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Outline

– Homotopy as a means of classification somewhere between

homeomorphism and cobordism

– Comparison to homology

– Higher homotopy groups of spheres exist

– Homotopy groups of spheres govern gluing of CW complexes

– CW complexes fully capture that homotopy category of spaces

– There are concrete topological constructions of many

important algebraic operations at the level of spaces (quotients,

tensor products)

– Relation to framed cobordism?

– “Measuring stick” for current tools, similar to special values of

L-functions

– Serre’s computation
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Intuition

Homotopies of paths:

– Regard paths γ in X and homotopies of paths H as morphisms

γ ∈ homTop(I ,X )

H ∈ homTop(I × I ,X ).

– Yields an equivalence relation: write

γ0 ∼ γ1 ⇐⇒ ∃H with H(0) = γ0,H(1) = γ(1)

– Write [γ] to denote a homotopy class of paths.
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Intuition

– Why care about path homotopies? Historically: contour

integrals in C

– By the residue theorem, for a meromorphic function f with

simple poles P = {pi} we know that∮
γ

f (z) dz is determined by [γ] ∈ π1(C \ P)
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Definitions

– Generalize to a homotopy of morphisms:

f , g ∈ homTop(X ,Y ) f ∼ g ⇐⇒ ∃F ∈ homTop(X × I ,Y )

such that F (0) = f ,F (1) = g.

– This yields an equivalence relation on morphisms, homotopy

classes of maps

[X ,Y ] := homTop(X ,Y )/ ∼

– Definition of homotopy equivalence:

X ∼ Y ⇐⇒ ∃

{
f ∈ hom(X ,Y )

g ∈ hom(Y ,X )
such that

{
f ◦ g ∼ idY

g ◦ f ∼ idX

– Similarly write

[X ] =
{

Y ∈ Top
∣∣∣ Y ∼ X

}
.
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The Fundamental Group

– π1(X ) is the group of homotopy classes of loops:

– Can recover this definition by finding a (co)representing object:

π1(X ) = [S1,X ]
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Higher Homotopy Groups

– Can now generalize to define

πk(X ) := [Sk ,X ]

Fun side note: this kind of definition generalizes to AG, see

Motivic Homotopy Theory – the (co)representing objects

look A1 or P1.
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Classification

– Holy grail: understand the topological category completely
– I.e. have a well-understood geometric model one space of each

homeomorphism type

Also have the derived category DTop, its interplay with

hoTop is the subject of e.g. the Poincare conjecture(s).

– Any representative from a green box: a homotopy type.
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Example: Homotopy Equivalence is Useful

Proposition: Let B be a CW complex; then isomorphism classes of

R1-bundles over B are given by H1(X ,Z/2Z).

– Use the fact that for any fixed group G , the functor

hG ( · ) : hoTopop −→ Set

X 7→ {G -bundles over X}

is representable by a space called BG (Brown’s representability

theorem).

– I.e., let BunG (X ) = {G -bundles/B} / ∼, there is an

isomorphism

BunG (X ) ∼= [X ,BG ]

– In general, identify G = Aut(F ) the automorphism group of

the fibers – for vector bundles of rank n, take G = GL(n,R).
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Example: Homotopy Equivalence is Useful

Note that for a poset of spaces (Mi , ↪→), the space M∞ := lim−→Mi .

These are infinite dimensional “Hilbert manifolds”.

Proof:

BunR1 (X ) = [X ,BGL(1,R)]

= [X ,Gr(1,R∞)]

= [X ,RP∞]

= [X ,K (Z/2Z, 1)]

= H1(X ;Z/2Z)

Work being swept under the rug: identifying the homotopy type of

the representing object.
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Example: Homotopy Equivalence is Useful

Corollary: There are 2 distinct line bundles over X = S1 (the

cylinder and the mobius strip), since H1(S1;Z/2Z) ∼= Z/2Z.

Corollary: A Riemann surface Σg satisfies

H1(Σg ;Z/2Z) = (Z/2Z)2g and thus there are 22g distinct real line

bundles over it.
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Example: Higher Homotopy Groups are Useful

– Application: computing π1(SO(n,R) (rigid rotations in Rn).

– The fibration

SO(n,R) −→ SO(n + 1,R) −→ Sn

yields a LES in homotopy:

· · · −→ π2(SO(n,R)) π2(SO(n,R)) π2(Sn)

π1(SO(n,R)) π1(SO(n,R)) π1(Sn)
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Uses of Higher Homotopy

Knowing πkSn, this reduces to

· · · 0 −→ π2(SO(n,R)) π2(SO(n,R)) 0

π1(SO(n,R)) π1(SO(n,R)) 0

– Thus π1(SO(3,R)) ∼= π1(SO(4,R)) ∼= · · · and it suffices to

compute π1(SO(3,R)) (stabilization)

– Use the fact that “accidental” homeomorphism in low

dimension SO(3,R) ∼=Top RP3, and algebraic topology I yields

π1RP3 ∼= Z/2Z.

Can also use the fact that SU(2,R) −→ SO(3,R) is a dou-

ble cover from the universal cover.
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Uses of Higher Homotopy

– Important consequence: SO(3,R) is not simply connected!
– See “plate trick”: non-contractible loop of rotations that squares to the identity.
– Robotics: paths in configuration spaces with singularities

– Computer graphics: smoothly interpolating between quaternions for rotated camera views
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Setup

– Defining πk(X ) = [Sk ,X ], the simplest objects to investigate:

X = Sn

– Can consider the bigraded group πS := [Sk ,Sn]:
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But Wait!

