against. Some hard work of e.g. Fantechi
constructs a “virtual fundamental class” that (I think) more faithfully captures this idea.

Example 1.0.9(Uses): GW invariants can be used to get at classical enumerative problems. For
example, we can compute the number of lines in P3(C) intersecting 4 generic lines as

GWP3
L,4(c2, c2, c2, c2) = 2.

Remark 1.0.10: The GW invariants will only depend on the deformation type of (M,ω). In
particular, we’ll be able to take 1-parameter families of symplectic manifolds constructed by cooking
up paths

γ : I → Ω2(M)
t 7→ ωt,
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2 Ch. 3: Moduli Spaces and Transversality

all of which will have the same GW invariants, provided we start with semipositive symplectic
manifolds and choose these paths carefully. Morally, this is moving the manifolds (M,ω) around in
the moduli space, just in a controlled way (along semipositive families) as opposed to just wiggling
in an ε ball inMg,n(A, J).

Remark 1.0.11: A remarkable (and hard?) theorem is that in real dimension 4, the GW invariants
only depend on the diffeomorphism type of the manifold, and can detect non-diffeomorphic smooth
manifolds. They are also equal to the Seiberg-Witten invariants in this dimension. This is not a
general phenomenon though – there are counterexamples in dimension 6 where neither of these
statements hold.

Remark 1.0.12: The later chapters of the book discuss some applications to other topics. I’ll just
relay the words here, in case anything is meaningful to you all, since I don’t know much about them
yet myself:

• For g = 0, GW is related to quantum cohomology and Frobenius manifolds. There is some
theorem about proving the associativity in quantum cohomology.

• There is some way to produce a TQFT in this setting as well, and lots of people like these.
• Mirror symmetry is supposed to give a 2nd way to compute these invariants. I think the

symplectic side covered here corresponds to the “A side”, and conjecturally there is a “B
side” mirror with the same GW invariants. The book is a little old now, so I don’t know how
conjectural this still is.

2 Ch. 3: Moduli Spaces and Transversality

Remark 2.0.1: Our goal for this chapter: show that for a general J , the moduli spaceM∗(A,Σ, J)
is a smooth complex manifold of finite dimension. The asterisk here corresponds to taking only
simple curves – this doesn’t seem to be a necessary condition, but is meant to make transversality
arguments simpler. Here’s a rough outline of the sections:

• 3.1: Defines the moduli space of simple curves

• 3.2: Discusses Thom-Smale transversality, and shows that M∗ is a smooth manifold when
the (linearized) Cauchy-Riemann operator D is surjective for all J-holomorphic curves.

• 3.3 (today): Discusses examples of regularity in dimension 4, along with some sufficient
conditions to determine if your favorite almost complex structure J is sufficiently regular.
The usual proofs lean on things like the Sard-Smale theorem, but here we’ll use some AG
techniques like the Riemann-Roch theorem to check these conditions.

• 3.4: Discusses moduli spaces with pointwise constraints.

Remark 2.0.2: Some structures to recall from Han’s talks:

Ch. 3: Moduli Spaces and Transversality 6
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• (M,ω, J) will be a 2n-dimensional symplectic manifold, with ω ∈ Ω2(M) a symplectic form,
J an ω-tame almost-complex structure on M , so J ∈ End(TM) with J2 = − id.

• (Σ, jΣ, dV ) will be a Riemann surface with an almost-complex structure and dV its volume
form. Note that in dimension 2, all almost-complex structures are integrable in the sense that
they come from an honest complex structure, so we’ll always think of jΣ as an actual complex
structure.

– The Cauchy-Riemann operator ∂J ≈
1
2 (Jd− djσ), where I’m being very loose with

this definition! Just recall that (exercise) the usual Cauchy-Riemann equations can be
generalized by dJ − Jd = 0 where J is the standard complex structure on Cn, and here
we just allow the two complex structures to vary in the domain/codomain.

– Also ker ∂J are precisely the J-holomorphic curves, so solutions to this generalized
Cauchy-Riemann equation.

