On the Goodwillie Derivatives of the Identity in Structured Ring Spectra

Duncan Clark

Ohio State University

GOATS 2, June 6th, 2020

Duncan Clark (Ohio State University)

Derivatives of the identity

GOATS 2 (6/6/20) 1/14

Guiding principle

The Goodwillie derivatives of the identity functor in a suitably nice model category C (denoted $\partial_* Id_C$) should come equipped with a canonical operad structure.

Guiding principle

The Goodwillie derivatives of the identity functor in a suitably nice model category C (denoted $\partial_* Id_C$) should come equipped with a canonical operad structure.

Examples

Guiding principle

The Goodwillie derivatives of the identity functor in a suitably nice model category C (denoted $\partial_* Id_C$) should come equipped with a canonical operad structure.

Examples

 $\bullet\,$ For $C=S_*,$ the category of based spaces, Ching shows that $\partial_*\,Id_{S_*}$ is an operad

Guiding principle

The Goodwillie derivatives of the identity functor in a suitably nice model category C (denoted $\partial_* Id_C$) should come equipped with a canonical operad structure.

Examples

- \bullet For $C=S_*,$ the category of based spaces, Ching shows that $\partial_* \operatorname{Id}_{S_*}$ is an operad
- If *O* is a reduced operad of spectra, then ∂_{*} Id_{Alg_O} is a "highly homotopy coherent" operad which is equivalent to *O* [C.]

Guiding principle

The Goodwillie derivatives of the identity functor in a suitably nice model category C (denoted $\partial_* Id_C$) should come equipped with a canonical operad structure.

Examples

- \bullet For $C=S_*,$ the category of based spaces, Ching shows that $\partial_* \operatorname{Id}_{S_*}$ is an operad
- If \mathcal{O} is a reduced operad of spectra, then $\partial_* \operatorname{Id}_{\operatorname{Alg}_{\mathcal{O}}}$ is a "highly homotopy coherent" operad which is equivalent to \mathcal{O} [C.]
- General approach using ∞ -categories [Ching, Lurie]

Guiding principle

The Goodwillie derivatives of the identity functor in a suitably nice model category C (denoted $\partial_* Id_C$) should come equipped with a canonical operad structure.

Examples

- \bullet For $C=S_*,$ the category of based spaces, Ching shows that $\partial_* \operatorname{Id}_{S_*}$ is an operad
- If *O* is a reduced operad of spectra, then ∂_{*} Id_{Alg_O} is a "highly homotopy coherent" operad which is equivalent to *O* [C.]
- General approach using ∞ -categories [Ching, Lurie]

First, we'll recall some necessary background on functor calculus and operads.

Duncan Clark (Ohio State University)

< ロト < 同ト < ヨト < ヨト

Let $F: S_* \to S_*$ be a homotopy functor (i.e. $X \simeq Y \implies F(X) \simeq F(Y)$)

3

DQC

Let $F : S_* \to S_*$ be a homotopy functor (i.e. $X \simeq Y \implies F(X) \simeq F(Y)$) and assume for simplicity that F is reduced (i.e. $F(*) \simeq *$).

Let $F: S_* \to S_*$ be a homotopy functor (i.e. $X \simeq Y \implies F(X) \simeq F(Y)$) and assume for simplicity that F is reduced (i.e. $F(*) \simeq *$).

Let $F: S_* \to S_*$ be a homotopy functor (i.e. $X \simeq Y \implies F(X) \simeq F(Y)$) and assume for simplicity that F is reduced (i.e. $F(*) \simeq *$).

Let $F: S_* \to S_*$ be a homotopy functor (i.e. $X \simeq Y \implies F(X) \simeq F(Y)$) and assume for simplicity that F is reduced (i.e. $F(*) \simeq *$).

$$P_2F$$

$$\downarrow$$
 P_1F

Let $F: S_* \to S_*$ be a homotopy functor (i.e. $X \simeq Y \implies F(X) \simeq F(Y)$) and assume for simplicity that F is reduced (i.e. $F(*) \simeq *$).

$$P_{3}F$$

$$\downarrow$$

$$P_{2}F$$

$$\downarrow$$

$$P_{1}F$$

Let $F: S_* \to S_*$ be a homotopy functor (i.e. $X \simeq Y \implies F(X) \simeq F(Y)$) and assume for simplicity that F is reduced (i.e. $F(*) \simeq *$).

Let $F: S_* \to S_*$ be a homotopy functor (i.e. $X \simeq Y \implies F(X) \simeq F(Y)$) and assume for simplicity that F is reduced (i.e. $F(*) \simeq *$).

Let $F: S_* \to S_*$ be a homotopy functor (i.e. $X \simeq Y \implies F(X) \simeq F(Y)$) and assume for simplicity that F is reduced (i.e. $F(*) \simeq *$).

Let $F: S_* \to S_*$ be a homotopy functor (i.e. $X \simeq Y \implies F(X) \simeq F(Y)$) and assume for simplicity that F is reduced (i.e. $F(*) \simeq *$).

Let $F: S_* \to S_*$ be a homotopy functor (i.e. $X \simeq Y \implies F(X) \simeq F(Y)$) and assume for simplicity that F is reduced (i.e. $F(*) \simeq *$).

Goodwillie constructs a *Taylor tower* of *n*-excisive approximations $\{P_nF\}$ and natural transformations of the following form

Let $F: S_* \to S_*$ be a homotopy functor (i.e. $X \simeq Y \implies F(X) \simeq F(Y)$) and assume for simplicity that F is reduced (i.e. $F(*) \simeq *$).

Goodwillie constructs a *Taylor tower* of *n*-excisive approximations $\{P_nF\}$ and natural transformations of the following form

Remarks

• The functors $P_n F$ may be thought of as polynomials of degree n.

Let $F: S_* \to S_*$ be a homotopy functor (i.e. $X \simeq Y \implies F(X) \simeq F(Y)$) and assume for simplicity that F is reduced (i.e. $F(*) \simeq *$).

Goodwillie constructs a *Taylor tower* of *n*-excisive approximations $\{P_nF\}$ and natural transformations of the following form

- The functors $P_n F$ may be thought of as polynomials of degree n.
- P_1F is a linear approximation to F.

Let $F: S_* \to S_*$ be a homotopy functor (i.e. $X \simeq Y \implies F(X) \simeq F(Y)$) and assume for simplicity that F is reduced (i.e. $F(*) \simeq *$).

Goodwillie constructs a *Taylor tower* of *n*-excisive approximations $\{P_nF\}$ and natural transformations of the following form

- The functors $P_n F$ may be thought of as polynomials of degree n.
- P_1F is a linear approximation to F.
- For nice (i.e. analytic) F and sufficiently connected spaces X,
 F(X) ≃ holim_n P_nF(X).

Let $F: S_* \to S_*$ be a homotopy functor (i.e. $X \simeq Y \implies F(X) \simeq F(Y)$) and assume for simplicity that F is reduced (i.e. $F(*) \simeq *$).

Goodwillie constructs a *Taylor tower* of *n*-excisive approximations $\{P_nF\}$ and natural transformations of the following form

Remarks

- The functors $P_n F$ may be thought of as polynomials of degree n.
- P_1F is a linear approximation to F.
- For nice (i.e. analytic) F and sufficiently connected spaces X, F(X) ≃ holim_n P_nF(X).

• $X \simeq \operatorname{holim}_n P_n \operatorname{Id}_{S_*}(X)$, if X is 1-connected

Let $F: S_* \to S_*$ be a homotopy functor (i.e. $X \simeq Y \implies F(X) \simeq F(Y)$) and assume for simplicity that F is reduced (i.e. $F(*) \simeq *$).

Goodwillie constructs a *Taylor tower* of *n*-excisive approximations $\{P_nF\}$ and natural transformations of the following form

- The functors $P_n F$ may be thought of as polynomials of degree n.
- P_1F is a linear approximation to F.
- For nice (i.e. analytic) F and sufficiently connected spaces X, F(X) ≃ holim_n P_nF(X).
- X ≃ holim_n P_n Id_{S*}(X), if X is 1-connected (i.e. Id_{S*} is 1-analytic)

Def. (linear functor)

Duncan Clark (Ohio State University)

Derivatives of the identity

GOATS 2 (6/6/20) 4 / 14

990

Def. (linear functor)

A functor F is *linear* (i.e. 1-excisive) if F takes homotopy pushout squares to homotopy pullback squares

Def. (linear functor)

A functor F is *linear* (i.e. 1-excisive) if F takes homotopy pushout squares to homotopy pullback squares, i.e.

$$\begin{array}{ccc} A \longrightarrow B & (ho. push) \\ & & \downarrow \\ C \longrightarrow D \end{array}$$

Def. (linear functor)

A functor F is *linear* (i.e. 1-excisive) if F takes homotopy pushout squares to homotopy pullback squares, i.e.

$$\begin{array}{cccc} A \longrightarrow B & (\text{ho. push}) & F(A) \longrightarrow F(B) & (\text{ho. pull}) \\ \downarrow & \downarrow & & \stackrel{F}{\longrightarrow} & \downarrow & \downarrow \\ C \longrightarrow D & & F(C) \longrightarrow F(D) \end{array}$$

Def. (linear functor)

A functor F is *linear* (i.e. 1-excisive) if F takes homotopy pushout squares to homotopy pullback squares, i.e.

$$\begin{array}{cccc} A \longrightarrow B & (\text{ho. push}) & F(A) \longrightarrow F(B) & (\text{ho. pull}) \\ \downarrow & \downarrow & & \stackrel{F}{\longrightarrow} & \downarrow & \downarrow \\ C \longrightarrow D & & F(C) \longrightarrow F(D) \end{array}$$

Def. (linear functor)

A functor F is *linear* (i.e. 1-excisive) if F takes homotopy pushout squares to homotopy pullback squares, i.e.

 $\begin{array}{cccc}
A \longrightarrow B & (\text{ho. push}) & F(A) \longrightarrow F(B) & (\text{ho. pull}) \\
\downarrow & \downarrow & & \stackrel{F}{\longrightarrow} & \downarrow & \downarrow \\
C \longrightarrow D & & F(C) \longrightarrow F(D)
\end{array}$

Remarks:

• The stabilization functor $X \mapsto \Omega^{\infty} \Sigma^{\infty} X$ is 1-excisive

Def. (linear functor)

A functor F is *linear* (i.e. 1-excisive) if F takes homotopy pushout squares to homotopy pullback squares, i.e.

