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1 October 20th, 2017
Theorem: If you have a Dedekind ring, on the level of ideals there is unique factorization. R
dedekind, I 6= 0 then I factors uniquely into prime ideals.

Main Lemma: Take p maximal, then p−1I 6= I. I−1 = {x ∈ K
∣∣∣ xI ∈ R} a fractional ideal.

Corollary: p prime implies p−1p = R Proof: p ( p−1p ⊆ R. But P is maximal.

Proof

Uniqueness:

Suppose I = p1 · · · pr = q1 · · · qs. Then I ⊆ p1. So some qi ∈ p1. Reorder such that p1 = q1, multiply
by p−1

1 Using the corollary above, repeat inductively.

Existence:

Let Σ = {I without prime factorization} 6= 0. Since R is noetherian, choose J ∈ Σ a maximal
element. J 6= R, and J ⊆ p a maximal ideal. Then Jp−1 ⊆ pp−1 = R. By the lemma, J ( Jp−1.
Using corollary, show Jp−1 6∈ Σ, Jp−1 = p2 · · · pr. so J = pp2 · · · pr 6∈ Σ. �

Corollary:

I−1I = R. (Really is the group-theoretic inverse, so (IJ)−1 = J−1I−1 etc)

Proof: I = p1 · · · pr, check that I−1I = p−1
1 · · · p

−1
r .

div(R) = {fractional nonzero ideals} is a free abelian group on the maximal ideals, so ∼= ⊕pZ.

“To contain is to divide”, i.e. I, J ∈ R and I ⊂ J ⇒ J
∣∣∣ I so J = II ′. Exercise: IJ = I ∩ J .

Corollary

1. 0 6= I ⊂ J then J = I + (x) for some x ∈ R.
2. I an ideal,∀0 6= a ∈ I, I = (a, b) for some b ∈ I.
3. I 6= 0, then there exists 0 6= I∗ such that II∗ is principal. Can take I∗ coprime to I.

Proof

1. Let I = Πpai
i and J = Πpbi

i . Since J
∣∣∣ I, bi ≤ ai for all i. For each i, pick xi ∈ pbi

i − p
bi+1
i .

By CRT, ∃x ∈ R
∣∣∣ x = xi mod pai

i since pai
i + p

aj

j = R when i 6= j. Then I + (x) ⊂ J . But
I + (x) = Πpci

i , bi ≤ ci ≤ ai, forcing ci = bi.
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2. ?
3. Pick any a ∈ I, then (a) = Πpdi

i and I = Πpai
i where di ≥ ai. Then take the integral ideal

I∗ = Πpdi−ai
i ⊂ R, and modify it to make it coprime to I. How? We’re given J , and IJ ⊂ I

and by (1), I = IJ + (x). So (x) ⊂ I and (x) = II∗. Claim: I∗ is coprime to J . Proof:
IJ + II∗ = I, multiply by I−1 to obtain J + I = R.

Theorem

div(R) = ⊕pZ is a free abelian group, P (R) = {xR : x ∈ K×} is a subgroup, so ideal class group
Cl(R) := Div(R)/P (R): every abelian group is the idea class group for some dedekind ring R.

Example: Let R = C[x, y]/(y2 − x3 − ax− b). Then Cl(R) is uncountable (see Jacobian?). But for
number fields, the class group is finite.

Theorem

K a number field, ClK = Cl(OK) is a finite group. The order of the group is called the class
number, measures the failure of unique factorization (hK). hK = 1 ⇐⇒ OK PID ⇐⇒ O UFD.

Theorem

∃M > 0 such that every nonzero I ⊂ OK contains some α 6= 0 such that |N(α)| ≤M.N(I)

Corollary

Every ideal class in OK contains a nonzero ideal I with N(I) ≤ M , so hK < ∞. Why? Only
finitely many ideals satisfying this condition! N(I) = m,mOK ⊂ I,OK/mOK .

