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1 Dan Freed, Introduction to Chern-Simons

1 Dan Freed, Introduction to Chern-Simons

See their paper: Some Cohomology classes in Princi-
pal Fibers Bundle and Their Applications to Rieman-
nian Geometry.

Remark 1.0.1: Setup: G a Lie group, π0G finite, a G-invariant p-linear form on

g : 〈−,−, · · · ,−〉 : g⊗p → R.

These sit inside invariant polynomials on g, i.e. (Symp g∨)G.

P
π−→M is a principal G-bundle, Θ a connection in Ω1

P (g)

Remark 1.0.2: The curvature:

Ω = dΘ + 1
2[Θ ∧Θ].

Aπ the affine space of all connections, look for a universal connection on the bundle Aπ × P →
Aπ ×M .

∆1 → Aπ a simplex connecting Θ,Θ1, define

α(Θ0,Θ1) =
∫

∆1
ω(Θπ).

Check that by Stokes’, dα = ω(Θ1) − ω(Θ0). Basepoint in this affine space: a distinguished flat
section (no holonomy) P → P

×
M

2

See Chern-Weil form α(Θ), it satisfies a transgression dα(θ) =
π∗dω?

Remark 1.0.3: Descend forms on P to M , need forms evaluated along fiber direction to vanish
in order to descent. How to descend the Chern-Simons form? Original paper involves H2p(BG;R)
and reducing to R/Z to kill topological obstructions to descent.

Remark 1.0.4: Next steps: Cheeger-Simons define an abelian Lie group of differential characters
by taking a pullback:

CSq(M) Ωq
closed(M)

Hq(M ;Z) Hq(M ;R)

y

Link to Diagram

The Chern-Weil form of a G-connection is a canonical lift to CSq(M). See Maurer-Cartan form.
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3 Mina Aganagic, Homological Knot Invariants from Mirror Symmetry

Remark 1.0.5: Cheeger-Simons groups aren’t local, i.e. don’t satisfy a sheaf condition. Write

S1 = colim−−−−−→(I → I × I ← I) R/Z = colim−−−−−→(0→ 0← 0),

since there is no holonomy on an interval. See Hopkins-Singer paper: pull back entire cochain
complex, differential function spaces. Integrating this over manifold (after cutting into pieces) is
packaged as a partition function on an invertible field theory.

Remark 1.0.6: Idea: use local Chern-Simons as a functional to integrate, e.g. along elements of
ΩM for M a Riemannian manifold, or e.g. integrating scalar curvature. Can also use alternative
cohomology theories, e.g. K-theory, do spin versions etc. Their result: finding obstructions to
conformally immersing Riemannian manifolds into Rn.

2 Stephon Alexander, Chern-Simons and
Matter-Antimatter symmetry

Remark 2.0.1: Weak interaction: different to other interactions in that it violates parity: ex-
perimentally, the mirror version has not been seen. Gravity assumed left-right symmetric. Use
resonance and power spectrum analysis to determine that a majority of the energy expenditure of
the universe is in the form of dark energy.

Remark 2.0.2: Pillars of cosmology:

• Large scale homogeneous, isotropic,
• Solutions to Einstein field equations predict Hubble expansion law: further away implies

moving away from each other faster.
• General relativity

Remark 2.0.3: Gravitational waves: tensorial fluctuations. Gravity waves: satisfies perturbed
wave equation. Turn into a quantum thing to get gravitons. Ratio of matter to antimatter is a
precise number, on the order of 10−10. In Physics: see Chern-Simons current. Modify Einstein’s
equations with an scalar (axion?) term. This field is a candidate for what causes inflation.

Remark 2.0.4: Famous result: ABJ/chiral anomaly, related to an index theorem: a standard
U1 current is usually conserved, but can vanish? Chern-Simons form prevents RR̃ from vanishing,
which if vanishing would cause equal left and right handedness.

3 Mina Aganagic, Homological Knot
Invariants from Mirror Symmetry

Remark 3.0.1: Motivation: knot categorification problem. Recall that the Jones polynomial arises
from a skein relation which depends on n, taking n = 2. Can take other values for n. Witten: this
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3 Mina Aganagic, Homological Knot Invariants from Mirror Symmetry

polynomial comes from Chern-Simons theory, expected value of a collection of Wilson loops in a
fundamental representation of a Lie algebra. Alexander polynomial: take a Lie superalgebra instead.
Categorification starts with quantum groups. Chern-Simons: assign a Hilbert space to A := Σg,n.
Finite dimensional, spanned by a basis of conformal blocks (solutions to a linear PDE) Allow heavy
particles to move in surface, take a path integral in A× I corresponding to a braid? States in H
are special solutions to the PDE. Can be described by caps and cups? Links to conformal field
theory: braiding and fusion of particle trajectories/paths. Khovanov: assign a cohomology theory,
take graded Euler characteristic to recover Jones polynomial. Euler characteristic: trace from
supersymmetric QM:

Tr(−1)F e−βH .

Remark 3.0.2: Action of supercharge on a chain complex is generated by instantons. Khovanov
grading: graded by fermion number and another grading. Ben Webster: framework for quantum link
invariants for Lie algebras, but very inexplicit. Associate to conformal blocks a bigraded category,
braids go to functors, links go to vector spaces of morphisms. Hard to prove they decategorify
correctly: new framework makes this automatic and uses mirror symmetry.

Remark 3.0.3: Why Calabi-Yaus: theory of strings on a pair of dual tori. Complex is B-type
(algebraic geometry), symplectic is A-type. Counting holomorphic maps from P1: hard, infinite
series of enumerative problems. Easier on mirror? Branes are central objects in mirror symmetry,
regard as objects in a category whose morphisms are open branes. Insight: need mirrors to be
fibered by dual tori.

Remark 3.0.4: Category of branes: DCohX, vs DF for F the Fukaya category. Quantum product:
count rational curves. See quantum differential equation, central to mirror symmetry. Defined on
a moduli space of complex/symplectic structures. Solution space finite dimensional, spanned by
charges. Solutions are maps from infinite cigar to X.

Remark 3.0.5: New knot theory idea: take an infinite punctured cylinder. Langlands dual group
carries magnetic monopoles? Need to consider moduli space of monopoles in R3, turns out to be
Calabi-Yau and in fact hyperKähler. Braids are paths in moduli of Kählers? Braid group is the
sigma model on the infinite punctured cigar.

