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D. Zack G Homotopy as a means of classification somewhere between
homeomorphism and cobordism

— Comparison to homology

— Higher homotopy groups of spheres exist

— Homotopy groups of spheres govern gluing of CW complexes

— CW complexes fully capture that homotopy category of spaces

— There are concrete topological constructions of many
important algebraic operations at the level of spaces (quotients,
tensor products)

— Relation to framed cobordism?

— “Measuring stick” for current tools, similar to special values of

L-functions

Serre's computation

Introduction
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Intuition

Homotopy HOmOtOpieS

Groups of
Spheres

of paths:

Introduction

— Regard paths v in X and homotopies of paths H as morphisms
¥ € homTop(/, X)
H € homtop(/ % 1, X).
— Yields an equivalence relation: write
Yo ~ 1 <= 3H with H(0) = o, H(1) = (1)

— Write [y] to denote a homotopy class of paths.



Intuition

ST — Why care about path homotopies? Historically: contour
integrals in C

Spheres

D. Zack G,

Introduction

— By the residue theorem, for a meromorphic function f with
simple poles P = {p;} we know that

% f(z) dz is determined by [y] € m1(C\ P)

(&



Definitions

Homotopy

Graneton Generalize to a homotopy of morphisms:

Spheres

D 2ol Gt f,g € homrep(X,Y) f~g <= 3IF €homrep(X x1,Y)
Introduction

such that F(0) =f, F(1) =g.

This yields an equivalence relation on morphisms, homotopy
classes of maps

[X, Y] = homtop(X, Y)/ ~

Definition of homotopy equivalence:

hom(X,Y f ~ id
X~Y «<— 3 f € hom( ) such that °d ?Y
g € hom(Y, X) gof ~idx

— Similarly write

[X]:{YeTop ‘ YNX}.



The Fundamental Group

Homotopy
Groups of

S — m1(X) is the group of homotopy classes of loops:
— Can recover this definition by finding a (co)representing object:

Introduction

m(X) =[Sh X]
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Higher Homotopy Groups

— Can now generalize to define

mr(X) == [SK, X]

Fun side note: this kind of definition generalizes to AG, see
Motivic Homotopy Theory — the (co)representing objects
look A or PL.
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— Holy grail: understand the topological category completely
— l.e. have a well-understood geometric model one space of each
homeomorphism type

Introduction

Spaces / Homeo Spaces /" Homotepy Spaces  Cobordism

Also have the derived category DTop, its interplay with
hoTop is the subject of e.g. the Poincare conjecture(s).

— Any representative from a green box: a homotopy type.




Example: Homotopy Equivalence is Useful

ATy Proposition: Let B be a CW complex; then isomorphism classes of

Groups of

spheres RI-bundles over B are given by H'(X, Z/27Z).

D. Zack G,

Introduction — Use the fact that for any fixed group G, the functor

hs(-) : hoTop®® — Set
X +— {G-bundles over X}

is representable by a space called BG (Brown's representability
theorem).

— l.e., let Bung(X) = {G-bundles/B} / ~, there is an
isomorphism

Bung(X) = [X, BG]

— In general, identify G = Aut(F) the automorphism group of
the fibers — for vector bundles of rank n, take G = GL(n, R).

10



Example: Homotopy Equivalence is Useful
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Note that for a poset of spaces (M;, =), the space M*> = lim M;.
These are infinite dimensional “Hilbert manifolds™ .

Proof:

D. Zack G,

Introduction

Bung:(X) = [X, BGL(1,R)]
= [X, Gr(1,R>)]
= [X, RP>]
= [X, K(Z/2Z,1)]
= HY(X;7Z/27)

Work being swept under the rug: identifying the homotopy type of
the representing object.
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Example: Homotopy Equivalence is Useful

Homotopy

s of Corollary: There are 2 distinct line bundles over X = S! (the
e cylinder and the mobius strip), since HY(SY;Z/2Z) = Z/27Z.

D. Zack Gar

Corollary: A Riemann surface ¥4 satisfies
HY(Z4; Z/27) = (Z,/27,)* and thus there are 229 distinct real line
bundles over it.

