
Combinatorics Review
UCSD Math 184

D. Zack Garza

November 27, 2019

Contents
1 Formulae 2

1.1 Overview . 2
1.2 Sets . 2
1.3 The Symmetric Group . 3

1.3.1 Two line notation . 3
1.3.2 One line notation . 3
1.3.3 Cycle Notation . 4
1.3.4 Useful facts about the Symmetric group . 4

1.4 Permutations: . 4
1.5 Ordered Lists . 5
1.6 Falling Factorial . 5
1.7 Rising Factorial . 5
1.8 Combinations/Binomial Coefficients . 6

1.8.1 Generalized Binomial Coefficients . 6
1.9 Multisets . 6
1.10 Catalan Numbers . 7
1.11 Stars and Bars . 7

1.11.1 Variant 1: Strict . 8
1.11.2 Variant 2: Unrestricted . 8

1.12 Stirling Numbers of the First Kind . 8
1.13 Stirling Numbers of the Second Kind . 9
1.14 Compositions . 10

1.14.1 Strong Compositions . 10
1.14.2 Weak Compositions . 10
1.14.3 Integer Partitions . 10

2 Generating Functions 11
2.1 Solving Recurrences . 11
2.2 Sequences, Sums, and Closed Forms . 11
2.3 Sequence Lookup . 13
2.4 Operations . 13
2.5 Structures . 16

2.5.1 Interpretations . 16

1

2.6 Some Known Generating Functions . 17
2.7 Worked Examples . 18

3 Posets 20
3.1 Example Calculation . 23

4 Appendix 24
4.1 The 12-fold Way . 24

5 Definitions 25

6 Dictionary of Interpretations 27

1 Formulae
Note that the theory is important for Combinatorics – knowing what definitions are and what
various expressions count – but it is a very problem-driven subject. It is worth delineating exactly
what kinds of problems are tractable, and which are more difficult and require more subtle methods.
However, the ultimate skill in this course is to know when to apply which tool to a given problem,
how to translate problems into things you know how to count, and how to seamlessly move back
and forth between various combinatorial interpretations.

Problems are the best practice!

1.1 Overview
• {a, b, c, · · ·} = {b, c, a, · · ·} = {c, b, a, · · ·} = · · · is a set, a structure which contains some finite

number of unique elements, and there is a-priori notion of “order” or an indexing operation
(i.e. there is no distinguished “first” element, etc).

• If S is a set, then #S denotes the size of the set, i.e. a count of the number of elements
contained in S.

• [a, b, c] 6= [b, c, a] is an ordered list (also called a k-tuple), a structure of not-necessarily
unique elements from some set in which there is a well-defined order/indexing operation.

– For example, the second element of [b, c, a] is c, and the first element of [3, 1, 2] is 3.
– Equivalently, this can be thought of as a word from some alphabet of symbols. In this

case, we may write [a, b, c] as abc instead.
– Rigorously, if A is the set of elements we’re interested in, an ordered list is an element

of the k-fold product set A × A × · · · A = Ak.

1.2 Sets
For any given n, there is essentially one set of size n, the set [n] = {1, 2, · · · n}. It is a theorem that
every set admits a well-ordering, and a consequence of this is that any set S of countable size n
admits a bijective map S → [n]. So S ∼= [n] in the category of Sets, “up to relabeling” of elements.

2

But be careful! [n] comes with its own labeling and its own ordering 1 ≤ 2 ≤ · · ·, and so should
perhaps be regarded as an ordered list with unique elements instead. As a set, we can order the
elements any way and obtain the same set.

1.3 The Symmetric Group
Sn denotes the symmetric group on n elements; each element of this group is a bijective function
[n] → [n]. Combinatorialists really love this group, and it secretly shows up in most counting
problems.

A permutation σ is an element of Sn, We can specify a bijection by describing where it sends
every element, so for example, define

σ : [5] → [5]

σ(1) = 3 =⇒ 1 7→ 3
σ(2) = 4 =⇒ 2 7→ 4
σ(3) = 5 =⇒ 3 7→ 5
σ(4) = 2 =⇒ 4 7→ 2
σ(5) = 1 =⇒ 5 7→ 1

There are several more concise notations equivalent to the above specification:

1.3.1 Two line notation

Write 1 · · · n, and under each number, write where it is sent to under σ:(
1 2 3 4 5
3 4 5 2 1

)

In general, we write (
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)

1.3.2 One line notation

Noting that in the above notation, we’ll always write 1 · · · n in the top row, we can just omit it and
implicitly agree that the k-th position denotes where the integer k is mapped to:

[3, 4, 5, 2, 1] = 34521

In general, we write a concatenated list of numbers

σ(1)σ(2) · · · σ(n)

3

1.3.3 Cycle Notation

Since Sn is a finite group, we know that every element will have finite order. So for some given
number i, we can look at the iterates σ(i), σ2(i) = σ(σ(i)), σ3(i), · · · and there will be some k for
which σk(i) = i. This sequence of images is called a cycle, and it turns out that we can recover
our permutation entirely from exhaustively recording the cycles.

The algorithm: start with 1, then compute all σi(1). Write the resulting numbers in parentheses,
then take the smallest number you haven’t seen yet, open a new parenthesis, and repeat until all
numbers 1 · · · n appear somewhere. Finally, if any set of parentheses contains only a single number
(so σ(i) = i after only 1 iteration), omit it.

Our example:

(1, 3, 5)(2, 4)

which reads as “1 maps to 3, 3 maps to 5, 5 maps to 1” and “2 maps to 4, 4 maps to 2”.

In general, we write

(1, σ(1), σ2(1), · · · , σk(1)) (a1, σ(a1), σ2(a1), · · · , σk1(a1)) · · ·

Observations/notes:

• While (abc) 6= (bac) as cycles, we do have (abc) = (cab) = (bca) = (abc). So order matters
somewhat, but not every reordering yields a new distinct cycle. Instead, for a cycle σ of length
k, there are exactly k − 1 representatives that are equivalent to σ and only differ by these
“shifts”.

• By writing things out this way, we’ve represented σ as a product of disjoint cycles, i.e. no
number occurs in more than one set of parentheses. Moreover, we can do this for every
element σ, so we say that Sn.

• It is sometimes useful to write these in a “canonical” way – shift every cycle so the largest
elements are first, then sort the cycles in increasing order based on those first elements.

1.3.4 Useful facts about the Symmetric group

• Every element can be written as a product of disjoint cycles
• Disjoint cycles commute
• The group-theoretic order of a cycle is its length
• The group-theoretic order of a product of cycles is the least common multiple of the lengths.