Remark 3.0.6: Fusion: singular monopoles coming together and bubbling. Fusion diagonalizes
the action of braiding in conformal field theory. Cups and caps: branes supported on miniscule
Grassmannians. Perverse filtrations make certain problems much simpler here. See KLRW algebra,
algebraic invariants match up with geometric invariants coming from branes on B-side. Homological
mirror symmetry: equivalence of categories of branes on different models. Smooth monopoles
indexed by simple roots of a Lie algebra. See Landau-Ginzburg model. Category of A-branes:
morphisms come from Floer theory, see More theory approach to QM? Instantons: holomorphic
maps from strips!! Can generalize Heegaard-Floer to Lie superalgebras (need simply-laced Lie
algebras?). Note that HF produces DGAs. Categorifies the Alexander polynomial. Equivariant
homological mirror symmetry: relates moduli space X to a half-dimensional “core” X. Not an

equivalence categories, comes from an adjunction C
h∗−⇀⊥↽−
h∗

C′ instead. Can compute Hom(A,B) =
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4 Xie Chen, Chern-Simons Theory and Fractons

Hom(h∗h∗A,B). HF reduces curve counting to well-defined problems in 1-dimensional complex
analysis, e.g. applications of Riemann mapping. Same story here, yields hard but tractable problems.

Remark 3.0.7: The theory on D-branes is related to 3-dimensional gauge theories of quiver type.
Deformation: reply affine Lie algebra with quantum affine Lie algebras. See defects of conformal
field theories, Koszul dual algebras. Yields some integrable lattice model, solves some analog of
Yang-Baxter equations? Braiding matrices are computed by partition functions.

Remark 3.0.8: How computable is this theory, compared to the diagram calculus of Heegaard-Floer
diagrams? Probably a few months away from being algorithmic enough for a computer.

4 Xie Chen, Chern-Simons Theory and
Fractons

Remark 4.0.1: How to use Chern-Simons in condensed matter physics. Toy model: take a lattice

and label edges with DOF given by Pauli matrices X =
[
0 1
1 0

]
and Z =

[
1 0
0 −1

]
:

Xie Chen, Chern-Simons Theory and Fractons 6



4 Xie Chen, Chern-Simons Theory and Fractons

Write Hamiltonian as

H = −
∑

Ai −
∑

Bi

where Ai are the crosses and Bi the boxes, gives an exactly solvable model. Cross with time to
get 2 + 1 where Chern-Simons terms show up. Generalize to lattices in 3-space. See ground-state
degeneracy, minimal/stable if no perturbation can reduce it. Very large here, so doesn’t fit into
TQFT framework.

Remark 4.0.2: For anyons: quasiparticles that experience excitation, can move around. For
fracton models, points can get stuck. By Gauss’ law, particles must be created in pairs. Rank
1 tensor gauge theories: conserve charges. For rank 2, additionally need to conserve dipoles, so
particles must be created in fours.

Remark 4.0.3: Gauge theories: far simpler when gauge group is abelian, e.g. U1. An integer

Xie Chen, Chern-Simons Theory and Fractons 7



5 Simon Donaldson, The Chern-Simons Functional and Floer Homology

symmetric matrix shows up when writing a Lagrangian here, whose properties inform integer/frac-
tional quantum Hall effects. Quasiparticles are restricted to move along submanifolds, e.g. an
xy-plane when many 2d models are stacked in the z direction. Growing cubic models: add a new
decoupled layer, then do a smooth deformation to get a new model with one more layer. Ground
state degeneracy scales like 4n. Foliated systems have statistics with finite range, vs some systems
where statistics span multiple layers with long tails.

Question 4.0.4
Possibly easy to identify matrices that are SLn(Z)-invariant for finite n, what about as n → ∞?
What if you allow adding on k × k (decoupled) blocks, and locally allow SLk(Z) to act on blocks?

Remark 4.0.5: Quasilocal matrices: integer matrices with nonzero entries only on some band
about the diagonal. Open question: are there invariants that determine when a system is or is not
foliated? What are the equivalence classes of foliated models?

Remark 4.0.6: Why “fracton”? The original models around 2010 had some fractal structure, could
also be related to the fractions showing up. Modern interpretation: point particle that doesn’t
freely move through the entire space.

5 Simon Donaldson, The Chern-Simons
Functional and Floer Homology

Remark 5.0.1: Recent work: when a variety admits an Einstein metric, and G2 manifolds. For
an account of the Chern-Simons paper, see Chern’s Complex manifolds without potential theory,
appendix on characteristic classes. 2+1: action functionals∫

eCSdA.

3+1: Floer homology HF(M3).

Remark 5.0.2: Consider P → Y 3 ∈ Prin BunG, define A the affine space of functions, then
A1 −A2 ∈ Ω1(adP ) Curvature F (A) ∈ Ω2(adP ). Define a form Θ Chern-Simons functional: CS :
A → R, descends to A/G → S1 for G the gauge group. Critical points are flat connections, Hessians
at these points are quadratic forms corresponding to a bilinear form from earlier. Alternative
definition: pick X4 such that ∂X = Y and set

CS(A) =
∫
X

Tr(F (A)2),

i.e. integrate the Chern-Weil form.

Remark 5.0.3: Examples of functionals: for γ ∈ ΩM ,

E(γ) :=
∫ ∣∣γ′∣∣2.

Simon Donaldson, The Chern-Simons Functional and Floer Homology 8



5 Simon Donaldson, The Chern-Simons Functional and Floer Homology

Sub-level sets will have compactness properties, Hessians are finite index at critical points. The
flow − gradE is a parabolic PDE, so a nonlinear heat equation. But the Chern-Simons functional
doesn’t have these properties. Very different!

Remark 5.0.4: For symplectic manifolds:

A(γ) =
∫
D
ω where ∂D = γ.

For M = Cn, write as a Fourier series A(γ) =
∑

ck
∣∣γ′∣∣2? Fixed points of exact Hamiltonian

diffeomorphisms ϕ correspond to critical points of a deformed functional Aϕ on ΩM . Arnold
conjecture: ]Fixϕ ≥

∑
βi is bounded below by Betti numbers.

Remark 5.0.5: For a torus, ΩT 2n ∼= T 2n × H− × H+ where the H± are vector spaces. Arnold
conjecture proved for torii by Conley and Zehnder, 1983. Floer’s insight: one can still “do Morse
theory” with Aϕ and CS: while gradient flow isn’t defined, flow lines between critical points do
make sense.