Introduction

Cylinder Mobius strip
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Example: Higher Homotopy Groups are Useful
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O Jak oo — Application: computing m(SO(n, R) (rigid rotations in R").
— The fibration

Introduction
SO(n,R) — SO(n+1,R) — S”"

yields a LES in homotopy:

c 3 T(SO(M R)) —— ma(SO(n,R)) —— ma(S")

m1(SO(n, R)) —— m1(SO(n,R)) —— m1(S")



Uses of Higher Homotopy

Homotopy Knowing 7'('k5n, this reduces to

Groups of
Spheres

0 2k 10— ma(SO(n. R)) —— m(SO(n.R)) —> 0

Introduction

m(S0(n R)) — m(SO(n,R)) —— 0

— Thus m1(SO(3,R)) = 71(SO(4,R)) = - -- and it suffices to
compute m1(SO(3, R)) (stabilization)

— Use the fact that “accidental” homeomorphism in low
dimension SO(3, R) Zqp RP3, and algebraic topology | yields
mRP? = 7,/27.

Can also use the fact that SU(2,R) — SO(3,R) is a dou-
ble cover from the universal cover.
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Uses of Higher Homotopy
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Important consequence: SO(3, R) is not simply connected!
[mreeliEiien — See “plate trick”: non-contractible loop of rotations that squares to the identity.
- — Robotics: paths in configuration spaces with singularities

— Computer graphics: smoothly interpolating between quaternions for rotated camera views

Rotation R,¢: )/R Unit quaternion:
axis u, angle ——— q=cos(0/2) + (usi + w,j + u:k) sin(8/2)

)J——a=a +ai+gi+ak

Gt

Spherical Linear Interpolation (SLERP):
aee. Sin((1 = £)w)go + sin(tw)qs
=
sin(w)
Rt

//\//_f,_,_;l_;_ Ll
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praases — Defining mx(X) = [S¥, X], the simplest objects to investigate:

Groups of

Spheres X — Sn
)

D. Zack G . .
— Can consider the bigraded group s := [S¥, S"]:
n
Spheres Trk}(S )
k=1 2 3 4 5 6 T 8 9 10
n=1
2
3
4
5
6
7
8
9
10
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But Wait!

Homotopy
Groups of

Sl The corresponding picture in homology is very easy:

D. Zack Gar

H, (™)
Spheres

k=12 3 4 5 6 8 9 10
n=1|2
2 z
3 z
1 z

z

6 z
7 z
8 z
9 z
10 z

Slogan: “conservation/duality of complexity”
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— 1895: Poincare, Analysis situs (“the analysis of position”) in
analogy to Euler Geometria situs in 1865 on the Kongisberg
bridge problem

— Studies spaces arising from gluing polygons, polyhedra, etc
(surfaces!), first use of “algebraic invariant theory” for spaces by
introducing 71 and homology.

Spheres

— 1920s: Rigorous proof of classification of surfaces (Klein,
Mébius, Clifford, Dehn, Heegard)
— Captured entirely by m; (equivalently, by genus and orientability).
— 1931: Hopf discovers a nontrivial (not homotopic to
identity) map S® — S?

19



History

Pt — 1932/1935: Cech (indep. Hurewicz) introduce higher homotopy

Groups of

spheres groups, gives map relating m. — H., shows m,X are abelian groups
for n > 2.
— Withdrew his paper because of this theorem!
Spheres — 1951: Serre uses spectral sequences to show that all groups 7, S"

are torsion except,
— k=n, since mpS" =7
— k=3 mod4,n=0 mod?2,thenZ& T
— Tight bounds on where p-torsion can occur.
— 1953: Whitehead shows the homotopy groups of spheres split into

stable and unstable ranges.
Today: We know m,.xS" for

— k < 64 when n > k + 2 (stable range)
— k <19 when n < k + 2 (unstable range)
— We only have a complete list for S° and S*, and know no patterns
beyond this!
— Open for ~ 80 years.
20



Spheres

AT We'll fill out as much of this table as is easily known:

Groups of
Spheres
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Claim: [Sk,S"] =0 for k < n.

This follows easily from CW approximation:

Any map X Ty ¥ between CW complexes is homotopic to

a cellular map.

