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1 | October 20th, 2017

Theorem: If you have a Dedekind ring, on the level of ideals there is unique factorization. R
dedekind, I # 0 then I factors uniquely into prime ideals.

Main Lemma: Take p maximal, then p~'I £ 1. I7! = {reK ’ xI € R} a fractional ideal.

Corollary: p prime implies p~!p = R Proof: p C p~'p C R. But P is maximal.
Proof
Uniqueness:

Suppose I =p1---pr =q1---qs. Then I C py. So some ¢; € p1. Reorder such that p; = ¢1, multiply
by pl_1 Using the corollary above, repeat inductively.

Existence:

Let ¥ = {I without prime factorization} # 0. Since R is noetherian, choose J € ¥ a maximal
element. J # R, and J C p a maximal ideal. Then Jp~! C pp~! = R. By the lemma, J - Jp~ L.
Using corollary, show Jp~t &% Jpt=ps---pr. so J =ppy---pr € X. O

Corollary:
I'T = R. (Really is the group-theoretic inverse, so (I.J)™! = J~'I7! etc)
Proof: I = py ---py, check that I~ = pl—1 . -p;l.

div(R) = {fractional nonzero ideals} is a free abelian group on the maximal ideals, so = @,Z.
“To contain is to divide”, i.e. I,J € Rand I C J = J ‘ IsoJ=1II Exercise: IJ=1nNJ.

Corollary

1. 0#1 C J then J = I + (z) for some z € R.
2. I an idealV0 # a € I,I = (a,b) for some b € I.
3. I # 0, then there exists 0 # I such that IT* is principal. Can take I* coprime to I.

Proof
1. Let I =1IIp{* and J = pri. Since J ’ 1,b; < a; for all 7. For each i, pick z; € p?i - pi-”“.

By CRT, 3z € R ‘ z = x; mod p;" since p;" +p§j = R when i # j. Then I 4 (z) C J. But
I+ (x) =1p;*, b; < ¢; < ay, forcing ¢; = b;.
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2.7

3. Pick any a € I, then (a) = Hp?i and I = IIp{" where d; > a;. Then take the integral ideal
I = Hpgi_ai C R, and modify it to make it coprime to I. How? We're given J, and IJ C [
and by (1), I = IJ 4+ (z). So (z) C I and (z) = II*. Claim: I* is coprime to J. Proof:
IJ + II* = I, multiply by I~ ! to obtain J + I = R.

Theorem

div(R) = ®pZ is a free abelian group, P(R) = {zR : v € K™} is a subgroup, so ideal class group
CI(R) := Div(R)/P(R): every abelian group is the idea class group for some dedekind ring R.

Example: Let R = C[z,y]/(y* — 2° — ax — b). Then CI(R) is uncountable (see Jacobian?). But for
number fields, the class group is finite.

Theorem

K a number field, Clg = Cl(Ok) is a finite group. The order of the group is called the class
number, measures the failure of unique factorization (hg). hx =1 < Ok PID < O UFD.

Theorem
JM > 0 such that every nonzero I C Ok contains some « # 0 such that |N(«)| < M.N(I)
Corollary

Every ideal class in O contains a nonzero ideal I with N(I) < M, so hg < co. Why? Only
finitely many ideals satisfying this condition! N(I) = m,mOg C I, Ok /mOk.

Proof: For ¢ inClg, say ¢! = [I] with I € Og. Pick o # 0 in I such that |[N(a)| < M.N(I).
() € I,(a) = IJ for some J, so [J] = [I]7' = ¢, so N(J) = N((a))N(I)~* since the norm is
multiplicative. So N(J) = N(a)N(I)~! < M (not obvious that norm of ideal is norm of generator).

Will be able to compute M explicitly (the Minkowski bound).

? | October 25th , 2017 (?)

Theorem Let k be a number field, n = [k : Q).

Then 3M > 0 such that every nonzero ideal I € Oy contains and « # 0 such that |N(«)| < MN(I).
Proof Pick a Z basis {a;}" for Og. Let m > 1 be an integer such that m" < N(I) < (m + 1)".
Define ¥ = {ijaj ’ 0 <m; <m} C Oy.

Then #% = (m +1)" > N(I) by pigeonhole principle. So there exist x,y € ¥,z # y,x —y € I.

n
Claim: Take o := z — y, this works. Why? o = ijaj, where |m;| < m.
j=1

Then

N(a) = [Tloi(@)| < T] D Imjlloi(eg)] <m™ [T loi(eg)| < MN(I)
i=1 i=1j=1
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, where the last sum/product term equals M, depending on choice of basis.

