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Agenda
Description of Mathematics Subject GRE
Topics it covers
Exam logistics
Recommended resources
Study techniques/tips
Review of topics + sample problems



What is the Mathematics Subject
GRE?

Different from the Math section of the General GRE
Required of graduate student applicants to many Math Ph.D. programs
Tests a breadth of undergraduate topics



Topics
Calculus (50%)

Single Variable
Multivariable
Differential Equations



“Algebra” (25%)
Linear Algebra
Abstract Algebra
Number Theory



Mixed Topics (25%)
Real Analysis
Logic / Set Theory
Discrete Mathematics
Point-Set Topology
Complex Analysis
Combinatorics
Probability 



Logistics
Multiple choice, 5 choices
66 questions, 170 minutes
No downside to guessing
Only offered 3x/year
Need to register ~2 months in advance



References



Garrity, 
 

Good high-level overview of undergrad topics.

All the Mathematics You Missed (But Need to Know for
Graduate School)

https://www.amazon.com/All-Mathematics-You-Missed-Graduate/dp/0521797071


The Princeton Review,  

“Calculus: The Greatest Hits”, good breadth.

Shallow treatment of Algebra, Real Analysis, Topology, Number Theory.

Cracking the Math GRE Subject Test

https://www.amazon.com/Cracking-GRE-Mathematics-Subject-Test/dp/0375429727


Five Official Practice Exams (with Solutions)

GR 1268
GR 0568
GR 9367
GR 8767
GR 9768

All old and significantly easier than exams in recent years.

Aim for 90th percentile in  hours.< 2



General Tips



Math-Specific Tips
Focus on lower div
For Calculus, focus on speed: median  minute
Drill a lot of problems

Seriously, a lot.
Seriously.

Should memorize formulas and definitions
No time to rederive!

Save actual exams as diagnostic tools

≤ 1



Study Tips
Start early

Steady practice paced over 3-9 months is 100x more effective than 1
month of cramming

Speed is important
Spaced repetition, e.g. Anki
Replicate exam conditions
Build mental stamina

i.e. 2-3 hours of uninterrupted problem solving
Self care!!

Sleep
Eat right



Single Variable
Calculus



Differential
Computing limits
Showing continuity
Computing derivatives
Rolle’s Theorem
Mean Value Theorem
Extreme Value Theorem
Implicit Differentiation
Related Rates
Optimization
Computing Taylor expansions
Computing linear approximations



Integral
Riemann sum definition of the integral
The fundamental theorem of Calculus (both forms)
Computing antiderivatives

substitutions
Partial fraction decomposition
Trigonometric Substitution
Integration by parts
Specific integrands

Computing definite integrals
Solids of revolution
Series (see real analysis section)

u-



Computing Limits
Tools for finding , in order of difficulty:

Plug in: equal to  if 
Algebraic Manipulation
L’Hopital’s Rule (only for indeterminate forms )

For , let 

Squeeze theorem
Take Taylor expansion at 
Monotonic + bounded (for sequences)

f(x)limx→a

f(a) f ∈ ( (a))C 0 Nε

,0
0

∞
∞

lim f(x = , ,)g(x) 1∞ ∞0 00

L = lim ⟹ ln L = lim g ln ff g

a



Use Simple Techniques
When possible, of course.

= ( ) =
a

b + c√

a

b + c√

b − c√

b − c√

a(b − )c√

− cb2

= = +
1

a + bx + cx2

1

(x − )(x − )r1 r2

A

x − r1

B

x − r2



The Fundamental Theorems of
Calculus

First form is usually skimmed over, but very important!

f(t) dt
d

dx
∫

x

a

f(x) dx∫
b

a

∂

∂x

= f(x)

= f(b) − f(a)



FTC Alternative Forms
g(t)dt = g(b(x)) (x) − g(a(x)) (x)

∂

∂x
∫

b(x)

a(x)

b′ a′



Commuting  and 
Commuting a derivative with an integral 

(Derived from chain rule)

Set

then commute to derive the FTC.

D I

f(x, t)dt = f(x, t)dt
d

dx
∫

b(x)

a(x)

∫
b(x)

a(x)

∂

∂x

+ f(x, b(x)) b(x) − f(x, a(x)) a(x)
d

dx

d

dx

a(x) = a, b(x) = b, f(x, t) = f(t) ⟹ f(t) = 0,
∂

∂x



Applications of Integrals
Solids of Revolution

Disks: 
Cylinders: 

Arc Lengths

A = ∫ πr(t  dt)2

A = ∫ 2πr(t)h(t) dt

ds = , L = ∫  dsd + dx2 y2− −−−−−−−
√



Series
There are 6 major tests at our disposal:

Comparison Test

You should know some examples of series that converge and diverge
to compare to.

