Homotopy
Groups of
Spheres

D. Zack Garza

Introductio

Spheres

Homotopy Groups of Spheres Graduate Student Seminar

D. Zack Garza

April 2020

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Spheres

Introduction

Outline

Homotopy Groups of Spheres

D. Zack Garz

Introduction

- Homotopy as a means of classification somewhere between homeomorphism and cobordism
- Comparison to homology
- Higher homotopy groups of spheres exist
- Homotopy groups of spheres govern gluing of CW complexes
- CW complexes fully capture that homotopy category of spaces
- There are concrete topological constructions of many important algebraic operations at the level of spaces (quotients, tensor products)
- Relation to framed cobordism?
- "Measuring stick" for current tools, similar to special values of L-functions
- Serre's computation

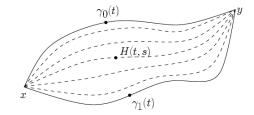
Intuition

Homotopy

Groups of Spheres

Introduction

Homotopies of paths:



– Regard paths γ in X and homotopies of paths H as morphisms

 $\gamma \in \hom_{\mathsf{Top}}(I, X)$ $H \in \hom_{\mathsf{Top}}(I \times I, X).$

- Yields an equivalence relation: write

$$\gamma_0 \sim \gamma_1 \iff \exists H \text{ with } H(0) = \gamma_0, H(1) = \gamma(1)$$

– Write $[\gamma]$ to denote a homotopy class of paths.

Intuition

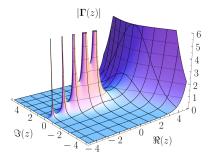
Homotopy Groups of Spheres

D. Zack Garza

Introduction

Spheres

– Why care about path homotopies? Historically: contour integrals in $\ensuremath{\mathbb{C}}$



- By the residue theorem, for a meromorphic function f with simple poles $P = \{p_i\}$ we know that

 $\oint_{\gamma} f(z) \; dz$ is determined by $[\gamma] \in \pi_1(\mathbb{C} \setminus P)$

Definitions

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Spheres

- Generalize to a homotopy of *morphisms*:

 $f, g \in \hom_{\mathsf{Top}}(X, Y) \quad f \sim g \iff \exists F \in \hom_{\mathsf{Top}}(X \times I, Y)$

such that F(0) = f, F(1) = g.

- This yields an equivalence relation on morphisms, *homotopy classes of maps*

$$[X, Y] \coloneqq \hom_{\mathsf{Top}}(X, Y) / \sim$$

- Definition of homotopy equivalence:

$$X \sim Y \iff \exists \begin{cases} f \in \mathsf{hom}(X, Y) \\ g \in \mathsf{hom}(Y, X) \end{cases} \quad \text{such that} \begin{cases} f \circ g \sim \mathsf{id}_Y \\ g \circ f \sim \mathsf{id}_X \end{cases}$$

- Similarly write

$$[X] = \left\{ Y \in \mathsf{Top} \mid Y \sim X \right\}.$$

The Fundamental Group

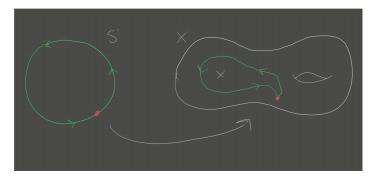
Homotopy Groups of Spheres

D. Zack Garza

Introduction

- $-\pi_1(X)$ is the group of homotopy classes of loops:
- Can recover this definition by finding a (co)representing object:

$$\pi_1(X) = [S^1, X]$$



Higher Homotopy Groups

Homotopy Groups of Spheres

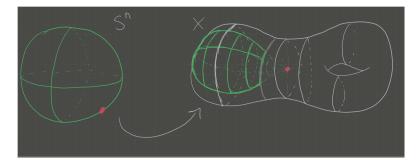
D. Zack Garza

Introduction

Spheres

- Can now generalize to define

$$\pi_k(X) \coloneqq [S^k, X]$$



Fun side note: this kind of definition generalizes to AG, see Motivic Homotopy Theory – the (co)representing objects look \mathbb{A}^1 or \mathbb{P}^1 .

Classification

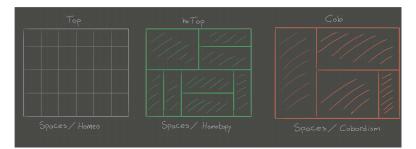
Homotopy Groups of Spheres

D. Zack Garza

Introduction

Spheres

Holy grail: understand the topological category completely
I.e. have a well-understood geometric model one space of each homeomorphism type



Also have the derived category DTop, its interplay with hoTop is the subject of e.g. the Poincare conjecture(s).

