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Abstract

The primary purpose of this paper is to discuss Alexandre Grothendieck,
who is often cited as one of the most influential mathematical thinkers of
the 20th century. In order to fully appreciate the impact of his contribu-
tions, it is necessary to provide some historical context in which to place
his work, and to this end, this paper will also discuss some the history,
and mathematical content of Algebraic Geometry, as well as several key
figures in the field.

This topic was chosen because of the significance of Grothendieck’s ac-
complishments and the legacy he has left on modern mathematical theory,
but also because it allows place the field of Geometry in a wider context,
with a narrative that spans from the time of the Greeks to the proof of
the infamous last theorem of Fermat near the turn of the 20th century. In
particular, the interplay between Algebra and Geometry has a rich and
storied history, including a unification between the two fields that has
advanced rapidly in the past two to three centuries.

Treating this subject cohesively will require not only examining the
historical context, however – in order to fully appreciate the impact of
some modern results, it will be necessary to cover introduce some mathe-
matical content as well. To this end, this paper does not seek to provide a
rigorous treatment of Algebraic Geometry – many references are provided
in the reference section that serve this purpose quite nicely.

Instead, such mathematical inclusions are meant to inform the histor-
ical narrative, and so attention will be restricted to only those definitions
that provide a common and unifying language in which to frame the re-
sults that are mentioned. It is often touted that the field of Algebraic
Geometry is somewhat obtuse and rife with “heavy mathematical ma-
chinery” – it is for this reason that a secondary goal of this paper is to
help demystify the subject, and perhaps provide some motivations for why
such mathematical machinery would be invented, and why it has earned
its place as a rich and distinguished field of mathematical inquiry.

Ultimately, the goal of this paper is to discuss Grothendieck’s pio-
neering use of schemes, a construct introduced in his well-known 1957
‘Tohoku’ paper, which helped lay a new framework for Algebraic Geome-
try and has driven advances in the field ever since. In order to understand
the significance of schemes, however, one must first understand sheaves,
the construct that schemes are meant to generalize and extend. Sheaves,
in turn, are in many ways defined analogously to manifolds, which are of-
ten thought of as spaces that locally resemble standard Euclidean space,
and it is from this construct that a great deal of geometric intuition can
be derived and used to guide powerful algebraic generalizations.
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1 A Historical Perspective

1.1 The Greeks
Algebraic Geometry is among the oldest branches of mathematics, which was
studied as early as 400 BCE by the Greeks in the form of conic sections. For
the Greeks, in fact, the division between Algebra and Geometry was perhaps
indistinguishable in either direction. Without the benefits of a numeral system
amenable to calculations, nor the convenient symbolic shorthand used in mod-
ern mathematics, the very problems they studied were inextricably tied to the
geometric situations from which they were born.

Figure 1: An Algebraic Identity Expressed Geometrically

Because the Greeks worked not primarily with individual number, but in-
stead magnitudes: lengths, areas, volumes, and ratios thereof. Because of this,
algebraic identities such as

(a + b)2 = a2 + 2ab + b2

would have been expressed in terms of relationships between geometric figures
– in this case, perhaps as rearrangements of certain squares and rectangles, as
shown in the figure above.

Of primary interest to the Greeks was the solution of algebraic equations
by means of examining the intersection of algebraic curves. In this way, they
were led to study the conic sections, those curves which can be obtained by
intersecting a plane with the surface of a cone. In modern parlance, one might
refer to such sections as those traced out by real numbers x and y that satisfy
a relationship of the form

Ax2 + By2 + Cxy + Dx + Ey + F = 0,

where the coefficients A through F are also taken to be real. Despite not quite
having the algebraic notation to state the problem in this form nor the benefit
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of modern analytic and algebraic tools, the Greeks were able to characterize all
such sections, yielding circles, ellipses, hyperbolas, parabolas, straight lines, and
the degenerate case of a single point.