Ratio Test 

: absolutely convergent
: divergent
: inconclusive

<  and ∑ < ∞ ⟹ ∑ < ∞an bn bn an

<  and ∑ = ∞ ⟹ ∑ = ∞bn an bn an

R = lim
n→∞

∣
∣
∣
an+1

an

∣
∣
∣

R < 1
R > 1
R = 1



More Series
Root Test 

: convergent
: divergent
: inconclusive

Integral Test 

R = lim sup
n→∞

| |an
− −−

√n

R < 1
R > 1
R = 1

f(n) = ⟹ ∑ < ∞ ⟺ f(x)dx < ∞an an ∫
∞

1



More Series
Limit Test 

Alternating Series Test 

= L < ∞ ⟹ ∑ < ∞ ⟺ ∑ < ∞lim
n→∞

an

bn

an bn

↓ 0 ⟹ ∑(−1 < ∞an )n
an



Advanced Series
Cauchy Criteria:

Let  be the th partial sum, then 

Weierstrass  Test: 

i.e. define  and require that 
“Absolute convergence in the sup norms implies uniform
convergence”

=sk ∑k
i=1 ai k-

∑  converges  ⟺ { } is a Cauchy sequence,ai sk

M

< ∞ ⟹∑
n=1

∞

| |∥ ∥fn ∞

∃f ∈   ∍   ⇉ fC 0 ∑
n=1

∞

fn

= sup{ (x)}Mk fk ∑ < ∞| |Mk



Multivariable
Calculus



General Concepts
Vectors, div, grad, curl
Equations of lines, planes, parameterized curves

And finding intersections
Multivariable Taylor series

Computing linear approximations
Multivariable optimization

Lagrange Multipliers
Arc lengths of curves
Line/surface/flux integrals
Green’s Theorem
The divergence theorem
Stoke’s Theorem



Geometry in 
Lines 

Planes 

Distances to lines/planes: project onto orthogonal complement.

R
3

Ax + By + C = 0,  x = p + tv,

x ∈ L ⟺ ⟨x − p, n⟩ = 0

Ax + By + Cz + D = 0,  x(t, s) = p + t + sv1 v2

x ∈ P ⟺ ⟨x − p, n⟩ = 0



Tangent Planes/Linear
Approximations

Let  be a surface. Generally need a point  and a normal .

Key Insight: The gradient of a function is normal to its level sets.

 
i.e. it is the zero set of some function 

 is a vector that is normal to the zero level set.
So just write the equation for a tangent plane .

S ⊆ R
3

p ∈ S n

Case 1: S = {[x, y, z] ∈ ∣ f(x, y, z) = 0}R
3

f : → RR
3

∇f

⟨n, x − ⟩p0



Tangent Planes/Linear
Approximations

Let , then 

Then  is normal to level sets, compute 

Proceed as in previous case.

Case 2: S is given by z = g(x, y)

f(x, y, z) = g(x, y) − z

p ∈ S ⟺ p ∈ {[x, y, z] ∈ ∣ f(x, y, z) = 0}.R
3

∇f ∇f = [ g, g, −1]∂
∂x

∂
∂y



Optimization
Single variable: solve  to find critical points  then check

min/max by computing .

Multivariable: solve  for critical points , then check
min/max by computing the determinant of the Hessian: 

f(x) = 0∂
∂x

ci

f( )∂ 2

∂x2 ci

∇f(x) = 0 ci

(a) = .Hf

⎡

⎣

⎢⎢⎢⎢⎢

(a)f∂ 2

∂ ∂x1 x1

⋮

(a)f∂ 2

∂ ∂xn x1

…

⋱

⋯

(a)f∂ 2

∂ ∂x1 xn

⋮

(a)f∂ 2

∂ ∂xn xn

⎤

⎦

⎥⎥⎥⎥⎥



Optimization
Lagrange Multipliers: 

Generally a system of nonlinear equations
But there are a few common tricks to help solve.

Optimize f(x) subject to g(x) = c

⟹ ∇f = λ∇g



Multivariable Chain Rule



Multivariable Chain Rule
To get any one derivative, sum over all possible paths to it: 

Subscripts denote variables held constant while differentiating.

