On the unstable Gromov-Lawson-Rosenberg conjecture

Positive scal curvature

Index theory

The GLR conjecture

New results

An open question

On the unstable Gromov-Lawson-Rosenberg conjecture

Sam Hughes

18/07/20

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Scalar curvature

On the unstable Gromov-Lawson-Rosenberg conjecture

Sam Hughes

Positive scalar curvature

Index theory

The GLR conjecture

New results

An open question

Definition (Scalar curvature)

Let (M, g) be a connected Riemannian manifold. The scalar curvature **S** of (M, g) assigns to each point of M a real number defined by the local geometry. Precisely, $\mathbf{S} = \operatorname{tr}_{g}(\operatorname{Ric})$.

Examples

- \mathbb{E}^n has constant scalar curvature equal to 0.
- S^n of radius r has constant scalar curvature equal to $\frac{n(n-1)}{r^2}$.

Positive scalar curvature

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

On the unstable Gromov-Lawson-Rosenberg conjecture

Sam Hughes

Positive scalar curvature

Index theory

The GLR conjecture

New results

An open question

Question

When does M admit a metric g of positive scalar curvature κ ?

In dimension 2 this is completely solved.

Theorem (Gauss-Bonnet)

Let M be a compact two-dimensional Riemannian manifold, then

$$\kappa = \int_M \mathbf{S} dA = 4\pi \chi(M).$$

The Euler characteristic (a topological invariant) is an obstruction to the geometric problem.

The Dirac operator

On the unstable Gromov-Lawson-Rosenberg conjecture

Sam Hughes

Positive scala curvature

Index theory

The GLR conjecture

New results

An open question

- Let *M* be a closed spin manifold and *X* a spinor bundle.
- Let $L^2(M, X)$ denote the space of L^2 functions on the space of sections $M \to X$.

$$L^2(M,X) = \left\{ f: M \to X: \int_M ||f(x)||^2 dx < \infty \right\}$$

Let D : L²(M, X) → L²(M, X) be the Dirac operator.
D² = Δ + κ/4 and Δ ≥ 0.

Index of an operator

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

On the unstable Gromov-Lawson-Rosenberg conjecture

Sam Hughes

Positive scala curvature

Index theory

The GLR conjecture

New results

An open question

- Now, $\kappa > 0$ implies D^2 invertible.
- Hence, *D* invertible.
- Define Index(D) = dim ker(D) dim coker(D).
- So Index(D) = 0

Corollary (Lichnerowicz)

Index(D) $\neq 0$ implies M does not admit a metric with $\kappa > 0$.

The Atiyah-Singer index theorem

On the unstable Gromov-Lawson-Rosenberg conjecture

Sam Hughes

Positive scala curvature

Index theory

The GLR conjecture

New results

An open question

Theorem (Atiyah-Singer)

If M is a closed spin 4k-manifold then $Index(D) = \hat{A}(M)$.

Here $\hat{A}(M)$ is the "A-hat genus of M", a topological invariant.

6/15

A more general obstruction

Theorem (Rosenberg)

On the unstable Gromov-Lawson-Rosenberg conjecture

Sam Hughes

Positive scala curvature

Index theory

The GLR conjecture

New results

An open question

Let M be a closed spin n-manifold and G a discrete group. Let $u: M \rightarrow BG$ be a continuous map. If M admits a metric of

positive scalar curvature, then $\alpha[M, u] = 0 \in KO_n(C_r^*G)$.

Here $\alpha: \Omega_n^{\text{Spin}} \to KO_n(C_r^*G)$ is the index of the Dirac operator.

7/15

The Baum-Connes conjecture

On the unstable Gromov-Lawson-Rosenberg conjecture

Sam Hughes

Positive scala curvature

Index theory

The GLR conjecture

New results

An open question The Baum-Connes conjecture identifies $KO_n(C_r^*G)$ with $KO_n^G(E_{FIN}G)$ a topological invariant.

If G is torsion-free then the conjecture states the "assembly map" $\mu_{\mathbb{R}} : KO_n(BG) \to KO_n(C_r^*G)$ is an isomorphism.