(a) A Circle (b) A Parabola (c) An Ellipse

(d) A Hyperbola (e) Two Lines (f) A Single Point

Figure 2: The Conic Sections

Accordingly, the Greeks were aware of methods (for example) to solve prob-
lems such as “squaring the rectangle”, to which one might associate equations of
the form x2 = ab, regarding the quantity x2 as the area of a unknown square and
both a and b as known side lengths. In their mathematical framework, all such
constructions were necessarily geometric in nature, and were thus restricted to
those which could be obtained with use of a compass and straightedge. In these
terms, such a problem might be cast as finding the solutions x that instead
satisfy the cross-ratio

x

b
=

a

x

A similar example is the problem of ”doubling the cube” – that is, given a
cube with known side lengths, constructing a second cube with exactly twice
the volume of the first. This amounts to finding x that satisfy a similar ratio,

x3

a3
=

b

a

Considering the simplest case of the unit cube led to questions concerning
whether number such as 3

√
2 were constructible in the geometric sense described

above, a question that would remain unsolved until the advent of the algebraic
tools of Galois Theory in the 19th century.
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However, although in many cases the Greeks made use of coordinates, their
study of geometry did not have the same analytic flavor that it takes on today
– the modern notion of a coordinate system would not enter the mathemat-
ical zeitgeist until nearly the 17th century, with the work of Rene Descartes.
Moreover, the classical study was restricted to algebraic curves in at most 3
dimensions, and usually over fields such as R or Q, and so it remained until the
“Geometric Renaissance” of the 18th and 19th centuries.

1.2 Modern Times
Due to reverence of the infamous fifth postulate of Euclid, the study of synthetic
geometry – that built on a collection axiomatic foundations – remained the dom-
inant mode of Geometric thought. With the advent of Cartesian coordinates,
however, a separate study of analytic (or coordinate) geometry began, coinciding
with the beginning of the study of alternative geometries based upon negating
the fifth postulate. However, the unreasonable effectiveness of coordinates in
applications to science and engineering endeavors, along with the invention of
Calculus in the mid 17th century, led to the flourishing of the analytic branch
in favor of synthetic approaches.

And so it remained until roughly the 19th century – it was at this point
in time that it began to become apparent that alternative and equally valid
non-Euclidean geometries could arise from the negation of the fifth postulate,
leading to the study of elliptic and hyperbolic geometries. In particular, during
this period there was a resurgence of the field of projective geometry, which
was originally studied by Brunelleschi as the “geometry of perspective” in the
15th century, and reformulated in terms of “points at infinity” around the 17th

century by Kepler and Desargues.
Around this time, a notion of affine geometry had also come into the pic-

ture, which is roughly characterized as a generalization of Euclidean geometry in
which the notion of absolute distance is forgotten, and the concepts that remain
meaningful are instead the notions of parallel lines, collinearity, and the preser-
vation of certain ratios. It was known early on that Euclidean geometry could
be recovered as a special case of projective geometry, and as affine geometry
and new non-Euclidean geometries were discovered, it was soon thought that
all such geometries could in fact be recovered in such a way, making projective
geometry a more general and universal theory.

A major proponent of this point of view in the 19th century was Felix Klein
(of Klein Bottle fame), who sought to classify all geometries with his Erlan-
gen Program. He believed that projective geometry would provide a unifying
framework under which all other geometries could be united, and introduced the
idea that such geometries could be characterized using the theory of groups. It
was with the advent of Klein’s program that traditionally synthetic approaches
found rigorous footing in analytic and algebraic notions.
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2 The Erlangen Program

2.1 Euclidean Geometries
In particular, the Erlangen program laid out a framework in which any given
geometry could be categorized as a group of symmetries acting on a vector
space, and it is of some interest to see how such constructions can yield familiar
geometries.

For example, fix some field k – in the familiar setting, one might choose R,
but many interesting ideas can be brought to light by considering the general
case. One can choose a coordinate system and consider sets of ordered n-tuples

kn := {(k1, k2, · · · kn) | ki ∈ k}.

Equipping this set with the usual point-wise operations of addition and scalar
multiplication, a vector space Vk of n dimensions over the base field k can be
obtained. With a vector space in hand, one can consider linear maps from Vk to
itself (sometimes referred to as operators), and if n is finite, these are entirely
characterized by n × n square matrices. In particular, one can form groups of
such matrices by equipping them with the usual notion of matrix multiplication,
and examine the actions of these groups on Vk.