1.4 Permutations:
We can count the number of bijections from an n element set to itself:

{Permutations of[n]} = |Sn| = n!

• Also the number of a ways to form an ordered list of n unique elements (n choices for 1st
element, n − 1 choices for 2nd, etc).

4

1.5 Ordered Lists
If #Σ = k is some set (which we’ll regard as “formal symbols”), we can count the number of ordered
lists:

{Length k lists over Σ} = nk

• Logic: Suppose L = l1l2, · · · lk, then there are n choices of symbol for l1, n choices for l2, etc.
• Also counts the number of words over an alphabet of size k.

1.6 Falling Factorial
Let

nk :=
k−1∏
i=0

(n − i)

= n(n − 1) · · · (n − k + 1)

= n!
(n − k)!

be the falling factorial, which is a product with exactly n terms.

• Counts the number of ways to form an ordered list of k items from an n element set (i.e. there
is a distinguished “first” pick, “second” pick, etc)

• Also counts the number of injections [k] ↪→ [n]

1.7 Rising Factorial
Let

nk :=
k−1∏
i=0

(n + i)

= n(n + 1) · · · (n + k − 1)

= (n + k − 1)!
(n − 1)!

= (n + k − 1)k

be the rising factorial, which is a product with exactly n terms.

• Counts the number of ways to form an ordered list of k items from an n + k − 1 element
set.

5

1.8 Combinations/Binomial Coefficients
Counts the number of ways to form a k-element subset of a set of n items:

{k-element subsets of [n]} =
(

n

k

)
:= n!

k!(n − k!)

=
(

n

n − k

)

= nk

k!
• Note that order does not matter here; we identify any two sets that differ by a permutation

– In other words, first form an ordered list of k unique elements from [n] in nk ways, then
quotient out by the k! ways to reorder the list that yield the same set.

• Alternatively, ways to pick k items from [n] without replacement, then remove the labels.
• Alternatively, the coefficient of xk in the expansion of (1 + x)n, i.e.

(1 + x)n =
∑
k≥0

(
n

k

)
xk

which can be generalized to

(x + y)n =
∑
k≥0

(
n

k

)
xkyn−k

1.8.1 Generalized Binomial Coefficients

We can extend the “choose” notation and thus the binomial formula to rational powers by defining(
r

k

)
= 1

k!

k−1∏
i=0

(r − i) = r(r − 1)(r − 2) · · · (r − k + 1)
k!

(x + y)r =
∑
k≥0

(
r

k

)
xkyn−k

Note that this allows us to expand things such as √
x + y = (x + y)

1
2 in an infinite sum:

√
1 + x = 1 + 1

2
x − 1

8
x2 + 1

16
x3 − 5

128
x4 + 7

256
x5 − · · ·

1.9 Multisets
• What is a multiset? If S is a set, you can think of a multiset M as a word in the symbols

si ∈ S where order doesn’t matter.
– Example: S = {a, b, c} and M = {a, a, a, b, b} = {a, b, a, a, b} = · · ·

• Alternatively, it is a collection of elements of S, each with a multiplicity, so a subset of S ×N,
where we define the size to be the sum of the multiplicities instead of (the usual) number of
elements.

6

– Example: As above, M = {(a, 3), (b, 2)}. Note that although M has size 2 as a set, it
has size 3 + 2 = 5 as a multiset.

We can thus count the number of k-element multisets of an n-element set:

{Multisets of [n] of size k} =
((

n

k

))

:=
(

n + k − 1
k

)

=
(

n + k − 1
n − 1

)

= nk

k!

Proof : Multisets can be put in bijection with unrestricted stars and bars arrangements, see next
section.

• The number
((n

k

))
is denoted a multinomial coefficient.

• Also counts the number of ways to select k items with replacement from a set of size n.

1.10 Catalan Numbers
Consider the problem of counting the number of n×n lattice paths that don’t go above the diagonal.
Since every such path has to have a “first hitting time” for the diagonal, we can enumerate these
using a recurrence relation. Let Cn be the number of such paths. If the first hit occurs on the
kth diagonal, then there were Ck paths leading there and Cn−k paths to the top-right corner. This
yields

Cn+1 =
n∑

i=0
CiCn−i

and using generating functions, it can be shown that

Cn = 1
n + 1

(
2n

n

)

1.11 Stars and Bars
A useful conceptual counting problem, as many other problems can be encoded as some version of
this. The idea is we have an alphabet Σ = {?, |} (“star” and “bar”), and we’d like to form certain
words containing exactly n copies of ? and k copies of |.

There are two variants: we’ll say a configuration of stars and bars is strict if a bar does not occur
as the first or last symbol, and there are no two adjacent bars.

7

1.11.1 Variant 1: Strict

This can be counted as

{strict configurations of n stars and k − 1 bars} =
(

n − 1
k − 1

)

Proof : Lay out n stars, which have n − 1 gaps between them. From these gaps, choose any k − 1
of them (without replacement) to contain bars.

• Note that this partitions the n stars into k nonempty groups, so this counts the number of
ways to separate n indistinguishable objects into k nonempty groups,

• Alternatively, counts the number of compositions of n into k parts.

1.11.2 Variant 2: Unrestricted

With no restrictions of the configuration, we can count

{unrestricted configurations of n stars and k − 1 bars} =
(

n + k − 1
k − 1

)

Proof : Since we just need to form an arbitrary word from n stars and k − 1 bars, simply place
n+(k−1) blanks, choose k−1 of them (without replacement) to be bars, and place stars everywhere
else.

Alternate proof : Lay out n stars, then from the n − 1 gaps, choose k − 1 gaps with replacement to
contain bars. This can be done in

((n−1
k−1
))

=
(n+k−1

k−1
)

ways.

• Note that this partitions n stars into k groups, some of which may be empty.
• Alternatively, counts the number of weak compositions of n into k parts.

1.12 Stirling Numbers of the First Kind
For a given n, consider permutations σ ∈ Sn. It can be written as a product of disjoint cycles
in cycle notation, so one can ask how many permutations have exactly k disjoint cycles. In other
words, we have

σ =
k cycles︷ ︸︸ ︷

(a1b1 · · ·)(a2b2 · · ·) · · · (akbk · · ·) ∈ Sn

in cycle notation, where we include cycles of length 1 (i.e. fixed points). We can thus count

{permutations of [n] with exactly k disjoint cycles} := c(n, k) =
[
n

k

]
the unsigned Stirling number of the first kind.