( )
∂z

∂x
y

= ( )
∂z

∂x
u,y,v

+ ( )
∂z

∂v
x,y,u

( )
∂v

∂x
y

+ ( )
∂z

∂u
x,y,v

( )
∂u

∂x
v,y

+ ( )
∂z

∂u
x,y,v

( )
∂u

∂v
x,y

( )
∂v

∂x
y



Linear Approximation
Just use Taylor expansions.

Single variable case:

Multivariable case:

f(x) = f(p) + (p)(x − p)f ′

+ (p)(x − a + O( )f ′′ )2 x3

f(x) = f(p) + ∇f(p)(x − a)

+ (x − p (p)(x − p) + O( ))T Hf ∥x − p∥3
2



Linear Algebra



Big Theorems
Rank Nullity: 

Fundamental Subspace Theorems 

Compute

Determinant, trace, inverse, subspaces, eigenvalues, etc
Know properties too!

Definitions

Vector space, subspace, singular, consistent system, etc

+ =|ker(A)| |im (A)| |domain(A)|

im (A) ⊥ ker( ), ker(A) ⊥ im ( )A
T

A
T



Fundamental Spaces
Finding bases for various spaces of :

Reduce to RREF, and take nonzero rows of .

:

Reduce to RREF, and take columns with pivots from original .

A

rowspaceA/im  ⊆A
T

R
n

RREF(A)

colspaceA/im A ⊆ R
m

A



Fundamental Spaces
:

Reduce to RREF, zero rows are free variables, convert back to
equations and pull free variables out as scalar multipliers.

Eigenspace:

Recall the equation: 

For each , compute 

nullspace(A)/ ker A

λ ∈ Spec(A) ⟺ ∃   ∍  A = λvλ vλ vλ

λ ∈ Spec(A) ker(λI − A)



Big List of Equivalent Properties
Let  be an  matrix representing a linear map 

TFAE:

 is invertible and has a unique inverse 
 is invertible

The linear system  has a unique solution for every 
The homogeneous system  has only the trivial solution 

i.e.  is full rank

A n × n L : V → W

A A
−1

A
T

det(A) ≠ 0
Ax = b b  ∈ R

m

Ax = 0 x = 0
rank(A) = dim(W) = n

A

nullity(A) = dim(nullspace(A)) = dim(ker L) = 0:



Big List of Equivalent Properties
 for some finite , where each  is an elementary

matrix.
 is row-equivalent to the identity matrix 
 has exactly  pivots

The columns of  are a basis for 
i.e. 

The rows of  are a basis for 
i.e. 

Zero is not an eigenvalue of .
 has  linearly independent eigenvectors

A = ∏k

i=1 Ei k Ei

A In

A n

A W ≅R
n

colspace(A) = R
n

A V ≅R
n

rowspace (A) = R
n

= = {0}(colspace (A))⊥ (rowspace ( ))A
T ⊥

A

A n



Various Other Topics
Quadratic forms
Projection operators
Least Squares
Diagonalizability, similarity
Canonical forms
Decompositions (  etc)QR,VD ,SVD,V −1



Ordinary
Differential
Equations



Easy IVPs
Should be able to immediately write solutions to any initial value
problem of the form 

Just write the characteristic polynomial.

(x) = f(x)∑
i=0

n

αiy
(i)



Easy IVPs
Example: A second order homogeneous equation 

Two distinct roots:

One real root:

Complex conjugates :

a + b + cy = 0 ↦ a + bx + c = 0y′′ y′ x2

y(x) = +c1e xr1 c2e xr2

y(x) = + xc1erx c2 erx

α ± βi

y(x) = ( cos βx + sin βx)eαx c1 c2



More Easy IVPs
The Logistic Equation 

Separable 

= r(1 − )P ⟹ P(t) =
dP

dt

P

C

P0

+ (1 − )
P0

C
e−rt P0

C

= f(x)g(y) ⟹ ∫ dy = ∫ f(x)dx + C
dy

dx

1

g(y)



More Easy IVPs
Systems of ODEs 

 
for each eigenvalue/eigenvector pair .

(t) = Ax(t) + b(t) ⟹ x(t) =  x
′ ∑

i=1

n

cie
tλi vi

( , )λi vi



Less Common Topics
Integrating factors
Change of Variables
Inhomogeneous ODEs (need a particular solution)

Variation of parameters
Annihilators
Undetermined coefficients
Reduction of Order
Laplace Transforms
Series solutions

Special ODEs
Exact
Bernoulli
Cauchy-Euler



Topics: Number
Theory



Definitions
The fundamental theorem of arithmetic: 

Divisibility and modular congruence: 

Useful fact: 