Remark 5.0.6: Introducing a Riemannian metric yields ? : Ω2 → Ω1. Get connections At over Y 3

as solutions to

∂At
∂t

= ?F (At).

Solutions are Yang-Mills instantons on Y × R asymptotic to flat connections at ±∞. These solve
anti-self-dual equations

F (A) = − ? F (A),

where here the star is a 4-dimensional version. Connected to electromagnetism? In symplectic case,
gradient flow lines in ΩM are holomorphic curves in M .

Remark 5.0.7: Usual story: chain complex with generators for each critical point, graded by index,
M(p, q) the space of gradient flow lines p→ q, compute dimM(p, q) = i(p)− i(q)− 1, and define
a differential ∂p =

∑
]M(p, q). Problem in infinite dimensions: index isn’t well-defined, but the

difference is e.g. when G = SU2. Linearize the instanton equation. Euler characteristic with respect
to HF is twice the Casson invariant.

Remark 5.0.8: If Y ∈ ZHS3, then the trivial flat connection is isolated. Otherwise, Floer’s
construction works when you can avoid “reducible” flat connections, e.g. a nontrivial SO3 bundle
over Y 3. For general P → Y , need an equivariant version of Floer theory – at present, this doesn’t
seem to exist.

Remark 5.0.9: Toward a 3+1 TFT: solutions to Yang-Mills on a 4-manifold give invariants by
counting instantons in a 0-dimensional moduli space. For X a 4-manifold with ∂X = Y , these
invariants I(X) take values in HF(Y ). Sum over all flat connections Ci, and count number of
connections asymptotic to Ci.

Simon Donaldson, The Chern-Simons Functional and Floer Homology 9



5 Simon Donaldson, The Chern-Simons Functional and Floer Homology

Remark 5.0.10: Gluing formula: a type of surgery formula when X = X1
∐
Y

X2 to compute

I(X) = I(X1)I(X2). This uses the pairing HF∗(Y ) ⊗ HF∗(Y ) → Z. Proof: stretching the neck.
Analog in Morse theory moves intersections closer to critical points.

Question 5.0.11
Other Floer theories on Y 3: solutions to SW, combinatorial Heegard theory. An outstanding
problem: how are all of these Floer theories related?

Remark 5.0.12: Floer’s deepest work: work leading to his exact surgery sequence. K ↪→ Y ∈ QHS3

a knot, take a tubular neighborhood diffeomorphic to a torus with a prefered meridian. Do +1
surgery: cut out, glue meridian back along the diagonal. Can also do 0 surgery. Get a LES in HF∗
of the surgered pieces, using well-known cobordisms.

Remark 5.0.13: Representation variety: moduli of flat connections! Extending all of this to
include surfaces: see bordered Floer theory, Lipshitz-Osvath-Thurston for Seiberg-Witten and
Heegard cases. Floer homotopy: see Manolescu, Bauer-Furuta.

Remark 5.0.14: How to complexify this theory? E.g. for G = SL2(C) instead of SU2, or replace
Y with a Calabi-Yau threefold?

Remark 5.0.15: For Z a Calabi-Yau, have a nonvanishing holomorphic 3-form ω, so define a
C-valued function on A the space of connections:

F (A) =
∫
Z

CS(A) ∧ ω.

Critical points are connections with F 0,2 = 0, i.e. ∂2
A = 0. See “holomorphic Casson invariants” by

Simon Donaldson, The Chern-Simons Functional and Floer Homology 10



7 Charles Kane, Quantized Nonlinear Conductance in Ballistic Metals

R. Thomas, counting holomorphic line bundles over Z. More generally, counting coherent sheaves
on Z to generalize DT invariants.

Remark 5.0.16: See Atiyah-Floer conjecture.

6 Sylvester Gates, SUSY, Topology,
Chern-Simons Theory

Remark 6.0.1: Topic: ectoplasm conjecture. Use pure group theory to study supersymmetry and
supergravity. M-theory and supergravity: 11 dimensions. Superspace: interior of a sphere, ordinary
space is an equatorial plane. Consider the weight lattice for su3. Define an action functional using
?d?. See nonlinear sigma model for pions? See super curvature. Covariant derivative allows coupling
to matter fields. See potential of a connection? Given degrees of freedom, how are they represented?
Scalars? n-forms? What are the representations of so4? Which ones are spinor representations?
Traceless symmetric tensors correspond to gravitons? Link between Young tableaux and Dynkin
labels? There are multiplication rules for both of these. Can replace data of super fields with
a poset of Young tableaux, stratified by level, and even just track them in a formal polynomial.
Group theory for physicists: representation theory of of compact Lie groups!

7 Charles Kane, Quantized Nonlinear
Conductance in Ballistic Metals

Remark 7.0.1: Applications of Chern-Simons to condensed matter physics. Intro: relation to
quantized Hall effect, and a related quantized response in 1D: the Landauer formula. How generalize:
the Euler characteristic of the Fermi sea.

Remark 7.0.2: Integer quantized Hall effect: can confine electrons to a 2D plane. Standard
experiment: measure conductance as a function of the magnetic field. Remarkably, nearly a sum
of step functions! Measures fundamental constant h/e2 extremely accurately, NIST declared it an
exact number which in turn defines the Ohm and kilogram. Low energy produces a Chern-Simons
TFT.

Remark 7.0.3: Topological band theory: a mean field theory that reduces QM particles to
understanding single particles. Band structure: collection of energy eigenvalues/eigenvectors
parametrized by momenta (S1 or more generally a torus due to periodicity). If occupied/empty
states are separated by a gap, the N occupied bands forum a Un bundle over T d a torus. Prob-
lem: classify vector bundles over T d. In dimension 2, the first Chern class c1 yields a number:
n = 1

2π

∫
T 2

Tr(F ), F = da+A ∧A for A = i〈ui, duj〉 the Berry connection.

Remark 7.0.4: In metals, electron states are occupied for E < EF a constant, so define Fermi sea
as the region in momentum space bounded by the associated Fermi surface. Why topology shows

Sylvester Gates, SUSY, Topology, Chern-Simons Theory 11



8 Charles Kane, Quantized Nonlinear Conductance in Ballistic Metals

up: integrate the connection associated to the above Chern class to get something gauge invariant.
This is something that can be measured in a lab! Chern numbers measured how twisted the vector
bundle is.