Corollary
Every ideal class in Cly contains an ideal I € O with N(I) < M.

Proof ¢ = [J]7! some J € O, apply theorem to J. So Ja # 0 € J where |[N(a)| < MN(J). So
(o) = JI for some I € Oy, works since (I € ¢), and [1] = [J][{].

Corollary hy < oo, take ¢; € Clg,¢; € I; with N(I;) < M. There are only finitely many I € Oy
with N(I) =m. Why? mOy, € I, Ok/mOk is finite.

Ezample k = Q(Vd), d squarefree. If d # 1 mod 4 then O(k) = Z[Vd],d;, = 4d. Then M; =
2.4
2 2 .
(14 [Vd) (1 = |Vd]) = (14 /|d])?% My = Z(;) \4ld|, so Vd if d > 0, else (4/m)4/|d|.

Theorem Take k € Q(a),a € Oy an algebraic integer. Suppose p V[Ok : Z|a]]. Then factor the

minimal polynomial f, into irreducibles:

falx) = hy(2) -+ hy(z)°*. Choose lifts h; € Z|x], then

(p) = pOy = pi* - -~ p* where p; = (p, hi(a)) and f; = deg(h;).
(That is, factor minimal polynomial mod p and read off.)

Ezample: Claim: k = Q(v/2) has class number h, = 1. Note O = Z[V2] is a UFD. M; =
(1+ \@)2 ~5.82 <6, My =2 < 2, s0 hj; = 1. Can check that 2> — 2 is irreducible mod p = 3, 5.
But p = 2 yields (2) = (v/2)?. Theorem tells you p = 3,5 are inert. Norms are 9, 25.

Since N(I) < M;, we must have I = (1), (\/5), (2) of norms 1,2,4, but these are all principal, so
every ideal class is trivial.

Ezample k = Q(v/—=5) has h, = 2. Op = Z[v/—5] and dj, = 4(—5) = —20. M; = (1 ++/5)? < 11
My = (4/7)V5 < 3 (Minkowski bound)

So just need to worry about p = 2. Look at f(z) =z +5 mod 2 = (z + 1) mod 2Z[z], then
(2)=p*,p=(2,1+ v/—5). But p is not principal - why?

Suppose it is, then p = (a) and 2 = N(p) = |N(a)| = a® + 5b* which has no solutions.
So generally, using Minkowski bound gives N(I) < My <= I = (1) or (p).
Theorem y? = 2> — 5 has no solutions over Z.

Proof:

Observation: z must be odd, else 3> = —1 mod 4.

Observation: x,y coprime. If d|z and d|y then d = 5, but read equation mod 25.
Factor in Z[v/—5], equals 2* = y* + 5 = (y + v/=5)(y — v/=5), coprime. Why?

Suppose there is a prime ideal p dividing both. Then p divides the sum, so 2y € p. But p divides
(), so x € p, thus GCD(2y,x) = 1 which is a contradiction.
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2.1 Bonus

So (y 4+ v=5) = a®, (y — vV—=5) = b for some integral ideals a,b. But the class number is 2 from
earlier calculation, so [a] = [a®] = [(1)] so @ must be principal (same goes for b). So choose a
generator, a = (a + bv/—5), generators are same up to a unit.

Then y++v/—5 = (a+bv—=5)% = (a* —15ab*) + (3a*b—5b%)v/—5. So b = +1 by equating components,
but 3a> — 5 = 41 has no solutions. [J

Similar arguments will be mimicked for Fermat’s Last Theorem.

2.1 Bonus

Define Grothendieck group of a ring (k theory) Ko(Oy) = Z @ Cli. Monoid of finite projective
modules, modded out by stuff. [P]+ [Q] = [P & Q).

If R is Dedekind,

e Every fractional ideal is a finitely generated projective module
o Every f.g. proj. module a; & --- @ a, a fractional ideal.

Theorem from Steinitz:
Ifar®--a, =Zby @ ---bs then r = s and ideal classes are the same.

Using theorem, apply map [a1 & - - ay] — (r,[a1 - ar])

3 November 11th, 2017

3.1 Fermat's Last Theorem

First case, due to Kumar. Here’s what we’ll show:

Theorem: Take a prime p > 3, assume p is regular (i.e. p VhQ(<p)the class number). Then
2 + 9y =2 — xyz=0 mod p.