• u ∈ C∞(Σ,M) will be a smooth map representing a solution. Note that we wanted Sobolev
completions to some W k,p in order to apply PDE theory to u. In particular, we’ll want the
linearized ∂J to be a Fredholm operator so that it has a well-defined index

ind(D) := dimR ker(D)− dimR coker(D).

These are supposed to be like “operators that are invertible up to finite-dimensional noise”,
and such operators (and their indices) are stable under small perturbations.

• M∗(A,Σ, J) will be u ∈ C∞(Σ,M) ∩ ker ∂J with [u(Σ)] = A ∈ H2(M ;Z) and u a simple
curve.

– Simple curves are defined by the following condition: a curve u : Σ→ M is not simple
iff there exists a branched cover Σ̃→ Σ of degree d ≥ 2 and an embedding ũ : Σ̃→ M
making the following diagram commute:

Σ̃

Σ Mu

ũbranched
deg d≥2

Link to Diagram

This is the condition that Σ doesn’t factor through a ramified curve, here’s a cartoon for a non-simple
curve where d = 2:

Ch. 3: Moduli Spaces and Transversality 7
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Here they both have the same image, so represent the same embedded curve, but Σ̃ has a branch
point over Σ near the center. Non-simple curves will correspond to orbifold points inM(A,Σ, J),
and the theorem is that simple curves are generic in this moduli space.

• We’ve pulled back the tangent bundle of M in the following way:

u∗TM TM

Σ M

y

Link to Diagram

• We’ve constructed a bundle with a global section?

Eu := Ω0,1(Σ, u∗TM) E

B :=
{
u ∈ C∞(Σ,M)

∣∣∣ [u(Σ)] = A
}

s(u):=(u,∂J (u))

Link to Diagram

Our moduli space M(A,Σ, J) will be the zero section of this bundle, and we’ll obtain M∗ by
intersecting the base space with the solutions u that are somewhere injective. It seems like we’ll
somehow need to perturb sections to get them to be transverse to the zero section:

Ch. 3: Moduli Spaces and Transversality 8
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• Given E → B, we’ve taken tangent spaces of everything and cooked up a map Du : TB → Eu:

T(u,0)E TuB ⊕ Eu

TB TuB Eu

ds

π2π1

:=Du

Link to Diagram

This could be identified as a map

Du : Ω0(Σ;u∗TM)→ Ω0,1(Σ, u∗TM).

• By Riemann-Roch, we identified

Ind(Du) = n(2− 2g(Σ)) + 2c1(u∗TM),

which roughly comes from taking the Euler characteristic of Dolbeault cohomologyH∗
∂
(u∗TM),

which ultimately came from the differential on global sections

∂ : Γ(Ωp,q) ∂−→ Γ(Ωp,q+1).

• We wanted to allow varying the almost-complex structure J , so we defined J ` be all J ∈
C`(TM, TM) which were ` times continuously differentiable, where we equip this space with
the smooth topology.

• We enlarged the moduli space to a universal moduli spaceM∗(A,Σ,J `) which fibers over J `:

M∗(A,Σ,J `)

J `

π

Ch. 3: Moduli Spaces and Transversality 9
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Link to Diagram

• The upshot was that π−1(J) =M∗(A,Σ, J) is our original moduli space, and we can apply
the implicit function theorem for (infinite-dimensional) Banach manifolds to conclude this is
a finite-dimensional submanifold.

• Somehow we also show that T(u,0)M∗(A,Σ, J) = kerDu.

• We also use the Sard-Smale theorem to show that in J `, the regular values of π−1 are Baire
2nd category (a countable intersection of open dense sets), so “generic” in an appropriate
sense.

– Useful example: Q ⊂ R is 1st category but the irrationals are 2nd category.