Remark 7.0.5: Seemingly tough problem (to me): put a sphere inside of a regular polyhedron.
Puncture “symmetrically” corresponding to opposite faces, add a tube passing through the face,
and then glue the resulting faces together. What surface do you get? Shows that Fermi surfaces
can have nontrivial genus.

Remark 7.0.6: For 1D: see Landauer conductance. With assumptions (no backscattering of
electrons, no reflectance), can get exact model

I = 1
2π

∫
dk evk = e

h

∫
dE =

(
e2

h

)
V.

What is the homeomorphism type of the 1D Fermi sea? Use quantized Landauer conductance
experiments to probe ]π0. Idea: χF carries more information than χ∂F for F the Fermi sea and
∂F its boundary surface. For F , there is a natural Morse functional given by measuring electron
energy. Passing through critical points is like a phase transition?

Remark 7.0.7: How to explain the quantization in the Landauer formula: consider dimension
D = 1. Apply a voltage impulse to move electrons:

See chiral anomaly. Use Morse theory to compute χ.

Remark 7.0.8: See conformal field theories, e.g. 1+1 boson for Fermi liquids? Where else might χF
show up? Generalizing chiral anomalies? A universal way to characterize quantum entanglement?
Generalizations to higher dimensions or non-Fermi liquids?

Charles Kane, Quantized Nonlinear Conductance in Ballistic Metals 12



8 John Lott, Chern-Simons, Differential K-theory, Operator Theory

8 John Lott, Chern-Simons, Differential
K-theory, Operator Theory

Remark 8.0.1: Chern character form: M smooth, E a Hermitian vector bundle, ∇ a compatible
connection, get a closed form

ch∇ = Tr e−∇2 ∈ Ωeven(M).

For two connections ∇i, take a homotopy ∇s = s∇1 + (1− s)∇0, the Chern-Simons form is

CS(∇0,∇1) :=
∫ 1

0
Tr
(
∂∇s
∂s

e−∇
2
s

)
ds.

Alternative construction of Chern character and Chern-Simons form due to Quillen: instead of

interpolating between ∇0,∇1, interpolate between
[
∇0 0
0 ∇1

]
and ∞.

Remark 8.0.2: Recall

K0 = Z[{0→ A→ B → C → 0}]
〈[B] = [A] + [C]〉 .

Differential Ǩ-theory: for K0, quadruples (E, hE ,∇E , ω) with E ∈ Bun (GLr)/M , hE a Hermitian
metric, ∇ a Hermitian connection, ω an auxiliary form. Quotient by relations E2 = E1 +E3 when the
Ei form a SES of vector bundles, ω2 = ω1 + ω3 + ε where ε is a correction term. Forget everything
but the vector bundle to get a map Ǩ0 → K0 and a Chern character Ǩ0(M)→ Ωeven

K (M). Kernel is
K−1 and this forms a SES, so this mixes K and Ω.

Remark 8.0.3: Integration over the fiber in K-theory: index maps K(M) → K(B), see Atiyah-
Singer index formula. Manifests as an equality of numerical indices. Joint work with Dan Freed
establishes a similar result for Ǩ using local index theory. Can compute certain η invariants without
using analysis.

Remark 8.0.4: Idea: K-theory of finite dimensional vector bundles with connections. For today,
how to generalize to infinite dimensions with super connections. Twisted K-theory: use elements in
H3. Problem: can’t define Tr e−A2 for A an operator, expanding and taking the 0th term already
yields ∞−∞! Fix: super connections, a sum A =

∑
A[i], and Trs a super trace. Idea: A[i] are in

Ωi(M ; ?) with restrictions. See C2-graded Hilbert bundles over a manifold M .

Remark 8.0.5: What should the structure group G be..? For fibers H, should have a subgroup
G ≤ U(H) (the unitary transformations). Needs to be general enough to include Diff(Z) for
Z the fibers. Construct using a type of Dirac operator, pseudo differential operators. Define
structure group as even unitary transformations intersected with a certain space of 0th order pseudo
differential operators op0. See Bismut-Cheeger η form, η(A,∞) which “interpolates to∞” as before.

Remark 8.0.6: Generators for Ǩ0: triples (H, A, ω) with H → M a C2-graded Hilbert bundle,
A a super connection, plus conditions. Turns out to be isomorphic to standard Ǩ from before.

John Lott, Chern-Simons, Differential K-theory, Operator Theory 13



9 Seiberg, Lattice vs Continuum QFT

Unclear if the Hopkins-Singer model is isomorphic. Standing assumptions: compact fibers, fiberwise
tangent bundle is SpinC. Need a horizontal distribution. Define an index as the image of a map
Ǩ0(M)→ Ǩ0(B) constructed by pushforwards.

Remark 8.0.7: Twisted K-theory: H3(M ;Z) classifies U1 gerbes on M . Gerbes: U ⇒ M , line
bundles Lab on double intersections, on triples Lab ⊗ Lbc

∼−→Lac, and on quadruples a cocycle
condition. Can define U1 connections on a gerbe. Twisted Hilbert bundles: maps ϕab : Ha ⊗Lab →
Hb. Define super connection on the open cover, plus compatibility on double overlaps to define
globally. Closed: (d+H∧) ch(A) = 0. Take same generators, quotient by new relations. Theorem:
this new twisted Ǩ only depends on the class of the gerbe in H3, and is independent of choices for
connective structures and curving.

Remark 8.0.8: Open question: showing this is isomorphic to other models.

9 Seiberg, Lattice vs Continuum QFT

Remark 9.0.1: QFT: successful but still not mathematically rigorous! Regularize by discretizing
space to a lattice, then the functional integral is well-defined. Then take a continuum limit taking
spacing to zero but fixing lengths, compute correlation functions. For condensed matter, find
low-energy/long-distance limit. Expect it to be described by an effective continuum field theory.

Remark 9.0.2: Challenges with just regularizing to a lattice and taking a limit:

• Does the limit exist?
• Is the limit independent of details at finite levels?
• Lattice theory doesn’t necessarily capture topological features (π1, characteristic classes,

Chern-Simons terms, etc). These are tied to global symmetries, anomalies.
• Some QFTs (e.g. with self-dual forms or fermions) don’t allow putting DOF on the lattice,

can’t write an action.
• Some QFTs may not have a continuum Lagrangian (e.g. 2, 0 theory), so can’t do a lattice

Lagrangian.