 $\begin{array}{cccc} A \longrightarrow B & (\text{ho. push}) & F(A) \longrightarrow F(B) & (\text{ho. pull}) \\ & & \downarrow & & \stackrel{F}{\longrightarrow} & \downarrow & \downarrow \\ C \longrightarrow D & & F(C) \longrightarrow F(D) \end{array}$

- The stabilization functor $X \mapsto \Omega^{\infty} \Sigma^{\infty} X$ is 1-excisive
- Any homology theory is 1-excisive

Def. (linear functor)

A functor F is *linear* (i.e. 1-excisive) if F takes homotopy pushout squares to homotopy pullback squares, i.e.

 $\begin{array}{cccc}
A \longrightarrow B & (\text{ho. push}) & F(A) \longrightarrow F(B) & (\text{ho. pull}) \\
\downarrow & \downarrow & & \stackrel{F}{\longrightarrow} & \downarrow & \downarrow \\
C \longrightarrow D & & F(C) \longrightarrow F(D)
\end{array}$

- The stabilization functor $X \mapsto \Omega^{\infty} \Sigma^{\infty} X$ is 1-excisive
- Any homology theory is 1-excisive (i.e. satisfies Mayer-Vietoris)

Def. (linear functor)

A functor F is *linear* (i.e. 1-excisive) if F takes homotopy pushout squares to homotopy pullback squares, i.e.

 $\begin{array}{cccc} A \longrightarrow B & (\text{ho. push}) & F(A) \longrightarrow F(B) & (\text{ho. pull}) \\ & & & \downarrow & & \downarrow & \\ & & & & \downarrow & & \downarrow & \\ C \longrightarrow D & & & F(C) \longrightarrow F(D) \end{array}$

- The stabilization functor $X \mapsto \Omega^{\infty} \Sigma^{\infty} X$ is 1-excisive
- Any homology theory is 1-excisive (i.e. satisfies Mayer-Vietoris)
- Id_{S*} is **not** linear

Def. (linear functor)

A functor F is *linear* (i.e. 1-excisive) if F takes homotopy pushout squares to homotopy pullback squares, i.e.

 $\begin{array}{cccc} A \longrightarrow B & (\text{ho. push}) & F(A) \longrightarrow F(B) & (\text{ho. pull}) \\ & & & \downarrow & & \downarrow & \\ & & & & \downarrow & & \downarrow & \\ C \longrightarrow D & & & F(C) \longrightarrow F(D) \end{array}$

- The stabilization functor $X \mapsto \Omega^{\infty} \Sigma^{\infty} X$ is 1-excisive
- Any homology theory is 1-excisive (i.e. satisfies Mayer-Vietoris)
- Id_{S*} is **not** linear (S* is not stable).

Def. (linear functor)

A functor F is *linear* (i.e. 1-excisive) if F takes homotopy pushout squares to homotopy pullback squares, i.e.

 $\begin{array}{cccc} A \longrightarrow B & (\text{ho. push}) & F(A) \longrightarrow F(B) & (\text{ho. pull}) \\ & & \downarrow & & \stackrel{F}{\longrightarrow} & \downarrow & \downarrow \\ C \longrightarrow D & & F(C) \longrightarrow F(D) \end{array}$

- The stabilization functor $X \mapsto \Omega^{\infty} \Sigma^{\infty} X$ is 1-excisive
- Any homology theory is 1-excisive (i.e. satisfies Mayer-Vietoris)
- Id_{S_*} is **not** linear (S_{*} is not stable). In particular, $P_1 Id_{S_*} \simeq \Omega^{\infty} \Sigma^{\infty}$

Def. (linear functor)

A functor F is *linear* (i.e. 1-excisive) if F takes homotopy pushout squares to homotopy pullback squares, i.e.

 $\begin{array}{cccc} A \longrightarrow B & (\text{ho. push}) & F(A) \longrightarrow F(B) & (\text{ho. pull}) \\ & & \downarrow & & \stackrel{F}{\longrightarrow} & \downarrow & \downarrow \\ C \longrightarrow D & & F(C) \longrightarrow F(D) \end{array}$

Remarks:

- The stabilization functor $X \mapsto \Omega^{\infty} \Sigma^{\infty} X$ is 1-excisive
- Any homology theory is 1-excisive (i.e. satisfies Mayer-Vietoris)
- Id_{S_*} is **not** linear (S_{*} is not stable). In particular, $P_1 Id_{S_*} \simeq \Omega^{\infty} \Sigma^{\infty}$
- If $F(*) \simeq *$, then $P_1F(X) \simeq \Omega^\infty(E \wedge \Sigma^\infty X)$ for some $E \in \mathsf{Spt}$

< ロ > < 団 > < 団 > < 豆 > < 豆 > .

Def. (linear functor)

A functor F is *linear* (i.e. 1-excisive) if F takes homotopy pushout squares to homotopy pullback squares, i.e.

 $\begin{array}{cccc} A \longrightarrow B & (\text{ho. push}) & F(A) \longrightarrow F(B) & (\text{ho. pull}) \\ & & & \downarrow & & \downarrow & & \downarrow \\ C \longrightarrow D & & & F(C) \longrightarrow F(D) \end{array}$

- The stabilization functor $X\mapsto \Omega^\infty\Sigma^\infty X$ is 1-excisive
- Any homology theory is 1-excisive (i.e. satisfies Mayer-Vietoris)
- Id_{S_*} is **not** linear (S_{*} is not stable). In particular, $P_1 Id_{S_*} \simeq \Omega^{\infty} \Sigma^{\infty}$
- If $F(*) \simeq *$, then $P_1F(X) \simeq \Omega^{\infty}(E \wedge \Sigma^{\infty}X)$ for some $E \in \text{Spt}$ (note that $E \wedge -: \text{Spt} \rightarrow \text{Spt}$ is linear).
Functor calculus (cont.) – Ex. linear functors

Def. (linear functor)

A functor F is *linear* (i.e. 1-excisive) if F takes homotopy pushout squares to homotopy pullback squares, i.e.

 $\begin{array}{cccc} A \longrightarrow B & (\text{ho. push}) & F(A) \longrightarrow F(B) & (\text{ho. pull}) \\ & & & \downarrow & & & \downarrow & & \downarrow \\ C \longrightarrow D & & & F(C) \longrightarrow F(D) \end{array}$

Remarks:

- The stabilization functor $X\mapsto \Omega^\infty\Sigma^\infty X$ is 1-excisive
- Any homology theory is 1-excisive (i.e. satisfies Mayer-Vietoris)
- Id_{S_*} is **not** linear (S_{*} is not stable). In particular, $P_1 Id_{S_*} \simeq \Omega^{\infty} \Sigma^{\infty}$
- If F(*) ≃ *, then P₁F(X) ≃ Ω[∞](E ∧ Σ[∞]X) for some E ∈ Spt (note that E ∧ −: Spt → Spt is linear). We call E the first derivative of F.

Set D_nF to be the fiber $D_nF := \text{hofib}(P_nF \to P_{n-1}F)$.

Duncan Clark (Ohio State University)

GOATS 2 (6/6/20) 5 / 14

3

DQC

Set $D_n F$ to be the fiber $D_n F := \text{hofib}(P_n F \to P_{n-1}F)$.

Thm. [Goodwillie]

There is a unique (up to htpy.) spectrum $\partial_n F$ with Σ_n action such that $D_n F(X) \simeq \Omega^{\infty} (\partial_n F \wedge_{\Sigma_n} (\Sigma^{\infty} X)^{\wedge n}).$

Set $D_n F$ to be the fiber $D_n F := \text{hofib}(P_n F \to P_{n-1}F)$.

Thm. [Goodwillie]

There is a unique (up to htpy.) spectrum $\partial_n F$ with Σ_n action such that $D_n F(X) \simeq \Omega^{\infty} (\partial_n F \wedge_{\Sigma_n} (\Sigma^{\infty} X)^{\wedge n})$. We call $\partial_n F$ the *n*-th derivative of F.

Set $D_n F$ to be the fiber $D_n F := \text{hofib}(P_n F \to P_{n-1}F)$.

Thm. [Goodwillie]

There is a unique (up to htpy.) spectrum $\partial_n F$ with Σ_n action such that $D_n F(X) \simeq \Omega^{\infty} (\partial_n F \wedge_{\Sigma_n} (\Sigma^{\infty} X)^{\wedge n})$. We call $\partial_n F$ the *n*-th derivative of F.

Remark: $D_n F(X)$ bears striking resemblance to $(f^{(n)}(0)x^n)/n!$.

Set $D_n F$ to be the fiber $D_n F := \text{hofib}(P_n F \to P_{n-1}F)$.

Thm. [Goodwillie]

There is a unique (up to htpy.) spectrum $\partial_n F$ with Σ_n action such that $D_n F(X) \simeq \Omega^{\infty} (\partial_n F \wedge_{\Sigma_n} (\Sigma^{\infty} X)^{\wedge n})$. We call $\partial_n F$ the *n*-th derivative of F.

Remark: $D_n F(X)$ bears striking resemblance to $(f^{(n)}(0)x^n)/n!$. We can compute $\partial_n F$ from $D_n F$ via *cross-effects*.

Set D_nF to be the fiber $D_nF := \text{hofib}(P_nF \to P_{n-1}F)$.

Thm. [Goodwillie]

There is a unique (up to htpy.) spectrum $\partial_n F$ with Σ_n action such that $D_n F(X) \simeq \Omega^{\infty} (\partial_n F \wedge_{\Sigma_n} (\Sigma^{\infty} X)^{\wedge n})$. We call $\partial_n F$ the *n*-th derivative of F.

Remark: $D_n F(X)$ bears striking resemblance to $(f^{(n)}(0)x^n)/n!$. We can compute $\partial_n F$ from $D_n F$ via *cross-effects*.

Ex. Derivatives of Id_{S*}

Note, $D_1 \operatorname{Id}_{S_*}(X) \simeq P_1 \operatorname{Id}_{S_*}(X) \simeq \Omega^{\infty} \Sigma^{\infty} X$ and therefore $\partial_1 \operatorname{Id}_{S_*} \simeq S$.

Set $D_n F$ to be the fiber $D_n F := \text{hofib}(P_n F \to P_{n-1}F)$.

Thm. [Goodwillie]

There is a unique (up to htpy.) spectrum $\partial_n F$ with Σ_n action such that $D_n F(X) \simeq \Omega^{\infty} (\partial_n F \wedge_{\Sigma_n} (\Sigma^{\infty} X)^{\wedge n})$. We call $\partial_n F$ the *n*-th derivative of F.

