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Main idea

Guiding principle

The Goodwillie derivatives of the identity functor in a suitably nice model
category C (denoted ∂∗ IdC) should come equipped with a canonical
operad structure.

Examples

For C = S∗, the category of based spaces, Ching shows that ∂∗ IdS∗ is
an operad

If O is a reduced operad of spectra, then ∂∗ IdAlgO is a “highly
homotopy coherent” operad which is equivalent to O [C.]

General approach using ∞-categories [Ching, Lurie]

First, we’ll recall some necessary background on functor calculus and
operads.
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Functor calculus

Let F : S∗ → S∗ be a homotopy functor (i.e. X ' Y =⇒ F (X ) ' F (Y ))

and assume for simplicity that F is reduced (i.e. F (∗) ' ∗).

Goodwillie constructs a Taylor tower of n-excisive approximations {PnF}
and natural transformations of the following form

Remarks

The functors PnF may be thought of as
polynomials of degree n.

P1F is a linear approximation to F .

For nice (i.e. analytic) F and sufficiently
connected spaces X ,
F (X ) ' holimn PnF (X ).

X ' holimn Pn IdS∗(X ), if X is 1-connected
(i.e. IdS∗ is 1-analytic)
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Functor calculus (cont.) – Ex. linear functors

Def. (linear functor)

A functor F is linear (i.e. 1-excisive) if F takes homotopy pushout squares
to homotopy pullback squares, i.e.

A //

��

B

��
C // D

(ho. push)
F−−→

F (A) //

��

F (B)

��
F (C ) // F (D)

(ho. pull)

Remarks:

The stabilization functor X 7→ Ω∞Σ∞X is 1-excisive

Any homology theory is 1-excisive (i.e. satisfies Mayer-Vietoris)

IdS∗ is not linear (S∗ is not stable). In particular, P1 IdS∗ ' Ω∞Σ∞

If F (∗) ' ∗, then P1F (X ) ' Ω∞(E ∧ Σ∞X ) for some E ∈ Spt (note
that E ∧ − : Spt→ Spt is linear). We call E the first derivative of F .
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If F (∗) ' ∗, then P1F (X ) ' Ω∞(E ∧ Σ∞X ) for some E ∈ Spt (note
that E ∧ − : Spt→ Spt is linear). We call E the first derivative of F .
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Functor calculus (cont.) – Derivatives

Set DnF to be the fiber DnF := hofib(PnF → Pn−1F ).

Thm. [Goodwillie]

There is a unique (up to htpy.) spectrum ∂nF with Σn action such that
DnF (X ) ' Ω∞(∂nF ∧Σn (Σ∞X )∧n). We call ∂nF the n-th derivative of F .

Remark : DnF (X ) bears striking resemblance to (f (n)(0)xn)/n!. We can
compute ∂nF from DnF via cross-effects.

Ex. Derivatives of IdS∗

Note, D1 IdS∗(X ) ' P1 IdS∗(X ) ' Ω∞Σ∞X and therefore ∂1 IdS∗ ' S . For
n ≥ 2, ∂n IdS∗ is related to the partition poset complex Par(n) [Johnson,
Arone-Mahowald]. In particular, ∂2 IdS∗ ' ΩS with trivial Σ2 action.

The collection ∂∗F forms a symmetric sequence of spectra. We are
interested in understanding what extra structure this sequence posses.
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Operads

An operad may be thought of as a useful tool for describing spectra with
extra algebraic structure

, i.e. (commutative) ring spectra, A∞-ring
spectra, or En-ring spectra (1 ≤ n ≤ ∞).

Def. [May, Boardman-Vogt]

An operad O in a symmetric monoidal category (C,⊗, 1) consists of

objects O[n] for n ≥ 0 with actions by Σn (i.e. a symmetric sequence)

unit map 1→ O[1]

action maps O[n]⊗O[k1]⊗ · · · ⊗ O[kn]→ O[k1 + · · ·+ kn] subject
to equivariance, associativity and unitality conditions.

Operads are precisely monoids with respect to the composition product ◦
for symmetric sequences, i.e. there are associative and unital maps
O ◦ O → O and I → O (here I [1] = 1 and I [k] = ∗ for k 6= 1).
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Operads (cont.) – Algebras

We will focus on the category of symmetric spectra Spt = (SpΣ,∧,S).

Def. (algebra over an operad)

An algebra over an operad O in Spt is an object X ∈ Spt together with
action maps O[n] ∧Σn X

∧n → X for all n ≥ 0, subject to associativity and
unitality conditions.

We think of the term O[n] as parametrizing the possible n-ary operations
on X , e.g. if O[n] ' S (with free Σn action), then O describes homotopy
commutative (i.e. E∞-) monoids in Spt as its algebras.

We set AlgO to be the category of algebras over a given operad O
together with structure preserving maps. Note, an algebra over X is
equivalently an algebra over the assocaited monad on Spt

X 7→ O ◦ (X ) =
∐
n≥0

O[n] ∧Σn X
∧n.
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Functor calculus in AlgO – Stabilization

Fix an operad O in Spt with O[0] = ∗

and assume for simplicity that
O[1] ∼= S . We define the n-th truncation of O, τnO, by

τnO[k] :=

{
O[k] k ≤ n

∗ k > n

There is a tower O → · · · → τ3O → τ2O → τ1O of operads and the
bottom map O → τ1O induces a change of operads adjunction

AlgO

τ1O◦O(−)//
ModO[1]

U
oo

Let J be a factorization O ↪→ J
∼−→ τ1O. Set TQ := LQ (i.e. the

left-derived functor of Q). TQ(X ) is often called topological Quillen
homology spectrum of X . Basterra-Mandell show (Q,U) is equivalent to
the stabilization adjunction for O-algebras, i.e. TQ(X ) ' Σ∞X .
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Functor calculus in AlgO (cont.) – Taylor tower of Id

Harper-Hess and Pereira show that the Taylor tower of the identity in
AlgO takes the following form

...