Remark 9.0.3: Opposite problem: given an actual physical lattice, find the low energy continuum
model. Often solvable, so can couple with whatever, but continuum limits have divergence issues.
E.g. XY -plaquette, fracton models. Some issues:

• Separate symmetric group elements for different subspaces
• Observables vary at lattice scale a, and can become discontinuous in the limit
• Infinite ground state degeneracy in the limit

Remark 9.0.4: Very well understood model: 1+1 boson. Take a 2d lattice with periodic boundary

Seiberg, Lattice vs Continuum QFT 14



10 Seiberg, Lattice vs Continuum QFT

conditions, action

S = −β
∑

cos(∆µϕ),

where eiϕ are phases on the lattice points. Sum over “links” (edge..?), ∆µ is like a discrete derivative.
Take limit to get

S = β

2

∫ (
∂ϕ

∂µ

)2
dτ dx.

A symmetry emerges in the continuum: the winding number of ϕ, and a certain ’t Hooft anomaly.
How much is present in the original lattice?

Remark 9.0.5: Try to make those symmetries appear on the lattice. Idea: replace cos by a linear
function, add a correction term that sums over plaquettes that is roughly curvature, scale by a
constant that forces curvature to be zero. See Villain form. This kills the vorticity, which helps
make the winding number show up on the lattice. Use Poisson resummation to show self-duality.

Suspected causes of anomalies: infinities, fermions, issues with invariance of measure. But none are
present here!

Remark 9.0.6: A slightly more complex model: XY -plaquette in 2 + 1 dimensions. Put phases
eiϕ on nodes with action

S = −β0
∑

edges
cos(δτϕ)− β

∑
plaqs

cos(∆x∆Y ϕ).

Has a global U1 symmetry, take continuum limit to get

S =
∫
dτ dx dy

µ0
2

(
∂ϕ

∂τ

)2
+ 1

2µ

(
∂2

∂x∂y
ϕ

)2

.

Remark 9.0.7: Other questions to ask to compare lattices to continuum limit:

• What are the (operator) spectra of the Hamiltonians?
• What are the correlation functions?

Importantly: limits don’t commute!

Remark 9.0.8: Interesting generalizations:

• Replace U1 with Cn
• Go to 3 + 1 dimensions
• Look at subsystem symmetries

Modify the Villain term, compute the spectra and correlation functions to study. QCD: infinite
number of states (vs finite number of states in these kinds of models?) There’s a difference between
global and gauge symmetries, exotic models land somewhere in between. See UV/IR mixing
(short/long distances).
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12 Simons, Origins of Chern-Simons Theory

10 Xiao-Gang Wen, Chern-Simons,
Nonabelian Topological Order

Remark 10.0.1: Goal: classify all possible phases of matter. Can model spin liquids, someone
wrote a wave function for it. Quantum Hall states: 2d electron gas. Fractional quantum Hall states
have different phases even when there is no symmetry (and thus no symmetry to break). See energy
gaps, literally show up as gaps in the spectrum of Hamiltonians. Topological order: having a specific
type of ground state degeneracy. “Topological” usually means robust against small perturbations,
particularly ones that break symmetries.

Remark 10.0.2: Conjecture: chiral spin states and quantum Hall states are described at low
energies by a path integral over an action which includes a Chern-Simons term corresponding to a
U1 gauge. Theme: things locally look the same, but can differ globally.

Remark 10.0.3: Cut electron into partons, write wave function for each and take product (gluing).
Degeneracies: locally the same wave functions but globally different wave functions. See nonabelian
statistics: modular tensor categories. Monopoles: defects or punctures in spacetime.

Remark 10.0.4: Looking for a mathematical language to describe long-range entanglement. Cur-
rent directions: category theory, Chern-Simons theory. Framing anomaly: path integral depends
on the framing of spacetime. Believe the path integral in Chern-Simons leads to a gravitational
Chern-Simons term ωgrav

CS .

11 Simons, Origins of Chern-Simons Theory

Remark 11.0.1: Motivations: a combinatorial formula for the signature of a 4-manifold. Tri-
angulate and integrate the first Pontryagin class, yields a term that doesn’t vanish coming from
the 3-manifold surrounding a vertex. Setup: M3 closed oriented Riemannian, then Frame(M)→
M ∈ Prin BunSO3(R). Write θij for the connection form and Ωij its curvature form. Get a 3-form
Q which integrates to zero along fibers (since curvature terms are horizontal). 3-manifolds are
parallelizable, yielding sections of the frame bundle. Any two sections χ, χ′ differ by an integer, so
get a well-defined Φ(M) :=

∫
χ
QmodZ

Remark 11.0.2: Theorems: Φ(M) is a conformal invariant, and Φ(M) = 0 is necessary for M to
admit a conformal immersion into R4. Application: Φ(RP3) = 1/2, so although immersible and
isometrically embeddable into R4, not conformally.

Interpret Φ as a map from the space of conformal structures to R/Z, whose critical points are
locally conformally flat structures. Well-known fact: a locally conformally flat simply-connected
3-manifold is diffeomorphic to S3. Could lead to a shorter proof of 3d smooth Poincaré. Chern got
this invariant to work in all dimensions, led to Annals paper.

Xiao-Gang Wen, Chern-Simons, Nonabelian Topological Order 16



12 Nico Yunes, Astrophysical Observational Signatures for Dynamical Chern-Simons Gravity

12
Nico Yunes, Astrophysical Observational
Signatures for Dynamical Chern-Simons
Gravity

Remark 12.0.1: Question: what observable signatures are produced by gravitational waves, black
holes, neutron stars? Why are there more baryons than anti-baryons in the universe? General
relativity predicts singularities – problematic due to infinities. Unclear if Chern-Simons

a. Has nothing to do with these phenomena, or
b. Explains them entirely.

Remark 12.0.2: New data: gravitational wages at LIGO in 2015, wavelike perturbations of the
metric tensor that decay like 1/r. After traveling ∼ 103 megaparsecs, yields a very weak observable.
Around 50 similar events in the years after, high level of confidence in measurements (> 5σ).
Signatures help us figure out what to sift for in experimental data.

Remark 12.0.3: Pontryagin invariant: R∗R? Lagrangian density: perturbed Einstein equations
for GR where tensor and scalar field are coupled? Recovers classical GR in a limit:

L ∼ R− 1
2(∇aν)(∇aν) + αdCSνR

∗R,

for R the Ricci tensor. Now vary with respect to degrees of freedom. Currents: something whose
divergence is the original thing? Third derivatives: not good in physics, causes ghosts, unbounded
Hamiltonians. Metric is GR metric plus order α2 terms. Need to reduce order to get rid of third
derivatives, unphysical unstable modes, due to insistence on treating this as an exact theory.