Remark: $D_n F(X)$ bears striking resemblance to $(f^{(n)}(0)x^n)/n!$. We can compute $\partial_n F$ from $D_n F$ via *cross-effects*.

Ex. Derivatives of Id_{S*}

Note, $D_1 \operatorname{Id}_{S_*}(X) \simeq P_1 \operatorname{Id}_{S_*}(X) \simeq \Omega^{\infty} \Sigma^{\infty} X$ and therefore $\partial_1 \operatorname{Id}_{S_*} \simeq S$. For $n \ge 2$, $\partial_n \operatorname{Id}_{S_*}$ is related to the *partition poset complex* $\operatorname{Par}(n)$ [Johnson, Arone-Mahowald].

- 4 同 ト 4 三 ト 4 三 ト

Set $D_n F$ to be the fiber $D_n F := \text{hofib}(P_n F \to P_{n-1}F)$.

Thm. [Goodwillie]

There is a unique (up to htpy.) spectrum $\partial_n F$ with Σ_n action such that $D_n F(X) \simeq \Omega^{\infty} (\partial_n F \wedge_{\Sigma_n} (\Sigma^{\infty} X)^{\wedge n})$. We call $\partial_n F$ the *n*-th derivative of F.

Remark: $D_n F(X)$ bears striking resemblance to $(f^{(n)}(0)x^n)/n!$. We can compute $\partial_n F$ from $D_n F$ via *cross-effects*.

Ex. Derivatives of Id_{S*}

Note, $D_1 \operatorname{Id}_{S_*}(X) \simeq P_1 \operatorname{Id}_{S_*}(X) \simeq \Omega^{\infty} \Sigma^{\infty} X$ and therefore $\partial_1 \operatorname{Id}_{S_*} \simeq S$. For $n \ge 2$, $\partial_n \operatorname{Id}_{S_*}$ is related to the *partition poset complex* $\operatorname{Par}(n)$ [Johnson, Arone-Mahowald]. In particular, $\partial_2 \operatorname{Id}_{S_*} \simeq \Omega S$ with trivial Σ_2 action.

Duncan Clark (Ohio State University)

イロト イ押ト イヨト イヨト

Set D_nF to be the fiber $D_nF := \text{hofib}(P_nF \to P_{n-1}F)$.

Thm. [Goodwillie]

There is a unique (up to htpy.) spectrum $\partial_n F$ with Σ_n action such that $D_n F(X) \simeq \Omega^{\infty} (\partial_n F \wedge_{\Sigma_n} (\Sigma^{\infty} X)^{\wedge n})$. We call $\partial_n F$ the *n*-th derivative of F.

Remark: $D_n F(X)$ bears striking resemblance to $(f^{(n)}(0)x^n)/n!$. We can compute $\partial_n F$ from $D_n F$ via *cross-effects*.

Ex. Derivatives of Id_{S*}

Note, $D_1 \operatorname{Id}_{S_*}(X) \simeq P_1 \operatorname{Id}_{S_*}(X) \simeq \Omega^{\infty} \Sigma^{\infty} X$ and therefore $\partial_1 \operatorname{Id}_{S_*} \simeq S$. For $n \ge 2$, $\partial_n \operatorname{Id}_{S_*}$ is related to the *partition poset complex* $\operatorname{Par}(n)$ [Johnson, Arone-Mahowald]. In particular, $\partial_2 \operatorname{Id}_{S_*} \simeq \Omega S$ with trivial Σ_2 action.

The collection $\partial_* F$ forms a symmetric sequence of spectra.

・ロト ・ 四ト ・ ヨト ・ ヨト

Set D_nF to be the fiber $D_nF := \text{hofib}(P_nF \to P_{n-1}F)$.

Thm. [Goodwillie]

There is a unique (up to htpy.) spectrum $\partial_n F$ with Σ_n action such that $D_n F(X) \simeq \Omega^{\infty} (\partial_n F \wedge_{\Sigma_n} (\Sigma^{\infty} X)^{\wedge n})$. We call $\partial_n F$ the *n*-th derivative of F.

Remark: $D_n F(X)$ bears striking resemblance to $(f^{(n)}(0)x^n)/n!$. We can compute $\partial_n F$ from $D_n F$ via *cross-effects*.

Ex. Derivatives of Id_{S*}

Note, $D_1 \operatorname{Id}_{S_*}(X) \simeq P_1 \operatorname{Id}_{S_*}(X) \simeq \Omega^{\infty} \Sigma^{\infty} X$ and therefore $\partial_1 \operatorname{Id}_{S_*} \simeq S$. For $n \ge 2$, $\partial_n \operatorname{Id}_{S_*}$ is related to the *partition poset complex* $\operatorname{Par}(n)$ [Johnson, Arone-Mahowald]. In particular, $\partial_2 \operatorname{Id}_{S_*} \simeq \Omega S$ with trivial Σ_2 action.

The collection $\partial_* F$ forms a *symmetric sequence* of spectra. We are interested in understanding what extra structure this sequence posses.

Duncan Clark (Ohio State University)

・ロト ・回ト ・ヨト ・ヨト

Sac

An *operad* may be thought of as a useful tool for describing spectra with extra algebraic structure

Э

DQC

An *operad* may be thought of as a useful tool for describing spectra with extra algebraic structure, i.e. (commutative) ring spectra

3

200

An operad may be thought of as a useful tool for describing spectra with extra algebraic structure, i.e. (commutative) ring spectra, A_{∞} -ring spectra,

3

Sar

An operad may be thought of as a useful tool for describing spectra with extra algebraic structure, i.e. (commutative) ring spectra, A_{∞} -ring spectra, or E_n -ring spectra ($1 \le n \le \infty$).

3

An operad may be thought of as a useful tool for describing spectra with extra algebraic structure, i.e. (commutative) ring spectra, A_{∞} -ring spectra, or E_n -ring spectra ($1 \le n \le \infty$).

Def. [May, Boardman-Vogt]

An operad ${\mathcal O}$ in a symmetric monoidal category $(\mathsf{C},\otimes,1)$ consists of

An operad may be thought of as a useful tool for describing spectra with extra algebraic structure, i.e. (commutative) ring spectra, A_{∞} -ring spectra, or E_n -ring spectra ($1 \le n \le \infty$).

Def. [May, Boardman-Vogt]

An operad ${\mathcal O}$ in a symmetric monoidal category $(\mathsf{C},\otimes,1)$ consists of

• objects $\mathcal{O}[n]$ for $n \ge 0$ with actions by Σ_n

An operad may be thought of as a useful tool for describing spectra with extra algebraic structure, i.e. (commutative) ring spectra, A_{∞} -ring spectra, or E_n -ring spectra ($1 \le n \le \infty$).

Def. [May, Boardman-Vogt]

An operad $\mathcal O$ in a symmetric monoidal category $(\mathsf C,\otimes,1)$ consists of

• objects $\mathcal{O}[n]$ for $n \ge 0$ with actions by Σ_n (i.e. a symmetric sequence)

An operad may be thought of as a useful tool for describing spectra with extra algebraic structure, i.e. (commutative) ring spectra, A_{∞} -ring spectra, or E_n -ring spectra ($1 \le n \le \infty$).

Def. [May, Boardman-Vogt]

An operad ${\mathcal O}$ in a symmetric monoidal category (C, \otimes , 1) consists of

- objects $\mathcal{O}[n]$ for $n \ge 0$ with actions by Σ_n (i.e. a symmetric sequence)
- unit map $\mathbf{1}
 ightarrow \mathcal{O}[1]$

An operad may be thought of as a useful tool for describing spectra with extra algebraic structure, i.e. (commutative) ring spectra, A_{∞} -ring spectra, or E_n -ring spectra ($1 \le n \le \infty$).

Def. [May, Boardman-Vogt]

An operad ${\mathcal O}$ in a symmetric monoidal category (C, \otimes , 1) consists of

- objects $\mathcal{O}[n]$ for $n \ge 0$ with actions by Σ_n (i.e. a symmetric sequence)
- unit map $\mathbf{1}
 ightarrow \mathcal{O}[1]$
- action maps O[n] ⊗ O[k₁] ⊗ · · · ⊗ O[k_n] → O[k₁ + · · · + k_n] subject to equivariance, associativity and unitality conditions.

An operad may be thought of as a useful tool for describing spectra with extra algebraic structure, i.e. (commutative) ring spectra, A_{∞} -ring spectra, or E_n -ring spectra ($1 \le n \le \infty$).

Def. [May, Boardman-Vogt]

An operad ${\mathcal O}$ in a symmetric monoidal category (C, \otimes , 1) consists of

- objects $\mathcal{O}[n]$ for $n \ge 0$ with actions by Σ_n (i.e. a symmetric sequence)
- unit map $\mathbf{1}
 ightarrow \mathcal{O}[1]$
- action maps O[n] ⊗ O[k₁] ⊗ · · · ⊗ O[k_n] → O[k₁ + · · · + k_n] subject to equivariance, associativity and unitality conditions.

Operads are precisely monoids with respect to the composition product \circ for symmetric sequences

An operad may be thought of as a useful tool for describing spectra with extra algebraic structure, i.e. (commutative) ring spectra, A_{∞} -ring spectra, or E_n -ring spectra ($1 \le n \le \infty$).

Def. [May, Boardman-Vogt]

An operad ${\mathcal O}$ in a symmetric monoidal category (C, \otimes , 1) consists of

- objects $\mathcal{O}[n]$ for $n \ge 0$ with actions by Σ_n (i.e. a symmetric sequence)
- unit map $\mathbf{1} o \mathcal{O}[1]$
- action maps O[n] ⊗ O[k₁] ⊗ · · · ⊗ O[k_n] → O[k₁ + · · · + k_n] subject to equivariance, associativity and unitality conditions.

Operads are precisely monoids with respect to the composition product \circ for symmetric sequences, i.e. there are associative and unital maps $\mathcal{O} \circ \mathcal{O} \rightarrow \mathcal{O}$

< ロト < 同ト < ヨト < ヨト

An operad may be thought of as a useful tool for describing spectra with extra algebraic structure, i.e. (commutative) ring spectra, A_{∞} -ring spectra, or E_n -ring spectra ($1 \le n \le \infty$).

Def. [May, Boardman-Vogt]

An operad ${\mathcal O}$ in a symmetric monoidal category (C, \otimes , 1) consists of

- objects $\mathcal{O}[n]$ for $n \ge 0$ with actions by Σ_n (i.e. a symmetric sequence)
- unit map $\mathbf{1} o \mathcal{O}[1]$
- action maps O[n] ⊗ O[k₁] ⊗ · · · ⊗ O[k_n] → O[k₁ + · · · + k_n] subject to equivariance, associativity and unitality conditions.