In other applications, there is a signed Stirling number of the first kind which are related
by

s(n, k) := (−1)n−kc(n, k), |s(n, k)| = c(n, k)

These yield the coefficients of xn in the falling factorial xn = x(x − 1) · · · (x − n + 1).

8

There isn’t a particularly nice closed form expression for c(n, k), so the main computational tool is
the following recurrence relation they satisfy:[

n

k

]
= (n − 1)

[
n − 1

k

]
+
[
n − 1
k − 1

]
Proof: Either n is a fixed point (i.e. in a cycle by itself) or it is not.

• If n is a fixed point, we can delete the cycle (n) from σ to obtain a permutation of [n − 1]
with k − 1 cycles. Conversely, we can lift any permutation of [n − 1] with k − 1 cycles to a
permutation of [n] by just adding the cycle (n), which can only be done in one way, yielding
the second term

• Otherwise, n appears in a cycle with other elements. We can delete it to obtain a permutation
of [n−1] which still has k cycles; conversely, given such a permutation, consider the operation
of multiplying σ by the transposition (n i) where 1 ≤ i ≤ n−1. This has the effect of inserting
n into the cycle containing i, and in fact puts it right before i, i.e.

(a1a2 · · · ak i ak+1 · · · am)(n i) = (a1a2 · · · ak n i ak+1 · · · am).

There are exactly n − 1 choices for i, and each one yields a way to insert n into an existing
cycle, yielding the first term.

1.13 Stirling Numbers of the Second Kind
A set partition of [n] into k parts is a collection S1, S2, · · · Sk where

• Si ⊆ [n] for each i
• Si 6= ∅ for any i,
• Si

⋂
Sj = ∅ for all pairs 1 ≤ i, j ≤ k (so all of the Si are disjoint), and

• [n] = S1
∐

S2
∐

· · ·
∐

Sk

We can then count

{Set partitions of [n] into k parts} := S(n, k) =
{

n

k

}
,

which is referred to as the Stirling number of the second kind. Although there is a closed-form
formula for it, it is not particulary nice – the primary method of computing it comes from a
recurrence relation it satisfies: {

n

k

}
= k

{
n − 1

k

}
+
{

n − 1
k − 1

}

Proof (with a valuable technique!): When forming a set partition of [n] into k parts, there are two
disjoint cases: either n is in a singleton set, or it is not.

• If n a singleton, throw that part away. What remains is a partition of n − 1 into k − 1 parts.
Conversely, given any partition of n − 1 into k − 1 parts, we can add the part {n} to obtain
a partition of n into k parts where n is a singleton. This yields the second term.

• If it is not, n is some Si with at least 1 other element. Letting S′
i = Si − {n} 6= ∅ we get a

partition of n − 1 into k parts. Conversely, given any partition of n − 1 into k parts, we can
form a partition of n into k parts where n is not a singleton by adding n to any part. Note
that there are k choices for which part to add n to, yielding the first term.

9

1.14 Compositions
In general, a composition is a way of writing n as a sum of positive integers, i.e. n = a1 + a2 + · · ·
where ai ∈ Z. There are infinitely many of these, so to count anything, we need to place various
restrictions:

1.14.1 Strong Compositions

A composition of n into k parts is an ordered list [a1, a2, · · · ak] such that ∑k
i=1 ai = n and

for each i we have 0 < ai ≤ n. (Note that we do not allow any ai to be zero now.)

These can be counted as

comp(n, k) = # {compositions of n into k parts}

=
((

n + 1
k − 1

))

=
(

n + k − 1
k

)

where
((a

b

))
is the multinomial coefficient. This follows from by a bijection with strict stars and bars

configurations. Note that distinct lists yields distinct compositions.

1.14.2 Weak Compositions

A weak composition of n into k parts is an ordered list [a1, a2, · · · ak] such that ∑k
i=1 ai = n

and for each i we have 0 ≤ ai ≤ n. (Note that we allow some ai to be zero.)

These can be counted as

compW (n, k) = # {weak compositions of n into k parts}

=
(

n − 1
n − k

)
,

which follows from a bijection with unrestricted stars and bars configurations. Note that distinct
lists yields distinct compositions.

1.14.3 Integer Partitions

An integer partition of n into k parts is a strong composition of n into k parts where we
identify any compositions that differ by a permutation of of parts. In other words, it is a set of
integers [a1, a2, · · · ak] such that ∑k

i=1 ai = n and for each i, 1 ≤ ai ≤ n.

Example: The strong compositions of 4 are

python {cmd="/usr/bin/sage"} from sage.all import * print(sorted(list(Compositions(4)),
key=len))

while the integer partitions are

python {cmd="/usr/bin/sage"} from sage.all import * print(sorted(list(Partitions(4)),
key=len))

10

Note that [3, 1] and [1, 3] are distinct as compositions of 4 into 2 parts, but are identified as partitions
of 4 into 2 parts.

These are generally difficult to count, but we can define

{Integer partitions of n into k parts} := p(n, k)
{Integer partitions of n into any number of parts} := p(n).

Integer partitions are in bijective correspondence with Ferrer’s diagrams, which provide many
useful ways of extracting information via diagram operations. The most important operation is
conjugation, which is flipping a diagram about its main diagonal. This operation can be used to
prove the following bijections between types of integer partitions:

{Exactly k parts} = # {Largest part = k}
{Any number of parts, where every part is ≤ k} = # {At most k parts}

{Any number of distinct, odd parts} = # {Self-conjugate partitions}

2 Generating Functions
2.1 Solving Recurrences
Usually given or put in the form of an = f(an−1, an−2, · · ·)

The secret sauce:

1. Declare your generating function A(x) =
∑
n≥0

anxn

2. Multiply the recurrence through by xn.
3. “Integrate out” by summing over all values of n for which the recurrence is valid.
4. Write everything you see in terms of A(x), A′(x), or other polynomials in x.
5. Solve for A(x) to get some analytic function.
6. (Optional) Produce a closed-form formula for an by expanding the analytic function as a

power series, or using coefficient extraction:

an = 1
n!

∂nA(x)
∂xn

∣∣∣∣
x=0

2.2 Sequences, Sums, and Closed Forms
• A right shift is the operation [a0, a1, a2, · · ·] 7→ [0, a0, a1, · · ·], so R(A(n)) = A(n − 1)
• A left shift is the operation [a0, a1, a2, · · ·] 7→ [a1, a2, a3 · · ·], so L(A(n)) = A(n + 1)

– Note that this loses information! a0 disappears.
– Generally done by derivatives.

