Title

Contents

1 October 20th, 2017 2
2 October 25th , 2017 (?) 3
2.1 Bonus . 5

3 November 11th, 2017 5 3.1 Fermat's Last Theorem . 5

1 October 20th, 2017

Theorem: If you have a Dedekind ring, on the level of ideals there is unique factorization. R dedekind, $I \neq 0$ then I factors uniquely into prime ideals.

Main Lemma: Take p maximal, then $p^{-1} I \neq I . I^{-1}=\{x \in K \mid x I \in R\}$ a fractional ideal.
Corollary: p prime implies $p^{-1} p=R$ Proof: $p \subsetneq p^{-1} p \subseteq R$. But P is maximal.

Proof

Uniqueness:
Suppose $I=p_{1} \cdots p_{r}=q_{1} \cdots q_{s}$. Then $I \subseteq p_{1}$. So some $q_{i} \in p_{1}$. Reorder such that $p_{1}=q_{1}$, multiply by p_{1}^{-1} Using the corollary above, repeat inductively.

Existence:

Let $\Sigma=\{I$ without prime factorization $\} \neq 0$. Since R is noetherian, choose $J \in \Sigma$ a maximal element. $J \neq R$, and $J \subseteq p$ a maximal ideal. Then $J p^{-1} \subseteq p p^{-1}=R$. By the lemma, $J \subsetneq J p^{-1}$. Using corollary, show $J p^{-1} \notin \Sigma, J p^{-1}=p_{2} \cdots p_{r}$. so $J=p p_{2} \cdots p_{r} \notin \Sigma$.

Corollary:

$I^{-1} I=R$. (Really is the group-theoretic inverse, so $(I J)^{-1}=J^{-1} I^{-1}$ etc)
Proof: $I=p_{1} \cdots p_{r}$, check that $I^{-1} I=p_{1}^{-1} \cdots p_{r}^{-1}$.
$\operatorname{div}(R)=\{$ fractional nonzero ideals $\}$ is a free abelian group on the maximal ideals, so $\cong \oplus_{p} \mathbb{Z}$.
"To contain is to divide", i.e. $I, J \in R$ and $I \subset J \Rightarrow J \mid I$ so $J=I I^{\prime}$. Exercise: $I J=I \cap J$.

Corollary

1. $0 \neq I \subset J$ then $J=I+(x)$ for some $x \in R$.
2. I an ideal, $\forall 0 \neq a \in I, I=(a, b)$ for some $b \in I$.
3. $I \neq 0$, then there exists $0 \neq I^{*}$ such that $I I^{*}$ is principal. Can take I^{*} coprime to I.

Proof

1. Let $I=\Pi p_{i}^{a_{i}}$ and $J=\Pi p_{i}^{b_{i}}$. Since $J \mid I, b_{i} \leq a_{i}$ for all i. For each i, pick $x_{i} \in p_{i}^{b_{i}}-p_{i}^{b_{i+1}}$.

By CRT, $\exists x \in R \mid x=x_{i} \bmod p_{i}^{a_{i}}$ since $p_{i}^{a_{i}}+p_{j}^{a_{j}}=R$ when $i \neq j$. Then $I+(x) \subset J$. But $I+(x)=\Pi p_{i}^{c_{i}}, b_{i} \leq c_{i} \leq a_{i}$, forcing $c_{i}=b_{i}$.
2.?
3. Pick any $a \in I$, then $(a)=\Pi p_{i}^{d_{i}}$ and $I=\Pi p_{i}^{a_{i}}$ where $d_{i} \geq a_{i}$. Then take the integral ideal $I^{*}=\Pi p_{i}^{d_{i}-a_{i}} \subset R$, and modify it to make it coprime to I. How? We're given J, and $I J \subset I$ and by (1), $I=I J+(x)$. So $(x) \subset I$ and $(x)=I I^{*}$. Claim: I^{*} is coprime to J. Proof: $I J+I I^{*}=I$, multiply by I^{-1} to obtain $J+I=R$.

Theorem

$\operatorname{div}(R)=\oplus_{p} \mathbb{Z}$ is a free abelian group, $P(R)=\left\{x R: x \in K^{\times}\right\}$is a subgroup, so ideal class group $\mathrm{Cl}(R):=\operatorname{Div}(R) / P(R)$: every abelian group is the idea class group for some dedekind ring R.
Example: Let $R=\mathbb{C}[x, y] /\left(y^{2}-x^{3}-a x-b\right)$. Then $\mathrm{Cl}(R)$ is uncountable (see Jacobian?). But for number fields, the class group is finite.

