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Overview

É From SPTs to bordism
É Computing bordism with the Adams spectral sequence
É Crystalline phases



What is bordism?

É Diffeomorphism classes of closed n-manifolds form a
commutative monoid under disjoint union
É Mod out by the submonoid of manifolds M which are the

boundary of a compact (n+ 1)-manifold W
É This is an abelian group, called the bordism group, and

denoted Ωn



What is bordism?

É Variant: choose G→ GLn(R), equip M and W with compatible
G-structures. Denoted ΩG

n
É A G-structure on M is data of a lift of the transition functions

on M, by default valued in GLn(R), to G
É Also, “bordism of G-manifolds with a map to X” – M bounds

and the map extends to a map W→ X
É This defines a generalized homology theory



What is bordism?

É Computing bordism groups is a classical problem in algebraic
topology
É Thom, Pontrjagin, Wall, Anderson-Brown-Peterson, Quillen, . . .

É Unoriented bordism groups begin Z/2, 0, Z/2 (generated by
RP2), 0, Z/2⊕Z/2 (RP4 and RP2 ×RP2), Z/2 (SU3/SO3)
É Oriented bordism groups begin Z, 0, 0, 0, Z (generated by
CP2), Z/2 (SU3/SO3)



Ok, but why?

Theorem (Freed-Hopkins)
There is an isomorphism between the abelian group of deformation
classes of reflection-positive, invertible, n-dimensional topological
field theories (IFTs) on manifolds with G-structure and
Tors(ΩG

n )⊕ Free(ΩG
n+1).

É Unlike general quantum field theory, topological field theory is
rigorously, mathematically formalized by Atiyah-Segal
É “Reflection-positive” (equivariance data under

orientation-reversal) occurs in all physics-motivated examples
É “Invertible” is special: these are the simplest examples



SPTs

É Condensed-matter physicists study topological phases of
matter, including classification questions
É e.g., take some alloy, cool it to a certain temperature, maybe

apply a magnetic field. . .
É the material then behaves strangely (e.g. “particles” that aren’t

bosons or fermions)
É Full classification is very difficult, so restrict to

symmetry-protected topological (SPT) phases
É These are the simplest examples: can be combined with

another phase to obtain a trivial phase
É Concretely modeled by Hamiltonians built from combinatorial

data on a manifold

É These form an abelian group (once dimension and symmetry
type are fixed), and computing these groups has been a focus
of recent research in condensed-matter physics



From SPTs to invertible field theories

É Ansatz: the low-energy effective theory of an SPT phase is an
invertible topological field theory
É And should be some sort of equivalence between SPT phases

and IFTs
É Point: the ansatz would mean Freed-Hopkins’ theorem also

computes groups of SPTs!
É However, making this ansatz into rigorous math is a difficult

open problem



Testing this ansatz

É Compute what the ansatz predicts in a range of examples
using bordism
É Compare with physicists’ computations by other methods
É Taken up by Freed-Hopkins and Jonathan Campbell.

Conclusion: the answers agree!



The running example

É In the next part of the talk, we’ll discuss how to use the
Adams spectral sequence to compute bordism groups
É Each step will be implemented on the running example of

G-bordism where G= Pin+ n Cn.
É Can think of this as sort of like mixing the data of a spin

structure and a cover M′→M with structure group D2n
É This bordism corresponds to an interesting kind of SPT, but I

care for a slightly different reason, which I’ll talk about later

É Good expository reference: Beaudry, Campbell, “A guide for
computing stable homotopy groups”



The Adams spectral sequence

Es,t
2 = Exts,t

A (H
∗(X;F2),F2) =⇒ πt−s(X)

∧
2

É In the next few slides, we’ll explain this notation
É Briefly: LHS approximates the RHS well, and is easier to

calculate.
É Imperfect approximation: have to calculate differentials and

hidden extensions



The Steenrod algebraA

Es,t
2 = Exts,t

A (H
∗(X;F2),F2) =⇒ πt−s(X)

∧
2

É This is the (graded, noncommutative) algebra of stable mod 2
cohomology operations, i.e. natural transformations
H∗(–;F2)→ H∗+k(–;F2) that commute with suspension
É Generated by Steenrod squares Sqk : H∗→ H∗+k, k≥ 0
É Thus H∗(X;F2) is a gradedA -module, and pullback maps are
A -module maps



Ext groups

Es,t
2 = Exts,t

A (H
∗(X;F2),F2) =⇒ πt−s(X)

∧
2

É Given an algebra R and left R-modules M, N, can define an
abelian group Exts

R(M, N) of sequences
N→ Ps→ ·· · → P1→M, up to a notion of equivalence.
É Alternatively: Extk

R(–, N) is the right derived functor of
HomR(–, N)

É If R is graded, define Exts,t
R (M, N) := Exts

R(M,ΣtN)
É i.e. shift the grading of N up by t



Completion

Es,t
2 = Exts,t

A (H
∗(X;F2),F2) =⇒ πt−s(X)

∧
2

É This means that you only recover the 2-completion of the
homotopy groups
É Under reasonable circumstances, determines the free part and

the 2-torsion part
É No information on p-torsion when p is odd
É When π∗(X) computes bordism groups, there are other,

generally easier, ways to compute odd-primary torsion



Simplifying the problem

É Assume your bordism question is ΩSpin
∗ (X) for some X

É Anderson-Brown-Peterson: spin bordism determined by
ko-theory, some other stuff
É Below degree 8, spin bordism is isomorphic to ko-theory!