E 2.1 3.3: Regularity e

Definition 2.1.1 (Regular)
In light of the previous discussion, we’ll say that J is regular for A iff Du is surjective for all
u ∈ M∗(A,Σ, J) where the J is fixed. A point p := (u, J) ∈ M∗ will be a regular point iff
TpM∗

dπp−−→→Tπ(p)J is surjective, where now we let J vary in J .

Remark 2.1.2: Recall that J is the space of all almost-complex structures on M . A consequence
of regularity is that any smooth one-parameter family [0, 1]→ J can be ε-lifted in the sense that
there is a commutative diagram

M∗(A,Σ,J )

[0, ε] J

0
t

J

Jt

π

γ

∃γ̃

Link to Diagram

Note: here I just mean γ(0) = J and γ(t) := Jt.

Moreover if (u, J) is regular, then the lifts (u, Jt) along the path upstairs will still be regular nearby:

2.1 3.3: Regularity 10
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2 Ch. 3: Moduli Spaces and Transversality

So although we can’t freely perturb regular values in the moduli space, we can take one-parameter
families Jt in J as “controlled deformations” of almost-complex structures and lift them to controlled
deformations upstairs.

4! Warning 2.1.3
If the point (u, J) is not regular, then there may not be any nearby regular points in the universal
moduli spaceM∗(A,Σ,J ).

E 2.2 Overview of Main Theorems e

Remark 2.2.1: The two main theorems of this section describe sufficient conditions for regularity
and how to produce a regular almost-complex structure.

2.2 Overview of Main Theorems 11
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Theorem 2.2.2(3.3.4).
Let g(Σ) = 0 and dimRM = 4, and consider the J-holomorphically embedded sphere (Σ, jΣ) ↪→
(M4, J). Letting p := Σ2 := Σ · Σ be the self-intersection number of Σ, then J is regular for
A := [Σ] if and only if p ≥ −1.

Theorem 2.2.3(3.3.5).
Let Ã := [S2 × pt] as a class in H2(M̃ ;Z) where M̃ := S2 ×M . Then for all J ∈ J (M,ω), the
almost-complex structure J̃ := i×J is regular for Ã, where i is the standard complex structure
on S2.

Remark 2.2.4: The following is a summary of the other lemmas in this chapter, which are useful
on their own but also used to prove the above two theorems.

• 3.3.1: If J is integrable and CP1 u−→ M , then u∗TM = ⊕Lk decomposes as a sum of line
bundles and J is regular iff c1(Lk) ≥ −1 for all k, where c1 denotes the Chern number.

• 3.3.2: If E → CP1 is any bundle, not just u∗TM , and there exists a decomposition E = ⊕Lk
into line bundles, and if D : Ω0(CP1; E) → Ω0,1(CP1; E) is any R-linear Cauchy-Riemann
operator that preserves the decomposition in the sense that D(Lk) ⊆ Lk for all k, then Du is
surjective iff c1(Lk) ≥ −1 for all k.

• 3.3.3: If (M,ω, J) is any 4-dimensional symplectic manifold and J is any almost-complex
structure (not necessarily integrable) and u : CP1 →M is an immersed J-holomorphic sphere,
then Du is surjective if c1(u∗TM) ≥ 1.

The rest of the section involves examples and constructions.

3 3.3: Regularity Calculations

Remark 3.0.1: Fix Σ := CP1, which is homeomorphic to S2. For notation, we’ll write c1(L) :=
〈c1(L), [Σ]〉 for L a line bundle. where we’re using the intersection pairing

〈−, −〉 : H2(M ;Q)⊗Q H2(M ;Q)→ Q.

Theorem 3.0.2(Splitting Principle (Grothendieck)).
Every complex holomorphic line bundle of rank r over CP1 decomposes uniquely into a direct
sum of line bundles:

3.3: Regularity Calculations 12
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Cr E Cr
⊕̀
k=1
OCP1(nk)

CP1 CP1

Link to Diagram
These bundles are holomorphically isomorphic.

