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Abstract

Key to the solution of the Kervaire invariant 1 problem was the con-
struction of a certain ’designer’ EO cohomology theory. I will survey the
techniques, based on work of innumerable homotopy theorists, used to
construct BP, tmf, K(n), EO and other designer, structured ring spectra.
I will end with recent work building an E3 form of BP 〈n〉, joint with
Dylan Wilson, and many open questions.

1 Part 1

1.1 Setup: structured ring spectra

Remark 1.1.1. The 2017 Talbot was on structured ring spectra, i.e. “brave
new algebra”, where we study En-ring spectra. The foundations of this field are
taken care of by May, EKMM, Lurie, and many more. One may check out the
survey Commutative ring spectra by Birgit Richter.

Remark 1.1.2. The key objects we’ll be considering:

• S, the initial E∞-ring spectrum, whose homotopy groups record the stable
homotopy groups of spheres.

• Thom E∞-ring spectra: MO,MSO,MSpin,MString,MU, etc. The sphere
fits into this pattern as framed bordism.

We construct other E∞-rings primarily to study these motivating examples.

Example 1.1.3. The following is a basic example of this paradigm of studying
these bordism ring spectra using other ring spectra. One that shows up naturally
is the E∞-ring MU, for which

π∗MU ∼= Z[x1, x2, · · · ] where |xi| = 2i,

a polynomial ring with infinitely many generators in even degrees. After local-
izing at a prime p, the localized spectrum MU(p) splits into sum of suspensions
of BP where

π∗BP = Z(p)[v1, v2, · · · ] where |vi| = 2pi − 2,

where Z(p) denotes the p-local integers. A modern way 1 of constructing BP is
as the quotient

BP =
MU(p)〈

xj

∣∣∣ j 6= pi − 1
〉 .

BP is a bit of a “designer” spectrum that is not as geometric in origin as MU,
but after p-localizing we see that BP cohomology is essentially equivalent to MU

1BP was first constructed by hand via obstruction theory by Brown and Peterson.
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cohomology. Moreover BP∗ is easier to work with, as it has simpler homotopy
groups with fewer generators in fewer degrees. Since MU∗ splits into a sum of
copies of BP∗, an advantage of working with BP is that formulas become more
manageable and concrete in many cases.

1.2 Understanding BP

One aspect of MU that distinguishes it from an arbitrary cohomology theory is
that MU∗ admits power operations, i.e. MU is an E∞-ring spectrum.

Question 1.2.1. Can the power operations on MU∗ be accessed using BP∗?
I.e., is BP and E∞ ring spectrum, and does the splitting of MU into BP sum-
mands preserve this structure?

Answer 1.2.2. No! See Lawson for p = 2 and Senger for odd primes, who prove
that BP not an E2p2+4-ring spectrum. As a result, we can’t understand all power
operations in MU∗ just using BP∗. However,it turns out that understanding
the power operations that come from the E4 structure is sufficient for many
applications:

Theorem 1.2.3 (Basterra, Mandell). BP is an E4-algebra retract of MU.

Remark 1.2.4. There is a general paradigm here: when studying E∞-ring
spectra, one is often lead to study other (less canonical) ring spectra built by
obstruction theory, and there are subtle relationships between geometric spectra
like MU and designer spectra like BP that respect only part of the E∞ structure.

Question 1.2.5 (Some open questions).

1. Is BP an E5-MU-algebra? More generally, what is the exact structure
here?2

2. While BP is an E2-algebra, is it a Disk2-algebra? 3 In particular, can one
take factorization homology (i.e. integrate) against unframed manifolds
of dimension two or higher?4

1.3 Chromatic homotopy

Remark 1.3.1. Studying other E∞ rings naturally leads to problems in ob-
struction theory. Perhaps the most important E∞ ring is S, which we study via
chromatic homotopy theory. The basic strategy is the following:

1. Resolve S by other E∞ rings, namely the K(n)-local spheres LK(n)S.

That the Morava K-theories K(n) exist, are E1-rings, and that one can
take take the Bousfield localization at S and obtain an E∞ring. This re-
quires a great deal of foundational theory to set up, which has thankfully

2Many have thought about this, so it’s perhaps not the best entry point for a new researcher!
3Any knowledge of how to put such an algebra structure on a ring would be very interesting!