Theorem

K a number field, $\mathrm{Cl}_{K}=\mathrm{Cl}\left(\mathcal{O}_{K}\right)$ is a finite group. The order of the group is called the class number, measures the failure of unique factorization $\left(h_{K}\right) . h_{K}=1 \Longleftrightarrow \mathcal{O}_{K}$ PID $\Longleftrightarrow \mathcal{O}$ UFD.

Theorem

$\exists M>0$ such that every nonzero $I \subset \mathcal{O}_{K}$ contains some $\alpha \neq 0$ such that $|N(\alpha)| \leq M . N(I)$

Corollary

Every ideal class in \mathcal{O}_{K} contains a nonzero ideal I with $N(I) \leq M$, so $h_{K}<\infty$. Why? Only finitely many ideals satisfying this condition! $N(I)=m, m \mathcal{O}_{K} \subset I, \mathcal{O}_{K} / m \mathcal{O}_{K}$.
Proof: For c in Cl_{K}, say $c^{-1}=[I]$ with $I \in \mathcal{O}_{K}$. Pick $\alpha \neq 0$ in I such that $|N(\alpha)| \leq M . N(I)$. $(\alpha) \subset I,(\alpha)=I J$ for some J, so $[J]=[I]^{-1}=c$, so $N(J)=N((\alpha)) N(I)^{-1}$ since the norm is multiplicative. So $N(J)=N(\alpha) N(I)^{-1} \leq M$ (not obvious that norm of ideal is norm of generator).
Will be able to compute M explicitly (the Minkowski bound).

$2 \mid$ October 25th , 2017 (?)

Theorem Let k be a number field, $n=[k: Q]$.
Then $\exists M>0$ such that every nonzero ideal $I \in O_{k}$ contains and $\alpha \neq 0$ such that $|N(\alpha)| \leq M N(I)$.
Proof Pick a \mathbb{Z} basis $\left\{\alpha_{i}\right\}^{n}$ for O_{k}. Let $m \geq 1$ be an integer such that $m^{n} \leq N(I) \leq(m+1)^{n}$. Define $\Sigma=\left\{\sum m_{j} \alpha_{j} \mid 0 \leq m_{j} \leq m\right\} \subseteq O_{k}$.
Then $\# \Sigma=(m+1)^{n}>N(I)$ by pigeonhole principle. So there exist $x, y \in \Sigma, x \neq y, x-y \in I$.
Claim: Take $\alpha:=x-y$, this works. Why? $\alpha=\sum_{j=1}^{n} m_{j} \alpha_{j}$, where $\left|m_{j}\right| \leq m$.
Then

$$
N(\alpha)=\prod_{i=1}^{n}\left|\sigma_{i}(\alpha)\right| \leq \prod_{i=1}^{n} \sum_{j=1}^{n}\left|m_{j}\right|\left|\sigma_{i}\left(\alpha_{j}\right)\right| \leq m^{n} \prod \sum\left|\sigma_{i}\left(\alpha_{j}\right)\right| \leq M N(I)
$$

, where the last sum/product term equals M, depending on choice of basis.

Corollary

Every ideal class in Cl_{k} contains an ideal $I \in O_{k}$ with $N(I) \leq M$.
Proof $c=[J]^{-1}$ some $J \in O_{k}$, apply theorem to J. So $\exists \alpha \neq 0 \in J$ where $|N(\alpha)| \leq M N(J)$. So $(\alpha)=J I$ for some $I \in O_{k}$, works since $(I \in c)$, and $[1]=[J][I]$.