Operads are precisely monoids with respect to the composition product \circ for symmetric sequences, i.e. there are associative and unital maps $\mathcal{O} \circ \mathcal{O} \rightarrow \mathcal{O}$ and $I \rightarrow \mathcal{O}$

< ロト < 同ト < ヨト < ヨト

An operad may be thought of as a useful tool for describing spectra with extra algebraic structure, i.e. (commutative) ring spectra, A_{∞} -ring spectra, or E_n -ring spectra ($1 \le n \le \infty$).

Def. [May, Boardman-Vogt]

An operad ${\mathcal O}$ in a symmetric monoidal category (C, \otimes , 1) consists of

- objects $\mathcal{O}[n]$ for $n \ge 0$ with actions by Σ_n (i.e. a symmetric sequence)
- unit map $\mathbf{1}
 ightarrow \mathcal{O}[1]$
- action maps O[n] ⊗ O[k₁] ⊗ · · · ⊗ O[k_n] → O[k₁ + · · · + k_n] subject to equivariance, associativity and unitality conditions.

Operads are precisely monoids with respect to the composition product \circ for symmetric sequences, i.e. there are associative and unital maps $\mathcal{O} \circ \mathcal{O} \rightarrow \mathcal{O}$ and $I \rightarrow \mathcal{O}$ (here $I[1] = \mathbf{1}$ and I[k] = * for $k \neq 1$).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We will focus on the category of symmetric spectra $Spt = (Sp^{\Sigma}, \wedge, S)$.

Э

990

We will focus on the category of symmetric spectra $\mathsf{Spt} = (\mathsf{Sp}^{\Sigma}, \wedge, S)$.

Def. (algebra over an operad)

An *algebra* over an operad \mathcal{O} in Spt is an object $X \in$ Spt

We will focus on the category of symmetric spectra $Spt = (Sp^{\Sigma}, \wedge, S)$.

Def. (algebra over an operad)

An *algebra* over an operad \mathcal{O} in Spt is an object $X \in$ Spt together with action maps $\mathcal{O}[n] \wedge_{\Sigma_n} X^{\wedge n} \to X$ for all $n \ge 0$

We will focus on the category of symmetric spectra $Spt = (Sp^{\Sigma}, \wedge, S)$.

Def. (algebra over an operad)

An algebra over an operad \mathcal{O} in Spt is an object $X \in$ Spt together with action maps $\mathcal{O}[n] \wedge_{\Sigma_n} X^{\wedge n} \to X$ for all $n \ge 0$, subject to associativity and unitality conditions.

We will focus on the category of symmetric spectra $Spt = (Sp^{\Sigma}, \wedge, S)$.

Def. (algebra over an operad)

An algebra over an operad \mathcal{O} in Spt is an object $X \in$ Spt together with action maps $\mathcal{O}[n] \wedge_{\Sigma_n} X^{\wedge n} \to X$ for all $n \ge 0$, subject to associativity and unitality conditions.

We think of the term $\mathcal{O}[n]$ as parametrizing the possible $n\text{-}\mathsf{ary}$ operations on X

We will focus on the category of symmetric spectra $Spt = (Sp^{\Sigma}, \wedge, S)$.

Def. (algebra over an operad)

An algebra over an operad \mathcal{O} in Spt is an object $X \in$ Spt together with action maps $\mathcal{O}[n] \wedge_{\Sigma_n} X^{\wedge n} \to X$ for all $n \ge 0$, subject to associativity and unitality conditions.

We think of the term $\mathcal{O}[n]$ as parametrizing the possible *n*-ary operations on X, e.g. if $\mathcal{O}[n] \simeq S$ (with free Σ_n action), then \mathcal{O} describes *homotopy commutative* (i.e. E_{∞} -) monoids in Spt as its algebras.

We will focus on the category of symmetric spectra $Spt = (Sp^{\Sigma}, \wedge, S)$.

Def. (algebra over an operad)

An algebra over an operad \mathcal{O} in Spt is an object $X \in$ Spt together with action maps $\mathcal{O}[n] \wedge_{\Sigma_n} X^{\wedge n} \to X$ for all $n \ge 0$, subject to associativity and unitality conditions.

We think of the term $\mathcal{O}[n]$ as parametrizing the possible *n*-ary operations on X, e.g. if $\mathcal{O}[n] \simeq S$ (with free Σ_n action), then \mathcal{O} describes *homotopy commutative* (i.e. E_{∞} -) monoids in Spt as its algebras.

We set $Alg_{\mathcal{O}}$ to be the category of algebras over a given operad \mathcal{O} together with structure preserving maps.

We will focus on the category of symmetric spectra $Spt = (Sp^{\Sigma}, \wedge, S)$.

Def. (algebra over an operad)

An algebra over an operad \mathcal{O} in Spt is an object $X \in$ Spt together with action maps $\mathcal{O}[n] \wedge_{\Sigma_n} X^{\wedge n} \to X$ for all $n \ge 0$, subject to associativity and unitality conditions.

We think of the term $\mathcal{O}[n]$ as parametrizing the possible *n*-ary operations on X, e.g. if $\mathcal{O}[n] \simeq S$ (with free Σ_n action), then \mathcal{O} describes *homotopy commutative* (i.e. E_{∞} -) monoids in Spt as its algebras.

We set $Alg_{\mathcal{O}}$ to be the category of algebras over a given operad \mathcal{O} together with structure preserving maps. Note, an algebra over X is equivalently an algebra over the assocaited monad on Spt

$$X\mapsto \mathcal{O}\circ(X)=\prod_{n\geq 0}\mathcal{O}[n]\wedge_{\Sigma_n}X^{\wedge n}.$$

Fix an operad \mathcal{O} in Spt with $\mathcal{O}[0] = *$

3

990

Fix an operad \mathcal{O} in Spt with $\mathcal{O}[0] = *$ and assume for simplicity that $\mathcal{O}[1] \cong S$.

990

Fix an operad \mathcal{O} in Spt with $\mathcal{O}[0] = *$ and assume for simplicity that $\mathcal{O}[1] \cong S$. We define the *n*-th truncation of \mathcal{O} , $\tau_n \mathcal{O}$, by

$$\tau_n \mathcal{O}[k] := \begin{cases} \mathcal{O}[k] & k \le n \\ * & k > n \end{cases}$$

Fix an operad \mathcal{O} in Spt with $\mathcal{O}[0] = *$ and assume for simplicity that $\mathcal{O}[1] \cong S$. We define the *n*-th truncation of \mathcal{O} , $\tau_n \mathcal{O}$, by

$$\tau_n \mathcal{O}[k] := \begin{cases} \mathcal{O}[k] & k \le n \\ * & k > n \end{cases}$$

There is a tower $\mathcal{O} \to \cdots \to \tau_3 \mathcal{O} \to \tau_2 \mathcal{O} \to \tau_1 \mathcal{O}$ of operads
Fix an operad \mathcal{O} in Spt with $\mathcal{O}[0] = *$ and assume for simplicity that $\mathcal{O}[1] \cong S$. We define the *n*-th truncation of \mathcal{O} , $\tau_n \mathcal{O}$, by

$$\tau_n \mathcal{O}[k] := \begin{cases} \mathcal{O}[k] & k \le n \\ * & k > n \end{cases}$$

There is a tower $\mathcal{O} \to \cdots \to \tau_3 \mathcal{O} \to \tau_2 \mathcal{O} \to \tau_1 \mathcal{O}$ of operads and the bottom map $\mathcal{O} \to \tau_1 \mathcal{O}$ induces a *change of operads adjunction*

Fix an operad \mathcal{O} in Spt with $\mathcal{O}[0] = *$ and assume for simplicity that $\mathcal{O}[1] \cong S$. We define the *n*-th truncation of \mathcal{O} , $\tau_n \mathcal{O}$, by

$$\tau_n \mathcal{O}[k] := \begin{cases} \mathcal{O}[k] & k \le n \\ * & k > n \end{cases}$$

There is a tower $\mathcal{O} \to \cdots \to \tau_3 \mathcal{O} \to \tau_2 \mathcal{O} \to \tau_1 \mathcal{O}$ of operads and the bottom map $\mathcal{O} \to \tau_1 \mathcal{O}$ induces a *change of operads adjunction*

$$\mathsf{Alg}_{\mathcal{O}} \xrightarrow{\tau_1 \mathcal{O} \circ_{\mathcal{O}}(-)}{\underbrace{\prec}_U} \mathsf{Mod}_{\mathcal{O}[1]}$$

Fix an operad \mathcal{O} in Spt with $\mathcal{O}[0] = *$ and assume for simplicity that $\mathcal{O}[1] \cong S$. We define the *n*-th truncation of \mathcal{O} , $\tau_n \mathcal{O}$, by

$$\tau_n \mathcal{O}[k] := \begin{cases} \mathcal{O}[k] & k \le n \\ * & k > n \end{cases}$$

There is a tower $\mathcal{O} \to \cdots \to \tau_3 \mathcal{O} \to \tau_2 \mathcal{O} \to \tau_1 \mathcal{O}$ of operads and the bottom map $\mathcal{O} \to \tau_1 \mathcal{O}$ induces a *change of operads adjunction*

$$\mathsf{Alg}_{\mathcal{O}} \xrightarrow{\tau_1 \mathcal{O} \circ_{\mathcal{O}}(-)}{\underbrace{}_U \mathsf{Mod}_{\mathcal{O}[1]}}$$

Let J be a factorization $\mathcal{O} \hookrightarrow \mathbf{J} \xrightarrow{\sim} \tau_1 \mathcal{O}$.

Fix an operad \mathcal{O} in Spt with $\mathcal{O}[0] = *$ and assume for simplicity that $\mathcal{O}[1] \cong S$. We define the *n*-th truncation of \mathcal{O} , $\tau_n \mathcal{O}$, by

$$\tau_n \mathcal{O}[k] := \begin{cases} \mathcal{O}[k] & k \le n \\ * & k > n \end{cases}$$

There is a tower $\mathcal{O} \to \cdots \to \tau_3 \mathcal{O} \to \tau_2 \mathcal{O} \to \tau_1 \mathcal{O}$ of operads and the bottom map $\mathcal{O} \to \tau_1 \mathcal{O}$ induces a *change of operads adjunction*

$$\operatorname{Alg}_{\mathcal{O}}^{\tau_1 \mathcal{O} \circ_{\mathcal{O}}(-)}_{\underbrace{U}} \operatorname{Mod}_{\mathcal{O}[1]} \qquad \operatorname{Alg}_{\mathcal{O}}^{\mathcal{Q}:=J \circ_{\mathcal{O}}(-)}_{\underbrace{U}} \operatorname{Alg}_{J} \sim \operatorname{Mod}_{\mathcal{O}[1]}$$

Let J be a factorization $\mathcal{O} \hookrightarrow \mathbf{J} \xrightarrow{\sim} \tau_1 \mathcal{O}$.