This is a less well-studied aspect.
4This would correspond to a trivial S1-action.
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been worked out. It is useful precisely because of the chromatic conver-
gence theorem, and one can build a tower whose associated graded is these
K(n)-local spheres.

2. Resolve LK(n)S for a fixed n by the Hopkins-Miller EO-theories, which

are E∞ rings of the form EhG
n for G a finite group acting on the height n

Morava E-theory En. These EO theories coming from finite group actions
are supposed to be the basic building blocks of the K(n)-local spheres and
in turn S.

Question 1.3.2 (Big question, subject of active work). In general, can one
construct the resolutions in (2) above? In other words, can one always resolve
the K(n)-local sphere by these Hopkins-Miller EO theories?

Remark 1.3.3. By work of Goerss-Henn-Mahowald-Rezk, this can be done at
the prime 3 in height 2 (and some other explicit examples), and it’s expected
that this is generally possible.

A recent triumph of obstruction theory is that the building block EO-theories
have been built. These “designer homotopy types” are not easy to build, and a
large part of the 2017 Talbot was explaining how one constructs these building
blocks of the K(n)-local spheres.

1.4 Building EO-theories

Remark 1.4.1. How one builds EO theories:

• The EO-thories are supposed to come from group actions on height n
Morava E-theory, so build En as a homotopy commutative ring. This
can be done using the Landweber exact functor theorem, which is not too
difficult, but this is still a far cry from an E∞-ring.

• Promote En to an E∞ring using obstruction theory.

– See Robinson, Goerss-Hopkins, Lurie, Pstragowski and VanKough-
nett. In particular, Goerss-Hopkins construct G-actions (by finite
groups G) by E∞ring maps, and taking homotopy fixed points for
these actions that yield the EO-theories.

– The process is roughly the following: build an E∞ ring in the ho-
motopy category of spectra Sp, which is by definition a homotopy
commutative ring. Then do this in the homotopy 2-category of Sp,
then the homotopy 3-category of Sp, and so on.

This uses that an ∞-category is a sequence of n-categories, and one
checks if there is any obstruction to lifting this one layer of homotopy
coherence at a time.

Question 1.4.2 (Another big question). Can one compute π∗EO for EO := EhG
n

for various n and G?
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Example 1.4.3. The key to the Kervaire invariant one question is comput-
ing π∗EhC8

4 , and captures information about diffeomorphism classes of exotic
spheres.

Such computations are related to unsolved problems in obstruction theory, de-
spite the fact that it seems as though the obstruction theory is “done” in the
sense that we’ve already built these EO-theories.

Observation 1.4.4. In practice, these EO theories (which are all K(n)-local
by definition) seem to be K(n)-localizations of nice connective ring spectra.

Example 1.4.5. At the prime p = 2, it turns out that

EhC2
1 = KO2 = LK(1)(ko).

As a result, one doesn’t necessarily need to 2-complete KO, since it arises nat-
urally as the K(1)-localization of something else.

Similarly,
EhG24

2 = LK(2)(tmf),

where tmf exists before localizing and is even connective. In light of these facts,
we can regard ko and tmf as “connective E∞ lifts” of EhC2

1 and EhG24
2 .

Remark 1.4.6. These lifts are closer to geometry than EO theories – there is
an E∞ ring map due to Ando-Hopkins-Rezk

MString→ tmf.

This lands in tmf , which is connective, instead of (say) its K(2) localization.
Moreover, since MString is itself a bordism E∞-ring, it is also connective.

One major goal in this area would be to understand MString and (for example)
the direct sum decomposition of its 2-completion. We expect that it should
involve summands that look like tmf. Anderson, Brown and Peterson5 proved
that 2-localized MSpin splits into copies of ko and Eilenberg-MacLane spectra
HG, so one might expect that things like tmf are direct summands of geomet-
rically defined bordism E∞-rings.

Observation 1.4.7 (due to Hu-Kriz and Hill-Hopkins-Ravenel). Using spar-
sity, the easiest way to compute π∗EO is to compute π∗eo where eo is a good
connective lift of EO.

