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Background

This project is centered around the use of spectral sequences to compute topological invariants
of spaces. These invariants can be used to categorize, study, and distinguish familiar spaces
that arise in various branches of Mathematics, and often lead to the construction or discovery of
entirely new types of spaces.

Generally speaking, Topology is the study of spaces that admit a notion of closeness, measured
by a collection of “open sets”. Spaces fitting such a description are said to be objects in the cat-
egory of Topological Spaces (also denoted Top). In this category, spaces are only distinguished
up to homeomorphism, a continuous bijective map with continuous inverse. That is, given two
spaces and a map f : X → Y, if f is continuous and admits an continuous inverse f−1X → Y,
then X and Y are considered equivalent objects in Top and we write X ∼= Y. Such maps f can
also be thought of as continuous deformations from X to Y.

Such deformations preserve purely topological properties, such as the number of connected
components and the number of holes. Such properties are referred to as topological invariants. It
is for this reason that Topology is sometimes referred to as “rubber sheet geometry”, in which
the surfaces act like rubber or clay that can be reshaped but can not be torn without potentially
affecting its topological properties. An oft-cited example is that, thought of as surfaces embed-
ded in R3, a coffee cup is homeomorphic to a one-holed torus, and thus there is a continuous
map of the following type:

X = A Coffee Cup

f : X → Y

The simplest such examples arise from looking at subsets of real n-dimensional space, in partic-
ular, the solid ball Bn and its spherical shell Sn. For low dimensions, these are readily visualized:

S0 S1 S2

B0 B1 B2

There are also a number of other relatively simple spaces that can be assembled by combining
these spaces using a variety of product, quotient, and “twisting” operations:

B1× B0 T2 = S1× S1 M = S1 o B0

Top also includes a broad array of objects, such as function spaces, collections of matrices, and
even large data sets can be given a topological structure. Several natural questions thus arise:
Can we classify homeomorphism types? And how can we tell when two given spaces are
homeomorphic?

The size and complexity of Top makes such questions difficult. The Poincare Conjecture – a
Millennium Prize Problems which revolved around characterizing when certain 3-dimensional
spaces are homeomorphic to the 3-sphere S3 – remained an open problem for nearly a century
until its resolution in 2006. As a result, slightly weaker notion of homotopy equivalence was intro-
duced, which began a widely successful program of assigning algebraic invariants to spaces in
order to study and distinguish them.

Homotopy Theory

The notion of homotopy has become a cornerstone of modern Algebraic Topology. As a first ap-
proximation, a homotopy between two maps can be thought of as a continuous, time-dependent
interpolation between them. In the simplest case, we consider paths within a space X to be
equivalent to maps from the unit interval I, or equivalently the zero-dimensional ball B0, into X,
and two maps f , g : B0 → X are said to be homotopic whenever there exists a family of maps
Ft : B0→ X, t ∈ [0, 1] satisfying F0 = f and F1 = g. This provides a notion of homotopy between
paths in a space.

In this way, the space is “probed” by a test space, in this case a ball B0, in order to study it.
An extremely useful application of this concept is to measure the number of “holes” in a space
by taking one’s test spaces to be spheres Sn instead of balls. This leads to the notion Homotopy
Groups, a collection of groups πn(X), n = 0, 1, 2, . . . assigned to a space which serve as algebraic
invariants: that is, they satisfy the property that X ∼= Y implies πn(X) = πn(Y) for all n. Con-
versely, if there is even a single n such that πn(X) 6= πn(Y), one can conclude that X 6∼= Y. These
groups are defined as

πn(X) = [Sn, X]

where [X, Y] is obtained by taking the set of all continuous maps f : X → Y and identifying all
maps that are homotopic to one another. We say that two spaces X and Y are homotopy equiv-
alent or are equivalent as objects in the category hoTop when there are mutually inverse maps
f : X → Y and g : Y → X that are each homotopic to the identity maps on the respective spaces.
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Maps Between Spheres

Since spheres are perhaps the simplest spaces to study, we can take both the test space and the
target space to both be spheres of varying dimensions. By doing this, πi(Sn) = [Si, Sn] yields
information about homotopy classes of maps between spheres, which might include instances of
one sphere winding or wrapping around another. It can be shown that when i < n, πi(Sn) = 0
– that is, there is only one class of maps up to homotopy: those that can be contracted to a point.
This is most easily visualized by examining π1(S2) = [S1, S2] = 0 (the trivial group).

S2 S2

πnSn = Z

For each n, it can be shown that there are in fact infinitely many nontrivial classes of maps
from the n-sphere to itself, and it can be show that [Sn, Sn] ∼= Z. The prototypical example of
this is in dimension 1, where the construction of a covering space yields a method of computing
[S1, S1] = π1(S1). It can be shown that R � S1 is such a covering, which can be visualized as a
helix over the circle, where the degree is measured by the winding or equivalently the number of
points in the fiber above a base point:
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Spectral Sequences

Spectral sequences are a tool for computing homology, another algebraic invariant. When com-
bined with a construction called Postnikov Towers, which generalize the construction of cov-
ering spaces, these sequences can also be used in an iterative procedure to compute homotopy
groups. These sequences are represented as a differential graded structure (Ep,q

n , ∂
p,q
n ) in which

each En (denoted the pages of the sequence) is obtained from the previous page by taking homol-
ogy. This induces differentials that extend farther on each page, and with further assumptions
on the boundedness of this complex, the pages stabilize and the sequence is said to converge.
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They are applicable when the space being studied fits into a fibration F → E → B where E is
denoted the total space, B is the base space, and F is the fiber. In this case, with mild conditions on
the spaces involved, there exists a spectral sequence E·,·· such that

Ep,q
2 = Hp(B, Hq(F; Z)) (1)

Ep,q
∞ ⇒ Hp+q(E) (2)

There exist i ≥ 2 such that πi(S2) 6= 0

Using these methods, it can be shown that π3(S2) = Z and π4(S2) = Z/2Z – that is, that
there are homotopically non-trivial maps from high dimensional spheres into low dimensional
spheres. In particular, π3(S2) contains exactly 2 elements, one of which is the identity, while the
other is generated by the Hopf Fibration S1 → S3 → S2, a family of circles indexed by points
on a sphere. The 3-sphere is not readily visualizable, but using stereographic projection, one finds
that this fibration carries a great deal of beautiful structure:
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