Ordinary Generating Functions

Sequence OGF Sum

[1, 1, 1, · · ·] 1
1−x

∑
n≥0

1xn

11

Sequence OGF Sum

[1, −1, 1, · · ·] 1
1+x

∑
n≥0

(−1)nxn

[r, r2, r3, · · ·] 1
1−rx

∑
n≥0

rnxn

[1, 0, 1, · · ·] 1
1−x2

∑
n≥0

1x2n

[1, 0, 0, 1, · · ·] 1
1−x3

∑
n≥0

1x3n

[1, 2, 3, 4, · · ·] ∂
∂x

1
1−x =

(
1

1−x

)2 ∑
n≥0

(n + 1)xn

[0, 1, 2, 3, · · ·] x ∂
∂x

1
1−x = x

(
1

1−x

)2 ∑
n≥0

nxn

[1,
(c

1
)
,
(c

2
)
, · · ·] (1 + x)c

∑
n≥0

(
c

n

)
xn

[1,
(c+1

1
)
,
(c+2

2
)
, · · ·]

(
1

1−x

)c ∑
n≥0

(
n + c

n

)
xn

[0, · · · 0,
(c

c

)
,
(c+1

c

)
, · · ·] xc

(
1

1−x

)c+1 ∑
n≥c

(
n

c

)
xn

[1, A(x), A(x)2, · · ·] 1
1−A(x)

∑
n≥0

A(x)nxn

[
∑0

i=0 ai,
∑1

i=0 ai,
∑2

i=0 ai, · · ·] A(x)
1−x

∑
n≥0

(
n∑

i=0
an

)
xn

n!

Exponential Generating Functions

Sequence EGF Sum

[1, 1, 1, · · ·] ex
∑
n≥0

1xn

n!

[r, r2, r3, · · ·] erx
∑
n≥0

rn xn

n!

[1, 0, 1, · · ·] cosh(x)
∑
n≥0

1x2n

n!

[1, 0, 0, 1, · · ·] ?
∑
n≥0

1 x2n

(2n)!

[0, 1, 2, 3, · · ·] xex
∑
n≥1

n
xn

n!

[1,
(c

1
)
,
(c

2
)
, · · ·] (1 + x)c

∑
n≥0

(
c

n

)
xn

n!

[0, · · · 0,
(c

c

)
,
(c+1

c

)
, · · ·] xc

(
1

1−x

)c+1 ∑
n≥c

(
n

c

)
xn

n!

[1,
(c+1

1
)
,
(c+2

2
)
, · · ·]

(
1

1−x

)c ∑
n≥0

(
n + c

n

)
xn

n!

12

Sequence EGF Sum

[0, 0!, 1!, 2!, · · ·] ln 1
1−x

∑
n≥0

(n − 1)!x
n

n!

[1, A(x), A(x)2, · · ·] eA(x)
∑
n≥0

A(x)n xn

n!

2.3 Sequence Lookup

Sequence OGF EGF

an = 1 [n = k] xk xk

k!
an = 1 [n ≥ 0] (N) 1

1−x ex

an = 1 [n ≥ 1] (N≥1) x
1−x ex − 1

an = 1 [n ≥ 2] (N≥2) x2

1−x ex − 1 − x

an = 1 [n ≥ k] xk

1−x ex −
k∑

n=0

xn

n!
=

∞∑
n=k+1

xn

n!
an = 1 [n ≤ k] 1 + x + x2 + · · · + xk 1 + x + x2

2 + · · · + xk

k!
an = 1 [n even] 1

1−x2 cosh(x)
an = 1 [n odd] x

1−x2 sinh(x)
an = 1

[
n = k, k2, · · ·

] 1
1−xk ekx

an =
(n

c

)
xc
(

1
1−x

)c+1 1
c!x

cex

an =
(n+c

n

)
ex

(
1

1−x

)c

an =
(c

n

)
$$ (1 + x)c

an = n! ∅ 1
1−x

2.4 Operations
A linear ordered partition of [n] (say, into 2 blocks) is a set partition

[n] = S1
∐

S2

where

x ∈ S1 =⇒ ∀y ∈ S2, x ≤ y.

In other words, S1 = [1, 2, · · · , m] and S2 = [m + 1, m + 2, · · · , n]. The linear part denotes the
inequality, while the ordered part denotes the fact that we are labeling the Si with ordered numbers,
choosing which Si to call “1”, “2”, and so on.

An arbitrary ordered partition of [n] (again into 2 parts) is a set partition as above, where we no
longer require the inequality. The ordered portion again denotes the labels on the Si, so we have
[S1, S2] 6= [S2, S1] and distinguish these as ordered partitions.

Ordinary Generating Functions

13

OGF Operation Effect Sum

xA(x) Right shift
∑
n≥0

anxn+1 =
∑
n≥1

an−1xn

x−1(A(x) − a0) Left shift
∑
n≥0

an+1xn

∂
∂xA(x) Multiply by index, then left

shift

∑
n≥1

nanxn−1 =∑
n≥0

(n + 1)an+1xn

x ∂
∂xA(x) Multiply by index

∑
n≥0

nanxn

∫
A(x) Divide by index, then right

shift

∑
n≥0

1
n + 1

anxn+1 =

∑
n≥1

1
n

an−1xn

∫
x−1(A(x) − a0) Divide by index

∑
n≥1

1
n

anxn

C(x) = A(x)B(x) Convolution / Sum over ways
to split into 2 linear parts

∑
n≥0

 ∑
i+j=n

aibj

xn

D(x) = A(x)B(x)C(x) Convolution / Sum over ways
to split into 3 linear parts

∑
n≥0

 ∑
i+j+k=n

aibjck

xn

F (x) = A(B(x)) Partition into any number
of linearly ordered
blocks, put a B structure
within each block, and an A
structure on the collection of
blocks

∑
n≥0

an

∑
m≥0

bm
xm

m!

n

Exponential Generating Functions

EGF Operation Effect Sum

xA(x) Index multiply, then right
shift

∑
n≥0

an
xn+1

n!
=
∑
n≥1

nan−1
xn

n!

x−1(A(x) − a0) Index divide, then left shift
∑
n≥0

an+1
xn

n!

∂
∂xA(x) Left shift

∑
n≥1

nan
xn−1

n!
=
∑
n≥0

an+1
xn

n!∫
A(x) Right shift

∑
n≥0

an

n + 1
xn+1

n!
=
∑
n≥1

an−1
xn

n!

x ∂
∂xA(x) Index multiply

∑
n≥0

nan
xn

n!