Remark 3.0.3: AG break: OX(ak) needs some explanation! If OX is the structure sheaf (so regular
functions), then O(n) := O(1)⊗n, and O(1) will be the Serre twisting sheaf, sometimes referred
to as the hyperplane bundle. To describe this, note that we first have a tautological bundle over
the Grassmannian over Cn where the fiber over a point (corresponding to a subspace V ) is V itself
regarded as a subset of Ck ⊆ Cn.

F[W ] := W ⊂ Ck γ := {([W ],W )} ⊂ Grk(Cn)× Ck

[W ] ∈ Grk(Cn)

Link to Diagram

Taking k = 1, we can identify CPn := Gr1(Cn+1) as the space of lines in Cn+1 to get the tautological
line bundle which defines O(−1):

C γ := OPn(−1)

CPn

Link to Diagram

Note that the fiber above a line is just the line itself. This lets us get O(−k) for any k; to get
positive numbers just define O(1) := O(−1)∨ as the dual bundle, where you replace each fiber F
with its dual space F∨ := Hom(F,C) as a vector space.

Remark 3.0.4: Upshot: these are relatively simple building blocks, just tensor powers and duals
of an object where nothing too mysterious is going on. Moreover, for us, u∗TM = L1 ⊕ L2 breaks
up as some sum of line bundles – it doesn’t actually matter which twists they are for our purposes.

3.3: Regularity Calculations 13
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E 3.1 Lemma 3.3.1 e

Lemma 3.1.1(3.3.1).
If u∗TM ∼= ⊕`k=1Lk and c1(Lk) ≥ 1 for every k, then Du is surjective.

Remark 3.1.2: To prove this, we’ll need an analytic version of Riemann-Roch:

Theorem 3.1.3(Riemann-Roch, Append C.1.10, Part 3).
If E → Σ is a holomorphic bundle and F ≤ E is a sub-bundle, then Du is surjective iff

µ(E , F ) + 2χ(Σ) > 0,

where µ(−,−) is a relative Maslov index. Moreover, taking F = ∅, if ∂Σ = ∅ then there is
a formula

µ(E) := µ(E , ∅) = 2〈c1(E), [Σ]〉.

E 3.2 Proof using Riemann-Roch e

Proof (of Lemma, using Riemann-Roch).
We’ll first need that since Σ is a sphere, we know its cohomology ring:

H∗(S2;Z) ∼= Z[x]/
〈
x2
〉

where |x| = 2,

which is only supported in degrees d = 0, 2. So

χ(Σ) = 1− 0 + 1 = 2.

Note that you could also just check this cellularly:
S2 has a CW complex structure with one 0-cell and
one 2-cell, and you can compute χ using just the
ranks of cellular chain groups instead of homology.

Strategy: take the LHS appearing in the RR formula above, we’ll try to show it’s positive.

µ(u∗TM) + 2χ(Σ) = µ(u∗TM) + 4

= µ

(⊕̀
k=1

Lk

)
+ 4

=
∑̀
k=1

µ (Lk) + 4

=
∑̀
k=1

2c1(Lk) + 4,

3.1 Lemma 3.3.1 14
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and thus

2
∑̀
k=1

c1(Lk) + 4 > 0

⇐⇒
∑̀
k=1

c1(Lk) > −2.

Since the rank of u∗TM is at least 2, there are at least 2 summands. So if every c1(Lk) > −1,
this inequality holds, and that is sufficient for Du to be surjective.

�

E 3.3 Proof using AG/Chern Classes e

Proof (of lemma, using complex analytic arguments).
Since J is assumed integrable, Du = ∂J coincides with the Dolbeault derivative determined
by the complex structure on M , and Du respects the splitting u∗TM ∼=

⊕
Lk. We want to

show Du is surjective, so it thus suffices to show coker ∂J = 0, where it’s worth recalling a nice
identification:

coker
(
A

f−→ B

)
∼= B/ imA.

The actual definition is taking a pushout against the terminal object in your category:

A 1

B coker f := B
∐
A1

f

y

Link to Diagram
We can identify this as

coker(Ω0(Σ;L) Du=∂J−−−−→ Ω0,1(Σ;L)) := H0,1
∂J

(Σ;L).