 
(Follows from the Chinese remainder theorem since all of the  are
coprime)

n ∈ Z ⟹ n = ,  prime∏
i=1

n

p
ki

i pi

x ∣ y ⟺ y = 0 mod x ⟺ ∃c  ∍  y = xc

x = 0 mod n ⟺ x = 0 mod  ∀ip
ki

i

pki

i



Definitions
GCD, LCM 

Also works for 
Computing :

Take prime factorization of  and ,
Take only the distinct primes they have in common,
Take the minimum exponent appearing

xy = gcd (x, y) lcm(x, y)

d ∣ x and d ∣ y ⟹ d ∣ gcd(x, y)

 and  gcd(x, y) = d gcd( , )
x

d

y

d
lcm(x, y)

gcd(x, y)
x y



The Euclidean Algorithm
Computes GCD, can also be used to find modular inverses: 

Back-substitute to write .

(Also works for polynomials!)

a

b

r0

r1

rk

rk+1

= b +q0 r0

= +q1r0 r1

= +q2r1 r2

= +q3r2 r3

⋮
= +qk+2rk+1 rk+2

= + 0qk+3rk+2

ax + by = = gcd(a, b)rk+2



Definitions
Coprime 

Euler’s Totient Funtion 

Computing : 

Just take the prime factorization and apply these.

a is coprime to b ⟺ gcd(a, b) = 1

ϕ(a) = |{x ∈ N  ∍  x ≤ a and  gcd(x, a) = 1}|

ϕ

gcd(a, b) = 1 ⟹ ϕ(ab) = ϕ(a)ϕ(b)

ϕ( ) = −pk pk pk−1



Definitions
Know some group and ring theoretic properties of 

 is a field  is prime.
So we can solve equations with inverses: 

But there will always be some units; in general, 

 
and is cyclic when 

Z/nZ

Z/nZ ⟺ n

ax = b mod n ⟺ x = b mod na−1

= ϕ(n)|(Z/nZ |)×

n = 1, 2, 4, , 2pk pk



Chinese Remainder Theorem
The system 

 
has a unique solution  iff  for each pair 

.

x ≡ ( mod )a1 m1

x ≡ ( mod )a2 m2

⋮
x ≡ ( mod )ar mr

x mod ∏mi gcd( , ) = 1mi mj

i, j



Chinese Remainder Theorem
The solution is given by 

Seems symbolically complex, but actually an easy algorithm to carry out
by hand.

x = ( )∑
j=1

r

aj

∏i mi

mj

[ ]
∏i mi

mj

−1

mod mj



Chinese Remainder Theorem
Ring-theoretic interpretation: let , then N = ∏ni

gcd(i, j) = 1  ∀(i, j) ⟹ ≅⨁ZN Zni



Theorems
Fermat’s Little Theorem and Euler’s Theorem 

Wilson’s Theorem 

= a mod pap

p ∤ a ⟹ = 1 mod pap−1

and in general, 

= 1 mod paϕ(p)

n is prime  ⟺ (n − 1)! = −1 mod n



Advanced Topics
Mobius Inversion
Quadratic residues
The Legendre/Jacobi Symbols
Quadratic Reciprocity



Topics: Abstract
Algebra



Definitions
Group, ring, subgroup, ideal, homomorphism, etc
Order, Center, Centralizer, orbits, stabilizers
Common groups:  etc, , , , ,Sn An Cn D2n Zn



Structure
Structure of 

e.g. Every element is a product of disjoint cycles, and the order is the
lcm of the order of the cycles.
Generated by (e.g.) transpositions
Cycle types
Inversions
Conjugacy classes
Sign of a permutation

Structure of  

Sn

Zn

= ⊕ ⟺ (p, q) = 1Zpq Zp Zq



Basics
Group Axioms

Closure: 
Identity: 
Associativity: 
Inverses: 

One step subgroup test: 

a, b ∈ G ⟹ ab ∈ G

∃e ∈ G ∣ a ∈ G ⟹ ae = ea = a

a, b, c ∈ G ⟹ (ab)c = a(bc)
a ∈ G ⟹ ∃b ∈ G ∣ ab = ba = e

H ≤ G ⟺ a, b ∈ H ⟹ a ∈ Hb
−1



Useful Theorems
Cauchy’s Theorem

If , then for each  there exists a subgroup  of order 
.

The Sylow Theorems

If , for each  and each  then there exists a
subgroup  for all orders .

Note: partial converse to Cauchy’s theorem.

= n = ∏|G| p
ki

i i H

pi

= n = ∏|G| pki

i i 1 ≤ ≤kj ki

Hi,j p
kj

i



Classification of Abelian Groups
Suppose  

 
 decomposes into a direct sum of groups corresponding to its prime

factorization. For each component, you take the corresponding prime,
write an integer partition of its exponent, and each unique partition yields

a unique group.