14

EGF Operation Effect Sum∫
x−1(A(x) − a0)? Index divide

∑
n≥1

an

n

xn

n!

C(x) = A(x)B(x) Convolution / Sum over
ways to split into 2
arbitrary blocks

∑
n≥0

 ∑
i+j=n

aibj

 xn

n!

D(x) = A(x)B(x)C(x) Convolution / Sum over
ways to split into 3
arbitrary blocks

∑
n≥0

 ∑
i+j+k=n

aibjck

 xn

n!

F (x) = A(B(x)) Partition into any number
of ordered blocks, put a B
structure within each block,
and an A structure on the
collection of blocks

∑
n≥0

an

∑
m≥0

bm
xm

m!

n

1
n!

Comparisons

Operation OGF EGF

Right Shift xA(x)
∫ x

0
A(x)

Left Shift x−1(A(x) − a0) ∂
∂xA(x)

Index Multiply x ∂
∂xA(x) A(x)

Index Divide
∫ x

0
x−1(A(x) − a0)

A(x)B(x) 2 linearly ordered blocks,
A-structure on block 1,
B-structure on block 2

2 arbitrary ordered blocks,
A-structure on block 1,
B-structure on block 2

A(x)B(x)C(x) 3 linearly ordered blocks,
A-structure on block 1,
B-structure on block 2,
C-structure on block 3

3 arbitrary ordered blocks,
A-structure on block 1,
B-structure on block 2,
C-structure on block 3

k∏
i=1

Ai(x) k linearly ordered blocks,
an Ai structure on block i

k arbitrary ordered blocks,
an Ai structure on block i

A(x)k k linearly ordered blocks, an
A structure on every block

k arbitrary ordered blocks,
an A structure on every
block

∞∑
i=1

A(x)i = A(x)+A(x)2+· · · Any # of linearly
ordered blocks, an A
structure on every block

Any # of ordered blocks,
an A structure on every
block

15

Operation OGF EGF
B(A(x)) Any # of linearly

ordered blocks,
A-structure on each block,
B-structure on collection of
blocks

Any # of arbitrary
ordered blocks, an
A-structure on each block,
B-structure on collection of
blocks

Note that

• For OGFs, A(x) + A(x)2 + · · · = 1
1−A(x) , which is B(A(x)) for B(x) = 1

1−x

• For EGFs, A(x) + A(x)2

2 + A(x)3

3! + · · · = eA(x), which is B(A(x)) for B(x) = ex.
• The combinatorial interpretation here is splitting [n] into any number of blocks with A

structures, by doing one of these disjoint possibilities:
– Split [n] into 1 block, and put an A structure on it, or
– Split [n] into 2 blocks, and put an A structure on each, or · · ·

2.5 Structures

Structure Sequence OGF EGF
Be exactly n [0, 0, · · · 0, 1, 0, · · ·] xn xn

n!
Be a natural number
≥ 0

[1, 1, 1, · · ·] 1
1−x ex

Be a natural number
≥ 1

[0, 1, 1, · · ·] x
1−x ex − 1

Be an even number [1, 0, 1, 0 · · ·] 1
1−x2 cosh(x)

Be an odd positive
number

[0, 1, 0, 1, · · ·] x
1−x2 sinh(x)

Be an odd number or
zero

[1, 1, 0, 1, · · ·] x
1−x2 + 1 sinh(x) + 1

Be an even positive
number

[0, 0, 1, 0 · · ·] 1
1−x2 − 1 cosh(x) − 1

Be a multiple of k [1, 0, · · · 0, 1, 0, · · ·] 1
1−xk 1 + xk

k! + x2k

(2k)! + · · ·

Note

• Zero is included as an even number.
• 1

2(ex + e−x) = cosh(x)
• 1

2(ex − e−x) = sinh(x)
• ∂

∂x sinh(x) = cosh(x)
• ∂

∂x cosh(x) = sinh(x)

2.5.1 Interpretations

• Be an empty set

16

– Only possible if you have zero elements, so take [1, 0, 0, · · ·]
• Be a non-empty set

– Possible unless you have zero elements, so [0, 1, 1, · · ·]
• Be a set / trivial structure

– 1 way for any collection of n elements, so take the sequence [1, 1, 1, · · ·]
– Alternatively, disjoint cases of “be an empty set” or “be a non-empty set”, so just add

the previous two sequences.
• Be a set containing n elements

– 0 ways, unless you have exactly n elements, so take the sequence [0, 0, · · · 0, 1, 0, · · ·]
• xk :

– Include the integer k exactly once.
• (1 + xk) :

– Either exclude k, or include it exactly once.
• 1 + xk + x2k + · · · = 1

1−xk :
– Disjoint choices: include k 0 times, or once, or twice, or · · ·

• xk(1 + xk + x2k + · · ·) = xk

1−xk :
– Include k at least once.

2.6 Some Known Generating Functions

∑
n≥0

{
n

k

}
xn = xk

(1 − x)(1 − 2x) · · · (1 − kx)
= xk

k∏
i=1

1
1 − ix

∑
n≥0

k!
{

n

k

}
xn

n!
= (ex − 1)(ex − 1) · · · (ex − 1) = (ex − 1)k

∑
n≥0

{N Partitions} xn = 1
(1 − x)(1 − x2)(1 − x3) · · ·

=
∞∏

i=1

1
1 − xi

∑
n≥0

{N Partitions, only odd parts} xn = 1
(1 − x)(1 − x3)(1 − x5) · · ·

=
∞∏

i=1

1
1 − x2i−1

∑
n≥0

{N Partitions, only even parts} xn = 1
(1 − x2)(1 − x4)(1 − x6) · · ·

=
∞∏

i=1

1
1 − x2i

∑
n≥0

{N Partitions, distinct parts} xn = (1 + x)(1 + x2)(1 + x3) · · · =
∞∏

i=1
1 + xi

∑
n≥0

{N Partitions, # parts ≤ k} xn = 1
(1 − x)(1 − x2) · · · (1 − xk)

=
k∏

i=1

1
1 − xi

∑
n≥0

{N Partitions, largest part = k} xn = xk

(1 − x)(1 − x2) · · · (1 − xk)
= xk

1 − xk

k−1∏
i=1

1
1 − xi

Note that conjugation is useful for obtaining equivalent formulas involve p(n, k).