The last equality is not so obvious, but follows if you think about how this splits out in the
Hodge diamond:
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Ω2 0

Ω1,0 Ω0,1 ⊕

0 Ω0

H2
∂

H1,0
∂

⊕ H0,1
∂

H0
∂

Ω2

im ∂1,0
:= coker ∂1,0

ker ∂1,0 ⊕ Ω0,1

im ∂0,0
:= coker ∂0,0

ker ∂0,0

∂1,0 ∂0,1

∂0,0∂0,0

Identify

Take homology wrt ∂

Link to Diagram
The main thing to notice is that one is taking the homology with respect to ∂, so the bottom-
right corner of the diamond just forms a 2-term chain complex and we get a kernel/cokernel
pair.
So now it suffices to show that H0,1

∂
(Σ;L) = 0 (for L := Lk any of the bundle summands)

whenever c1(Lk) ≥ 1 for all Lk. We’ll need a definition:

Definition (Canonical Bundle)
Let Ω1

Σ be the bundle of holomorphic 1-forms on Σ. Then the canonical bundle is
defined as

KΣ :=
dim Σ∧

Ω1
Σ = Ω2

Σ,

which here coincides with the bundle of holomorphic 2-forms. It is sometimes written as
ωΣ

3.3 Proof using AG/Chern Classes 16

https://q.uiver.app/?q=


3 3.3: Regularity Calculations

We can now apply Kodaira-Serre duality:

H0,1
∂

(Σ;L) ∼−→ H1,0
∂

(Σ;L∨ ⊗KΣ)∨,

where notably we’ve switched from antiholomorphic forms to holomorphic forms.
We’ll also need Kodaira vanishing: If L → Σ is a positive holomorphic line bundle, then

H i(Σ;L ⊗KΣ) = 0 ∀ i > 0.

The book justifies the uses of this theorem here by saying c1(L) can be interpreted as the
self-intersection number of the zero section, and mumbles something about “positivity of
intersections”. I’m not really sure why this works!
A related fact (maybe a consequence?) is that L has nonzero holomorphic sections ⇐⇒
c1(L) ≥ 0, so maybe positivity is related to positivity of Chern numbers.
Now setting L := L∨⊗KΣ, playing around with the logic we find that if c1(L) < 0 then L has
no holomorphic sections, and for reasons unknown, this should imply that H1,0

∂
(Σ;L)∨ = 0

and conclude the proof. In any case, let’s just compute the Chern number:

c1(L) = c1(L∨) + c1(KΣ)
= c1(L∨)− c1(TΣ)
= c1(L∨)− e1(TS1) since c1 is a top class

= c1(L∨) +
(
1 + (−1)2

)
by a well-known formula for spheres

= c1(L∨)− 2
= −c1(L)− 2.

So now unwinding things, we have

c1(L) < 0 ⇐⇒ −c1(L)− 2 < 0
⇐⇒ −c1(L) < 2
⇐⇒ c1(L) > −2
⇐⇒ c1(L) ≥ −1.

which is exactly the condition appearing in the lemma. Running this same argument for every
Lk concludes the proof!

�

Remark 3.3.2: Note that we’ve used some special facts in that last calculation:

• Using that L∨ ∼= L−1 for line bundles, c1(L∨) = c1(L−1) = −c1(L).
• I don’t think c1(A ⊗ B) = c1(A) + c1(B) in general, this must be special for B = K the

canonical.
• c1(KX) = −c1(TX) is a general fact, for complex manifolds at least. Apparently this is

3.3 Proof using AG/Chern Classes 17
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obvious from Chern-Weil theory, but you can also use

c1(TX) = c1(detTX) := c1

(top∧
TX

)
:= c1(KX

∨) = c1(K−1
X ) = −c1(KX).

• The top Chern class is always the Euler class (almost by definition) when it makes sense.

3.3 Proof using AG/Chern Classes 18
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