Note that π∗tmf is finitely-generated in each degree, and it’s useful to work
with something “small” in computations – for example if you’re trying to rule
out differentials in spectral sequences, it’s advantageous to have fewer spuri-
ous elements around that could support differentials. A nice way to organize
the computations of π∗EO is to understand them as the localizations of more
canonical lifts with better finiteness properties.

5See A-B-P 66, A-B-P 67
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1.5 Connective lifts

Question 1.5.1. Can one make highly structured connective eo-theories with

LK(n)eo = EO = EhG
n

for various and n and G? In other words, can we produce lifts like tmf rather
than just the localization LK(2)tmf?

This is a fascinating question, and there have been varying levels of success
constructing these.

Question 1.5.2. Noting that tmf(2) is a connective eo-theory, how is it built
as an E∞-ring?

Remark 1.5.3. For full details, see the tmf book or Lurie’s Elliptic Coho-
mology. We’ll just discuss a sketch here. We can write 2-localized tmf as a
truncation

tmf(2) = τ≥0L2tmf(2),

where the latter is built out of a finite resolution involving involving the chro-
matic localizations

• LK(2)tmf

• LK(1)tmf

• LQtmf

Each of these terms individually is understandable, since we can use obstruction
theory to make things K(1) or K(2) locally (or rationally), but the gluing
procedure that requires more work. Here L2 is the second stage of the chromatic
tower, obtained by gluing together the above three objects. The basic strategy
is to take the monochromatic pieces above, which are relatively easy to make
and work with, and find a way to glue them together.

Remark 1.5.4. A general idea pursued in many examples by Lawson is that one
can try to make eo as a connective cover of some Ln-local object. 6 Moreover,
the most satisfactory construction of these eo-theories would be some program
like this.

This worked very well for tmf, which is height 2, and there is currently partial
progress at height 3. In particular, this program is not yet able to construct
a connective version of EhC8

4 , which was needed in the Kervaire invariant one
problem.

Part of the issue with this idea is that all of the techniques used here seem to
work equally well for building E∞ as En rings for any particular finite n – so
for example, it’s no harder to build tmf as an E∞-ring than an E1-ring.

At heights beyond 3, the work of Lawson and Senger suggests that it is hard
to build E∞ rings and may be more reasonable to build E4 rings (e.g. BP). If

6See Lawson, Berhrens-Lawson and TAF (topological automorphic forms).
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these techniques were to work at all, they’re designed to build E∞ rings, but
necessarily not the seemingly easier to build E4-rings.

Remark 1.5.5. An alternate idea that let Hill-Hopkins-Ravenel solve Kervaire
Invariant One, and recently developed by Beaudry-Hill-Shi-Zeng, constructs
a connective version of EhC8

4 , which was a holy grail making it possible to
do computations. However, with this construction, it’s less clear how much
structure there is on the object, which is a reasonable open question.

They construct it using the following procedure:

• Put a C8 action on MU⊗4 by viewing this as a norm NC8

C2
MUR

The norm here gives a way of lifting a C2 action on one tensor factor to a
C8 action on 4 tensor factors.

• Quotient by some elements, possibly losing structure, to obtain a quotient
Q, where the connective lift of EhC8

4 is QC8 .

This uses the C8 action from above, and one just needs to check that taking
the quotient preserves this action. Note that these quotients can be destructive
when it comes to maintaining En ring structures. 7 The fact that Q actually is
a connective cover of EhC8

4 involves choosing elements judiciously.

1.6 Open questions and research directions

Question 1.6.1. Some natural questions that arise here:

• What group actions (with various amounts of structure, e.g. E∞) act on
tensor powers MU⊗m?

• What structure exists on quotients of such tensor powers?

Remark 1.6.2. If one answers these, one would have built structured models
for connective versions of Hopkins-Miller theories. As per a note by Ravenel,
if one can construct a certain C3 action on MU⊗2, then one could prove the
(currently unsolved) 3-primary version of Kervaire invariant one.

More generally, if one really understood these two questions, one could compute
fixed points8 of Morava E-theories. This hasn’t been formulated precisely yet
due to the following:

Question 1.6.3. Does MU⊗m admit any G-actions beyond those which come
from norms?