Proof: For c inClK , say c−1 = [I] with I ∈ OK . Pick α 6= 0 in I such that |N(α)| ≤ M.N(I).
(α) ⊂ I, (α) = IJ for some J , so [J ] = [I]−1 = c, so N(J) = N((α))N(I)−1 since the norm is
multiplicative. So N(J) = N(α)N(I)−1 ≤M (not obvious that norm of ideal is norm of generator).

Will be able to compute M explicitly (the Minkowski bound).

2 October 25th , 2017 (?)
Theorem Let k be a number field, n = [k : Q].

Then ∃M > 0 such that every nonzero ideal I ∈ Ok contains and α 6= 0 such that |N(α)| ≤MN(I).

Proof Pick a Z basis {αi}n for Ok. Let m ≥ 1 be an integer such that mn ≤ N(I) ≤ (m + 1)n.
Define Σ = {

∑
mjαj

∣∣∣ 0 ≤ mj ≤ m} ⊆ Ok.

Then #Σ = (m+ 1)n > N(I) by pigeonhole principle. So there exist x, y ∈ Σ, x 6= y, x− y ∈ I.

Claim: Take α := x− y, this works. Why? α =
n∑
j=1

mjαj , where |mj | ≤ m.

Then

N(α) =
n∏
i=1
|σi(α)| ≤

n∏
i=1

n∑
j=1
|mj ||σi(αj)| ≤ mn

∏∑
|σi(αj)| ≤MN(I)
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, where the last sum/product term equals M , depending on choice of basis.

�

Corollary

Every ideal class in Clk contains an ideal I ∈ Ok with N(I) ≤M .

Proof c = [J ]−1 some J ∈ Ok, apply theorem to J . So ∃α 6= 0 ∈ J where |N(α)| ≤ MN(J). So
(α) = JI for some I ∈ Ok, works since (I ∈ c), and [1] = [J ][I].

Corollary hk < ∞, take ci ∈ Clk, ci ∈ Ii with N(Ii) ≤ M . There are only finitely many I ∈ Ok
with N(I) = m. Why? mOk ∈ I,Ok/mOk is finite.

Example k = Q(
√
d), d squarefree. If d 6= 1 mod 4 then O(k) = Z[

√
d], dk = 4d. Then M1 =

(1 + |
√
d|)(1− |

√
d|) = (1 +

√
|d|)2. M2 = 2

4( 4
π

)2
√

4|d|, so
√
d if d > 0, else (4/π)

√
|d|.

Theorem Take k ∈ Q(α), α ∈ Ok an algebraic integer. Suppose p 6
∣∣∣ [Ok : Z[α]]. Then factor the

minimal polynomial fα into irreducibles:

fα(x) = h1(x)e1 · · ·ht(x)et . Choose lifts hi ∈ Z[x], then

(p) = pOk = pe1
1 · · · p

et
t where pi = (p, hi(α)) and fi = deg(hi).

(That is, factor minimal polynomial mod p and read off.)

Example: Claim: k = Q(
√

2) has class number hk = 1. Note Ok = Z[
√

2] is a UFD. M1 =
(1 +

√
2)2 ≈ 5.82 < 6, M2 =

√
2 < 2, so hk = 1. Can check that x2 − 2 is irreducible mod p = 3, 5.

But p = 2 yields (2) = (
√

2)2. Theorem tells you p = 3, 5 are inert. Norms are 9, 25.

Since N(I) ≤ M1, we must have I = (1), (
√

2), (2) of norms 1, 2, 4, but these are all principal, so
every ideal class is trivial.

Example k = Q(
√
−5) has hk = 2. Ok = Z[

√
−5] and dk = 4(−5) = −20. M1 = (1 +

√
5)2 < 11

M2 = (4/π)
√

5 < 3 (Minkowski bound)

So just need to worry about p = 2. Look at f(x) = x2 + 5 mod 2 = (x + 1)2 mod 2Z[x], then
(2) = p2, p = (2, 1 +

√
−5). But p is not principal - why?