The corresponding picture in homology is very easy:

Slogan: “conservation/duality of complexity”

18



Homotopy
Groups of
Spheres

D. Zack Garza

Introduction

Spheres

History

– 1895: Poincare, Analysis situs (“the analysis of position”) in

analogy to Euler Geometria situs in 1865 on the Kongisberg

bridge problem
– Studies spaces arising from gluing polygons, polyhedra, etc

(surfaces!), first use of “algebraic invariant theory” for spaces by

introducing π1 and homology.

– 1920s: Rigorous proof of classification of surfaces (Klein,

Möbius, Clifford, Dehn, Heegard)
– Captured entirely by π1 (equivalently, by genus and orientability).

– 1931: Hopf discovers a nontrivial (not homotopic to

identity) map S3 −→ S2
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History

– 1932/1935: Cech (indep. Hurewicz) introduce higher homotopy

groups, gives map relating π∗ −→ H∗, shows πnX are abelian groups
for n ≥ 2.

– Withdrew his paper because of this theorem!

– 1951: Serre uses spectral sequences to show that all groups πkS
n

are torsion except,
– k = n, since πnSn = Z
– k ≡ 3 mod 4, n ≡ 0 mod 2, then Z⊕ T
– Tight bounds on where p-torsion can occur.

– 1953: Whitehead shows the homotopy groups of spheres split into

stable and unstable ranges.

Today: We know πn+kS
n for

– k ≤ 64 when n ≥ k + 2 (stable range)
– k ≤ 19 when n < k + 2 (unstable range)
– We only have a complete list for S0 and S1, and know no patterns

beyond this!
– Open for ∼ 80 years.
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We’ll fill out as much of this table as is easily known:
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k < n

Claim: [Sk ,Sn] = 0 for k < n.

This follows easily from CW approximation:

Any map X
f−→ Y between CW complexes is homotopic to

a cellular map.
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k < n: CW Complexes

– Analogy from analysis: C 1 functions dense in L2.
– If you’re just computing homotopy groups, any space can be replaced

with a weakly equivalent CW complex.
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k < n: CW Complexes

AT1 can show that spheres have a simple cell decomposition

Sk = e0

∐
f
ek

Thus any map f : Sk −→ Sn must send the k-skeleton of Sk to the

k-skeleton of Sn, which is just a point:
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k ≥ 1, n = 1: Covering Space Theory

Claim: π1S1 = Z and π≥2S1 = 0.
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k ≥ 1, n = 1: Covering Space Theory

– Use the fact that Z −→ R −→ S1 is a covering space and

Z y R freely.
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k ≥ 1, n = 1: Covering Space Theory

Theorem: If F −→ E −→ B is a Serre Fibration then there is a LES

in homotopy

· · · · · · πk+1(B)

πk(F ) πk(E ) πk(B)

πk−1(F ) · · · · · ·

– If X̃ −→ X is a universal cover then π≥2(X ) ∼= π≥2X̃ .
– Proof coming up!
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Misc: Serre Fibrations

Claim: π2S2 = π3S2 = π3S3 = Z.
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Misc: Serre Fibrations

Use the Hopf fibration: S1 −→ S3 −→ S2 and the fact that

π≥2S1 = 0:

Note that this works whenever the fiber is contractible

(e.g. universal covers, fibers are discrete)

– Hopf Fibration Visualizer

29
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n = k: Stabilization

– Theorem (1937, Freudenthal): For k � 0,

[ΣkX ,ΣkY ] ∼= [Σk+1X ,Σk+1Y ]

– Use the fact that ΣSk ∼= Sk+1, then in some stable range

πn+kS
n ∼= πn+k+1S

n+1

Fun note: corresponds to “smash with a sphere”
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n=k: Stabilization

Stable range:
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n = k: Stabilization

We can thus suspend things we already know:
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k = 4, n = 3

– Construct a map S3 −→ K (Z,2) by “killing off homotopy”

(identify K )

– Convert to a fibration and take the homotopy fiber to get

F −→ S2 −→ CP∞
– By LES, π≥3F ∼= π≥3S2, by Hurewicz π3F ∼= H3F , which we

can compute

– Kill homotopy again and iterated homotopy fiber to get

G −→ F −→ K (Z, 3)
– By LES, π≥ 4G ∼= π≥4S2, by Hurewicz π4G ∼= H4G .
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k=4, n=3

– Look at Serre’s spectral sequence for G −→ F −→ K (Z, 3).

H5G

H4G

0

0

0

Z 0 0 Z ? ?
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k=4, n=3

– Want target of arrow. Need to know
– H4F ,H5F (total cohomology)

– H5K(Z, 3) (source of arrow)

– Use Serre SS on F −→ S2 −→ K (Z, 2) to deduce

H5F = H6F = Z
– Use Serre SS on ΩK (Z, 3) −→ {pt} −→ K (Z, 3):
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k=4, n=3

Relevant quantity will be C term in SSS:

– Everything must go! Converges to homology of a point.
– Work out dα = β
– Work out d(α2) = 2α⊗ β
– Work out β2 6= 0
– Work outker(α2 −→ α⊗ β) = 2 〈α⊗ β〉

– Conclude A = B = 0 and C ∼= Z/2Z.
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What is Known
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