Fix an operad \mathcal{O} in Spt with $\mathcal{O}[0] = *$ and assume for simplicity that $\mathcal{O}[1] \cong S$. We define the *n*-th truncation of \mathcal{O} , $\tau_n \mathcal{O}$, by

$$\tau_n \mathcal{O}[k] := \begin{cases} \mathcal{O}[k] & k \le n \\ * & k > n \end{cases}$$

There is a tower $\mathcal{O} \to \cdots \to \tau_3 \mathcal{O} \to \tau_2 \mathcal{O} \to \tau_1 \mathcal{O}$ of operads and the bottom map $\mathcal{O} \to \tau_1 \mathcal{O}$ induces a *change of operads adjunction*

$$\operatorname{Alg}_{\mathcal{O}} \xrightarrow{\tau_1 \mathcal{O} \circ_{\mathcal{O}}(-)}_{\underbrace{U}} \operatorname{Mod}_{\mathcal{O}[1]} \qquad \operatorname{Alg}_{\mathcal{O}} \xrightarrow{Q:=J \circ_{\mathcal{O}}(-)}_{\underbrace{U}} \operatorname{Alg}_J \sim \operatorname{Mod}_{\mathcal{O}[1]}$$

Let J be a factorization $\mathcal{O} \hookrightarrow \mathbf{J} \xrightarrow{\sim} \tau_1 \mathcal{O}$. Set $\mathsf{TQ} := \mathbb{L}Q$ (i.e. the left-derived functor of Q).

Fix an operad \mathcal{O} in Spt with $\mathcal{O}[0] = *$ and assume for simplicity that $\mathcal{O}[1] \cong S$. We define the *n*-th truncation of \mathcal{O} , $\tau_n \mathcal{O}$, by

$$\tau_n \mathcal{O}[k] := \begin{cases} \mathcal{O}[k] & k \le n \\ * & k > n \end{cases}$$

There is a tower $\mathcal{O} \to \cdots \to \tau_3 \mathcal{O} \to \tau_2 \mathcal{O} \to \tau_1 \mathcal{O}$ of operads and the bottom map $\mathcal{O} \to \tau_1 \mathcal{O}$ induces a *change of operads adjunction*

$$\operatorname{Alg}_{\mathcal{O}} \xrightarrow{\tau_1 \mathcal{O} \circ_{\mathcal{O}}(-)}_{U} \operatorname{Mod}_{\mathcal{O}[1]} \qquad \operatorname{Alg}_{\mathcal{O}} \xrightarrow{Q:=J \circ_{\mathcal{O}}(-)}_{U} \operatorname{Alg}_{J} \sim \operatorname{Mod}_{\mathcal{O}[1]}$$

Let J be a factorization $\mathcal{O} \hookrightarrow J \xrightarrow{\sim} \tau_1 \mathcal{O}$. Set $\mathsf{TQ} := \mathbb{L}Q$ (i.e. the left-derived functor of Q). $\mathsf{TQ}(X)$ is often called *topological Quillen* homology spectrum of X.

Fix an operad \mathcal{O} in Spt with $\mathcal{O}[0] = *$ and assume for simplicity that $\mathcal{O}[1] \cong S$. We define the *n*-th truncation of \mathcal{O} , $\tau_n \mathcal{O}$, by

$$\tau_n \mathcal{O}[k] := \begin{cases} \mathcal{O}[k] & k \le n \\ * & k > n \end{cases}$$

There is a tower $\mathcal{O} \to \cdots \to \tau_3 \mathcal{O} \to \tau_2 \mathcal{O} \to \tau_1 \mathcal{O}$ of operads and the bottom map $\mathcal{O} \to \tau_1 \mathcal{O}$ induces a *change of operads adjunction*

$$\operatorname{Alg}_{\mathcal{O}} \xrightarrow{\tau_1 \mathcal{O} \circ_{\mathcal{O}}(-)}_{U} \operatorname{Mod}_{\mathcal{O}[1]} \qquad \operatorname{Alg}_{\mathcal{O}} \xrightarrow{Q:=J \circ_{\mathcal{O}}(-)}_{U} \operatorname{Alg}_{J} \sim \operatorname{Mod}_{\mathcal{O}[1]}$$

Let J be a factorization $\mathcal{O} \hookrightarrow J \xrightarrow{\sim} \tau_1 \mathcal{O}$. Set $\mathsf{TQ} := \mathbb{L}Q$ (i.e. the left-derived functor of Q). $\mathsf{TQ}(X)$ is often called *topological Quillen* homology spectrum of X. Basterra-Mandell show (Q, U) is equivalent to the stabilization adjunction for \mathcal{O} -algebras

Fix an operad \mathcal{O} in Spt with $\mathcal{O}[0] = *$ and assume for simplicity that $\mathcal{O}[1] \cong S$. We define the *n*-th truncation of \mathcal{O} , $\tau_n \mathcal{O}$, by

$$\tau_n \mathcal{O}[k] := \begin{cases} \mathcal{O}[k] & k \le n \\ * & k > n \end{cases}$$

There is a tower $\mathcal{O} \to \cdots \to \tau_3 \mathcal{O} \to \tau_2 \mathcal{O} \to \tau_1 \mathcal{O}$ of operads and the bottom map $\mathcal{O} \to \tau_1 \mathcal{O}$ induces a *change of operads adjunction*

$$\operatorname{Alg}_{\mathcal{O}} \xrightarrow{\tau_1 \mathcal{O} \circ_{\mathcal{O}}(-)}_{U} \operatorname{Mod}_{\mathcal{O}[1]} \qquad \operatorname{Alg}_{\mathcal{O}} \xrightarrow{Q:=J \circ_{\mathcal{O}}(-)}_{U} \operatorname{Alg}_{J} \sim \operatorname{Mod}_{\mathcal{O}[1]}$$

Let J be a factorization $\mathcal{O} \hookrightarrow J \xrightarrow{\sim} \tau_1 \mathcal{O}$. Set $\mathsf{TQ} := \mathbb{L}Q$ (i.e. the left-derived functor of Q). $\mathsf{TQ}(X)$ is often called *topological Quillen* homology spectrum of X. Basterra-Mandell show (Q, U) is equivalent to the stabilization adjunction for \mathcal{O} -algebras, i.e. $\mathsf{TQ}(X) \simeq \Sigma^{\infty} X$.

Harper-Hess and Pereira show that the Taylor tower of the identity in ${\rm Alg}_{\mathcal O}$ takes the following form

Harper-Hess and Pereira show that the Taylor tower of the identity in ${\rm Alg}_{\mathcal O}$ takes the following form

Harper-Hess and Pereira show that the Taylor tower of the identity in ${\rm Alg}_{\mathcal O}$ takes the following form

In particular, there are equivalences

•
$$D_n \operatorname{Id}(X) \simeq U(\mathcal{O}[n] \wedge_{\Sigma_n} \operatorname{TQ}(X)^{\wedge n})$$

Harper-Hess and Pereira show that the Taylor tower of the identity in ${\rm Alg}_{\mathcal O}$ takes the following form

In particular, there are equivalences

• $D_n \operatorname{Id}(X) \simeq U(\mathcal{O}[n] \wedge_{\Sigma_n} \operatorname{TQ}(X)^{\wedge n})$

• $\partial_n \operatorname{Id} \simeq \mathcal{O}[n]$ (as Σ_n -objects in Spt)

Harper-Hess and Pereira show that the Taylor tower of the identity in ${\rm Alg}_{\mathcal O}$ takes the following form

- $D_n \operatorname{Id}(X) \simeq U(\mathcal{O}[n] \wedge_{\Sigma_n} \operatorname{TQ}(X)^{\wedge n})$
- $\partial_n \operatorname{Id} \simeq \mathcal{O}[n]$ (as Σ_n -objects in Spt)

Thus, $\partial_* \operatorname{Id} \simeq \mathcal{O}$ as symmetric sequences.

Harper-Hess and Pereira show that the Taylor tower of the identity in ${\rm Alg}_{\mathcal O}$ takes the following form

In particular, there are equivalences

- $D_n \operatorname{Id}(X) \simeq U(\mathcal{O}[n] \wedge_{\Sigma_n} \operatorname{TQ}(X)^{\wedge n})$
- $\partial_n \operatorname{Id} \simeq \mathcal{O}[n]$ (as Σ_n -objects in Spt)

Thus, $\partial_* \operatorname{Id} \simeq \mathcal{O}$ as symmetric sequences.

It has been a long standing conjecture that $\partial_* \operatorname{Id} \simeq \mathcal{O}$ as operads

Harper-Hess and Pereira show that the Taylor tower of the identity in ${\rm Alg}_{\mathcal O}$ takes the following form

In particular, there are equivalences

- $D_n \operatorname{Id}(X) \simeq U(\mathcal{O}[n] \wedge_{\Sigma_n} \operatorname{TQ}(X)^{\wedge n})$
- $\partial_n \operatorname{Id} \simeq \mathcal{O}[n]$ (as Σ_n -objects in Spt)

Thus, $\partial_* \operatorname{Id} \simeq \mathcal{O}$ as symmetric sequences.

It has been a long standing conjecture that $\partial_* \operatorname{Id} \simeq \mathcal{O}$ as operads, the missing piece being the lack of an intrinsic operad structure on $\partial_* \operatorname{Id}$ with which to compare to \mathcal{O} .

Main theorem

Thm. [C]

The derivatives of the identity in Alg_{\mathcal{O}} posses an intrinsic "homotopy coherent" operad structure with respect to which $\partial_* \operatorname{Id} \simeq \mathcal{O}$ as operads.

The derivatives of the identity in $Alg_{\mathcal{O}}$ posses an intrinsic "homotopy coherent" operad structure with respect to which $\partial_* Id \simeq \mathcal{O}$ as operads.

Idea of proof: Our method is to adapt a technique of McClure-Smith that if Y^{\bullet} is a cosimplicial space which is a monoid with respect to the box product \Box [Batanin], then Tot Y^{\bullet} is an A_{∞} -monoid in spaces.