É Conveniently, eH∗(ko;F2)∼=A //A (1), so can apply a
change-of-rings theorem



Simplifying the problem

É Upshot: in degrees ≤ 7, the E2-page for ΩSpin
∗ (X) is isomorphic

to
Exts,t
A (1)(H

∗(X;F2),F2)

É A (1) = 〈Sq1, Sq2〉 is much smaller thanA



Justifying the assumption

É Want to write bordism questions as spin bordism of
something!
É Large class of examples: twisted spin structures
É Pick a (virtual) vector bundle V→ X
É A (V, X)-twisted spin structure on E→M is a map f : M→ X

and a spin structure on E⊕ f ∗V

É “Spinlike” G-structures, e.g. spinc, pin±, can often be
described as twisted spin structures



Bordism of (X, V)-twisted spin structures

Proposition
The bordism groups of manifolds with an (X, V)-twisted spin
structure are isomorphic to eΩSpin

∗ (XV−dim V)

É Here XV−dim V is (a shift of) the Thom spectrum of V
É Running example: Pin+ n Cn bordism is equivalent to
(BD2n,−V)-twisted spin bordism, where V is induced from the
standard 2d representation



The Thom isomorphism: a pretty cool theorem

Theorem (Thom)
There is an isomorphism of graded abelian groups

H∗(X;F2)
∼=→ eH∗+dim V(XV;F2).

É Typically written x 7→ Ux (U is the Thom class)
É This theorem and its generalizations are used over and over in

algebraic topology of manifolds



A -action on cohomology of Thom spectra

É Determined by Stiefel-Whitney classes of V
É One way to describe: Sqi(U) = Uwi(V), together with Cartan

formula andA -action on H∗(X;F2)



DrawingA (1)-modules

É Draw a dot for every F2 summand (as an abelian group)
É Height = grading
É For Sq1(a) = b, draw a straight line from a to b
É For Sq2(a) = c, draw a curvy line from a to b



DrawingA (1)-modules

A (1) H∗(RP∞;F2)



DrawingA (1)-modules: the running example
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eH∗((BD2n)2−V;F2)∼= F2[x, y] ·U
w1(2− V) = x; w2(2− V) = x2 + xy+ y2



Computing Ext

É Ext commutes with direct sums: work one summand at a time
É Exts,t

A (1)(Σ
kA (1),F2): F2 in degree s= 0, t= k, 0 elsewhere

É For commonly occurring summands, can look it up
(Beaudry-Campbell)
É Short exact sequence ofA (1)-modules =⇒ long exact

sequence in Ext
É Last resort: compute directly (write down a nice projective

resolution. . . )



The E2-page of the running example
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Tricks for computing differentials

0 1 2 3 4 5 6

0
1
2
3
4

É Surprisingly effective:
differentials must be h0-,
h1-linear
É Adams SS is functorial, so

map to or from something
where the differential must
vanish
É Use topology to infer facts

about the bordism groups in
question
É In our example: Smith

homomorphism from
degree 5 to ΩPin+

4
∼= Z/16;

check this hits a generator
of that Z/16



Hidden extensions are difficult

0 1 2 3 4 5 6

0
1
2
3
4

É Still useful: functoriality,
geometric topology
É Use that h1-action lifts to

action by η ∈ π∗S, which is
2-torsion, to rule out some
extensions by 2
É This solves the extension

problem in degree 4 of
our example



The answer to our running example

0 1 2 3 4 5 6

0
1
2
3
4 Ω0 = Z/2

Ω1 = Z/2
Ω2 = Z/2
Ω3 = Z/2
Ω4 = Z/2⊕Z/2⊕Z/2
Ω5 = Z/16

Ω6 = Z/2⊕Z/2



What is a crystalline phase?

É Many symmetries of interest in condensed-matter physics act
on space, such as the translation symmetries in a crystal
structure
É Given a way of modeling phases, can ask whether phases are

invariant under this symmetry
É Physicists discovered some interesting examples, leading to

the notion of crystalline symmetry-protected phases



Freed-Hopkins’ modified proposal

É Understanding the low-energy behavior of crystalline phases
is not as straightforward
É Freed-Hopkins: physics suggest “topological phases on a

space X” (for fixed symmetry type) behaves like a generalized
homology theory (a modification of bordism)
É Crystalline phases for a group G acting on space then given by

corresponding G-equivariant generalized homology theory
É In many cases of interest, can be reduced to a nonequivariant

question about bordism groups



An example

É Implementing this proposal for fermionic phases with
symmetry group D2n (n≡ 2 mod 4) acting on Rd by rotations
and reflections leads to our running example
É Zhang-Wang-Yang-Qi-Gu (2019) compute this in dimension 3

for all n. They also get Z/2!
É WIP: several other symmetry groups: some can be compared

to physics calculations, others are new. Not all predictions
agree