17

2.7 Worked Examples
• OGF for an = # {Set partitions of [n] into k blocks}

– Combinatorial “be a structure” interpretation: involved. Something like, break into a
linear order of k pieces, perform a 1-coloring on piece 1, a 2-coloring on piece 2, etc.

– Easier to use recurrence and integrate n out to get S(k, x) = xS(k − 1, x) + kxS(k, x),
the unravel this to S(0, x).

• EGF for an = # {Length n words over Σ = [5]}
– Use the product rule.
– Partition an n- element set into 5 arbitrary ordered blocks – partition S1 will be where

the letters “1” are placed, S2 will denote where the “2”s go, etc.
– Put a “be a set” structure on each block, which has EGF A(x) = ex.
– Use the product rule to obtain

A(x) = (ex)5 = e5x =⇒ an = 5n.

• EGF for an = # {Length n words over Σ = [3] ϶ · · · restrictions}
– Example: suppose that

∗ “1” should occur 0,1,2, or 3 times
∗ “2” should occur 1 or 3 times
∗ “3” should occur an even number of times

– Use the product rule.
– Partition [n] into 3 arbitrary ordered blocks. Put the above structures on them, yielding

the EGFs:
∗ A1(x) = 1 + 1x + 1 1

2!x
2 + 1 1

3!x
3

∗ A2(x) = 0 + 1x + 0 1
2!x

2 + 1 1
3!x

3

∗ A1(x) = 1 + 0x + 1 1
2!x

2 + 0 1
3!x

3 + · · · = cosh(x)
– Using the product rule, we obtain

A(x) = (1 + x + 1
2!

x2 + 1
3!

x3)(x + 1
2!

x3) cosh(x) =?

• EGF for

an = # {Length n words over Σ = [5] ϶ }

– Example: suppose that
∗ “1”, “2” should both occur an even number of times
∗ “3” should occur a multiple of 5 times
∗ “4” occurs at least once

– Use the product rule
– Partition [n] into 5 subsets Si, assign letter i to Si.
– Put a “be an even set” structure on S1, S2 which has EGF A1(x)A2(x) = cosh(x)
– Put a “be a set with a multiple of 3 elements” structure on S3, which has EGF A3(x) =

(1 + 0x + 0x2 + 0x3 + 0x4 + 1
5!x

5 + 0x6 + · · ·
– Put a “be a nonempty set” structure on S4, S5 which has EGF A4(x) = A5(x) = ex − 1
– Use the prodcut rule to obtain

A(x) = cosh2(x)
(1

5!
x5 + 1

10!
x10 + · · ·

)
(ex − 1) =?

• EGF for an = # {Subsets of [n]}:

18

– For any given n, take an arbitrary set partition of [n] into blocks S1 = A, S2 = Ac. Then
put a “be a set” structure on A1, and a “be a set” structure on A2. This yields

A(x) = (ex)ex =⇒ an = 2n.

• EGF for an = # {Nonempty Subsets of [n]}:
– For any given n, take an ordered set partition [n] into blocks S1 = A, S2 = Ac. Then put

a “be a non-empty set” structure on A1, and a “be a set” structure on A2. This yields

A(x) = (ex − 1)ex =⇒ an = 2n − 1.

• EGF for an = # {Ways to choose k subsets of [n]}
– Partition [n] into exactly k blocks S1, · · · Sk, and put the “be a set” structure on all of

them. This yields

A(x) = (ex)k =⇒ an = kn.

• EGF for an = # {Partitions of [n] into k parts}
– Notice that an = S(n, k) =

{n
k

}
– Partition [n] into exactly k blocks S1, · · · Sk, and put the “be a non-empty set” structure

on all of them. This yields

A(x) = (ex − 1)k =⇒ an = k!
{

n

k

}
.

– Note – solving for an here takes some non-trivial identifications, namely that a ordered
arbitrary choice of k nonempty subsets is a set partition into k nonempty blocks, while
in this product we are introducing an ordering of the k blocks.

• EGF for an = # {Partions of [n] into any # of parts}

– Notice that an =
∑

k

S(n, k) =
∑

k

{
n

k

}
. We’ll use the composition rule.

– Partition [n] into any number of blocks {Bi}.
– Put a “be a non-empty set” structure on each block, which has EGF B(x) = ex − 1.
– Put a “be a set” structure on the collection of blocks, which has EGF C(x) = ex.

A(x) = C(B(x)) = eex−1

• EGF for an = # {Partitions of [n] into only even parts}
– We’ll use the composition rule.
– Partition [n] into any number of blocks.
– Put a “be a nonempty set with an even number of elements” structure on each block,

which has EGF B(x) = cosh(x) − 1
– Put a “be a set” structure on the collection of blocks, which has EGF C(x) = ex to

obtain

A(x) = C(B(x)) = ecosh x.

• EGF for an = # {Permutations σ ∈ Sn with no fixed points} (Derangements)
– Let the unknown EGF be D(x). We can enumerate the number of permutations by how

many points they fix. For a given n, partition [n] into two arbitrary blocks A1, A2 where
we will put a fixed-point structure on A1 and a derangement structure on A2.

19

– There is only one way to write down a permutation that fixes every element, so the EGF
for A1 is ex

– The EGF for A2 is D(x), which is the unknown.
– The total number of permutations is n!, which has EGF 1

1−x
– So we can conclude that

exD(x) = 1
1 − x

=⇒ D(x) = 1
ex(1 − x)

.

• EGF for an = # {Words over Σ = {α, β, γ} ϶ #α, #β are even }
– Split [n] into 3 arbitrary ordered parts A1, A2, A3 where α will go in A1, β in A2, and

γ ∈ A3. Put a “be a set of even size” structure on A1, A2 and a “be a set” structure on
A3 to obtain

A(x) = cosh(x)2ex = 1
4

(e3x + 2ex + e−x) =⇒ an = 1
4

(3n + 2 + (−1)n)

(Using coefficient extraction via derivatives)
• EGF for an = # {Permutations that are products of disjoint transpositions}

– Split [n] into any number of parts, and on each part put the structure of “be a fixed
point or be a 2-cycle”. This has generating function Si(x) = x + x2

2 , so we obtain

A(x) = ex+ x2
2 =⇒ an = complicated

3 Posets
Definition: A poset (partially-ordered set) is a pair (S, �) where � is a relation on S that is

• Transitive:

∀a, b, c ∈ S, a � b and b � c =⇒ a � c

• Reflexive:

∀a ∈ S, a � a

• Anti-symmetric

∀a, b ∈ S, a � b and b � a =⇒ a = b

Notice that this behaves very much like (Z, ≤), so we’ll often used ≤ to denote the relation.
However, there is an important distinction – there may be incomparable elements, i.e. pairs
a, b ∈ S such that neither a ≤ b or b ≤ a holds. This is why the order is “partial”. Also note
that it makes sense in this setting to write things like a < b, which just means a ≤ b and
a 6= b.