7It’d be interesting to know how much structure is lost here!
8Here the homotopy fixed points, although the strict fixed points should roughly be the

connective cover of the homotopy fixed points.
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2 Part 2

2.1 Structure on quotients of BP

Remark 2.1.1. If we take MU⊗m with a group action, possibly by E∞-ring
maps, what’s leftover after taking the quotient? Recall that this can be a
destructive procedure with respect to maintaining coherent En-ring structures.

Question 2.1.2. Recall that BP is an E4-ring spectrum with

π∗BP ∼= Z(p)[x1, x2, · · · ].

What structure exists on quotients of BP?

Remark 2.1.3. Note that this is only a basic form of the previous questions –
this doesn’t deal with complications arising from tensor powers of MU or any
group actions. Any progress here would lead to many natural next questions,
like generalizing tools to take into account group actions. There has been recent
progress, some of which is ripe for generalization – for example, by making things
equivariant.

Example 2.1.4. Take

BP 〈n〉 :=
BP

〈vn+1, vn+2, · · ·〉
=⇒ π∗BP 〈n〉 ∼= Z(p)[v1, v2, · · · , vn].

Note that this isn’t completely well-defined since there are many choices for
generators – for example, one could replace v2 with v2 + v1 to yield an equally
valid presentation.

2.2 Main theorems

Theorem 2.2.1 (Baker-Jeanneret). For any choice of indecomposable genera-
tors vn+1, vn+2, · · ·, the spectrum BP 〈n〉 is an E1-BP-algebra.

Theorem 2.2.2 (H-Wilson). There exists a specific choice of generators
vn+1, vn+2, . . . such that BP 〈n〉 = BP

〈vn+1,vn+2,···〉 has a E3-BP-algebra structure.

Remark 2.2.3. We’ll discuss a bit how this theorem is proved. This is a
relatively new result, and it’d be exciting to try to take it and use it in an
equivariant setting.

Proposition 2.2.4. If x ∈ π2`BP is any class in π∗BP, then BP/ 〈x〉 is an
E1-BP algebra.

This says you can freely mod out by any generator and still obtain an E1 struc-
ture.
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2.3 Proof of proposition

Let S0[a2`] = S0 ⊕ S2` ⊕ S4` ⊕ · · · denote the free E1-ring on S2`. There is an
E1 ring map

ψ : S0[a2`]→ BP,

which hits x, following from the fact that this is a free E1-ring. We have

BP/ 〈x〉 = BP⊗S0[a2`] S
0

where we use the augmentation map ε : S0[a2`] → S0. In other words, we
consider BP as a module over the free E1-ring S0[a2`] and this tensor product
is one definition of what the quotient is, which clearly has the same homotopy
groups as BP/ 〈x〉.

It suffices to prove the following lemma:

Lemma 2.3.1. S0[a2`] and the map ψ can be made E2.

In other words: the free E1-ring on an even degree sphere, which is an E1-algebra
but not necessarily E2, does in fact admit an E2 structure. Moreover, the map
coming from its universal property as a free E1 ring lifts to an E2 map.

In this case, we know that BP is not just a module over S0[a2`], but in fact an
E1-algebra over it, which is enough to give the tensor product an E1 structure.

Proof. (In the case ` = 1):
Let FreeE1

(−) denote taking the free E1-ring. We have

S0[a2] ∼= S0 ⊕ S2 ⊕ S4 ⊕ · · ·
∼= FreeE1

(S2)

∼= Σ∞+ ΩS3

∼= Σ∞+ Ω2HP∞ using S3 ∼= ΩHP∞,

which produces an E2 structure on the original free E1 ring.

For the map, note that there is a particularly simple filtration

S7 → S4 ∼= HP1 → HP2 → HP3 → · → HP∞,

where the initial S7 comes from attaching an 8-cell along a 7-sphere. This yields
a filtration of E2-rings

Σ∞+ Ω2S4 ∼= Σ∞+ Ω2HP1 → Σ∞+ Ω2HP2 → · · · → Σ∞+ Ω2HP∞ ∼= Σ∞+ ΩS3.

To produce a E2-ring map Σ∞+ ΩS3 → BP, one produces maps out of each
filtered pieced:

9



Σ∞+ Ω2S4 BP

Σ∞+ Ω2HP2

Σ∞+ Ω2HP3

...

