Partial marked length spectrum rigidity for negatively curved surfaces

Noelle Sawyer

Wesleyan University

April 25th, 2020

GOATS

Noelle Sawyer Partial marked length spectrum rigidity for negatively curved surfaces

What can the periodic orbits of a dynamical system (X, T) tell us about X?

In particular: periodic orbits of geodesic flow on a compact negatively curved surface.

In particular: periodic orbits of geodesic flow on a compact negatively curved surface.

If you just know the lengths of the periodic orbits, you don't know much.

In particular: periodic orbits of geodesic flow on a compact negatively curved surface.

If you just know the lengths of the periodic orbits, you don't know much.

If you know the lengths of the periodic orbits, the homotopy class each length belongs to, and that the metric is sufficiently nice you can identify the metric g up to isometry. When S is a compact surface with a negatively curved metric g, each nontrivial free homotopy class has exactly one closed geodesic.

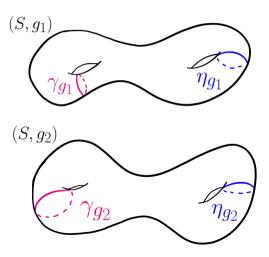
Nonexamples in nonpositive curvature

What's special about the homotopy classes?

When *S* is a compact surface with a negatively curved metric *g*, each nontrivial free homotopy class has exactly one closed geodesic.

 $\gamma_{g} :=$ the unique closed geodesic representing $\langle \gamma \rangle$ in (S,g).

 γ_g is also the shortest curve in $\langle \gamma \rangle$.



When S is a compact surface with negatively curved metric g, the following collections of information are the same:

- The length of each periodic orbit of geodesic flow and the associated homotopy class for each orbit.
- ► The length of the closed geodesic in each homotopy class.

Marked Length Spectrum

We encode the lengths and homotopy classes of each closed geodesic with the following function.

The **marked length spectrum** for a negatively curved Riemannian metric g on a compact surface S is a function

$$egin{aligned} \mathcal{MLS}_{m{g}} &\colon \mathcal{C} o \mathbb{R}^+ \ & & \langle \gamma
angle \mapsto \mathsf{length}_{m{g}}(\gamma_{m{g}}) \end{aligned}$$

where γ_g is the unique geodesic in $\langle \gamma \rangle \in \mathcal{C}$.

Marked Length Spectrum

We encode the lengths and homotopy classes of each closed geodesic with the following function.

The **marked length spectrum** for a negatively curved Riemannian metric g on a compact surface S is a function

$$egin{aligned} \mathcal{MLS}_{g} &\colon \mathcal{C} o \mathbb{R}^{+} \ & & \langle \gamma
angle \mapsto \mathsf{length}_{g}(\gamma_{g}) \end{aligned}$$

where γ_g is the unique geodesic in $\langle \gamma \rangle \in \mathcal{C}$.

Another way to think about it:

$$\mathit{MLS}(S,g) = \left(\mathsf{length}_g(\gamma_g)\right)_{\langle \gamma \rangle \in \mathcal{C}}$$

Theorem (Croke and Dairbekov, 2004)

Let g_1 and g_2 be two negatively curved Riemannan metrics on a compact surface S. If

 $length(\gamma_{g_1}) \leq length(\gamma_{g_2})$

for every class $\langle \gamma \rangle \in \mathcal{C}$, then

 $Area(S, g_1) \leq Area(S, g_2).$

Theorem (S.)

Let g_1 and g_2 be two negatively curved Riemannan metrics on a compact surface S and suppose $\mathcal{B} \subset \mathcal{C}$ has a subexponential growth rate by length. If

 $length(\gamma_{g_1}) \leq length(\gamma_{g_2})$

for every class $\langle \gamma \rangle \in \mathcal{C} \setminus \mathcal{B}$, then

 $Area(S, g_1) \leq Area(S, g_2).$

Subsets of $\mathcal C$ with subexponential growth rate

 $\mathcal{B} \subset \mathcal{C}$ has a subexponential growth rate if

$$\lim_{\mathcal{T}
ightarrow\infty}rac{1}{\mathcal{T}}\log|{\mathcal{B}_{\mathcal{T}}}|=0,$$

where $\mathcal{B}_{\mathcal{T}} = \{ \langle \gamma \rangle \in \mathcal{B} : \text{length}(\gamma_g) < \mathcal{T} \}.$