Since several such groups will be useful in recovering familiar geometries, a
few definitions are in order. In each situation, it will be assumed that k is a
field, and Vk is a vector space of finite dimension n over the field k.

Definition 2.1. The set of n ×m matrices with entries in k will be denoted
Mn,m(k). If n = m, this will simply be abbreviated to Mn(k), which denotes
the set of n× n (or square) matrices over k.

In general, a square matrix is equivalently a mapping from Vk to itself, which
can be realized via matrix-vector multiplication. One is often interested in such
mappings that are invertible, which prompts the next definition.

Definition 2.2. The general linear group of dimension n, GLn(K), is the group
defined by the set

GLn(K) := {M ∈Mn(k) | det(M) 6= 0},

equipped with matrix multiplication. Equivalently, this is the set of invertible
(and necessarily square) matrices with entries in k.

The general linear group can alternatively be characterized as a represen-
tation of the set of invertible linear operators on Vk, equipped with function
composition. For the purpose of this discussion, this group is quite large, so we
will be interested in certain subgroups.

Definition 2.3. The orthogonal group of dimension n, On(k), is defined as the
set

On(k) := {M ∈ GLn(k) |MMT = I},
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equipped with matrix multiplication, where MT denotes the transpose of a
matrix and I denotes the unique n × n matrix that satisfies AI = IA = A for
every A ∈Mn(K).

It can be shown On(k) is in fact a subgroup of GLn(k). Equivalently, it can
be characterized by those matrices M for which M−1 = MT , or equivalently
those for which detM = ±1. If one takes k = R, these are exactly the distance-
preserving transformations (often referred to as isometries) of Rn that preserve
the origin. Taking the dimension to be either 2 or 3 reveals that this produces
a group consisting of both rotations around the origin, and reflections through
the origin.

In Euclidean geometry, one is also interested in translating and transporting
one figure to another point in space, which motivates the next definition.

Definition 2.4. The group of translations in vector space Vk of dimension n is
denoted Tn(k), and is equivalent to kn, the set of all n-tuples with entries in k.

The above definition is a consequence of the fact that any translation can
be identified with a vector along which the translation occurs, which does not
depend on the point being considered.

Equipped with these definitions, we can finally define one of the main groups
of interest that will help characterize Euclidean geometry:

Definition 2.5. The Euclidean group of dimension n is the group defined by
En(k) := Tn(k)oOn(k), the semi-direct group product of the group of transla-
tions with the orthogonal group.

The purpose of this definition is to capture some of what is already known
about Euclidean geometry – it is invariant under rigid motions (or isometries),
which can, in turn, be characterized by combinations of translations, rotations,
and reflections about lines. It is these exact types of motions that preserve
the essential elements of classical Euclidean geometry – length, angle, ratios,
parallel lines, and intersections of lines.

While defining the notion of a semidirect product is perhaps outside the
scope of this paper, it happens to be the exact algebraic tool that describes how
such isometries can be constructed. In this case, it captures the notion the if one
first performs a translation, followed by a rotation or reflection, this motion can
equivalently be carried out by first performing the rotation or reflection, and
then translating by the new rotated or reflected image of the original translation
vector.

Taking a field such as R and the dimension of n = 2, we find that the vector
space R2 along with the group E2(R) provides enough information to recover
classical Euclidean geometry in the plane.

2.2 Affine Geometries
In the affine case, one is often interested in maps T : kn → kn of the form
v 7→ Mv + b where M is a linear translation and b is another vector in kn.
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These maps are often called affine transformations, and spaces that result from
quotienting by this action are affine spaces, which are often described as “vector
spaces in which the origin is forgotten.” Another way of stating this is that
allowing the morphisms to be combinations of both linear maps and translations
obviates the need for a distinguished zero vector, and allows one to equivalently
treat similar figures without reference to an absolute coordinate system.

While this may seem like an abstract notion, it is, in fact, one that is com-
monly and implicitly used by anyone who has worked with vector spaces in any
capacity: vector spaces are in fact affine spaces over themselves. It is this fact
that allows one to denote a vector in this space by an n-tuple of points, and to
interchangeably use the same notation for a point of that space. Similarly, one
commonly uses the affine structure of a vector space when transporting a vector
to a chosen origin and treating it equivalently to the original vector.