Σ∞+ ΩS3

Link to Diagram

The top map is easy to produce, using that the domain is a free E2-algebra.

At each stage, the obstruction to lifting is a map out of a free E2 algebra on
an odd degree class in π∗BP. This is because going from HP2 to HP3 involves
adding a cell in even dimensions, whose boundary is a sphere in odd dimension.
Since HP∞ has an even cell decomposition as a space, Σ∞+ Ω2HP∞ has an even
cell decomposition as an E2-algebra. Then at each stage, the obstruction to
taking the extension is controlled by an element of π∗BP, which is concentrated
in even degrees, so these maps can always be lifted. �

Remark 2.3.2. So these free E1-rings are secretly E2 rings (although not free
as E2-rings) which have a simple presentation as an E2-ring that makes them
easy to map into objects with even-degree homotopy. This gives an intuitive
idea why we can quotient BP out and still retain an E1-ring structure.

2.4 Existence of K(n) as an E1-S-algebra
Remark 2.4.1. To wrap things up, we’ll demonstrate a new technique that
yields a relatively easy prove that BP 〈n〉 can be made E3.

Theorem 2.4.2. Connective k(n) exists as an E1-S algebra.

Remark 2.4.3. We have

π∗k(n) = Fp[vn] where |vn| = 2pn − 2,
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where k(n) can be thought of as the following quotient:

k(n) ∼=
BP

〈p, v1, v2, . . . , vn−1, vn+1, vn+2, . . .〉

The relatively simple homotopy groups imply there is a relatively simple Post-
nikov tower:

k(n)

...

v2n Σ4pn−4Fp τ≤4pn−4k(n)

vn Σ2pn−2Fp τ≤2pn−2k(n)

Fp Σ2pn−2Fp Σ4pnQnQn

Link to Diagram

Here the first two k-invariants are listed at the bottom of the tower, and it turns
out that all primary k-invariants in this tower are the Milnor operation Qn.

How would you know that a Postnikov tower of this form existed if you didn’t
already know about how it arose as a quotient of BP? How could you build a
spectrum with this specific tower? One can use the following procedure:

• To build τ2pn−2k(n), one just needs to identify

Qn ∈ π0 Hom(Fp,Σ
2pn−1Fp).

So one needs to identify Qn ∈ π∗Hom(Fp,Fp) ∼= π∗Ap, the mod p Steenrod
algebra.

• To build τ≤4pn−4k(n), one needs to check that Q2
n = 0 in Ap, which is an

Adem relation.

Note that understanding π∗Hom(Fp,Fp) as a group lets one build τ≤2pn−2k(n),
since it points to a specific element (here Qn) needed to build a 2-stage Postnikov
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tower. However, building τ≤4pn−4k(n) requires knowing π∗Ap as a ring, along
with enough information about its multiplication and the Adem relationQ2

n = 0.
Note that Ap parameterizes 2-stage Postnikov towers this is equivalent to a map
Fp → Σ`Fp from Fp into some suspension of Fp.

The new idea here is that Ap doesn’t just parameterize k-invariants (and thus
2-stage Postnikov towers, encoded in its homotopy groups), but rather if one
access other higher structures well enough, this can be used to build spectra.
Since Ap is an E1 ring, understanding its ring structure would allow building
k(n) completely as a spectrum.

Remark 2.4.4. There is a general procedure to build k(n) as an E1 ring instead
of a spectrum: one should write down the object parameterizing 2-stage Post-
nikov towers in the category of E1 rings, i.e. 2-stage towers that also happen to
be E1-rings. This is known as the E1-center ZE1

(Fp), also known as THC(Fp),
the topological Hochschild cohomology of Fp.

The E1-center is also known to be an E2 ring and if one understands its E2

structure well, one can build E1 rings that are more complicated than 2-stage
Postnikov towers.

Remark 2.4.5. Bokstedt proved that π∗THC(Fp) is concentrated in even de-
grees. Thus given any class x2` ∈ π2` THC(Fp) parameterizing some 2-stage E1

ring, by the previous theorem there is an E2 ring map

S0[a2`]→ THC(Fp).

This is some statement about an Adem relation on THC(Fp), i.e. information
about its E2-ring structure. Unwinding this yields another proof that Morava
K-theory exists as an A∞ or E1 ring.
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