Subsets of $\mathcal C$ with subexponential growth rate

 $\mathcal{B} \subset \mathcal{C}$ has a subexponential growth rate if

$$\lim_{\mathcal{T}
ightarrow\infty}rac{1}{\mathcal{T}}\log|m{\mathcal{B}}_{\mathcal{T}}|=0,$$

where $\mathcal{B}_{\mathcal{T}} = \{ \langle \gamma \rangle \in \mathcal{B} : \text{length}(\gamma_g) < \mathcal{T} \}.$

Examples of such sets are

 $\blacktriangleright \{\langle \gamma \rangle : \gamma_g \text{ is simple} \}$

•
$$\{\langle \gamma \rangle : \gamma_g \text{ has fewer than } n \text{ self-intersections} \}$$

A note on exponential growth

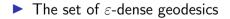
$\mathcal{B} \subset \mathcal{C}$ grows exponentially if

$$\lim_{T\to\infty}\frac{1}{T}\log|\mathcal{B}_{T}|>0,$$

where
$$\mathcal{B}_{\mathcal{T}} = \{ \langle \gamma \rangle \in \mathcal{B} : \text{length}(\gamma_g) < \mathcal{T} \}.$$

Examples of such sets are

► C



Theorem (Croke, Otal, 1990)

Let g_1 and g_2 be two negatively curved Riemannian metrics on a compact surface S. Then

$$egin{aligned} \mathsf{MLS}(S, g_1) &= \mathsf{MLS}(S, g_2) \ &&&& \ && \ &&& \ &&$$

i.e. the marked length spectrum uniquely determines the metric up to isometry.

Theorem (S.)

Let g_1 and g_2 be two negatively curved Riemannian metrics on a compact surface S. If $\mathcal{B} \subset \mathcal{C}$ has a subexponential growth rate by length, then

$$\mathsf{MLS}(S, g_1) ig|_{\mathcal{C} \setminus \mathcal{B}} = \mathsf{MLS}(S, g_2) ig|_{\mathcal{C} \setminus \mathcal{B}}$$

 $g_1 = g_2$.

i.e. the **partial**^{*} marked length spectrum uniquely determines the metric up to isometry.

Partial marked length spectrum rigidity

Theorem (S.)

Let g_1 and g_2 be two negatively curved Riemannian metrics on a compact surface S. If $\mathcal{B} \subset \mathcal{C}$ has a subexponential growth rate by length, then

$$egin{aligned} \mathsf{MLS}(S, g_1)ig|_{\mathcal{C}\setminus\mathcal{B}} &= \mathsf{MLS}(S, g_2)ig|_{\mathcal{C}\setminus\mathcal{B}} \ & & & & \ & & \ & & & \ & & \ & & & \ & & \ & & & \ & \ & \ & \ & \ & & \ & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & \ & \ & & \ & \ & & \ &$$

Corollary

$$MLS(S,g_1)\big|_{\mathcal{C}\setminus\mathcal{B}} = MLS(S,g_2)\big|_{\mathcal{C}\setminus\mathcal{B}} \implies MLS(S,g_1) = MLS(S,g_2)$$

Theorem (S.)

Let g_1 and g_2 be two **negatively curved** Riemannian metrics on a compact surface S. If $\mathcal{B} \subset \mathcal{C}$ has a subexponential growth rate by length, then

Negative curvature guarantees that

- There is exactly one periodic orbit per homotopy class. We might lose that with nonpositive curvature.
- Closed geodesics that are almost dense grow exponentially quickly.

Theorem (S.)