- Any representative from a green box: a *homotopy type*.

Example: Homotopy Equivalence is Useful

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Proposition: Let *B* be a CW complex; then isomorphism classes of \mathbb{R}^1 -bundles over *B* are given by $H^1(X, \mathbb{Z}/2\mathbb{Z})$.

- Use the fact that for any fixed group ${\it G},$ the functor

 $h_G(\cdot)$: hoTop^{op} \longrightarrow Set $X \mapsto \{G$ -bundles over $X\}$

is representable by a space called BG (Brown's representability theorem).

- I.e., let $Bun_G(X) = \{G\text{-bundles}/B\} / \sim$, there is an isomorphism

 $\operatorname{Bun}_G(X) \cong [X, BG]$

- In general, identify $G = \operatorname{Aut}(F)$ the automorphism group of the fibers – for vector bundles of rank *n*, take $G = GL(n, \mathbb{R})$.

Example: Homotopy Equivalence is Useful

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Spheres

Note that for a poset of spaces (M_i, \hookrightarrow) , the space $M^{\infty} := \varinjlim M_i$. These are infinite dimensional "Hilbert manifolds".

Proof:

 $Bun_{\mathbb{R}^1}(X) = [X, BGL(1, \mathbb{R})]$ $= [X, Gr(1, \mathbb{R}^\infty)]$ $= [X, \mathbb{R}\mathbb{P}^\infty]$ $= [X, K(\mathbb{Z}/2\mathbb{Z}, 1)]$ $= H^1(X; \mathbb{Z}/2\mathbb{Z})$

Work being swept under the rug: identifying the homotopy type of the representing object.

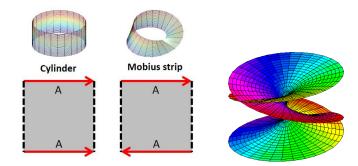
Example: Homotopy Equivalence is Useful

Homotopy Groups of Spheres

D. Zack Garza

Introduction Spheres **Corollary:** There are 2 distinct line bundles over $X = S^1$ (the cylinder and the mobius strip), since $H^1(S^1; \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$.

Corollary: A Riemann surface Σ_g satisfies $H^1(\Sigma_g; \mathbb{Z}/2\mathbb{Z}) = (\mathbb{Z}/2\mathbb{Z})^{2g}$ and thus there are 2^{2g} distinct real line bundles over it.



Example: Higher Homotopy Groups are Useful

Homotopy Groups of Spheres

D. Zack Garza

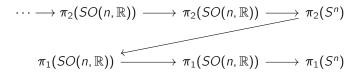
Introduction

Spheres

- Application: computing $\pi_1(SO(n, \mathbb{R}) \text{ (rigid rotations in } \mathbb{R}^n)$.
- The fibration

$$SO(n, \mathbb{R}) \longrightarrow SO(n+1, \mathbb{R}) \longrightarrow S^n$$

yields a LES in homotopy:



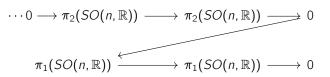
Uses of Higher Homotopy

Knowing $\pi_k S^n$, this reduces to

D. Zack Garza

Introduction

Spheres



- Thus π₁(SO(3, ℝ)) ≅ π₁(SO(4, ℝ)) ≅ ··· and it suffices to compute π₁(SO(3, ℝ)) (stabilization)
- Use the fact that "accidental" homeomorphism in low dimension SO(3, \mathbb{R}) $\cong_{\text{Top}} \mathbb{RP}^3$, and algebraic topology I yields $\pi_1 \mathbb{RP}^3 \cong \mathbb{Z}/2\mathbb{Z}$.

Can also use the fact that $SU(2, \mathbb{R}) \longrightarrow SO(3, \mathbb{R})$ is a double cover from the universal cover.

Uses of Higher Homotopy

Homotopy Groups of Spheres

D. Zack Garza

Introduction

- Important consequence: SO(3, ℝ) is not simply connected!
- See "plate trick": non-contractible loop of rotations that squares to the identity.
- Robotics: paths in configuration spaces with singularities
- Computer graphics: smoothly interpolating between quaternions for rotated camera views