Remark 12.0.4: Chern-Simons form here:

Tr(dA ∧A+ cA ∧A ∧A), c = 2/3.

Remark 12.0.5: Spherically symmetric black holes: assuming static and vacuum, the unique
solution is the Schwarzschild metric. See box operator, d’Alembertian?

� ∝ ∂2

∂t2
−∆ = diag(1,−1,−1,−1)∇2(t, x, y, z)

=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

∆(t, x, y, z)

= ∂2

∂t2
− ∂2

∂x2 −
∂2

∂y2 −
∂2

∂z2 .

Effective field theory treatment for axially symmetric black holes, yields 2nd order PDE, no exact
solution. Can take first order solution, not bad to do by hand. Second and fifth order, much more
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12 Nico Yunes, Astrophysical Observational Signatures for Dynamical Chern-Simons Gravity

complicated but easily handled by a computer, no clear obstructions to higher order expansions.
Yields “hairy” black hole solutions: a 1/r2 scalar field, a perturbed horizon and ergosphere, no
naked singularities, polar “caps”: regions where geodesics need not focus. No killing tensor, so no
4th constant of motion. Are there observational signatures for the caps? Could there be chaos in
geodesic motion for test particles in orbit around dynamical Chern-Simons black holes? Chaos in
this dynamical system, say around supermassive black holes, should imprint on gravitational waves.
Recent results: quasinormal modes carry such a dynamical signature.

Remark 12.0.6: Summary:

• Spinning black holes are not Kerr, bc they excite a scalar field
• Binary black hole space time has two scalar fields anchored with each black hole.
• Dynamical CS induces a 2PN correction to the orbital evolution.

dCS is a v/4 correction to GR. Plot frequencies of orbit, play as sound – collision causes a chirp as
amplitude and frequency spike, correction causes a different chirp. Now add the sinusoids to obtain
beats/nodes in the waves, LIGO looks for these!

Remark 12.0.7: Problem with wave detection on Earth: seismic noise, creates a frequency wall.
Future projects: labs in space in 2035-2045! Things that haven’t been worked out in dCS yet:

• AdS black holes?
• Exact rotating solutions

Nico Yunes, Astrophysical Observational Signatures for Dynamical Chern-Simons Gravity 18



13 Kevin Costello, Chern-Simons in Dimensions 4,5,6

• Gravitational collapse
• Singularity theorems
• Area theorems

13 Kevin Costello, Chern-Simons in
Dimensions 4,5,6

Remark 13.0.1: Why holomorphic CS is interesting: mirrors counts of curves through mirror
symmetry, and shows up in construction of 4d integrable field theories.z

Remark 13.0.2: In higher dimensions: non-topological field theories. Setup: for X a Calabi-Yau
3-fold, A ∈ Ω0,1(X, g) a ∂ connection, write a Lagrangian

hCS(A) =
∫
X

ΩX ∧ CS(A).

Equations of motion imply flat connection, here F 0,2(A) = 0, so a holomorphic instead of flat
bundle. Translation ∂

∂zi
involves a BRST term. For 4-manifolds, take Σ1×Σ2 a bundle of Riemann

surfaces, where ω ∈ Ω1(Σ2) has no zeros, and A ∈ Ω1(Σ1 × Σ2) mod Ω1,0(Σ2). The Lagrangian
is
∫
ω ∧ CS(A) for ω a 1-form, the equations of motion become ωF (A) = 0. Locally looks like∫

zF ∧ F if one writes ω = dz.

Remark 13.0.3: 4d CS unifies integrable PDEs and field theories. Basic example of integral PDEs:
G ∈ Lie Grp compact, σ : R2 → G, asking σ to be harmonic is an integrable PDE. Importantly lax,
so can build a connection that is flat iff the harmonic equation holds. An important generalization:
include a WZW term. Interpret maps R× S1 → G as R → ΩG, where the phase space is T∨ΩG.
Conservation: {H, m(z)} = 0.

Remark 13.0.4: Given a Riemannian manifold with a closed 3-form, when is the harmonic map
equation on M integrable? Traditional examples: Riemannian symmetric spaces and their defor-
mations. One example is S2 with a specific metric, which also satisfies a Ricci flow condition.

Remark 13.0.5: 4d Chern-Simons: equations of motion become maps σ : R2 → Bun (G)/Σ, a
moduli of bundles over a Riemann surface trivialized at the poles of ω a 1-form. This has a
canonical metric and 3-form. Theorem: the harmonic map equation for these maps is always
integrable. Proved painfully without reference to 3D CS.

Remark 13.0.6: Ricci flow is closely tied to integrability. For Riemannian manifolds with closed
3-form, modify the flow δguv = Ricuv −?. The “ancient” solutions correspond to something unique.
Consider the moduli of Ricci flows. There is a natural flow on the moduli spaceM(Σ, ω) given by
computing periods of the form between its zeros? Turns out to be proportional to a Ricci flow on
this space.
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14 Minhyong Kim, Arithmetic Field Theories and Invariants

Remark 13.0.7: For 4d, mostly classical at this point. Higher dimensions: get a similar Lagrangian∫
dz1 dz2 Tr(AdA) + cTr(A ∗A ∗A) A ∗B := A ∧B + c

∂A

∂z1
∧ ∂B
∂z2

+ · · · .

5d nonabelian CS is a supersymmetric sector of M -theory. Holography: can match supersymmetric
things for N M2 branes with computations in this 5d CS theory. These are QM particles moving
on a moduli space of rank k instantons on R4 with charge N .

Remark 13.0.8: Most natural variant: holomorphic CS on a Calabi-Yau with A ∈ Ω0,1(X):∫
ΩX ∧ CS(A).

Problem: doesn’t exist as a quantum theory due to gauge anomalies. Apply Grothendieck-
Hirzebruch-Riemann-Roch to show the canonical doesn’t vanish:

c1Bun (G)(X) =
∫
X

Td(TX) ch(Adg).

Do some anomaly cancellation. Famously not renormalizable. Restricts gauge groups to SO8 or
G2 ×G2? For σ : R4 → SO8, Lagrangian involves Kähler potential.