Affine transformations are themselves more general than linear transforma-
tions. For one, linear maps must preserve the origin, sending zero to zero, while
affine maps may not. In addition to the rotations and translations present in
the Euclidean case, elements of the affine group additionally may induce both
uniform and non-uniform scaling, as well as shearing of figures. And in contrast
to the Euclidean case, affine transformations do not in general preserve angles
and distances – they do, however, still preserve straight lines, and send parallel
lines to parallel lines.

In order to obtain this type of geometry in the framework of the Erlangen
program, one can carry out similar constructions to arrive at the following result:

Definition 2.6. The affine group of dimension n is defined as Affn(k) :=
Tn(k) oGLn(k).

As noted previously, the group On(k) is a subgroup of GLn(k), and so this
result suggested to Klein and his contemporaries that Euclidean geometry was,
in fact, a restriction, or special case, of affine geometry.

2.3 Projective Geometries
In the case of projective geometry, one wants to introduce a notion of “per-
spective projection” in addition to the isometries obtained in the Euclidean and
Affine cases. However, in order to do so, one must forego the preservation of
parallel lines. This is a consequence of the early study of the subject, with
respect to capturing 3-dimensional images on a 2-dimensional medium. This re-
quired the introduction of a point at which all parallel lines in the image would
meet, which is now referred to as a vanishing point or a point at infinity.

To see why Klein considered Projective geometry to be the most general
and universal among the geometries known at his time, it suffices to carry out
a similar construction in the projective case. One first takes a vector space
Vk, constructs a group that will act as the symmetries that preserve the desired
properties, and identifies the geometry as the space that remains invariant under
such a group action. In the projective case, the group itself is constructed in a
slightly different way, and so a definition from group theory is needed.
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Figure 3: Using a Vanishing Point for Perspective Projection

Definition 2.7. Given a group G, the center of a group Z(G) is defined as
Z(G) := {g ∈ G | gh = hg ∀h ∈ G}, the set of elements that commute with
every other element of the group.

Definition 2.8. The projective linear group of dimension n−1 is the group de-
fined by PGLn−1(k) = GLn(k)/Z(GLn(k)), the general linear group quotiented
by its center.

The n + 1 condition is the first noticeable difference, which arises from the
fact that a projective space of dimension n is obtained from a vector space of
dimension n+1, and the projective transformations (often called homographies)
are induced by the linear transformations in that vector space. Such projective
transformations play an important role in complex analysis, where one can re-
alize the Mobius group PGL2(C) as fractional linear transformations on the
Riemann sphere C ∪ {∞}, which could equivalently be denoted the complex
projective line.

It can then be shown that, for fixed k and n, both the Euclidean and Affine
groups are isomorphic to subgroups of the Projective group, and it is in this way
that those geometries can be recovered as special cases of projective geometry.

3 Into the 20th Century

3.1 Post-Erlangen Program
Armed with the tools of the Erlangen program, geometry once again become
an active mathematical research topic and its impact rippled throughout the
19th and 20th centuries. It was one of the first moderately successful modern
attempts to provide a unifying framework under which many disparate parts of
mathematics could be connected and derived from one another, revealing new
connections and insights.
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It is a fact that the program was not all-encompassing - for example, the
recently developed Riemannian geometry did not easily fit into this framework.
But perhaps its most significant and lasting impact on Mathematics lies in
its cultural effects, and in particular, in the way it affected how mathematical
knowledge was organized and synthesized. It proved the usefulness of having
such unifying frameworks, a theme that would become prominent in the 20th

century, and laid the groundwork for the philosophy that would drive the de-
velopment of category theory in the 1940s.

3.2 The Italian School
Meanwhile, the field of Algebraic Geometry progressed somewhat independently,
but it became clear that affine and projective spaces were fundamental to the
subject, as were functions (and particularly polynomials) on those spaces. Major
work was done in this area in the late 19th and early 20th centuries by a group
referred to as “The Italian School” in Rome, primarily driven by the work of
Severi, Castelnuovo, and Enriques. In order to discuss the significance of their
work, however, it is necessary to introduce several more definitions.