The derivatives of the identity in $Alg_{\mathcal{O}}$ posses an intrinsic "homotopy coherent" operad structure with respect to which $\partial_* Id \simeq \mathcal{O}$ as operads.

Idea of proof: Our method is to adapt a technique of McClure-Smith that if Y^{\bullet} is a cosimplicial space which is a monoid with respect to the box product \Box [Batanin], then Tot Y^{\bullet} is an A_{∞} -monoid in spaces.

Example: Set $\ell(X) = \text{Cobar}(*, X, *)$ w.r.t. the diagonal map on X

The derivatives of the identity in $Alg_{\mathcal{O}}$ posses an intrinsic "homotopy coherent" operad structure with respect to which $\partial_* Id \simeq \mathcal{O}$ as operads.

Idea of proof: Our method is to adapt a technique of McClure-Smith that if Y^{\bullet} is a cosimplicial space which is a monoid with respect to the box product \Box [Batanin], then Tot Y^{\bullet} is an A_{∞} -monoid in spaces.

Example: Set $\ell(X) = \text{Cobar}(*, X, *)$ w.r.t. the diagonal map on X, i.e.

$$\ell(X) = * \Longrightarrow X \Longrightarrow X^{\times 2} \Longrightarrow X^{\times 3} \cdots$$

The derivatives of the identity in $Alg_{\mathcal{O}}$ posses an intrinsic "homotopy coherent" operad structure with respect to which $\partial_* Id \simeq \mathcal{O}$ as operads.

Idea of proof: Our method is to adapt a technique of McClure-Smith that if Y^{\bullet} is a cosimplicial space which is a monoid with respect to the box product \Box [Batanin], then Tot Y^{\bullet} is an A_{∞} -monoid in spaces.

Example: Set $\ell(X) = \text{Cobar}(*, X, *)$ w.r.t. the diagonal map on X, i.e.

$$\ell(X) = * \Longrightarrow X \Longrightarrow X^{\times 2} \Longrightarrow X^{\times 3} \cdots$$

Then, there is a monoidal pairing $\ell(X) \Box \ell(X) \to \ell(X)$

The derivatives of the identity in Alg_{\mathcal{O}} posses an intrinsic "homotopy coherent" operad structure with respect to which $\partial_* \operatorname{Id} \simeq \mathcal{O}$ as operads.

Idea of proof: Our method is to adapt a technique of McClure-Smith that if Y^{\bullet} is a cosimplicial space which is a monoid with respect to the box product \Box [Batanin], then Tot Y^{\bullet} is an A_{∞} -monoid in spaces.

Example: Set $\ell(X) = \text{Cobar}(*, X, *)$ w.r.t. the diagonal map on X, i.e.

$$\ell(X) = * \Longrightarrow X \Longrightarrow X^{\times 2} \Longrightarrow X^{\times 3} \cdots$$

Then, there is a monoidal pairing $\ell(X) \Box \ell(X) \rightarrow \ell(X)$ induced by $X^{\times p} \times X^{\times q} \cong X^{\times p+q}$

The derivatives of the identity in Alg_{\mathcal{O}} posses an intrinsic "homotopy coherent" operad structure with respect to which $\partial_* \operatorname{Id} \simeq \mathcal{O}$ as operads.

Idea of proof: Our method is to adapt a technique of McClure-Smith that if Y^{\bullet} is a cosimplicial space which is a monoid with respect to the box product \Box [Batanin], then Tot Y^{\bullet} is an A_{∞} -monoid in spaces.

Example: Set $\ell(X) = \text{Cobar}(*, X, *)$ w.r.t. the diagonal map on X, i.e.

$$\ell(X) = * \Longrightarrow X \Longrightarrow X^{\times 2} \Longrightarrow X^{\times 3} \cdots$$

Then, there is a monoidal pairing $\ell(X) \Box \ell(X) \rightarrow \ell(X)$ induced by $X^{\times p} \times X^{\times q} \cong X^{\times p+q}$, and $\operatorname{Tot} \ell(X) \simeq \Omega X$ as A_{∞} -monoids

Duncan Clark (Ohio State University)

イロト イヨト イヨト

The derivatives of the identity in Alg_{\mathcal{O}} posses an intrinsic "homotopy coherent" operad structure with respect to which $\partial_* \operatorname{Id} \simeq \mathcal{O}$ as operads.

Idea of proof: Our method is to adapt a technique of McClure-Smith that if Y^{\bullet} is a cosimplicial space which is a monoid with respect to the box product \Box [Batanin], then Tot Y^{\bullet} is an A_{∞} -monoid in spaces.

Example: Set $\ell(X) = \text{Cobar}(*, X, *)$ w.r.t. the diagonal map on X, i.e.

$$\ell(X) = * \Longrightarrow X \Longrightarrow X^{\times 2} \Longrightarrow X^{\times 3} \cdots$$

Then, there is a monoidal pairing $\ell(X) \Box \ell(X) \rightarrow \ell(X)$ induced by $X^{\times p} \times X^{\times q} \cong X^{\times p+q}$, and Tot $\ell(X) \simeq \Omega X$ as A_{∞} -monoids (note that ΩX is an A_{∞} -monoid under composition of loops).

Duncan Clark (Ohio State University)

< ロ > < 同 > < 三 > < 三 >

We use the Bousfield-Kan cosimplicial resolution of Id with respect to the stabilization adjunction (Q, U)

200

We use the Bousfield-Kan cosimplicial resolution of Id with respect to the stabilization adjunction (Q, U), i.e.

ld

200

We use the Bousfield-Kan cosimplicial resolution of Id with respect to the stabilization adjunction (Q, U), i.e.

$$\mathsf{Id} \to \left(\begin{array}{c} UQ \Longrightarrow UQUQ \Longrightarrow UQUQUQ \cdots \right)$$

We use the Bousfield-Kan cosimplicial resolution of Id with respect to the stabilization adjunction (Q, U), i.e.

$$\mathsf{Id} \to \left(\begin{array}{c} UQ \Longrightarrow UQUQ \Longrightarrow UQUQUQ \cdots \right) \\ \simeq \left(\begin{array}{c} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \cdots \right) \end{array} \right)$$

We use the Bousfield-Kan cosimplicial resolution of Id with respect to the stabilization adjunction (Q, U), i.e.

$$\mathsf{Id} \to \left(\begin{array}{c} UQ \Longrightarrow UQUQ \Longrightarrow UQUQUQ \cdots \right) \\ \simeq \left(\begin{array}{c} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \cdots \right) \end{array} \right)$$

Blomquist shows the maps $Id \rightarrow holim_{\Delta \leq k-1} C(-)$ are sufficiently connected to induce equivalences on derivatives

We use the Bousfield-Kan cosimplicial resolution of Id with respect to the stabilization adjunction (Q, U), i.e.

$$\mathsf{Id} \to \left(\begin{array}{c} UQ \Longrightarrow UQUQ \Longrightarrow UQUQUQ \cdots \right) \\ \simeq \left(\begin{array}{c} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \cdots \right) \end{array} \right)$$

Blomquist shows the maps $Id \rightarrow holim_{\Delta \leq k-1} C(-)$ are sufficiently connected to induce equivalences on derivatives

$$\partial_n \operatorname{Id} \xrightarrow{\sim} \operatorname{holim}_{\Delta} \left(\partial_n(UQ) \Longrightarrow \partial_n(UQUQ) \Longrightarrow \partial_n(UQUQUQ) \cdots \right)$$

We use the Bousfield-Kan cosimplicial resolution of Id with respect to the stabilization adjunction (Q, U), i.e.

$$\mathsf{Id} \to \left(\begin{array}{c} UQ \Longrightarrow UQUQ \Longrightarrow UQUQUQ \cdots \right) \\ \simeq \left(\begin{array}{c} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \cdots \right) \end{array} \right)$$

Blomquist shows the maps $Id \rightarrow holim_{\Delta \leq k-1} C(-)$ are sufficiently connected to induce equivalences on derivatives

$$\partial_n \operatorname{Id} \xrightarrow{\sim} \operatorname{holim}_\Delta \left(\partial_n(UQ) \Longrightarrow \partial_n(UQUQ) \Longrightarrow \partial_n(UQUQUQ) \cdots \right)$$

Lemma (Alg $_{\mathcal{O}}$ Snaith splitting):

We use the Bousfield-Kan cosimplicial resolution of Id with respect to the stabilization adjunction (Q, U), i.e.

$$\mathsf{Id} \to \left(\begin{array}{c} UQ \Longrightarrow UQUQ \Longrightarrow UQUQUQ \cdots \right) \\ \simeq \left(\begin{array}{c} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \cdots \right) \end{array} \right)$$

Blomquist shows the maps $Id \rightarrow holim_{\Delta \leq k-1} C(-)$ are sufficiently connected to induce equivalences on derivatives

$$\partial_n \operatorname{Id} \xrightarrow{\sim} \operatorname{holim}_{\Delta} \left(\partial_n(UQ) \Longrightarrow \partial_n(UQUQ) \Longrightarrow \partial_n(UQUQUQ) \cdots \right)$$

Lemma (Alg_{\mathcal{O}} Snaith splitting): $QU(Y) \simeq \coprod_{n \ge 1} B(\mathcal{O})[n] \wedge_{\Sigma_n} Y^{\wedge n}$

We use the Bousfield-Kan cosimplicial resolution of Id with respect to the stabilization adjunction (Q, U), i.e.

$$\mathsf{Id} \to \left(\begin{array}{c} UQ \Longrightarrow UQUQ \Longrightarrow UQUQUQ \cdots \right) \\ \simeq \left(\begin{array}{c} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \cdots \right) \end{array} \right)$$

Blomquist shows the maps $Id \rightarrow holim_{\Delta \leq k-1} C(-)$ are sufficiently connected to induce equivalences on derivatives

$$\partial_n \operatorname{Id} \xrightarrow{\sim} \operatorname{holim}_{\Delta} \left(\partial_n(UQ) \Longrightarrow \partial_n(UQUQ) \Longrightarrow \partial_n(UQUQUQ) \cdots \right).$$

Lemma (Alg_O Snaith splitting): $QU(Y) \simeq \coprod_{n \ge 1} B(\mathcal{O})[n] \wedge_{\Sigma_n} Y^{\wedge n}$ where $B(\mathcal{O}) := |\operatorname{Bar}(J, \mathcal{O}, J)| \simeq J \circ_{\mathcal{O}} J$.