Kummer’s Criterion: p is irregular (so p ‘ hq(c,)) iff ord,(Bg) > 0 for some k = 2,3,---p — 3,

where By, is a Bernoulli Number.

z > 2"
e — 1 = ;Bnﬁ7 |Z| < 2m.

Infinitely many irregular - known, 39%

Infinitely many regular - open, 61%

Herbrand-Ribet:

A = Clg,), C = A/AP is an F;, vector space where C =0 <= p Vh.

G = Gal(Q(¢,)/Q) = (Z/pZ)* is cyclic, so its dual group is also cyclic G =< x > where X -G — F
is the cyclotomic character X (o) = [a] if 0(¢p) = (-

So fix an even 2 < k < p — 3. Then ord,(By) >0 <= C(X' %) # 0. (Only known to be iff this

past century!) Was known assuming Vandiver’s conjecture: p VhQ(Cp ey Ribet was able to bypass
P
using Galois representations associated to modular forms. Under this assumption, create a cusp
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3.1 Fermat’s Last Theorem

form congruent to an Eisenstein series mod p. Move back into Galois side to recover nontriviality

on RHS.
Idea: Factor both sides in the cyclotomic field, so really need to know units in these fields.

There is a natural notion (intrinsic) of conjugation on the cyclotomic field. Take K,, = Q((),ord(¢) =
n,¢ €Q.

Then Gal(K,,/Q) = (Z/nZ)* by ¢ — [—1]. Notate by x +— c(z).

Then ¢(¢) = ¢, nd for all 0 : K,, — C,0(¢) = 2™ with ged(k,n) = 1.

Soa(¢™) =a(0)
and o o ¢ = = (conjugation) o o

Kronecker’s Lemma: Take a € Z/ {0}, |o(a)| <1 for all 0 : Q — C. Then « is a root of unity.

n

Proof: f(x) = Irr(e,Q,z) € Zlz]. n = deg(f) = [Q(a) : Q. Then f(z) = H(m — ) =

=1

2" + ap_12" P+ - + a1z + ag. Then a,, = + E i, lam| < (n) But only finitely many
: m
Jj<m

f(x) € Z]x] satisfy deg(f) < n. Thus there are only finitely many o € Z that satisfy deg(fs) < n.

Note that o satisfies the hypothesis, f,k satisfies the bounds and deg fok < n.
Proposition (Kummer): p > 2 prime,u € Z[(y]*. Then u/u = C]]j for some k € Z.

Lemma: a € Z[(p], then Ja € Z such that o = a mod (p).

p—2
Proof: a = ag+ a1 + -+ ap_oP 2, a? = Z a; mod (p) where a € Z.
i=0

Lemma: pioo(K) = Upn(K) = (K™ )torsion. Then poo(Q(¢,)) =< (=1)"¢, > where m :=n mod 2.

Proof(Kummer): Take a = u/u € Z[y]. Then o(a) = o(u)/d(u) € C%. By Kronecker, a = :l:C]’,f.
Claim: sign = +1. Otherwise, u? = —u”.

By other lemma, Ja € Z ’ u? =a mod (p) < @’ =a mod (p) <= a = —a mod p. But then
D ‘ a, so p ‘ uP and p is a unit. So |[N(p)| > 1.

Corollary: Every unit u € Z[(y]* for p > 2 factors as u = v - Cg wherev € Z[(, + Cp_l]x for some
0<k<np.

Proof: Know from proposition that v/t = C;f,, so find 0 < k < p such that 2k = ¥’ mod p. Then
uC_k =1 ;f/_k = ECII;, so take v = u and ﬂ(;f =17.

Note that Q(¢ 4 ¢~ 1) is totally real (see midterm!), so Og(c+c—1) = Z[C + ¢

CM Field: K over KT (s), K™ over Q totally real. Then U = Oj. So define Q = [Uj :
w(k)Ug+] < 2. Why? Let u € Uy, then take a complex embedding o(u/%) € C'. Then consider
U — w(K)/p(K)? =2 7,/27 whereu — [u/T], which is a homomorphism. The isomorphism follows
from p(K) being finite and cyclic.

Then ker ¢ = pu(K)Ug+. The LTR inclusion is from u/@ = ¢2, then u¢ ™ = a¢ = u¢ L.
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3.1 Fermat’s Last Theorem

Can show Q = 1 for K = Q({,),n = p" (i.e. n is any prime power), and ) = 2 when n is not a
prime power and n # 2. This uses the fact that 1 — ¢, is a unit when n # p”.
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