Definition 3.1. Affine n-space over a field k, denoted An(k) is defined as the
set of n-tuples (k1, k2, · · · kn), along with the information of the vector spaces
Vk of dimension n over k and the action of the affine group Affn(k) on Vk.

In many ways, this is very similar to the vector space kn defined previously,
and in fact, there is a map kn → An(k) that is colloquially referred to as
“forgetting the origin”, and a reverse map An(k)→ kn that amounts to choosing
a coordinate system. An affine space is chosen generally when one doesn’t need
the full structure of a vector space, but would still like to consider notions such
as points, relative distances, collinearity, and the other isometries preserved by
the affine group.

If one then fixes some multivariate polynomial p in the polynomial ring
k[x1, x2, · · · , xn] over n indeterminates with coefficients in k, one can examine
points of the form

ā = (a1, a2, · · · an)

in An(k) such that p(a1, a2, · · · , an) = 0. The collection of such points is re-
ferred to as the zero locus of such a polynomial, or equivalently an algebraic
hypersurface.

For example, take k = R and consider polynomials of degree 2 in k[x, y]. In
generality, the hypersurface of such a polynomial p(x, y) will be defined by the
relation

p(x, y) = Ax2 + By2 + Cxy + Dx + Ey + F = 0,

where the coefficients A − F are taken to be real numbers. But this exactly
describes the general equation of a conic section, as studied by the Greeks, and
so we find that this new notion of a hypersurface perfectly generalizes algebraic
surfaces such as conic sections, but allows for variation in both dimension and
base field.
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This prompts the following definition:

Definition 3.2. Given a set S ⊆ k[x1, x2, · · ·xn] of the form S = {p1, p2, · · · pm},
the affine algebraic variety of S is defined as

V (S) := {ā | ā ∈ An(k), pi(ā) = 0 ∀pi ∈ S}.

(Note that the set S is sometimes referred to as a system of polynomials.)

In other words, one can take a number of polynomials and consider the
points where they simultaneously vanish, which is equivalent to looking at the
intersections of their associated hypersurfaces, and combine all of this informa-
tion into a structure called a variety. It is these objects – roughly speaking, the
zero loci of polynomials – that form one of the fundamental structures upon
which much Algebraic Geometry is based.

To see why such an object may be interesting, take k = R, the ring k[x, y],
and consider the polynomial

p1(x, y) = y2 − x3.

The variety V ({p1}) traces out an algebraic curve in the x-y plane, shown in
the first figure below. In contrast, consider also the polynomial

p2(x, y) = y2 − x3 + x,

then V ({p2}) is also an algebraic curve, as shown in the second figure. Finally,
consider

p3(x, y) = y2 − x3 − 3x2,

shown in the third figure.

(a) y2 − x3 = 0 (b) y2 − x3 + x = 0 (c) y2 − x3 − 3x2 = 0

Figure 4: Examples of Algebraic Curves

An immediate qualitative difference is that p1 has a “cusp” near 0, where it
may be unclear what the correct assignment of a tangent line should be, while
the second is “smooth” but also has a “double point” at which there are two
possible choices for a tangent line. The third, on the other hand, does not seem
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to exhibit any such irregularities, and is in fact an elliptic curve, an object with
a rich analytic and algebraic structure.

The types of irregularities present in p1 and p2 are in general referred to
as singularities of the curve, and so one might be inclined to wonder what
causes such singularities to occur, and if there are perhaps conditions on the
polynomials themselves that might guarantee that the curves generated contain
no such singularities.

Such questions drove many results in the classification of algebraic curves and
it was found that the genus associated to the curve, an essentially topological
property, was a powerful tool in such classifications. It was the extension of
these ideas to the classification algebraic surfaces in higher dimensions that the
Italian school focused their efforts on. To this end, many results were produced,
but their results and methods of proof have remained contentious throughout
the 20th century.

