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What can the periodic orbits of a dynamical system (X ,T ) tell us about X?
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In particular: periodic orbits of geodesic flow on a compact negatively curved
surface.

I If you just know the lengths of the periodic orbits, you don’t know much.

I If you know the lengths of the periodic orbits, the homotopy class each
length belongs to, and that the metric is sufficiently nice you can identify
the metric g up to isometry.
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In particular: periodic orbits of geodesic flow on a compact negatively curved
surface.

I If you just know the lengths of the periodic orbits, you don’t know much.

I If you know the lengths of the periodic orbits, the homotopy class each
length belongs to, and that the metric is sufficiently nice you can identify
the metric g up to isometry.
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What’s special about the homotopy classes?

When S is a compact surface with a negatively curved metric g , each nontrivial
free homotopy class has exactly one closed geodesic.
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Nonexamples in nonpositive curvature
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What’s special about the homotopy classes?

When S is a compact surface with a
negatively curved metric g , each
nontrivial free homotopy class has
exactly one closed geodesic.

γg := the unique closed geodesic
representing 〈γ〉 in (S , g).

γg is also the shortest curve in 〈γ〉.
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Dynamical information → geometric information

When S is a compact surface with negatively curved metric g , the following
collections of information are the same:

I The length of each periodic orbit of geodesic flow and the associated
homotopy class for each orbit.

I The length of the closed geodesic in each homotopy class.
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Marked Length Spectrum

We encode the lengths and homotopy classes of each closed geodesic with the
following function.

The marked length spectrum for a negatively curved Riemannian metric g on
a compact surface S is a function

MLSg : C → R+

〈γ〉 7→ lengthg (γg )

where γg is the unique geodesic in 〈γ〉 ∈ C.

Another way to think about it:

MLS(S , g) =
(
lengthg (γg )

)
〈γ〉∈C
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Marked Length Spectrum Area Info

Theorem (Croke and Dairbekov, 2004)
Let g1 and g2 be two negatively curved Riemannan metrics on a compact surface
S. If

length(γg1) ≤ length(γg2)

for every class 〈γ〉 ∈ C, then

Area(S , g1) ≤ Area(S , g2).
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Partial Marked Length Spectrum Area Info

Theorem (S.)
Let g1 and g2 be two negatively curved Riemannan metrics on a compact surface
S and suppose B ⊂ C has a subexponential growth rate by length. If

length(γg1) ≤ length(γg2)

for every class 〈γ〉 ∈ C \ B, then

Area(S , g1) ≤ Area(S , g2).
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Subsets of C with subexponential growth rate

B ⊂ C has a subexponential growth rate if

lim
T→∞

1

T
log |BT | = 0,

where BT = {〈γ〉 ∈ B : length(γg ) < T}.

Examples of such sets are

I Any finite set

I {〈γ〉 : γg is simple}

I {〈γ〉 : γg has fewer than n self-intersections}
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A note on exponential growth

B ⊂ C grows exponentially if

lim
T→∞

1

T
log |BT | > 0,

where BT = {〈γ〉 ∈ B : length(γg ) < T}.

Examples of such sets are

I C

I The set of ε-dense geodesics
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Marked length spectrum rigidity

Theorem (Croke, Otal, 1990)
Let g1 and g2 be two negatively curved Riemannian metrics on a compact surface
S. Then

MLS(S , g1) = MLS(S , g2)~w�
g1 = g2.

i.e. the marked length spectrum uniquely determines the metric up to isometry.
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Partial marked length spectrum rigidity

Theorem (S.)
Let g1 and g2 be two negatively curved Riemannian metrics on a compact surface
S. If B ⊂ C has a subexponential growth rate by length, then

MLS(S , g1)
∣∣
C\B = MLS(S , g2)

∣∣
C\B~w�

g1 = g2.

i.e. the partial∗ marked length spectrum uniquely determines the metric up to
isometry.
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Partial marked length spectrum rigidity

Theorem (S.)
Let g1 and g2 be two negatively curved Riemannian metrics on a compact surface
S. If B ⊂ C has a subexponential growth rate by length, then

MLS(S , g1)
∣∣
C\B = MLS(S , g2)

∣∣
C\B~w�

g1 = g2.

Corollary

MLS(S , g1)
∣∣
C\B = MLS(S , g2)

∣∣
C\B =⇒ MLS(S , g1) = MLS(S , g2)
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Why the assumptions in the theorem?

Theorem (S.)
Let g1 and g2 be two negatively curved Riemannian metrics on a compact
surface S. If B ⊂ C has a subexponential growth rate by length, then

MLS(S , g1)
∣∣
C\B = MLS(S , g2)

∣∣
C\B~w�

g1 = g2.
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Why the assumptions in the theorem?

Negative curvature guarantees that

I There is exactly one periodic orbit per homotopy class. We might lose that
with nonpositive curvature.