10
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k < n: CW Complexes
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Spheres

— Analogy from analysis: C! functions dense in L2.

— If you're just computing homotopy groups, any space can be replaced
SRS with a weakly equivalent CW complex.

N
. °o—e o\ﬂ/. . (3) .
~ AN
. oo AN Lo




k < n: CW Complexes

e AT1 can show that spheres have a simple cell decomposition
Sk = eOerk

Spheres
Thus any map f : S — S” must send the k-skeleton of S* to the
k-skeleton of S”, which is just a point:

Spheres




k > 1,n=1: Covering Space Theory

Homotopy Claim: 7'('151 =7 and 7'('2251 =0.

Groups of
Spheres

D. Zack Garza

7,(S")

Spheres




k > 1,n=1: Covering Space Theory

ATy — Use the fact that Z — R — S is a covering space and

Groups of

S 7 ~ R freely.
D. Zack G ) ]R

L

4
-]

St 26
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k > 1,n=1: Covering Space Theory
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Theorem: If F — E — B is a Serre Fibration then there is a LES
in homotopy

D. Zack G
Spheres

e 7F/<+1(B)
Tk (F) —— mk(E) —— 7k(B)

Tt (F) —— -

— If X — X is a universal cover then m>5(X) = m>2X.
— Proof coming up!



Misc: Serre Fibrations

7T352 = 7'l'353 =7Z.

Homotopy C|a|m 7.(-252 —

Groups of
Spheres

__\ m(S)

Spheres




Misc: Serre Fibrations

Homotopy Use the Hopf fibration: S — S3 — S? and the fact that

Groups of

Spheres 7_(_2251 — O
D. Zack G

Spheres 00— 7(4(53) — 7I'4(52)

m3(ST) —— m3(S3) —— m3(S?) 0 72— m(S?)
TFQ(SI) = 7(2(53) N ,".2(52) 0 4 ,”2(52)

’Fl'l(Sl) — 7T1(S3) —_— 1|'1(52) Z 0 0

Note that this works whenever the fiber is contractible
(e.g. universal covers, fibers are discrete)

— Hopf Fibration Visualizer


http://philogb.github.io/page/hopf/

= k: Stabilization

Homotopy

Groups of — Theorem (1937, Freudenthal): For k > 0,

Spheres

[ZkX, Zk Y] ~ [Zk+1X, zk-{-l Y]

— Use the fact that ¥S* 2 S*1 then in some stable range

Spheres

n n+1
Tk S" = Mppk41S

Fun note: corresponds to “smash with a sphere”



n=k: Stabilization
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Stable range:

Spheres




n = k: Stabilization

HETmE ey We can thus suspend things we already know:

Groups of
Spheres

e (™)

Spheres k=1 2 3 4 5 6 7 8 9 10

w
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— Construct a map S — K(Z2) by “killing off homotopy”
(identify K)

— Convert to a fibration and take the homotopy fiber to get

F— 5?2 — CP*>

By LES, m>3F = 7352, by Hurewicz msF = H3F, which we

can compute

— Kill homotopy again and iterated homotopy fiber to get

G— F— K(Z,3)

By LES, m> 4G = 75452, by Hurewicz m,G = H,G.

Spheres



Homotopy — Look at Serre’s spectral sequence for G — F — K(Z, 3).

Groups of
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Spheres
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— Want target of arrow. Need to know
— H*F, H5F (total cohomology)
- H®K(Z, 3) (source of arrow)
— Use Serre SS on F — S? — K(Z,2) to deduce
H5F = HSF = Z
— Use Serre SS on QK(Z,3) — {pt} — K(Z, 3):

w
al
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Relevant quantity will be C term in SSS:

— Everything must go! Converges to homology of a point.
— Work out da = 8

—  Work out d(cxz) =2a®p

—  Work out 52 #0

~ Work outker(a? — a ®B) =2 {a ® )

— Conclude A= B =0and C ~Z/2Z.

w
o))



Is Known

Homotopy
Groups of
Spheres

Spheres

2,02,

2 2
Zy | s | Tn | L 77y L,

21502152, | Lo T,

L 225 7 | 7, | L

3
z Zi*Ly

w
~



	Introduction
	Spheres