The Gromov-Lawson-Rosenberg conjecture 9/15

On the unstable Gromov-Lawson-Rosenberg conjecture

Sam Hughes

Positive scala curvature

Index theory

The GLR conjecture

New results

An open question

Conjecture (Gromov-Lawson-Rosenberg)

Let *M* be a closed spin n-manifold, $n \ge 5$ with $\pi_1 M = G$. Suppose that $u : M \to BG$ induces the identity on *G*, then *M* admits a metric of positive scalar curvature if and only if $\alpha[M, u] = 0 \in KO_n(C_r^*G)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Positive and negative results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

On the unstable Gromov-Lawson-Rosenberg conjecture

Sam Hughes

Positive scala curvature

Index theory

The GLR conjecture

New results

An open question The conjecture has been verified for:

- All simply connected *M* [Stolz].
- When π₁(M) is finite with periodic cohomology [Botvinnik-Gilkey-Stolz].
- $G = \pi_1(M)$ is torsion free discrete and dim $BG \le 9$ [Joachim-Schick].
- $\pi_1(M)$ is a Fuchsian group [Davis-Pearson].

There is a counterexample due to T. Schick with $\pi_1(M) = \mathbb{Z}^4 \oplus \mathbb{Z}_3$.

New results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

On the unstable Gromov-Lawson-Rosenberg conjecture

Sam Hughes

Positive scala curvature

Index theory

The GLR conjecture

New results

An open question

Theorem (H.)

Let G be either

- $\operatorname{PSL}_2(\mathbb{Z}[1/p])$ for $p \equiv 11 \pmod{12}$,
- or a lattice in $PSL_2(\mathbb{C})$ with all finite subgroups cyclic,

then G satisfies the GLR conjecture.

Why is $p \equiv 11 \pmod{12}$?

On the unstable Gromov-Lawson-Rosenberg conjecture

Sam Hughes

Positive scala curvature

Index theory

The GLR conjecture

New results

An open question A group G has property:

(M) if every finite subgroup is contained in a unique maximal finite subgroup.

12/15

(NM) if every maximal finite subgroup is self normalising.

```
PSL_2(\mathbb{Z}[1/p]) only satisfies (M) and (NM) when p \equiv 11 \pmod{12}.
```

When G satisfies (M) and (NM), the p-chain spectral sequence of Davis and Lück is very well behaved.

Why is $p \equiv 11 \pmod{12}$?

On the unstable Gromov-Lawson-Rosenberg conjecture

Sam Hughes

curvature

Index theory

The GLR conjecture

New results

An open question The p-chain spectral sequence, some homological algebra and the Baum-Connes assembly map give us a commutative diagram.

13/15

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$$\begin{split} & \widetilde{ko}_{n+1}(X) \longrightarrow \bigoplus_{(H) \in \Lambda} \widetilde{ko}_n(BH) \longrightarrow \widetilde{ko}_n(B\Gamma) \longrightarrow \widetilde{ko}_n(X) \\ & \downarrow^p \qquad \qquad \downarrow^{\mu_{\mathbb{R}} \circ p} \qquad \qquad \downarrow^p \\ & \widetilde{KO}_{n+1}(X) \longrightarrow \bigoplus_{(H) \in \Lambda} \widetilde{KO}_n(C_r^*(H;\mathbb{R})) \longrightarrow \widetilde{KO}_n(C_r^*(\Gamma;\mathbb{R})) \longrightarrow \widetilde{KO}_n(X). \end{split}$$

where $X = E_{FIN}G/G$. In the $PSL_2(\mathbb{Z}[1/p])$ case this is a wedge of spheres. The result follows with a bit of work from here.

A more general theorem

Theorem (H.)

On the unstable Gromov-Lawson-Rosenberg conjecture

Sam Hughes

Positive scala curvature

Index theory

The GLR conjecture

New results

An open question

Let G be discrete satisfying (M), (NM), the Baum-Connes conjecture, and such that all finite subgroups are cyclic (or generalised quaternion). Let $X = E_{\mathcal{FIN}}G/G$. If $p: \widetilde{ko}_n(X) \to \widetilde{KO}_n(X)$ is an isomorphism for all $n \ge 5$, then G satisfies the GLR conjecture.

14/15

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

An open question

15/15

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

On the unstable Gromov-Lawson-Rosenberg conjecture

Sam Hughes

Positive scala curvature

Index theory

The GLR conjecture

New results

An open question

Question

Does $PSL_2(\mathbb{Z}[1/p])$ satisfy the GLR conjecture for $p \neq 11 \pmod{12}$?

Thank you for listening!