Suppose it is, then p = (α) and 2 = N(p) = |N(α)| = a2 + 5b2 which has no solutions.

So generally, using Minkowski bound gives N(I) ≤M2 ⇐⇒ I = (1) or (p).

Theorem y2 = x3 − 5 has no solutions over Z.

Proof :

Observation: x must be odd, else y2 = −1 mod 4.

Observation: x, y coprime. If d|x and d|y then d = 5, but read equation mod 25.

Factor in Z[
√
−5], equals x3 = y2 + 5 = (y +

√
−5)(y −

√
−5), coprime. Why?

Suppose there is a prime ideal p dividing both. Then p divides the sum, so 2y ∈ p. But p divides
(x), so x ∈ p, thus GCD(2y, x) = 1 which is a contradiction.
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2.1 Bonus

So (y +
√
−5) = a3, (y −

√
−5) = b3 for some integral ideals a, b. But the class number is 2 from

earlier calculation, so [a] = [a3] = [(1)] so a must be principal (same goes for b). So choose a
generator, a = (a+ b

√
−5), generators are same up to a unit.

Then y+
√
−5 = (a+b

√
−5)3 = (a3−15ab2)+(3a2b−5b3)

√
−5. So b = ±1 by equating components,

but 3a2 − 5 = ±1 has no solutions. �

Similar arguments will be mimicked for Fermat’s Last Theorem.

2.1 Bonus
Define Grothendieck group of a ring (k theory) KO(Ok) = Z ⊕ Clk. Monoid of finite projective
modules, modded out by stuff. [P ] + [Q] = [P ⊕Q].

If R is Dedekind,

• Every fractional ideal is a finitely generated projective module
• Every f.g. proj. module a1 ⊕ · · · ⊕ ar a fractional ideal.

Theorem from Steinitz:

If a1 ⊕ · · · ar ∼= b1 ⊕ · · · bs then r = s and ideal classes are the same.

Using theorem, apply map [a1 ⊕ · · · ar] 7→ (r, [a1 · · · ar])

3 November 11th, 2017
3.1 Fermat’s Last Theorem
First case, due to Kumar. Here’s what we’ll show:

Theorem: Take a prime p > 3, assume p is regular (i.e. p 6
∣∣∣ hQ(ζp)the class number). Then

xp + yp = zp =⇒ xyz = 0 mod p.

Kummer’s Criterion: p is irregular (so p
∣∣∣ hQ(ζp)) iff ordp(Bk) > 0 for some k = 2, 3, · · · p − 3,

where Bk is a Bernoulli Number. z

ez − 1 =
∞∑
n=0

Bn
zn

n! , |z| < 2π.

Infinitely many irregular - known, 39%

Infinitely many regular - open, 61%

Herbrand-Ribet:

A = ClQ(ζp), C = A/Ap is an Fp vector space where C = 0 ⇐⇒ p 6
∣∣∣ h.

G = Gal(Q(ζp)/Q) ∼= (Z/pZ)× is cyclic, so its dual group is also cyclic Ĝ =< x > where X ·G→ F×p
is the cyclotomic character X(σ) = [a] if σ(ζp) = ζap .

So fix an even 2 ≤ k ≤ p− 3. Then ordp(Bk) > 0 ⇐⇒ C(X1−k) 6= 0. (Only known to be iff this
past century!) Was known assuming Vandiver’s conjecture: p 6

∣∣∣ hQ(ζp+ζ−1
p ). Ribet was able to bypass

using Galois representations associated to modular forms. Under this assumption, create a cusp

3 NOVEMBER 11TH, 2017 5



3.1 Fermat’s Last Theorem

form congruent to an Eisenstein series mod p. Move back into Galois side to recover nontriviality
on RHS.