Let g_1 and g_2 be two **negatively curved** \checkmark Riemannian metrics on a compact surface S. If $\mathcal{B} \subset \mathcal{C}$ has a subexponential growth rate by length, then

$$MLS(S, g_1) \Big|_{\mathcal{C} \setminus \mathcal{B}} = MLS(S, g_2) \Big|_{\mathcal{C} \setminus \mathcal{B}}$$

$$\bigoplus_{g_1 = g_2.}$$

There is something called a geodesic current, and Otal proved the following about the Liouville current, $\lambda_g.$

Theorem (Otal, 1990)

Let g_1 and g_2 be two negatively curved Riemannian metrics on a compact surface S. If $MLS(S, g_1) = MLS(S, g_2)$, then $\lambda_{g_1} = \lambda_{g_2} \iff g_1 = g_2$.

There is something called a geodesic current, and Otal proved the following about the Liouville current, $\lambda_g.$

Theorem (Otal, 1990)

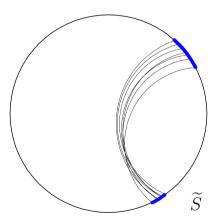
Let g_1 and g_2 be two negatively curved Riemannian metrics on a compact surface S. If $MLS(S, g_1) = MLS(S, g_2)$, then $\lambda_{g_1} = \lambda_{g_2} \iff g_1 = g_2$.

That means that if we can reconstruct λ_g , that's enough to uniquely identify the metric g.

The boundary at infinity

The boundary at infinity of \tilde{S} is the equivalence classes of geodesics at ∞ .

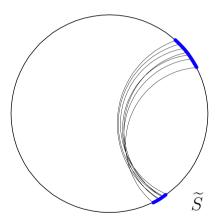
If g is a negatively curved metric, then two points on the boundary of \tilde{S} uniquely identify a geodesic.



A **geodesic current** is a locally finite, $\pi_1(S)$ -invariant Borel measure on the space of geodesics on \tilde{S} , the universal cover of (S, g).

Of particular interest is a current that depends on the metric: the **Liouville** current λ_g .

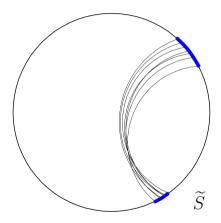
Theorem (Otal, 1990) If $MLS(S, g_1) = MLS(S, g_2)$, then $\lambda_{g_1} = \lambda_{g_2} \iff g_1 = g_2$.



A geodesic current is a locally finite, $\pi_1(S)$ -invariant Borel measure on the space of geodesics on \tilde{S} , the universal cover of (S, g).

Of particular interest is a current that depends on the metric: the **Liouville** current λ_g .

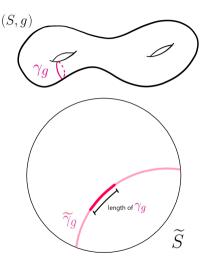
Theorem (Otal, 1990, S.) If $MLS(S, g_1)|_{C \setminus B} = MLS(S, g_2)|_{C \setminus B}$ then $\lambda_{g_1} = \lambda_{g_2} \iff g_1 = g_2$.

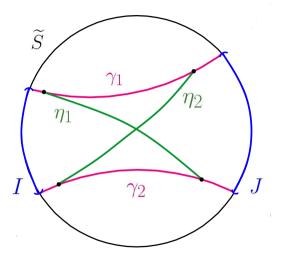


The idea: Show that you can reconstruct the Liouville current using the marked length spectrum info.

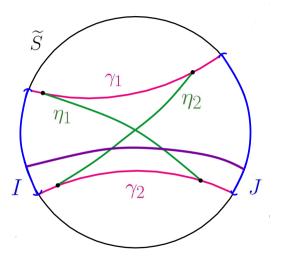
Proposition (Bonahon, 1988)

For any homotopy class $\langle \gamma \rangle$, length γ_g = λ_g (geodesics intersecting one copy of γ_g)



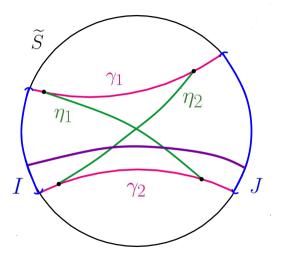


Each such geodesic intersects η_1 and η_2 , but does not intersect γ_1 or γ_2 .



Each such geodesic intersects η_1 and η_2 , but does not intersect γ_1 or γ_2 .