$\begin{array}{c} \text{Rotation } R_{u,\theta} \colon \\ \underset{\substack{\text{axis } u, \text{ angle } \theta \\ 3a_{0} + 3a_{0} \\ 3a_{0} - 3a_{0} \end{array}}{\text{Alge} - 4a_{0} \\ \frac{d^{2} + d^{2} - d^{2}}{3a_{0} + 3a_{0} \\ 3a_{0} - 3a_{0} \end{array}} \xrightarrow{\text{Alge} - 4a_{0} \\ \frac{d^{2} - d^{2} - d^{2}}{3a_{0} + 3a_{0} \\ \frac{d^{2} - d^{2} - d^{2}}{3a_{0} + 3a_{0} \\ \frac{d^{2} - d^{2} - d^{2}}{3a_{0} - d^{2} - d^{2} \\ \frac{d^{2} - d^{2} - d^{2}}{3a_{0} - d^{2} - d^{2} \\ \frac{d^{2} - d^{2} - d^{2} - d^{2} - d^{2} \\ \frac{d^{2} - d^{2} - d^{2} - d^{2} - d^{2} \\ \frac{d^{2} - d^{2} - d^{2} - d^{2} - d^{2} \\ \frac{d^{2} - d^{2} - d^{2} - d^{2} - d^{2} - d^{2} \\ \frac{d^{2} - d^{2} \\ \frac{d^{2} - d^{2} \\ \frac{d^{2} - d^{2} - d^{2$	$\rightarrow q = \cos(\theta/2)$	hit quaternion: 2) + $(u_x i + u_y j + u_z k) \sin(\theta/2)$. $q_i i + q_j j + q_k k$
Spherical Linear Interp $q_t \stackrel{\text{def.}}{=} \frac{\sin((1-t)\omega)q_0}{\sin(\omega)}$	$+\sin(t\omega)q_1$	\mathbb{R}^{4}
77777		
$\frac{\gamma}{q_0}$	${q_t}$	

Homotopy Groups of Spheres

D. Zack Garza

Introductio

Spheres

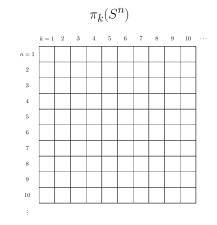
Setup

Homotopy Groups of Spheres

D. Zack Garza

Introductio

- Defining $\pi_k(X) = [S^k, X]$, the simplest objects to investigate: $X = S^n$
- Can consider the bigraded group $\pi_S \coloneqq [S^k, S^n]$:



But Wait!

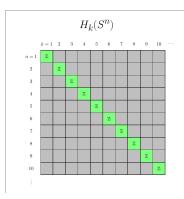
Homotopy Groups of Spheres

D. Zack Garza

Introductio

Spheres

The corresponding picture in homology is very easy:



Slogan: "conservation/duality of complexity"

History

Homotopy Groups of Spheres

D. Zack Garza

Introduction

- 1895: Poincare, Analysis situs ("the analysis of position") in analogy to Euler Geometria situs in 1865 on the Kongisberg bridge problem
 - Studies spaces arising from gluing polygons, polyhedra, etc (surfaces!), first use of "algebraic invariant theory" for spaces by introducing π_1 and homology.
- 1920s: Rigorous proof of classification of surfaces (Klein, Möbius, Clifford, Dehn, Heegard)
 - Captured entirely by π_1 (equivalently, by genus and orientability).
- 1931: Hopf discovers a nontrivial (not homotopic to identity) map $S^3 \longrightarrow S^2$

History

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Spheres

- 1932/1935: Cech (indep. Hurewicz) introduce higher homotopy groups, gives map relating $\pi_* \longrightarrow H_*$, shows $\pi_n X$ are **abelian** groups for n > 2.
 - Withdrew his paper because of this theorem!
- 1951: Serre uses spectral sequences to show that all groups $\pi_k S^n$ are torsion except,
 - k = n, since $\pi_n S^n = \mathbb{Z}$
 - $k \equiv 3 \mod 4, n \equiv 0 \mod 2$, then $\mathbb{Z} \oplus T$
 - Tight bounds on where *p*-torsion can occur.
- 1953: Whitehead shows the homotopy groups of spheres split into stable and unstable ranges.

Today: We know $\pi_{n+k}S^n$ for

- $k \leq 64$ when $n \geq k + 2$ (stable range)
- $k \leq 19$ when n < k + 2 (unstable range)
- We only have a complete list for S⁰ and S¹, and know no patterns beyond this!
 - Open for ~ 80 years.

Spheres

D. Zack Garza

Introductio

Spheres

We'll fill out as much of this table as is easily known:

k < n

Homotopy Groups of Spheres

Spheres

Claim: $[S^k, S^n] = 0$ for k < n.

This follows easily from CW approximation:

Any map $X \xrightarrow{f} Y$ between CW complexes is homotopic to a cellular map.