We use the Bousfield-Kan cosimplicial resolution of Id with respect to the stabilization adjunction (Q, U), i.e.

$$\mathsf{Id} \to \left(\begin{array}{c} UQ \Longrightarrow UQUQ \Longrightarrow UQUQUQ \cdots \right) \\ \simeq \left(\begin{array}{c} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \cdots \right) \end{array} \right)$$

Blomquist shows the maps $Id \rightarrow holim_{\Delta \leq k-1} C(-)$ are sufficiently connected to induce equivalences on derivatives

$$\partial_n \operatorname{Id} \xrightarrow{\sim} \operatorname{holim}_{\Delta} \left(\partial_n(UQ) \Longrightarrow \partial_n(UQUQ) \Longrightarrow \partial_n(UQUQUQ) \cdots \right).$$

Lemma (Alg_O Snaith splitting): $QU(Y) \simeq \coprod_{n \ge 1} B(O)[n] \wedge_{\Sigma_n} Y^{\wedge n}$ where $B(O) := |\operatorname{Bar}(J, O, J)| \simeq J \circ_O J$.

Corollary: $\partial_n(QU) \simeq B(\mathcal{O})[n]$

We use the Bousfield-Kan cosimplicial resolution of Id with respect to the stabilization adjunction (Q, U), i.e.

$$\mathsf{Id} \to \left(\begin{array}{c} UQ \Longrightarrow UQUQ \Longrightarrow UQUQUQ \cdots \right) \\ \simeq \left(\begin{array}{c} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \cdots \right) \end{array} \right)$$

Blomquist shows the maps $Id \rightarrow holim_{\Delta \leq k-1} C(-)$ are sufficiently connected to induce equivalences on derivatives

$$\partial_n \operatorname{Id} \xrightarrow{\sim} \operatorname{holim}_{\Delta} \left(\partial_n(UQ) \Longrightarrow \partial_n(UQUQ) \Longrightarrow \partial_n(UQUQUQ) \cdots \right).$$

Lemma (Alg_O Snaith splitting): $QU(Y) \simeq \coprod_{n \ge 1} B(\mathcal{O})[n] \wedge_{\Sigma_n} Y^{\wedge n}$ where $B(\mathcal{O}) := |\operatorname{Bar}(J, \mathcal{O}, J)| \simeq J \circ_{\mathcal{O}} J$.

Corollary: $\partial_n(QU) \simeq B(\mathcal{O})[n]$ and therefore $\partial_n(U(QU)^k Q)$

3

We use the Bousfield-Kan cosimplicial resolution of Id with respect to the stabilization adjunction (Q, U), i.e.

$$\mathsf{Id} \to \left(\begin{array}{c} UQ \Longrightarrow UQUQ \Longrightarrow UQUQUQ \cdots \right) \\ \simeq \left(\begin{array}{c} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \cdots \right) \end{array} \right)$$

Blomquist shows the maps $Id \rightarrow holim_{\Delta \leq k-1} C(-)$ are sufficiently connected to induce equivalences on derivatives

$$\partial_n \operatorname{Id} \xrightarrow{\sim} \operatorname{holim}_{\Delta} \left(\partial_n(UQ) \Longrightarrow \partial_n(UQUQ) \Longrightarrow \partial_n(UQUQUQ) \cdots \right).$$

Lemma (Alg_O Snaith splitting): $QU(Y) \simeq \coprod_{n \ge 1} B(\mathcal{O})[n] \wedge_{\Sigma_n} Y^{\wedge n}$ where $B(\mathcal{O}) := |\operatorname{Bar}(J, \mathcal{O}, J)| \simeq J \circ_{\mathcal{O}} J$.

Corollary: $\partial_n(QU) \simeq B(\mathcal{O})[n]$ and therefore $\partial_n(U(QU)^k Q) \simeq \partial_n(QU)^k$

3

We use the Bousfield-Kan cosimplicial resolution of Id with respect to the stabilization adjunction (Q, U), i.e.

$$\mathsf{Id} \to \left(\begin{array}{c} UQ \Longrightarrow UQUQ \Longrightarrow UQUQUQ \cdots \right) \\ \simeq \left(\begin{array}{c} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \cdots \right) \end{array} \right)$$

Blomquist shows the maps $Id \rightarrow holim_{\Delta \leq k-1} C(-)$ are sufficiently connected to induce equivalences on derivatives

$$\partial_n \operatorname{Id} \xrightarrow{\sim} \operatorname{holim}_{\Delta} \left(\partial_n(UQ) \Longrightarrow \partial_n(UQUQ) \Longrightarrow \partial_n(UQUQUQ) \cdots \right).$$

Lemma (Alg_O Snaith splitting): $QU(Y) \simeq \coprod_{n \ge 1} B(\mathcal{O})[n] \wedge_{\Sigma_n} Y^{\wedge n}$ where $B(\mathcal{O}) := |\operatorname{Bar}(J, \mathcal{O}, J)| \simeq J \circ_{\mathcal{O}} J$.

Corollary: $\partial_n(QU) \simeq B(\mathcal{O})[n]$ and therefore

 $\partial_n(U(QU)^kQ) \simeq \partial_n(QU)^k \simeq (B(\mathcal{O}) \circ \cdots \circ B(\mathcal{O}))[n]$
Proof sketch of main thm.

We use the Bousfield-Kan cosimplicial resolution of Id with respect to the stabilization adjunction (Q, U), i.e.

$$\mathsf{Id} \to \left(\begin{array}{c} UQ \Longrightarrow UQUQ \Longrightarrow UQUQUQ \cdots \right) \\ \simeq \left(\begin{array}{c} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} (-) \cdots \right) \end{array} \right)$$

Blomquist shows the maps $Id \rightarrow holim_{\Delta \leq k-1} C(-)$ are sufficiently connected to induce equivalences on derivatives

$$\partial_n \operatorname{Id} \xrightarrow{\sim} \operatorname{holim}_{\Delta} \left(\partial_n(UQ) \Longrightarrow \partial_n(UQUQ) \Longrightarrow \partial_n(UQUQUQ) \cdots \right).$$

Lemma (Alg_O Snaith splitting): $QU(Y) \simeq \coprod_{n \ge 1} B(\mathcal{O})[n] \wedge_{\Sigma_n} Y^{\wedge n}$ where $B(\mathcal{O}) := |\operatorname{Bar}(J, \mathcal{O}, J)| \simeq J \circ_{\mathcal{O}} J$.

Corollary: $\partial_n(QU) \simeq B(\mathcal{O})[n]$ and therefore

 $\partial_n (U(QU)^k Q) \simeq \partial_n (QU)^k \simeq (B(\mathcal{O}) \circ \cdots \circ B(\mathcal{O}))[n] \simeq (J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J)[n]$

Sac

We obtain the model $\partial_* \operatorname{Id} \simeq \operatorname{holim}_{\Delta} C(\mathcal{O})$.

Э

990

We obtain the model $\partial_* \operatorname{Id} \simeq \operatorname{holim}_{\Delta} C(\mathcal{O})$. Here,

$$\mathcal{C}(\mathcal{O}) \cong \left(J \Longrightarrow J \circ_{\mathcal{O}} J \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \cdots \right)$$

GOATS 2 (6/6/20) 12 / 14

Э

200

We obtain the model $\partial_* \operatorname{Id} \simeq \operatorname{holim}_{\Delta} C(\mathcal{O})$. Here,

$$\mathcal{C}(\mathcal{O}) \cong \left(J \Longrightarrow J \circ_{\mathcal{O}} J \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \cdots \right)$$

with coface map d^i given by inserting $\mathcal{O} o J$ at the *i*-th position

We obtain the model $\partial_* \operatorname{Id} \simeq \operatorname{holim}_{\Delta} C(\mathcal{O})$. Here,

$$\mathcal{C}(\mathcal{O}) \cong \left(J \Longrightarrow J \circ_{\mathcal{O}} J \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \cdots \right)$$

with coface map d^i given by inserting $\mathcal{O} \rightarrow J$ at the *i*-th position, i.e.

 $J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J$

Э

We obtain the model $\partial_* \operatorname{Id} \simeq \operatorname{holim}_{\Delta} C(\mathcal{O})$. Here,

$$\mathcal{C}(\mathcal{O}) \cong \left(J \Longrightarrow J \circ_{\mathcal{O}} J \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \cdots \right)$$

with coface map d^i given by inserting $\mathcal{O} \rightarrow J$ at the *i*-th position, i.e.

$$J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \cong J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} \mathcal{O} \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J$$

We obtain the model $\partial_* \operatorname{Id} \simeq \operatorname{holim}_{\Delta} C(\mathcal{O})$. Here,

$$\mathcal{C}(\mathcal{O}) \cong \left(J \Longrightarrow J \circ_{\mathcal{O}} J \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \cdots \right)$$

with coface map d^i given by inserting $\mathcal{O} \rightarrow J$ at the *i*-th position, i.e.

$$J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \cong J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} \mathcal{O} \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \to J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J$$

We obtain the model $\partial_* \operatorname{Id} \simeq \operatorname{holim}_{\Delta} C(\mathcal{O})$. Here,

$$\mathcal{C}(\mathcal{O}) \cong \left(J \Longrightarrow J \circ_{\mathcal{O}} J \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \cdots \right)$$

with coface map d^i given by inserting $\mathcal{O} \rightarrow J$ at the *i*-th position, i.e.

$$J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \cong J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} \mathcal{O} \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \to J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J$$

and codegeneracy s^j given by $J \circ_{\mathcal{O}} J$

GOATS 2 (6/6/20)

12/14

We obtain the model $\partial_* \operatorname{Id} \simeq \operatorname{holim}_{\Delta} C(\mathcal{O})$. Here,

$$\mathcal{C}(\mathcal{O}) \cong \left(J \Longrightarrow J \circ_{\mathcal{O}} J \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \cdots \right)$$

with coface map d^i given by inserting $\mathcal{O} \rightarrow J$ at the *i*-th position, i.e.

$$J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \cong J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} \mathcal{O} \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \to J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J$$

and codegeneracy s^j given by $J \circ_{\mathcal{O}} J \to J \circ_J J$

We obtain the model $\partial_* \operatorname{Id} \simeq \operatorname{holim}_{\Delta} C(\mathcal{O})$. Here,

$$\mathcal{C}(\mathcal{O}) \cong \left(J \Longrightarrow J \circ_{\mathcal{O}} J \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \cdots \right)$$

with coface map d^i given by inserting $\mathcal{O} \rightarrow J$ at the *i*-th position, i.e.

$$J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \cong J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} \mathcal{O} \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \to J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J$$

and codegeneracy s^j given by $J \circ_{\mathcal{O}} J \to J \circ_J J \cong J$ at the *j*-th position.