= n =|G| ∏m
i=1 pki

i

G ≅  with  =  and ⨁
i=1

n

Gi | |Gi p
ki

i

≅  where  =Gi ⨁
j=1

k

Z
p

αj
i

∑
j=1

k

αj ki

G



Ring Theory
Definition:  where  is abelian and  is a
monoid.

Ideals:  and 

Noetherian: 

(Ascending chain condition)

Differences between prime and irreducible elements

Prime: 
Irreducible: .

Various types of rings and their relations:

(R, +, ×) (R, +) (R, times)

(I, +) ≤ (R, +) r ∈ R, x ∈ I ⟹ rx ∈ I

⊆ ⊆ ⋯ ⟹ ∃N   ∍   = = ⋯I1 I2 IN IN+1

p ∣ ab ⟹ ∣ a or p ∣ b

x irreducible  ⟺ ∃a̸, b ∈   ∍  p = abR×

field ⟹ Euclidean Domain ⟹ PID
⟹ UFD ⟹ integral domain



Topics: Real
Analysis



Properties of Metric Spaces
The Cauchy-Schwarz Inequality
Definitions of Sequences and Series
Testing Convergence of sequences and series
Cauchy sequences and completeness
Commuting limiting operations:

Uniform and point-wise continuity
Lipschitz Continuity

[ , ∫ dx]∂
∂x



Big Theorems
Completeness: Every Cauchy sequence in  converges.
Generalized Mean Value Theorem 

Take  to recover the usual MVT
Bolzano-Weierstrass: every bounded sequence in  has a convergent
subsequence.
Heine-Borel: in  is compact  is closed and bounded.

R
n

f, g differentiable on [a, b] ⟹

∃c ∈ [a, b] : [f(b) − f(a)] (c) = [g(b) − g(a)] (c)g′ f ′

g(x) = x

R
n

, XR
n

⟺ X



Topics: Point-Set
Topology



General Concepts
Open/closed sets
Connected, disconnected, totally disconnected, etc
Mostly topics related to metric spaces



Useful Facts
Topologies are closed under

Arbitrary unions:

Finite intersections:

In , singletons are closed, and thus so are finite sets of points
Useful for constructing counterexamples to statements

∈ T ⟹ ∈ TUj ⋃
j∈J

Ui

∈ T ⟹ ∈ TUi ⋂
i=1

n

Ui

R
n



Topics: Complex
Analysis



General Concepts
th roots: 

The Residue theorem: 

Exams often include one complex integral
Need a number of other theorems for actually computing residues

n-

, k = 1, 2, ⋯n − 1e
ki

2πn

f(z) dz = 2πi Res(f, )∮
C

∑
k

zk



Topics: Discrete
Mathematics +
Combinatorics



General Concepts
Graphs, trees
Recurrence relations
Counting problems

e.g. number of nonisomorphic structures
Inclusion-exclusion, etc

(x + y = ( ))n ∑
k=0

n
n

k
xkyn−k



Example Problems



Example Problem 1



Example Problem 1

 
C, because  lacks inverses 

(Would need to extend to )
Z − {0}

Q



Example Problem 2



Example Problem 2

 

So E, because the limit needs to be path-independent.

L = =lim
(a,b)→0

(a − bi)2

(a + bi)2
lim

(a,b)→0

− − 2abia
2

b
2

− + 2abia2 b2

a = 0 ⟹ L = 1
a = b ⟹ L = −1



Example Problem 3



Example Problem 3

Don’t row-reduce or invert! Just one computation 

= 0

⎛

⎝

⎜⎜
⎜

1

1

3

2

3

4

5

5

2

1

10

5

3

0

14

6

⎞

⎠

⎟⎟
⎟

⎛

⎝

⎜⎜
⎜

−5

1

1

0

⎞

⎠

⎟⎟
⎟



Example Problem 3
So D, A are true. C is true because it’s a homogeneous system. B is true
because  which means  is a solution

for every . By process of elimination, E must be false.
Ax = 0 ⟹ A(tx) = tAx = 0 tx

t



Example Problem 4



Example Problem 4

Note , so every singleton is open. Any subset of  is a

countable union of its singletons, so every subset of  is open. The
complement any set is one such subset, so every subset is clopen. The

inverse image of any subset of  under any  is a subset of ,
which is open, so every such  is continuous. So E.

(x) = {x}N 1

2

Z

Z

R f : Z → R Z

f