If every two elements are comparable, � is called total order and (S, �) is called a chain.
Weakening this condition slightly, if for every two elements x, y ∈ S there exists some s ∈ S
such that s ≤ x and s ≤ y, we say S is a directed poset.

Examples:

• (Z, ≤) is a chain.

20

• (N, |) where a | b ⇐⇒ a divides b is a poset.
• (P([n]), ⊆) (denoting the powerset) is a poset.
• ({Set partitions of [n]} , �) where a � b ⇐⇒ every block of a is contained in some block of

b is a poset.
– Note that this says that b can be obtained by merging some blocks of a.

An open section of a poset is defined as

Sα = {s ∈ S ϶ s < α} .

A closed section is defined as

Sα = {s ∈ S ϶ s ≤ α} .

The complement of a section is given by

Sc
x = {s ∈ S ϶ s ≥ a}

Sx
c = {s ∈ S ϶ s > a}

We can define the notions of an open interval from α to β, closed interval, and half-open intervals
respectively:

(α, β) := {s ∈ S ϶ α < s < β}
[α, β] := {s ∈ S ϶ α ≤ s ≤ β}
(α, β] := {s ∈ S ϶ α < s ≤ β}
[α, β) := {s ∈ S ϶ α ≤ s < β} .

Definition: we say that y covers x if

x ∈ Sy (so x < y) and (x, y) = ∅.

In other words, this says that y is a least upper bound for x.

Definition: If Sx = ∅, x is said to be a minimal element. Similarly, if Sy = S, y is said to be a
maximal element.

In a subtle distinction, if x ∈ Ss for every s ∈ S, then x is unique and is said to be the
minimum element and denoted 0. Similarly, if Sy = S − {y}, then y is said to be a (not
necessarily unique) maximal element and is denoted 1.

Definition: A Hasse diagram for a poset (S, ≤) is an graph obtained by letting the verticies of G
be the elements of S, connecting a directed edge from x → y iff y covers x, arranging this graph so
all arrows point upwards and incomparable elements are lined up horizontally.

These are generally written without vertex labels or edge directions, yielding an undirected
graph on #S vertices.

Examples:

• (D(12), |): the divisors of 12 ordered by divisibility

21

• (P([n]), ⊆): Subsets of [3] ordered by inclusion.

Definition: A subset of a poset U ⊆ S is called an upper set if it “absorbs” everything above it with
respect to the partial order, i.e.

u ∈ U =⇒ ∀s ∈ S, s ≥ u =⇒ s ∈ U,

or in other words, Sc
u ⊆ U

and similarly, L is called a lower set if it absorbs everything below it:

l ∈ L =⇒ ∀s ∈ S, s ≤ u =⇒ s ∈ U

so Su ⊆ L

Definition: A subset L ⊆ S is an order ideal if it is a non-empty directed lower set.

Given any poset, we can define the incidence algebra

A(P) = {f : P × P → R ϶ f(x, y) = 0 ⇐⇒ x 6≤ y} ,

which are all of the functions on pairs of elements in the poset that take some values on comparable
elements and are just zero otherwise. Some examples:

• The indicator/“dirac delta” function: δ(x, y) = 1 [x = y]
• The zeta function: ζ(x, y) = 1 [x ≤ y]

This is an algebra because it is a vector space over R, and has a bilinear product:

(f ∗ g)(x, y) =
∑

t∈[x,y]
f(x, t)g(t, y)

Under this product,

22

• f ∗ 0 = 0
• f ∗ δ = f
• f ∗ ζ =

∑
t∈[x,y]

f(x, t)

Moreover, if f(x, x) 6= 0, then f−1 exists such that f ∗ f−1 = δ, so we can define µ = ζ−1, which
can be shown has the formula

µ(x, y) = (−1)
∑

t∈[x,y)
ζ(x, t)

One thus computes this function inductively up a Hasse diagram.

3.1 Example Calculation

• Level 1
– µ(1, 1) = 1 (by definition)

• Level 2
– [1, 5) = {1} =⇒ µ(1, 5) = −(µ(1, 1)) = −1
– [1, 2) = {1} =⇒ µ(1, 2) = −(µ(1, 1)) = −1
– [1, 3) = {1} =⇒ µ(1, 3) = −(µ(1, 1)) = −1

• Level 3
– [1, 10) = {1, 5, 2} =⇒ µ(1, 10) = −(µ(1, 1) + µ(1, 5) + µ(1, 2)) = −(1 − 1 − 1) = 1
– [1, 15) = {1, 5, 3} =⇒ µ(1, 15) = −(µ(1, 1) + µ(1, 5) + µ(1, 3)) = −(1 − 1 − 1) = 1
– [1, 6) = {1, 2, 3} =⇒ µ(1, 16) = −(µ(1, 1) + µ(1, 2) + µ(1, 3)) = −(1 − 1 − 1) = 1
– [1, 9) = {1, 3} =⇒ µ(1, 19) = −(µ(1, 1) + µ(1, 3)) = −(1 − 1) = 0

• Level 4
– [1, 30) = {10, 15, 6, 5, 2, 3, 1} =⇒ µ(1, 30) = −(1 + 1 + 1 − 1 − 1 − 1 + 1) = −1
– [1, 45) = {15, 9, 5, 3, 1} =⇒ µ(1, 45) = −(1 + 0 − 1 − 1 + 1) = 0
– [1, 18) = {6, 9, 2, 3, 1} =⇒ µ(1, 18) = −(1 + 0 − 1 − 1 + 1) = 0

• Level 5
– [1, 90) = S − {90} =⇒ µ(1, 90) = −(0 + 0 − 1 + 0 + 1 + 1 + 1 − 1 − 1 − 1 + 1) = 0

Note that from this, we find that for the divisibility poset,

µ(a, b) =
{

(−1)k b
a is a product of k distinct primes

0 otherwise

23

In general, there is a Mobius inversion formula:

g(x) =
∑

xy≤π

f(y) ∀x ∈ P ⇐⇒ f(x) =
∑

xy≤π

µ(y, x)g(y) ∀x ∈ P

which says that if we know that g on every element and we also know that it’s some linear combi-
nation of values of f (where we don’t necessarily know what any single f(x) is), we can actually
solve for a single f(x) and write it as a (weighted) linear combination of values of g.