Corollary $h_{k}<\infty$, take $c_{i} \in \mathrm{Cl}_{k}, c_{i} \in I_{i}$ with $N\left(I_{i}\right) \leq M$. There are only finitely many $I \in O_{k}$ with $N(I)=m$. Why? $m O_{k} \in I, O_{k} / m O_{k}$ is finite.
Example $k=Q(\sqrt{d})$, d squarefree. If $d \neq 1 \bmod 4$ then $O(k)=Z[\sqrt{d}], d_{k}=4 d$. Then $M_{1}=$ $(1+|\sqrt{d}|)(1-|\sqrt{d}|)=(1+\sqrt{|d|})^{2} . M_{2}=\frac{2}{4}\left(\frac{4}{\pi}\right)^{2} \sqrt{4|d|}$, so \sqrt{d} if $d>0$, else $(4 / \pi) \sqrt{|d|}$.
Theorem Take $k \in Q(\alpha), \alpha \in O_{k}$ an algebraic integer. Suppose $p \nmid\left[O_{k}: Z[\alpha]\right]$. Then factor the minimal polynomial $\overline{f_{\alpha}}$ into irreducibles:
$\overline{f_{\alpha}}(x)=\overline{h_{1}}(x)^{e_{1}} \cdots \overline{h_{t}}(x)^{e_{t}}$. Choose lifts $h_{i} \in Z[x]$, then
$(p)=p O_{k}=p_{1}^{e_{1}} \cdots p_{t}^{e_{t}}$ where $p_{i}=\left(p, h_{i}(\alpha)\right)$ and $f_{i}=\operatorname{deg}\left(h_{i}\right)$.
(That is, factor minimal polynomial $\bmod p$ and read off.)
Example: Claim: $k=Q(\sqrt{2})$ has class number $h_{k}=1$. Note $O_{k}=Z[\sqrt{2}]$ is a UFD. $M_{1}=$ $(1+\sqrt{2})^{2} \approx 5.82<6, M_{2}=\sqrt{2}<2$, so $h_{k}=1$. Can check that $x^{2}-2$ is irreducible $\bmod p=3,5$. But $p=2$ yields $(2)=(\sqrt{2})^{2}$. Theorem tells you $p=3,5$ are inert. Norms are 9,25 .
Since $N(I) \leq M_{1}$, we must have $I=(1),(\sqrt{2}),(2)$ of norms $1,2,4$, but these are all principal, so every ideal class is trivial.
Example $k=Q(\sqrt{-5})$ has $h_{k}=2 . O_{k}=Z[\sqrt{-5}]$ and $d_{k}=4(-5)=-20 . M_{1}=(1+\sqrt{5})^{2}<11$ $M_{2}=(4 / \pi) \sqrt{5}<3$ (Minkowski bound)
So just need to worry about $p=2$. Look at $f(x)=x^{2}+5 \bmod 2=(x+1)^{2} \bmod 2 Z[x]$, then (2) $=p^{2}, p=(2,1+\sqrt{-5})$. But p is not principal - why?

Suppose it is, then $p=(\alpha)$ and $2=N(p)=|N(\alpha)|=a^{2}+5 b^{2}$ which has no solutions.
So generally, using Minkowski bound gives $N(I) \leq M_{2} \Longleftrightarrow I=(1)$ or (p).
Theorem $y^{2}=x^{3}-5$ has no solutions over Z.
Proof:
Observation: x must be odd, else $y^{2}=-1 \bmod 4$.
Observation: x, y coprime. If $d \mid x$ and $d \mid y$ then $d=5$, but read equation $\bmod 25$.
Factor in $Z[\sqrt{-5}]$, equals $x^{3}=y^{2}+5=(y+\sqrt{-5})(y-\sqrt{-5})$, coprime. Why?
Suppose there is a prime ideal p dividing both. Then p divides the sum, so $2 y \in p$. But p divides (x), so $x \in p$, thus $\operatorname{GCD}(2 y, x)=1$ which is a contradiction.

So $(y+\sqrt{-5})=a^{3},(y-\sqrt{-5})=b^{3}$ for some integral ideals a, b. But the class number is 2 from earlier calculation, so $[a]=\left[a^{3}\right]=[(1)]$ so a must be principal (same goes for b). So choose a generator, $a=(a+b \sqrt{-5})$, generators are same up to a unit.
Then $y+\sqrt{-5}=(a+b \sqrt{-5})^{3}=\left(a^{3}-15 a b^{2}\right)+\left(3 a^{2} b-5 b^{3}\right) \sqrt{-5}$. So $b= \pm 1$ by equating components, but $3 a^{2}-5= \pm 1$ has no solutions.

Similar arguments will be mimicked for Fermat's Last Theorem.

2.1 Bonus

Define Grothendieck group of a ring (k theory) $K_{O}\left(O_{k}\right)=Z \oplus \mathrm{Cl}_{k}$. Monoid of finite projective modules, modded out by stuff. $[P]+[Q]=[P \oplus Q]$.
If R is Dedekind,

- Every fractional ideal is a finitely generated projective module
- Every f.g. proj. module $a_{1} \oplus \cdots \oplus a_{r}$ a fractional ideal.