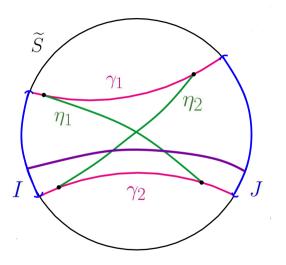
$$\begin{array}{l} 2 \cdot \lambda_g(I \times J) \\ = \operatorname{length}(\eta_1) + \operatorname{length}(\eta_2) \\ - \operatorname{length}(\gamma_1) - \operatorname{length}(\gamma_2) \end{array}$$



Each such geodesic intersects η_1 and η_2 , but does not intersect γ_1 or γ_2 .

$$\begin{array}{l} 2 \cdot \lambda_g(I \times J) \\ = \operatorname{length}(\eta_1) + \operatorname{length}(\eta_2) \\ - \operatorname{length}(\gamma_1) - \operatorname{length}(\gamma_2) \end{array}$$

This is only if η_1, η_2, γ_1 , and γ_2 are each one copy of a closed geodesic **and they are not in** \mathcal{B}

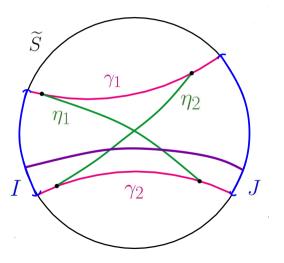


Approximate!

Take a sequence of 4-tuples that approach the boundary.

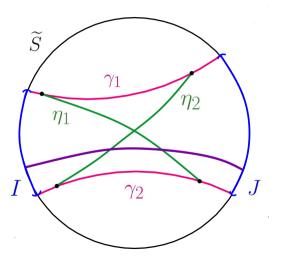
As long as we don't use any lifts of geodesics in \mathcal{B} , we can find $\lambda_g(I \times J)$ using $MLS(S,g)|_{C \setminus \mathcal{B}}$.

Being able to find the measure of an arbitrary set means that we can reconstruct λ_g . That's enough to uniquely identify g by an earlier proposition!



Why dimension 2?

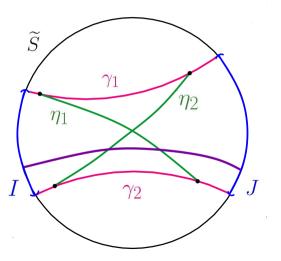
Notice: this "trap a geodesic" approach won't work in higher dimensions.



Why dimension 2?

Notice: this "trap a geodesic" approach won't work in higher dimensions.

Trouble: What if every choice we make in this sequence has a geodesic in \mathcal{B} show up?

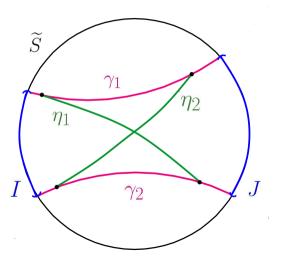


Theorem (S.)

Let g_1 and g_2 be two **negatively curved** \checkmark Riemannian metrics on a compact surface \checkmark S. If $\mathcal{B} \subset \mathcal{C}$ has a subexponential growth rate by length, then

Where does slow growth come in?

- Introduce an error in the boundary set.
- Show that there exists a sequence in which the number of **unique** homotopy classes that show up grows exponentially.
- Tossing out a subset that grows slowly still leaves most of this sequence.

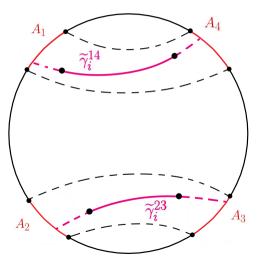


Where does slow growth come in?

Introduce an error in the boundary set.

That means we can choose ε -dense geodesics for our pink geodesics.

Since the set of ε -dense geodesics grows faster than \mathcal{B} , we can always find a sequence of γ_i^{14} and γ_i^{23} in $\mathcal{C}\setminus\mathcal{B}$.



Theorem (S.)

Let g_1 and g_2 be two **negatively curved** \checkmark Riemannian metrics on a compact surface \checkmark S. If $\mathcal{B} \subset \mathcal{C}$ has a subexponential growth rate \checkmark by length, then