If we write the incidence matrix of the poset as A, this equivalently says

g(x) = Af(x) =⇒ f(x) = A−1g(x) = Mg(x)

where M = [µ(xi, xj)] is the “Gram matrix” of values of the Mobius function.

4 Appendix
Some notes on lists:

• Note that every n-element list admits an action of Sn where you let any σ ∈ Sn act on the
indices (i.e. reordering the list).

• Note that there is a map from lists to sets, which just forms a set out of the element of the list.
For example, [a, b, c, b] 7→ {a, b, c}. Note that it is not injective in general, since for example
[c, b, b, a] 7→ {a, b, c} as well. If the n elements of list are unique, however, then the action of
Sn is nice enough that you can quotient out by it, i.e. dividing counts by n!.

• So one method of counting is to first form an ordered list of unique elements, then identify
any two ordered lists if they differ by a permutation (i.e. take the underlying set).

Bonus: It can be shown using ordinary generating functions that[
n

k

]
= 1

k!
lnk

(1
1 − z

)
.

Bonus: a closed formula for the Stirling numbers of the second kind is given by{
n

k

}
=

k∑
i=0

(−1)k−i

k!

(
k
i

)
in,

which can be found by using the recurrence to solve for an ordinary generating function, then using
partial fraction decomposition and some gnarly algebraic manipulations. With a bit more work,
you can show

∑
k

{
n

k

}
= 1

e

∞∑
i=0

in

i!
.

4.1 The 12-fold Way

24

[n] labeled? [k] labeled? [n] → [k] [n] ↪→ [k] [n] ↠ [k]

Yes Yes kn

{
nk n ≤ k

0 n > k

{
k! S(n, k) k ≤ n

0 k > n

No Yes
((k

n

))
= kn

k!

{(k
n

)
n ≤ k

0 n > k

{
compW (n, k) k ≤ n

0 k > n

Yes No ∑k
i=1 S(n, i)

{
1 n ≤ k

0 n > k

{
S(n, k) k ≤ n

0 k > n

No No ∑k
i=1 pi(n)

{
1 n ≤ k

0 n > k

{
pk(n) k ≤ n

0 k > n

• Injective:
– Choose without replacement
– At most one ball per bin

• Surjective:
– Choose with replacement, but must use every ball at least once.
– At least one ball per bin / no bin is empty

Some Interpretations:

1. Unrestricted, labeled [n], labeled [k]
1. Words of length n from an alphabet of size [k], with repetition allowed.

1. k choices for first letter, k for second, etc
2. For each of n balls, choose with replacement one of k bins as its target.

2. Injective, labeled [n], labeled [k]
1. Words of length n from an alphabet of size [k] with no repetition (all letters unique).
2. For each of n balls, choose without replacement one of k bins as its target

3. Surjective, labeled [n], labeled [k]
1. Words of length n from an alphabet of size [k], where every letter appears at least once.

1. Partition n slots into k groups, then assign letter a to one of the k group, letter b
to one of the remaining k − 1 groups, etc

2. Distribute n balls into k bins where each bin has at least one ball.
4. Unrestricted, unlabeled [n], labeled [k]

1. Number of ways to choose with replacement k symbols to appear in a word of length
n. Alternatively, all words of length n with letters choisen from [k] with replacement,
where we identify together all words that are anagrams of each other.

2. Lay n indstinguishable balls out in a line, then place k − 1 dividers to form k com-
partments. Put all balls falling in the first compartment into bin 1, all in the second
compartment to bin 2, etc.

1. Use stars and bars
5. Injective, unlabeled [n], labeled [k]

5 Definitions
• Binomial Coefficients
• Binomial Theorem

25

• Catalan Numbers
– C(n) = 1

n+1
(2n

n

)
• Choose
• Combination
• Composition, Weak

– A weak composition of n into k parts is n ordered sequence of integers (a1, · · · ak) such
that ∑i ai = n and 0 ≤ ai ≤ n.

– The number of weak compositions of n into k parts is
• Composition

– A (strong) composition of n into k parts is n ordered sequence of integers (a1, · · · ak)
such that ∑i ai = n and 1 ≤ ai ≤ n

• Cycle Notation, One Line
• Cycle Notation, Two Line
• Cycles (in Permutations)
• Generating Functions, Ordinary
• Inclusion-Exclusion
• Induction, Stong
• Induction, Weak
• Multinomial
• Multinomial Coefficients
• Multinomial Theorem
• Multiset
• Multiset Coefficients
• Multiset Permutations
• Partition, Integer
• Partitions, Set
• Permutation
• Pigeon-Hole Principle
• Stirling Number of the First Kind

s(n, k) = # {σ ∈ Sn ϶ σ has exactly k cycles}

– No easy closed formula.
– Satisfies

s(n, k) = s(n − 1, k − 1) + (n − 1)s(n − 1, k)

• Stirling Number of the Second Kind

S(n, k) = # {Set partitions of [n] into k parts}

– No easy closed formula.
– Such a partition is a collection of subsets S1, · · · , Sk such that Si

⋂
Sj = ∅ and∐i Si = [n]

• Symmetric Group

26

6 Dictionary of Interpretations

n! Strings of length n over an alphabet of size n with no duplicates,
Ways to arrange n distinct objects in a line, or
Number of functions [n] → [n] that are injective and surjective
Ways to place n labeled balls into n labeled bins, each bin has ≤ 1 ball

nk = n(n − 1) · · · (n − k + 1) Strings of length k over an alphabet of size n with no duplicates, or

27

	Formulae
	Overview
	Sets
	The Symmetric Group
	Two line notation
	One line notation
	Cycle Notation
	Useful facts about the Symmetric group

	Permutations:
	Ordered Lists
	Falling Factorial
	Rising Factorial
	Combinations/Binomial Coefficients
	Generalized Binomial Coefficients

	Multisets
	Catalan Numbers
	Stars and Bars
	Variant 1: Strict
	Variant 2: Unrestricted

	Stirling Numbers of the First Kind
	Stirling Numbers of the Second Kind
	Compositions
	Strong Compositions
	Weak Compositions
	Integer Partitions

	Generating Functions
	Solving Recurrences
	Sequences, Sums, and Closed Forms
	Sequence Lookup
	Operations
	Structures
	Interpretations

	Some Known Generating Functions
	Worked Examples

	Posets
	Example Calculation

	Appendix
	The 12-fold Way

	Definitions
	Dictionary of Interpretations