14 Minhyong Kim, Arithmetic Field Theories
and Invariants

Remark 14.0.1: Problem: classify principal bundles over a point Spec k ∈ Spec(Field). Classified
by

Prin Bun (G)/SpecF
∼−→H1(π1 SpecF ;G).

Here G could be a p-adic Lie group, e.g. a Tate module lim←−−
n
A[n] for A ∈ AbVar. If G acts trivially,

this becomes a representation variety Hom(π1 SpecF,G)/ Inn(G), quotienting by conjugation. A
complete description is essentially the Langlands reciprocity conjecture!

Remark 14.0.2: Idea: replace F be OF its ring of integers, so X := SpecOF with the étale
topology. Behaves like a compact closed 3-manifold. For v ∈ mSpecOF , kv̂ = OF /v is a finite field,
so Spec kv̂ ↪→ X is like an embedding of a knot. Completion at v, OF,v := (OF )v̂ is like a formal
tubular neighborhood. Completing the original ring at v, so F v̂ is like a tubular neighborhood with
the knot deleted XB. For B a finite set of primes, set OF,B to be the set of B-integers, i.e. almost
algebraic but allowing denominators from B. Then SpecOF,B is like a 3-manifold with boundary,
so

∂X =
∐
v∈B

SpecFv → XB ↪→ X.
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Remark 14.0.3: What are these π1? Simple structure in nice cases, π1 Spec kv̂ = Ẑ, the profinite
completion of Z. A finite field extension K/F is unramified over p ∈ SpecOF if the prime
decomposition pOK =

∏
qi has no primes with multiplicity. There is a maximal unramified

extension, just take the compositum of all unramified extensions. Can restrict this to just be
unramified over primes not in B Note that Ab(π1X) = PicOF = cl(F ) is the ideal class group of F .
Old results: π1 SpecZ, π1 SpecOF = 0 for F imaginary quadratic with cl(F ) = 1. Assume GRH to
get π1 SpecOK = A5 for K = Q

[√
653

]
, or PSL2(F8)× C15 for K = Q

[√
−1567

]
.

Question 14.0.4
Central problem: classify arithmetic 3-folds, or more generally understand H1(π1XB;G), isomor-
phism classes of principal G-bundles over XB. Write as M(XB, R) for R the group, breaks into∏
b∈B
M(Xb, R).

Remark 14.0.5: Assume F is complex, so F ∼= Q[x]/ 〈f〉 where f has no real roots. For gauge
theory interpretations, need to write an action

S :M(XB, R) = H1(π1XB, R)→ K

and path integral ∫
ρ∈M(XB ,R)

exp(CS(ρ)) dρ.

Actions take the form of L-functions:

L :M(XB,GL(V ))→ C or Cp.

To a representation π1(XB)→ GL(V ) assign

L(ρ) =
∏

v∈SpecOF

1
det (I − Frobv)V Iv

.

Importantly, this product may not always make sense! It’s a big problem to regularize this to
get convergence. Hasse-Weil conjecture says one can renormalise to a function of s in C, get
convergence for <(s)� 0, and analytically continue to s = 0 or s = 1 to recover original product.
Write r := Ords=0L(ρ(s)) for the order of vanishing. For the trivial representation ϕ, r = rankO×F .
For ρ = TpE for an elliptic curve, r = rankE(Q) (the Mordell-Weil group) assuming BSD. Néron-
Tate height pairing is a metric, its determinant appears in L function for E.

Remark 14.0.6: Need arithmetic orientations, problematic since dualizing sheaves are often µn.
Fact:

H3(X;µn) = H3(SpecOF ;µn) =
1
nZ
Z
.

More well-known that

H3(X;µn) = H3(X;Gm)[n] ∼= (Q/Z)[n].

Local CFT yields H2(Fv;Gm) ∼= Q/Z by classification of gerbes. Follows from SES in global CFT:
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15 Minhyong Kim, Arithmetic Field Theories and Invariants

0 H2(F ;Gm)
⊕
v

H2(Fv;Gm) Q/Z 0loc sum

Link to Diagram

Assume µn ⊆ F , get a map

inv : H2(π1X;Cn)→ H3(X;µn) ∼=
1
nZ
Z
.

Use this to build a Chern-Simons function CS :M(X;R)→
1
nZ
Z

, essentially by pulling back cocycles
along the representation. Use Bockstein to define a “path integral” defined as a finite sum over
representations. Closed form solution involves Legendre symbol, very nice! Also a determinant of a
quadratic form.

Remark 14.0.7: Bockstein is common in arithmetic geometry, d : H1(X;Cn)→ H2(X;Cn), used
to construct de Rham-Witt complex for crystalline cohomology. On general, having a SES like
0→ V → E → V → 0 allows defining such arithmetic functionals. Can define a bilinear pairing

BF : H1(X;Cn)×H1(X;µn)→ 1/nZ/Z
a× b 7→ inv(da ^ b).

Nice closed form solutions for the “path integral”:∑
(a,b)∈H1(X;Cn)×H1(X;µn)

exp(2πiBF(a, b)) = ]Pic(X)[n] · ](O×X/(O
×
X)n).

Compare to orders of L functions.

Remark 14.0.8: This setup occurs for Néron models of elliptic curves: for n� 0, there is a SES

0→ E [n]→ E [n2]→ E [n]→ 0.

Path integral evaluates to ]X(A)[n] · (]E(F )/n)2.

Remark 14.0.9: For boundaries: XB = SpecOF [ 1
B

] for B a finite set of primes. Start with
M(XB, R), get a local versionM(∂XB, R). Here H2(πv;Cn) ∼= 1/nZ/Z and vanishes for i ≥ 3, get
global CFT SES. Pulling back cocycles lands in Z3, but H3 is trivial, so look at space trivialization
(torsors for H2). Get a bunch of local torsors, then sum to get a single 1/nZ/Z torsor. Do some
local/global and push/pull gymnastics to get a U1 bundle over M(∂XB, R). Space of sections
breaks up as a tensor product of local spaces of sections, can cook up a way to land in a Hilbert
space, and this is the “state” you assign to the 3-manifold.

Remark 14.0.10: Recent work: entanglement of primes.
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15 Khovanov, Categorification

Remark 15.0.1: CS functional critical for 3 and 4 dimensional TQFTs. In 3d, path integral in
Witten’s construction of WRT invariants. In 4d, in instanton Floer homology. Generally a tensor
functor from 3-manifolds with 4d cobordisms to some algebraic category like AbGrp. Motivational
problem: construct a 4D TQFT that categorifies the WRT invariant for 3-manifolds. Look at tensor
functors from the categories of links in R3 and link cobordisms in R3× I to some algebraic category.