We obtain the model $\partial_* \operatorname{Id} \simeq \operatorname{holim}_{\Delta} C(\mathcal{O})$. Here,

$$\mathcal{C}(\mathcal{O}) \cong \left(J \Longrightarrow J \circ_{\mathcal{O}} J \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \cdots \right)$$

with coface map d^i given by inserting $\mathcal{O} \rightarrow J$ at the *i*-th position, i.e.

$$J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \cong J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} \mathcal{O} \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \to J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J$$

and codegeneracy s^j given by $J \circ_{\mathcal{O}} J \to J \circ_J J \cong J$ at the *j*-th position.

Then, (after applying a suitable fibrant replacement to $C(\mathcal{O})$)

GOATS 2 (6/6/20)

12/14

We obtain the model $\partial_* \operatorname{Id} \simeq \operatorname{holim}_{\Delta} C(\mathcal{O})$. Here,

$$\mathcal{C}(\mathcal{O}) \cong \left(J \Longrightarrow J \circ_{\mathcal{O}} J \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \cdots \right)$$

with coface map d^i given by inserting $\mathcal{O} \rightarrow J$ at the *i*-th position, i.e.

$$J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \cong J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} \mathcal{O} \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \to J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J$$

and codegeneracy s^j given by $J \circ_{\mathcal{O}} J \to J \circ_J J \cong J$ at the *j*-th position.

Then, (after applying a suitable fibrant replacement to $C(\mathcal{O})$)

• $C(\mathcal{O})$ is an (oplax) \Box -monoid

We obtain the model $\partial_* \operatorname{Id} \simeq \operatorname{holim}_{\Delta} C(\mathcal{O})$. Here,

$$\mathcal{C}(\mathcal{O}) \cong \left(J \Longrightarrow J \circ_{\mathcal{O}} J \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \cdots \right)$$

with coface map d^i given by inserting $\mathcal{O} \rightarrow J$ at the *i*-th position, i.e.

$$J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \cong J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} \mathcal{O} \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \to J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J$$

and codegeneracy s^j given by $J \circ_{\mathcal{O}} J \to J \circ_J J \cong J$ at the *j*-th position.

Then, (after applying a suitable fibrant replacement to $C(\mathcal{O})$)

• $C(\mathcal{O})$ is an (oplax) \Box -monoid (roughly, $C(\mathcal{O}) = \text{Cobar}(J, J \circ_{\mathcal{O}} J, J))$

We obtain the model $\partial_* \operatorname{Id} \simeq \operatorname{holim}_{\Delta} C(\mathcal{O})$. Here,

$$\mathcal{C}(\mathcal{O}) \cong \left(J \Longrightarrow J \circ_{\mathcal{O}} J \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \cdots \right)$$

with coface map d^i given by inserting $\mathcal{O} \rightarrow J$ at the *i*-th position, i.e.

$$J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \cong J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} \mathcal{O} \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \to J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J$$

and codegeneracy s^j given by $J \circ_{\mathcal{O}} J \to J \circ_J J \cong J$ at the *j*-th position.

Then, (after applying a suitable fibrant replacement to $C(\mathcal{O})$)

- $C(\mathcal{O})$ is an (oplax) \Box -monoid (roughly, $C(\mathcal{O}) = \text{Cobar}(J, J \circ_{\mathcal{O}} J, J))$
- ∂_{*} Id ≃ Tot C(O) inherits an A_∞-monoid structure with respect to the composition product ∘ of symmetric sequences

Duncan Clark (Ohio State University)

We obtain the model $\partial_* \operatorname{Id} \simeq \operatorname{holim}_{\Delta} C(\mathcal{O})$. Here,

$$\mathcal{C}(\mathcal{O}) \cong \left(J \Longrightarrow J \circ_{\mathcal{O}} J \Longrightarrow J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \circ_{\mathcal{O}} J \cdots \right)$$

with coface map d^i given by inserting $\mathcal{O} \rightarrow J$ at the *i*-th position, i.e.

$$J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \cong J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} \mathcal{O} \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \to J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J \circ_{\mathcal{O}} \cdots \circ_{\mathcal{O}} J$$

and codegeneracy s^j given by $J \circ_{\mathcal{O}} J \to J \circ_J J \cong J$ at the *j*-th position.

Then, (after applying a suitable fibrant replacement to $C(\mathcal{O})$)

- $C(\mathcal{O})$ is an (oplax) \Box -monoid (roughly, $C(\mathcal{O}) = \text{Cobar}(J, J \circ_{\mathcal{O}} J, J))$
- ∂_{*} Id ≃ Tot C(O) inherits an A_∞-monoid structure with respect to the composition product ∘ of symmetric sequences
- The coaugmentation O → C(O) which yields an equivalence of (homotopy coherent) operads O ≃ ∂_{*} Id.

• Can use similar box product pairing to induce a "highly homotopy coherent" chain rule, i.e. comparison map $\partial_*F \circ \partial_*G \to \partial_*(FG)$ for functors of structured ring spectra.

3

- Can use similar box product pairing to induce a "highly homotopy coherent" chain rule, i.e. comparison map $\partial_*F \circ \partial_*G \to \partial_*(FG)$ for functors of structured ring spectra.
- Can show that a 0-connected \mathcal{O} -algebra X is naturally equivalent to a $\partial_* \operatorname{Id-algebra}$ by

- Can use similar box product pairing to induce a "highly homotopy coherent" chain rule, i.e. comparison map $\partial_*F \circ \partial_*G \to \partial_*(FG)$ for functors of structured ring spectra.
- Can show that a 0-connected \mathcal{O} -algebra X is naturally equivalent to a ∂_* ld-algebra by first replacing X by its TQ-completion, i.e.

 $X_{\mathsf{TQ}}^{\wedge} := \operatorname{holim}_{\Delta} C(X)$

- Can use similar box product pairing to induce a "highly homotopy coherent" chain rule, i.e. comparison map $\partial_*F \circ \partial_*G \to \partial_*(FG)$ for functors of structured ring spectra.
- Can show that a 0-connected \mathcal{O} -algebra X is naturally equivalent to a ∂_* Id-algebra by first replacing X by its TQ-completion, i.e.

 $X^{\wedge}_{\mathsf{TQ}} := \operatorname{holim}_{\Delta} C(X)$

If X is 0-connected then $X \simeq X^{\wedge}_{\mathsf{TQ}}$ [Ching-Harper]

- Can use similar box product pairing to induce a "highly homotopy coherent" chain rule, i.e. comparison map $\partial_*F \circ \partial_*G \to \partial_*(FG)$ for functors of structured ring spectra.
- Can show that a 0-connected \mathcal{O} -algebra X is naturally equivalent to a ∂_* Id-algebra by first replacing X by its TQ-completion, i.e.

 $X^{\wedge}_{\mathsf{TQ}} := \operatorname{holim}_{\Delta} C(X)$

If X is 0-connected then $X \simeq X^{\wedge}_{\mathsf{TQ}}$ [Ching-Harper] and there is a natural pairing $C(\mathcal{O}) \Box C(X) \to C(X)$ which induces the desired algebra structure.

- Can use similar box product pairing to induce a "highly homotopy coherent" chain rule, i.e. comparison map $\partial_*F \circ \partial_*G \to \partial_*(FG)$ for functors of structured ring spectra.
- Can show that a 0-connected \mathcal{O} -algebra X is naturally equivalent to a ∂_* Id-algebra by first replacing X by its TQ-completion, i.e.

 $X_{\mathsf{TQ}}^{\wedge} := \operatorname{holim}_{\Delta} C(X)$

If X is 0-connected then $X \simeq X^{\wedge}_{\mathsf{TQ}}$ [Ching-Harper] and there is a natural pairing $C(\mathcal{O}) \Box C(X) \to C(X)$ which induces the desired algebra structure.

• Similar box product pairings can be used to provide a new description for the operad structure on $\partial_* \operatorname{Id}_{S_*}$.

- Can use similar box product pairing to induce a "highly homotopy coherent" chain rule, i.e. comparison map $\partial_*F \circ \partial_*G \to \partial_*(FG)$ for functors of structured ring spectra.
- Can show that a 0-connected \mathcal{O} -algebra X is naturally equivalent to a ∂_* Id-algebra by first replacing X by its TQ-completion, i.e.

 $X_{\mathsf{TQ}}^{\wedge} := \operatorname{holim}_{\Delta} C(X)$

If X is 0-connected then $X \simeq X^{\wedge}_{\mathsf{TQ}}$ [Ching-Harper] and there is a natural pairing $C(\mathcal{O}) \Box C(X) \to C(X)$ which induces the desired algebra structure.

• Similar box product pairings can be used to provide a new description for the operad structure on $\partial_* \operatorname{Id}_{S_*}$. Hope to extend this technique to other suitable model categories C to attack the "guiding principle" and better understand the relation between C to $\operatorname{Alg}_{\partial_* \operatorname{Id}_C}$

3

Sar

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Selected references

- Gregory Arone and Michael Ching. Operads and Chain Rules for the Calculus of Functors. Number 338 in *Astérisque*. Société Mathématique de France, 2011.
- Michael Ching. Bar constructions for topological operads and the Goodwillie derivatives of the identity. *Geometry and Topology*, 9(2):833–934, 2005.
- Michael Ching and John E. Harper. Derived Koszul duality and TQ-homology completion of structured ring spectra. Advances in Math., 341:118–187, 2019.
- Thomas G. Goodwillie. Calculus III: Taylor series. *Geometry and Topology*, 7(2):645–711, 2003.
- John E. Harper. Homotopy theory of modules over operads in symmetric spectra. *Algebraic and Geometric Topology*, 9(3):1637–1680, Aug 2009.
- John E. Harper and Kathryn Hess. Homotopy completion and topological Quillen homology of structured ring spectra. *Geometry and Topology*, 17(3):1325–1416, Jun 2013.
- James E. McClure and Jeffrey H. Smith. Cosimplical objects and little *n*-cubes, i. *American Journal of Mathematics*, 126(5):1109–1153, 2004.
- Luís Pereira. Goodwillie calculus and algebras over a spectral operad. PhD thesis, Massachusetts Institute of Technology, 2013.

Duncan Clark (Ohio State University)

990

< ロト < 同ト < ヨト < ヨト