3.3 The Weil Conjectures and Grothendieck
Various progress in other areas of geometry was made throughout the first half
of the 20th century, most notably the advances of Hilbert and his proof of the
Nullstellensatz (roughly translated as “theorem of zero loci”). Recalling that a
variety was defined over system S of polynomials, where S is contained in some
polynomial ring k[x1, x2, · · · , xn], one form of the Nullstellensatz shows that if
one wants to check whether the variety V (S) is nonempty, one can equivalently
check whether S is a (proper) ideal in this ring. This firmly cemented the link
between Algebra and Geometry, providing a bridge that allowed many of the
tools from either one of these fields to be used in the other.

Around 1950, a mathematician named Andre Weil set forth “The Weil Con-
jectures”, three proposals that stem from setting k to be a finite field, considering
the resulting varieties, and defining analogs of the Riemann-Zeta function in or-
der to count the number of rational points on the resulting algebraic curves.
Weil conjectured that certain properties similar to the traditional Zeta function
should hold, particularly with respect to the locations of their zeros.

In doing so, he was able to formulate an analog of the Riemann Hypothesis
for these situations, and further conjectured that many of the newly formed tools
of homological algebra could be brought to bear on such a problem. Homological
tools had proved to be both powerful and successful in topology in the first half
of the century, and it was at this point that many researchers were beginning
to generalize such theories and apply them to other areas. In particular, Weil
suspected that applying homological methods from algebraic topology to these
conjectures would have significant number-theoretic ramifications.

It is here that Alexandre Grothendieck enters the picture, as well as his con-
temporary John-Pierre Serre, for within 15 years Grothendieck had published
solutions to two out of three of these conjectures. In the process, he introduced
many of the tools that would become standard in modern Algebraic Geometry –
his major contributions being in the development of the necessary homological
tools, a cohomology theory for varieties. Such contributions were framed within
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the recently developed language of category theory, and included the defini-
tions of abelian categories, derived functors, injective resolutions, schemes, and
sheaves.

Grothendieck’s general approach, which has gained traction widely across
mathematics in the resulting years, was noticing that certain classes of geometric
objects could be characterized by instead considering all of the maps into that
object from other similar objects. In particular, this applies to algebraic variety
– one can associate to a given variety a collection of particularly well-behaved
functions on that variety, the so-called “regular” functions, and in this way study
the variety itself.

This collection of functions constitutes the simplest example of a sheaf, mod-
ulo a number of technical conditions. Perhaps more surprisingly, this collection
forms a ring. Given any ring R, one can form the set of prime ideals of R,
denoted Spec(R), and even equip with with a topology (what is usually referred
to as the Zariski topology. If one then introduces a topological space into the
picture, there is a construction entitled the structure sheaf on the space which
contains information about the functions on that space, and taking a topological
space along with such a structure sheaf produces what is known as a scheme.

Although the construction of scheme itself is quite a bit more detailed and
nuanced than what has been described here, its power lies in its similarity to
notions in differential geometry, where homological methods had been success-
fully applied prior to Grothendieck. It is in this way that many powerful tools
from the study of manifolds can be generalized to work on algebraic objects,
and similarly to allow advances in the algebraic theory of rings to be brought
to bear on geometric problems.

However, such constructions proved to not just be limited to making connec-
tions between geometry, topology, and algebra, but as Weil had hoped, laid the
groundwork for many of these tools to be applied to number theory. This cul-
minated in the celebrated proof of Fermat’s Last Theorem by Andrew Wiles in
the 1990s, which built upon on many of the tools developed during this period.

4 Conclusion
In summary, perhaps the most notable influence of Algebraic Geometry on the
face of mathematics has been the bridges it has created between different fields.
In its study, many mathematical “Rosetta Stones” have been built, allowing
deeper connections to be built between seemingly disparate fields of mathemat-
ics, and moreover making possible the transport of powerful techniques across
these domains. In the latter half of the 20th century, Grothendieck left the
world of Mathematics, and spent most of his remaining days in solitude, liv-
ing in the Pyrenees until his death in 2014. And although mathematics is not
a lone endeavor, it is particularly hard to overstate the singular contributions
of Grothendieck, for his ideas continue to shape how modern mathematics is
formulated.
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