Theorem from Steinitz:

If $a_{1} \oplus \cdots a_{r} \cong b_{1} \oplus \cdots b_{s}$ then $r=s$ and ideal classes are the same.
Using theorem, apply map $\left[a_{1} \oplus \cdots a_{r}\right] \mapsto\left(r,\left[a_{1} \cdots a_{r}\right]\right)$

$3 \mid$ November 11th, 2017

3.1 Fermat's Last Theorem

First case, due to Kumar. Here's what we'll show:
Theorem: Take a prime $p>3$, assume p is regular (i.e. $p \nmid h_{\mathbb{Q}\left(\zeta_{p}\right)}$ the class number). Then $x^{p}+y^{p}=z^{p} \Longrightarrow x y z=0 \bmod p$.
Kummer's Criterion: p is irregular (so $\left.p \mid h_{\mathbb{Q}\left(\zeta_{p}\right)}\right)$ iff $\operatorname{ord}_{p}\left(B_{k}\right)>0$ for some $k=2,3, \cdots p-3$, where B_{k} is a Bernoulli Number. $\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n} \frac{z^{n}}{n!},|z|<2 \pi$.
Infinitely many irregular - known, 39%
Infinitely many regular - open, 61%

Herbrand-Ribet:

$A=\mathrm{Cl}_{\mathbb{Q}\left(\zeta_{p}\right)}, C=A / A^{p}$ is an \mathbb{F}_{p} vector space where $C=0 \Longleftrightarrow p \mid h$.
$G=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic, so its dual group is also cyclic $\widehat{G}=<x>$ where $X \cdot G \rightarrow \mathbb{F}_{p}^{\times}$ is the cyclotomic character $X(\sigma)=[a]$ if $\sigma\left(\zeta_{p}\right)=\zeta_{p}^{a}$.
So fix an even $2 \leq k \leq p-3$. Then $\operatorname{ord}_{p}\left(B_{k}\right)>0 \Longleftrightarrow C\left(X^{1-k}\right) \neq 0$. (Only known to be iff this past century!) Was known assuming Vandiver's conjecture: $p / h_{\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)}$. Ribet was able to bypass using Galois representations associated to modular forms. Under this assumption, create a cusp
form congruent to an Eisenstein series mod p. Move back into Galois side to recover nontriviality on RHS.

Idea: Factor both sides in the cyclotomic field, so really need to know units in these fields.
There is a natural notion (intrinsic) of conjugation on the cyclotomic field. Take $K_{n}=\mathbb{Q}(\zeta), \operatorname{ord}(\zeta)=$ $n, \zeta \in \overline{\mathbb{Q}}$.
Then $\operatorname{Gal}\left(K_{n} / \mathbb{Q}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{\times}$by $c \mapsto[-1]$. Notate by $x \mapsto c(x)$.
Then $c(\zeta)=\zeta^{-1}$, nd for all $\sigma: K_{n} \rightarrow \mathbb{C}, \sigma(\zeta)=e^{2 \pi i k n}$ with $\operatorname{gcd}(k, n)=1$.
So $\sigma\left(\zeta^{-1}\right)=\overline{\sigma(\zeta)}$
and $\sigma \circ c=\bar{\sigma}=($ conjugation $) \circ \sigma$
Kronecker's Lemma: Take $\alpha \in \overline{\mathbb{Z}} /\{0\},|\sigma(\alpha)| \leq 1$ for all $\sigma: \overline{\mathbb{Q}} \rightarrow \mathbb{C}$. Then α is a root of unity.
Proof: $f(x)=\operatorname{Irr}(\alpha, \mathbb{Q}, x) \in \mathbb{Z}[x] . \quad n=\operatorname{deg}(f)=[\mathbb{Q}(\alpha): \mathbb{Q}]$. Then $f(x)=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)=$ $x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$. Then $a_{m}= \pm \sum_{j \leq m} \alpha_{i_{j}},\left|a_{m}\right| \leq\binom{ n}{m}$. But only finitely many $f(x) \in \mathbb{Z}[x]$ satisfy $\operatorname{deg}(f) \leq n$. Thus there are only finitely many $\alpha \in \overline{\mathbb{Z}}$ that satisfy $\operatorname{deg}\left(f_{\alpha}\right) \leq n$.
Note that α^{k} satisfies the hypothesis, $f_{\alpha} k$ satisfies the bounds and $\operatorname{deg} f_{\alpha} k \leq n$.
Proposition (Kummer): $p>2$ prime, $u \in \mathbb{Z}\left[\zeta_{p}\right]^{\times}$. Then $u / \bar{u}=\zeta_{p}^{k}$ for some $k \in \mathbb{Z}$.
Lemma: $\alpha \in \mathbb{Z}\left[\zeta_{p}\right]$, then $\exists a \in \mathbb{Z}$ such that $\alpha^{p}=a \bmod (p)$.
Proof: $\alpha=a_{0}+a_{1} \zeta+\cdots+a_{p-2} \zeta^{p-2}, a^{p}=\sum_{i=0}^{p-2} a_{i} \bmod (p)$ where $a \in \mathbb{Z}$.
Lemma: $\mu_{\infty}(K)=\cup \mu_{n}(K)=\left(K^{\times}\right)_{\text {torsion }}$. Then $\mu_{\infty}\left(\mathbb{Q}\left(\zeta_{n}\right)\right)=<(-1)^{m} \zeta_{n}>$ where $m:=n \bmod 2$.
$\operatorname{Proof}($ Kummer $)$: Take $\alpha=u / \bar{u} \in \mathbb{Z}\left[\zeta_{p}\right]$. Then $\sigma(\alpha)=\sigma(u) / \bar{\sigma}(u) \in \mathbb{C}^{d}$. By Kronecker, $\alpha= \pm \zeta_{p}^{k}$. Claim: sign $= \pm 1$. Otherwise, $u^{p}=-\bar{u}^{p}$.