L0
L2∂Σ ∼= L0

∐ L1

Σ

Remark 15.0.2: Components in links colored by irreps of a simple Lie algebra g. Categorifying:
recover polynomials as graded Euler characteristics. In some cases, not clear how to extend link
homology to link cobordisms. Link homology is best understood with miniscule representations,
e.g. g = sln, labeled by

∧k
V for V ∼= CN the fundamental representation. For various N , recovers

Jones, Alexander, HOMFLYPT polynomials. Skein relation: assign a complex to resolutions, find
an exact triangle, set the original complex to be the cone of the map between the complexes of
the two resolutions. Why this is a good idea: reduces 3d diagram projections to actual 2d planar
graphs.

Remark 15.0.3: WRT is an invariant of a planar graph, homology supported in a single degree.
Maps between graph homology induced by foams. Look for functors that assign objects to vector
spaces and foams to morphisms. A foam: for SL3, a 2d combinatorial CW complex with generic
singularities embedded in R3. Examples:

• Σg,n

• S2 with a marked point and an equatorial disc attached.
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• S1 × S1 with an equatorial disc.

Introduce Tait coloring: any two facets sharing an edge must have distinct colors. E.g. the sphere
above admits 6 such colorings over F3, since the 3 facets (north/south hemispheres and equatorial
disc) share an edge (equator). Theorem: can produce a closed orientable surface in R3 from this.
The procedure is roughly numbering the facets, then taking Fij to be the surface obtained by leaving
{i, c}c facets out. E.g. for index set {1, 2, 3}, you get F12, F13, F23. Construct an evaluation map by
constructing local evaluations with respect to an admissible coloring, then sum over such colorings to
get a symmetric function in k[x1, · · · , xn]Sn . Initially defined to be rational, i.e. 〈F 〉 ∈ k(x1, x2, x3),
but it turns out that denominators cancel and 〈F 〉 ∈ k[x1, x2, x3]S3 . Can pair foams by flipping
and gluing along boundary to get a closed foam, then apply evaluation. Yields a bilinear pairing,
consider the kernel to get interesting skein-type relations.

Remark 15.0.4: General construction yields a lax tensor functor: just a map, not an isomorphism.

Remark 15.0.5: Conjecture: the state space 〈Γ〉 for Γ a graph is a free R-module of rank r the
number of Tait colorings. Known for reducible graphs, i.e. skein relations can eventually break
them into empty graphs. Theorem is true after a certain modification to 〈Γ〉ϕ? Motivations coming
from Kronheimer and Mrowka 2019, studying SO3 instanton Floer homology over F2 for 3-orbifolds
using a CS functional for orbifolds, primarily R3/(C2

×2) to get a trivalent vertex in a graph. Yields
a homology theory for trivalent graphs in R3. Might give a new way to think about the four color
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16 Freedman, Universe from a Single Particle, Metric Crystallization

theorem! Reductions: reduce links in R3 to diagrams in R2, set up evaluation, then take cones?

Remark 15.0.6: Current work: how to categorify ζp = 1? Possibly use cyclotomic rings in
characteristic p.

16 Freedman, Universe from a Single Particle,
Metric Crystallization

Remark 16.0.1: Fun fact: Freedman did work on topological quantum computing. Interesting fun
example: cone on S3 × S3 ↪→ R7. Idea for today: break metric symmetry on a Lie group.

Remark 16.0.2: Setup toy model for the beginning of the universe: finite dimensional Hilbert space
X ∼= Cn with symmetry group G := sun, and a metric gij on g := sun. This gives G a left-invariant
metric. Now add a probability distribution on g, which are basically Hermitian matrices, whose
draws are random Hamiltonians.

Several layers of randomness: choose metric in a Boltzmann manner, then choose a Hamiltonian
using a Gaussian based on the metric.

Remark 16.0.3: Natural metric: Killing form, ad -invariant and a local (global) extremum in
the space of metrics. Other metrics yield unit ellipsoids instead of unit spheres. Write an energy
functional on this space, essentially scalar curvature (i.e. Ricci scalar curvature). Can extract an
explicit formula from a paper of Milnor from the 70s on left-invariant metrics on Lie groups. Need
these invariant metrics to sort out how to actually compile a quantum circuit. Nielsen-Brown-
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Susskind define a word metric gij = δije
?w(i) where w(−) counts the number of letters, e.g.

w(1⊗ x⊗ 1⊗ 1⊗ y ⊗ z ⊗ 1⊗ 1⊗ 1) = 3.

This makes travelling along long words or words with capitals exponentially more difficult, rethinks
the combinatorial problem of building a circuit as a differential geometric problem.

Remark 16.0.4: Qubit structure: J : (Cz)⊗n ∼−→Cz
N . Define gij to be KAQ (“knows about

qubits”) if it has a basis of principle axes {Ha} which admit a tensor product decomposition. Forms
about a

√
d dimension subvariety in a d-dimensional space – codimension 1 is already very thin, so

these are exceedingly rare. However, about 30% of critical points for the action functional satisfy
this property. Try to do perturb a Gaussian and expand/truncate. Slight issue: get an integral like∫
egij ···+cijx

ixj , but the xi, xj are commuting variables and the structure constants cij anticommute,
so this term vanishes after integrating. Trying to integrate fermionically cancels the first term. See
Majorana operators.

Remark 16.0.5: How they studied various metrics: gradient flow with respect to the action
functional. I wonder how one actually does this in practice..?

Remark 16.0.6: Conclusions: nature abhors naked Hilbert spaces and attempts to equip them
with tensor or Majorana structures. In D = 2n, we see Majorana degree groupings and Brown-
Susskind exponential penalty factors. For random initial dimensions, conjecture all but log many
dimensions develop such a structure. A few exceptions: leaky universe scenario. Not good! Setup
is well-suited to studying pairs of an initial Hamiltonian and initial state to model near-beginning
universe scenarios. Consider the configuration space of these pairs and see how entropy evolves.
Outstanding problem: where does “space” come from? Finding “space” in a model means finding
the Leech lattice, wild! But checking for this by brute force requires 1012 qubits.

Remark 16.0.7: Feynman diagrams: if no thickness, kind of old school. Modern treatments involve
ribbon diagrams.
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