��
τ3O ◦O (−)

��
τ2O ◦O (−)

��
Id //

66

::

τ1O ◦O (−)

In particular, there are equivalences

Dn Id(X ) ' U(O[n] ∧Σn TQ(X )∧n)

∂n Id ' O[n] (as Σn-objects in Spt)

Thus, ∂∗ Id ' O as symmetric sequences.

It has been a long standing conjecture
that ∂∗ Id ' O as operads, the missing
piece being the lack of an intrinsic
operad structure on ∂∗ Id with which to
compare to O.
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Main theorem

Thm. [C]

The derivatives of the identity in AlgO posses an intrinsic “homotopy
coherent” operad structure with respect to which ∂∗ Id ' O as operads.

Idea of proof: Our method is to adapt a technique of McClure-Smith that
if Y • is a cosimplicial space which is a monoid with respect to the box
product � [Batanin], then TotY • is an A∞-monoid in spaces.

Example: Set `(X ) = Cobar(∗,X , ∗) w.r.t. the diagonal map on X , i.e.

`(X ) = ∗ //// X ////
//
X×2

////
//// X×3 · · ·

Then, there is a monoidal pairing `(X )�`(X )→ `(X ) induced by
X×p ×X×q ∼= X×p+q, and Tot `(X ) ' ΩX as A∞-monoids (note that ΩX
is an A∞-monoid under composition of loops).
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Proof sketch of main thm.

We use the Bousfield-Kan cosimplicial resolution of Id with respect to the
stabilization adjunction (Q,U)

, i.e.

Id

→
(
UQ //// UQUQ ////

//
UQUQUQ · · ·

)
'
(
J ◦O (−) //// J ◦O J ◦O (−) ////

//
J ◦O J ◦O J ◦O (−) · · ·

)

Blomquist shows the maps Id→ holim∆≤k−1 C (−) are sufficiently
connected to induce equivalences on derivatives

∂n Id
∼−→ holim∆

(
∂n(UQ) //// ∂n(UQUQ) ////

//
∂n(UQUQUQ) · · ·

)
.

Lemma (AlgO Snaith splitting): QU(Y ) '
∐

n≥1 B(O)[n] ∧Σn Y
∧n where

B(O) := |Bar(J,O, J)| ' J ◦O J.

Corollary : ∂n(QU) ' B(O)[n] and therefore

∂n(U(QU)kQ) ' ∂n(QU)k ' (B(O) ◦ · · · ◦ B(O))[n] ' (J ◦O · · · ◦O J)[n]
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Proof sketch of main thm. (cont.)

We obtain the model ∂∗ Id ' holim∆ C (O).

Here,

C (O) ∼=
(
J //// J ◦O J ////

//
J ◦O J ◦O J · · ·

)
with coface map d i given by inserting O → J at the i-th position, i.e.

J ◦O · · · ◦O J ∼= J ◦O · · · ◦O O ◦O · · · ◦O J → J ◦O · · · ◦O J ◦O · · · ◦O J

and codegeneracy s j given by J ◦O J → J ◦J J ∼= J at the j-th position.

Then, (after applying a suitable fibrant replacement to C (O))

C (O) is an (oplax) �-monoid (roughly, C (O) = Cobar(J, J ◦O J, J))

∂∗ Id ' TotC (O) inherits an A∞-monoid structure with respect to
the composition product ◦ of symmetric sequences

The coaugmentation O → C (O) which yields an equivalence of
(homotopy coherent) operads O ' ∂∗ Id.
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Applications

Can use similar box product pairing to induce a “highly homotopy
coherent” chain rule, i.e. comparison map ∂∗F ◦ ∂∗G → ∂∗(FG ) for
functors of structured ring spectra.

Can show that a 0-connected O-algebra X is naturally equivalent to a
∂∗ Id-algebra by first replacing X by its TQ-completion, i.e.

X∧TQ := holim∆ C (X )

If X is 0-connected then X ' X∧TQ [Ching-Harper] and there is a
natural pairing C (O)�C (X )→ C (X ) which induces the desired
algebra structure.

Similar box product pairings can be used to provide a new description
for the operad structure on ∂∗ IdS∗ . Hope to extend this technique to
other suitable model categories C to attack the “guiding principle”
and better understand the relation between C to Alg∂∗ IdC
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Michael Ching. Bar constructions for topological operads and the Goodwillie
derivatives of the identity. Geometry and Topology, 9(2):833–934, 2005.

Michael Ching and John E. Harper. Derived Koszul duality and TQ-homology
completion of structured ring spectra. Advances in Math., 341:118–187, 2019.

Thomas G. Goodwillie. Calculus III: Taylor series. Geometry and Topology,
7(2):645–711, 2003.

John E. Harper. Homotopy theory of modules over operads in symmetric spectra.
Algebraic and Geometric Topology, 9(3):1637–1680, Aug 2009.

John E. Harper and Kathryn Hess. Homotopy completion and topological Quillen
homology of structured ring spectra. Geometry and Topology, 17(3):1325–1416,
Jun 2013.

James E. McClure and Jeffrey H. Smith. Cosimplical objects and little n-cubes, i.
American Journal of Mathematics, 126(5):1109–1153, 2004.
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