By other lemma, $\exists a \in \mathbb{Z} \mid u^{p}=a \bmod (p) \Longleftrightarrow \bar{u}^{p}=a \bmod (p) \Longleftrightarrow a=-a \bmod p$. But then $p \mid a$, so $p \mid u^{p}$ and p is a unit. So $|N(p)|>1$.

Corollary: Every unit $u \in \mathbb{Z}\left[\zeta_{p}\right]^{\times}$for $p>2$ factors as $u=v \cdot \zeta_{p}^{k}$ wherev $\in \mathbb{Z}\left[\zeta_{p}+\zeta_{p}^{-1}\right]^{\times}$for some $0 \leq k \leq p$.
Proof: Know from proposition that $u / \bar{u}=\zeta_{p}^{k^{\prime}}$, so find $0 \leq k \leq p$ such that $2 k=k^{\prime} \bmod p$. Then $u \zeta^{-k}=\bar{u} \zeta_{p}^{k^{\prime}-k}=\bar{u} \zeta_{p}^{k}$, so take $v=u$ and $\bar{u} \zeta_{p}^{k}=\bar{v}$.
Note that $\mathbb{Q}\left(\zeta+\zeta^{-1}\right)$ is totally real (see midterm!), so $\mathcal{O}_{\mathbb{Q}\left(\zeta+\zeta^{-1}\right)}=\mathbb{Z}\left[\zeta+\zeta^{-1}\right]$.
CM Field: K over $K^{+}(\mathrm{s}), K^{+}$over \mathbb{Q} totally real. Then $U_{k}=\mathcal{O}_{K}^{\times}$. So define $Q:=\left[U_{k}\right.$: $\mu(k) U_{K^{+}} \leq 2$. Why? Let $u \in U_{k}$, then take a complex embedding $\sigma(u / \bar{u}) \in \mathbb{C}^{1}$. Then consider $U_{k} \rightarrow \mu(K) / \mu(K)^{2} \cong \mathbb{Z} / 2 \mathbb{Z}$ where $u[u / \bar{u}]$, which is a homomorphism. The isomorphism follows from $\mu(K)$ being finite and cyclic.
Then $\operatorname{ker} \varphi=\mu(K) U_{K^{+}}$. The LTR inclusion is from $u / \bar{u}=\zeta^{2}$, then $u \zeta^{-1}=\bar{u} \zeta=\overline{u \zeta^{-1}}$.

Can show $Q=1$ for $K=\mathbb{Q}\left(\zeta_{n}\right), n=p^{r}$ (i.e. n is any prime power), and $Q=2$ when n is not a prime power and $n \neq 2$. This uses the fact that $1-\zeta_{n}$ is a unit when $n \neq p^{r}$.