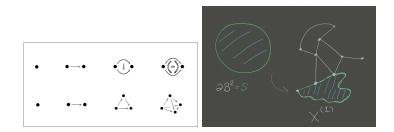
k < n: CW Complexes

Homotopy Groups of Spheres

D. Zack Garz

Introductio

- Analogy from analysis: C^1 functions dense in L^2 .
 - If you're just computing homotopy groups, *any* space can be replaced with a *weakly equivalent* CW complex.



k < n: CW Complexes

Homotopy Groups of Spheres

D. Zack Garza

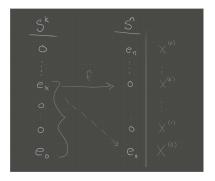
Introduction

Spheres

AT1 can show that spheres have a simple cell decomposition

$$S^k = e_0 \coprod_f e_k$$

Thus any map $f: S^k \longrightarrow S^n$ must send the *k*-skeleton of S^k to the *k*-skeleton of S^n , which is just a point:

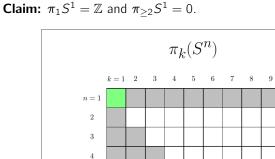


$k \ge 1$, n = 1: Covering Space Theory

D. Zack Garza

Introductio

Spheres



10 ...

10

$k \ge 1$, n = 1: Covering Space Theory

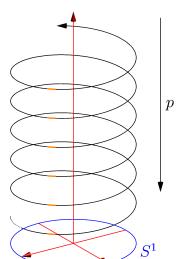
Homotopy Groups of Spheres

D. Zack Garza

Introductio

Spheres

- Use the fact that $\mathbb{Z} \longrightarrow \mathbb{R} \longrightarrow S^1$ is a covering space and $\mathbb{Z} \curvearrowright \mathbb{R}$ freely. \mathbb{R}



$k \ge 1, n = 1$: Covering Space Theory

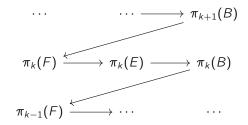
Homotopy Groups of Spheres

D. Zack Garz

Introduction

Spheres

Theorem: If $F \longrightarrow E \longrightarrow B$ is a *Serre Fibration* then there is a LES in homotopy



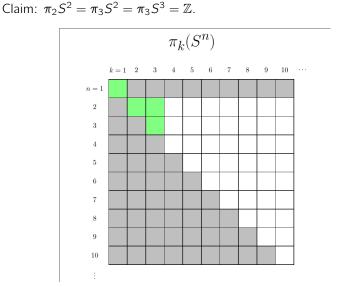
- If $\tilde{X} \longrightarrow X$ is a universal cover then $\pi_{\geq 2}(X) \cong \pi_{\geq 2}\tilde{X}$. - Proof coming up!

Misc: Serre Fibrations

Homotopy Groups of Spheres

D. Zack Garza

Introductio



Misc: Serre Fibrations

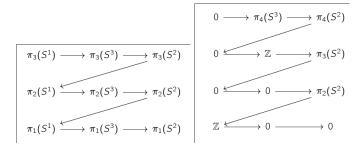
Homotopy Groups of Spheres

D. Zack Garza

Introductio

Spheres

Use the Hopf fibration: $S^1 \longrightarrow S^3 \longrightarrow S^2$ and the fact that $\pi_{\geq 2}S^1 = 0$:



Note that this works whenever the fiber is contractible (e.g. universal covers, fibers are discrete)

- Hopf Fibration Visualizer

n = k: Stabilization

Homotopy Groups of Spheres

D. Zack Garza

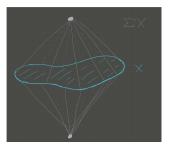
Introductio

Spheres

- Theorem (1937, Freudenthal): For $k \gg 0$, $[\Sigma^k X, \Sigma^k Y] \cong [\Sigma^{k+1} X, \Sigma^{k+1} Y]$

– Use the fact that $\Sigma S^k \cong S^{k+1}$, then in some *stable range*

$$\pi_{n+k}S^n\cong\pi_{n+k+1}S^{n+1}$$

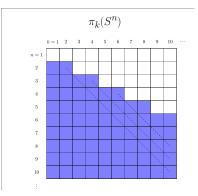


Fun note: corresponds to "smash with a sphere"

n=k: Stabilization

Stable range:

Introductio



n = k: Stabilization

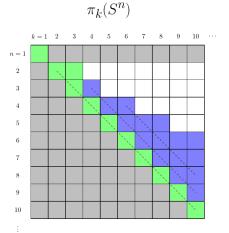
Homotopy Groups of Spheres

D. Zack Garza

Introductio

Spheres

We can thus suspend things we already know:



k = 4, n = 3

Homotopy Groups of Spheres

D. Zack Garza

Introduction

- Construct a map $S^3 \longrightarrow K(\mathbb{Z},2)$ by "killing off homotopy" (identify K)
- Convert to a fibration and take the homotopy fiber to get $F\longrightarrow S^2\longrightarrow \mathbb{CP}^\infty$
- By LES, $\pi_{\geq 3}F \cong \pi_{\geq 3}S^2$, by Hurewicz $\pi_3F \cong H_3F$, which we can compute
- Kill homotopy again and *iterated* homotopy fiber to get $G \longrightarrow F \longrightarrow K(\mathbb{Z}, 3)$
- By LES, $\pi \ge 4G \cong \pi_{\ge 4}S^2$, by Hurewicz $\pi_4G \cong H_4G$.

k=4, n=3

0

0

 \mathbb{Z}

0

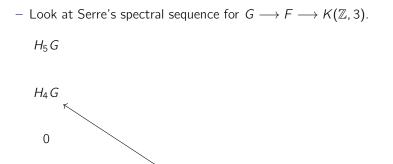
0

Homotopy Groups of Spheres

D. Zack Garz

Introductio

Spheres



 \mathbb{Z}

?

7

k=4, n=3

Homotopy Groups of Spheres

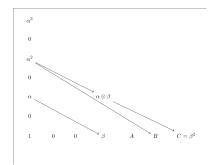
D. Zack Garza

Introduction

- Want target of arrow. Need to know
 - H^4F , H^5F (total cohomology)
 - $H^5K(\mathbb{Z},3)$ (source of arrow)
- Use Serre SS on $F \longrightarrow S^2 \longrightarrow K(\mathbb{Z}, 2)$ to deduce $H^5F = H^6F = \mathbb{Z}$
- Use Serre SS on $\Omega K(\mathbb{Z},3) \longrightarrow \{pt\} \longrightarrow K(\mathbb{Z},3)$:

Spheres

Relevant quantity will be C term in SSS:



- Everything must go! Converges to homology of a point.
- Work out $d\alpha = \beta$ Work out $d(\alpha^2) = 2\alpha \otimes \beta$
- Work out $\beta^2 \neq 0$ Work outker $(\alpha^2 \longrightarrow \alpha \otimes \beta) = 2 \langle \alpha \otimes \beta \rangle$
- Conclude A = B = 0 and C ≅ ℤ/2ℤ.

What is Known

Homotopy Groups of Spheres

D. Zack Garza

Introductio

	π1	π2	π3	π_4	π_5	π_6	π7	π_8	π9	π ₁₀	π11	π ₁₂	π ₁₃	π ₁₄	π ₁₅
S ⁰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S1	Z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ²	0	Z	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	Z2	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^2	$\mathbb{Z}_{12} \times \mathbb{Z}_2$	$\mathbb{Z}_{84} \times \mathbb{Z}_2^2$	ℤ22
S ³	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	Z ₁₅	\mathbb{Z}_2	\mathbb{Z}_2^2	$\mathbb{Z}_{12} \times \mathbb{Z}_2$	$\mathbb{Z}_{84} \times \mathbb{Z}_2^2$	\mathbb{Z}_2^2
S ⁴	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{12}$	\mathbb{Z}_2^2	\mathbb{Z}_2^2	$\mathbb{Z}_{24} \times \mathbb{Z}_3$	\mathbb{Z}_{15}	\mathbb{Z}_2	\mathbb{Z}_2^3	$\mathbb{Z}_{120} \times \mathbb{Z}_{12} \times \mathbb{Z}_{2}$	$\mathbb{Z}_{84} {\times} \mathbb{Z}_2^5$
S ⁵	0	0	0	0	Z	Z2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{30}	\mathbb{Z}_2	\mathbb{Z}_2^3	$\mathbb{Z}_{72} \times \mathbb{Z}_2$
S ⁶	0	0	0	0	0	Z	\mathbb{Z}_2	\mathbb{Z}_2	Z ₂₄	0	Z	\mathbb{Z}_2	ℤ ₆₀	$\mathbb{Z}_{24} \times \mathbb{Z}_{2}$	\mathbb{Z}_2^3
s7	0	0	0	0	0	0	Z	\mathbb{Z}_2	Z2	Z ₂₄	0	0	\mathbb{Z}_2	Z ₁₂₀	\mathbb{Z}_2^3
S ⁸	0	0	0	0	0	0	0	Z	Z2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	0	\mathbb{Z}_2	$\mathbb{Z}{\times}\mathbb{Z}_{120}$