Idea: Factor both sides in the cyclotomic field, so really need to know units in these fields.

There is a natural notion (intrinsic) of conjugation on the cyclotomic field. TakeKn = Q(ζ), ord(ζ) =
n, ζ ∈ Q.

Then Gal(Kn/Q) ∼= (Z/nZ)× by c 7→ [−1]. Notate by x 7→ c(x).

Then c(ζ) = ζ−1, nd for all σ : Kn → C, σ(ζ) = e2πikn with gcd(k, n) = 1.

So σ(ζ−1) = σ(ζ)

and σ ◦ c = σ = (conjugation) ◦ σ

Kronecker’s Lemma: Take α ∈ Z/ {0} , |σ(α)| ≤ 1 for all σ : Q→ C. Then α is a root of unity.

Proof : f(x) = Irr(α,Q, x) ∈ Z[x]. n = deg(f) = [Q(α) : Q]. Then f(x) =
n∏
i=1

(x − αi) =

xn + an−1x
n−1 + · · · + a1x + a0. Then am = ±

∑
j≤m

αij , |am| ≤
(
n

m

)
. But only finitely many

f(x) ∈ Z[x] satisfy deg(f) ≤ n. Thus there are only finitely many α ∈ Z that satisfy deg(fα) ≤ n.

Note that αk satisfies the hypothesis, fαk satisfies the bounds and deg fαk ≤ n.

Proposition (Kummer): p > 2 prime,u ∈ Z[ζp]×. Then u/u = ζkp for some k ∈ Z.

Lemma: α ∈ Z[ζp], then ∃a ∈ Z such that αp = a mod (p).

Proof: α = a0 + a1ζ + · · ·+ ap−2ζ
p−2, ap =

p−2∑
i=0

ai mod (p) where a ∈ Z.

Lemma: µ∞(K) = ∪µn(K) = (K×)torsion. Then µ∞(Q(ζn)) =< (−1)mζn > where m := n mod 2.

Proof(Kummer): Take α = u/u ∈ Z[ζp]. Then σ(α) = σ(u)/σ(u) ∈ Cd. By Kronecker, α = ±ζkp .
Claim: sign = ±1. Otherwise, up = −up.

By other lemma, ∃a ∈ Z
∣∣∣ up = a mod (p) ⇐⇒ up = a mod (p) ⇐⇒ a = −a mod p. But then

p
∣∣∣ a, so p ∣∣∣ up and p is a unit. So |N(p)| > 1.

Corollary: Every unit u ∈ Z[ζp]× for p > 2 factors as u = v · ζkp wherev ∈ Z[ζp + ζ−1
p ]× for some

0 ≤ k ≤ p.

Proof: Know from proposition that u/u = ζk
′
p , so find 0 ≤ k ≤ p such that 2k = k′ mod p. Then

uζ−k = uζk
′−k
p = uζkp , so take v = u and uζkp = v.

Note that Q(ζ + ζ−1) is totally real (see midterm!), so OQ(ζ+ζ−1) = Z[ζ + ζ−1].

CM Field: K over K+ (s), K+ over Q totally real. Then Uk = O×K . So define Q := [Uk :
µ(k)UK+ ] ≤ 2. Why? Let u ∈ Uk, then take a complex embedding σ(u/u) ∈ C1. Then consider
Uk → µ(K)/µ(K)2 ∼= Z/2Z whereu 7→ [u/u], which is a homomorphism. The isomorphism follows
from µ(K) being finite and cyclic.

Then kerϕ = µ(K)UK+ . The LTR inclusion is from u/u = ζ2, then uζ−1 = uζ = uζ−1.
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3.1 Fermat’s Last Theorem

Can show Q = 1 for K = Q(ζn), n = pr (i.e. n is any prime power), and Q = 2 when n is not a
prime power and n 6= 2. This uses the fact that 1− ζn is a unit when n 6= pr.
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