I Closed geodesics that are almost dense grow exponentially quickly.
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Why the assumptions in the theorem?

Theorem (S.)
Let g1 and g2 be two negatively curved X Riemannian metrics on a compact
surface S. If B ⊂ C has a subexponential growth rate by length, then

MLS(S , g1)
∣∣
C\B = MLS(S , g2)

∣∣
C\B~w�

g1 = g2.
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Why dimension 2?

There is something called a geodesic current, and Otal proved the following
about the Liouville current, λg .

Theorem (Otal, 1990)
Let g1 and g2 be two negatively curved Riemannian metrics on a compact surface
S. If MLS(S , g1) = MLS(S , g2), then λg1 = λg2 ⇐⇒ g1 = g2.

That means that if we can reconstruct λg , that’s enough to uniquely
identify the metric g .
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The boundary at infinity

The boundary at infinity of S̃ is the
equivalence classes of geodesics at ∞.

If g is a negatively curved metric, then
two points on the boundary of S̃
uniquely identify a geodesic.
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Geodesic Currents

A geodesic current is a locally finite,
π1(S)-invariant Borel measure on the

space of geodesics on S̃ , the universal
cover of (S , g).

Of particular interest is a current that
depends on the metric: the Liouville
current λg .

Theorem (Otal, 1990)
If MLS(S , g1) = MLS(S , g2),
then λg1 = λg2 ⇐⇒ g1 = g2.
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Geodesic Currents

A geodesic current is a locally finite,
π1(S)-invariant Borel measure on the

space of geodesics on S̃ , the universal
cover of (S , g).

Of particular interest is a current that
depends on the metric: the Liouville
current λg .

Theorem (Otal, 1990, S.)
If MLS(S , g1)

∣∣
C\B = MLS(S , g2)

∣∣
C\B

then λg1 = λg2 ⇐⇒ g1 = g2.
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The idea: Show that you can
reconstruct the Liouville current using
the marked length spectrum info.

Proposition (Bonahon, 1988)
For any homotopy class 〈γ〉,
length γg ← marked length spectrum info!
= λg (geodesics intersecting one copy of γg ).
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Say we want to find the measure of of
the geodesics passing between I and J .
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Say we want to find the measure of of
the geodesics passing between I and J .

Each such geodesic intersects η1 and
η2, but does not intersect γ1 or γ2.
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Say we want to find the measure of of
the geodesics passing between I and J .

Each such geodesic intersects η1 and
η2, but does not intersect γ1 or γ2.

2 ·λg (I × J)
= length(η1)+length(η2)
− length (γ1)−length(γ2)
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Say we want to find the measure of of
the geodesics passing between I and J .

Each such geodesic intersects η1 and
η2, but does not intersect γ1 or γ2.

2 ·λg (I × J)
= length(η1)+length(η2)
− length (γ1)−length(γ2)

This is only if η1, η2, γ1, and γ2 are
each one copy of a closed geodesic and
they are not in B
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Approximate!

Take a sequence of 4−tuples that
approach the boundary.

As long as we don’t use any lifts of
geodesics in B, we can find λg (I × J)
using MLS(S , g)

∣∣
C\B.

Being able to find the measure of an
arbitrary set means that we can
reconstruct λg . That’s enough to
uniquely identify g by an earlier
proposition!
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Why dimension 2?

Notice: this ”trap a geodesic” approach
won’t work in higher dimensions.
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Why dimension 2?

Notice: this ”trap a geodesic” approach
won’t work in higher dimensions.

Trouble: What if every choice we
make in this sequence has a geodesic in
B show up?
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Why the assumptions in the theorem?

Theorem (S.)
Let g1 and g2 be two negatively curved X Riemannian metrics on a compact
surface X S. If B ⊂ C has a subexponential growth rate by length, then

MLS(S , g1)
∣∣
C\B = MLS(S , g2)

∣∣
C\B~w�

g1 = g2.
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Where does slow growth come in?

I Introduce an error in the boundary
set.

I Show that there exists a sequence
in which the number of unique
homotopy classes that show up
grows exponentially.

I Tossing out a subset that grows
slowly still leaves most of this
sequence.

Noelle Sawyer Partial marked length spectrum rigidity for negatively curved surfaces



Where does slow growth come in?

I Introduce an error in the
boundary set.

That means we can choose ε−dense
geodesics for our pink geodesics.

Since the set of ε−dense geodesics
grows faster than B , we can always
find a sequence of γ14i and γ23i in C \ B.
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Why the assumptions in the theorem?

Theorem (S.)
Let g1 and g2 be two negatively curved X Riemannian metrics on a compact
surface X S. If B ⊂ C has a subexponential growth rate X by length, then

MLS(S , g1)
∣∣
C\B = MLS(S , g2)

∣∣
C\B~w�

g1 = g2.
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