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]_ ‘ Differential Calculus

— 1.1 Big Theorems / Tools: ~

Proposition 1.1.1 (Fundamental Theorem of Calculus I).

o s = @)

Proposition 1.1.2 (Generalized Fundamental Theorem of Calculus).

Differential Calculus 7



Differential Calculus

9 b b(z) 9 o t=b(x)
/a f(:c,t)dt—/ = f(e,0)dt = f(@1) (1)

8_30 (x) a(z) 0T t=a(x)

= f(z,b(x)) - V() — f(z,a(z)) - d'(z)
of . .
If f(z,t) = f(t) doesn’t depend on z, then == = 0 and the second integral vanishes:

ox

(x)
8% /al()w) f@)dt = f(b(x)) - V'(z) = f(a(2)) - a'(z)

Remark 1.1.1 : Note that you can recover the original FTC by taking

a(z) =c
b(x) ==z
fa,t) = f(t).

Corollary 1.1.1(%).

o [® 0
o |t vd= [ @it + o,

Proposition 1.1.3 (Extreme Value Theorem).
Todo

Proposition 1.1.4(Mean Value Theorem).

feCI) = 3pel:fb)—fla)=[(p)b—a)
b
= EIpGI:/a f(x) de = f(p)(b—a).

Proposition 1.1.5(Rolle’s Theorem).

1.1 Big Theorems / Tools: 8



Differential Calculus

~

Proposition 1.1.6 (L’Hopital’s Rule).
If

o f(z) and g(z) are differentiable on I — {pt}, and

exists,

. . o f(=)
1 =1 €{0,+00}, Vzeld 0, 1
x;gt}f(w) x;gt}g(ﬁ) {0, £o0} zel g (z)# A @)

Then it is necessarily the case that

~

!
lim (m) = lim f (:B)
z—{pt} g(x)  =={pt} ¢'(x)

—~

Remark 1.1.2 : Note that this includes the following indeterminate forms:

0 o0
7 0-00, 0° o 1%, oo-— .
. 0 0 . oo 00
For 0 - 0o, can rewrite as 4 = —, or alternatively — = —.
= 0 o 9]
e.)

For 1, 00", and 0°, set
L:=lim f9 = InL =limgln(f)

to recover oo - 0,0 - 00, or 0-0.

Proposition 1.1.7 (Taylor Expansion).

() (q
f ( )(LL'—(I)n

n!

T(a,x) = i
n=0
= (@) + F/(a)(x — ) + " (a)(x — a)

b @) 0+ g (@) —a) +

There is a bound on the error:

f(a)

() = Thla ) < | Ty

")(a)

n!

(x — a)" is the kth truncation.

M=

where T} (a,z) =

n=0

1.1 Big Theorems / Tools: 9




Differential Calculus

Remark 1.1.3 : Approximating change: Ay ~ f'(z)Ax

s 1.3 Tools for finding limits ~
How to find %1_1)% f(x)in order of difficulty:
o Plug in: if f is continuous, %11}1(11 f(z) = f(a).
e Check for indeterminate forms and apply L’Hopital’s Rule.
e Algebraic rules
e Squeeze theorem
e Expand in Taylor series at a
e Monotonic 4+ bounded
o One-sided limits: lim f(z) = lim f(a —¢)
T—a~ e—0
o Limits at zero or infinity:
i, f(z) = lim f() and Ly (o) = Jim 7 ;)
Jim 7(a) = fim 7(2 ) and Jim f@) =l 7 (7
— Also useful: if p(z) = ppa” + --- and ¢(z) = gpz™ + - - -,
0 degp<deggq
1j_>m 1% ={oo degp>degyq
e Pn degp = degq
an
1
/N Warning 1.1: Be careful: limits may not exist!! Example : lii)rb p £ 0.
— 1.4 Asymptotes ~
1.2 Limits 10



Differential Calculus

e Vertical asymptotes: at values x = p where ;13% =+00

o Horizontal asymptotes: given by points y = L where L Eril f(x) < o0
x (o ¢]

e Oblique asymptotes: for rational functions, divide - terms without denominators yield equation
of asymptote (i.e. look at the asymptotic order or “limiting behavior”).

— Concretely:
T) = M =r(z ﬂ ~r(z
f(x) () ( )+t(x) (z)
P 1.5 Recurrences ~

o Limit of a recurrence: x,, = f(Tp—1,Zn_2, )

— If the limit exists, it is a solution to x = f(x)

) 1.6 Derivatives ~o

Proposition 1.6.1(Chain Rule).

e (Fog)=(f'09) ¢

Proposition 1.6.2 (Product Rule).

0
apl 9=1"9+9-f
€T

Proposition 1.6.3 (Quotient Rule).

Az g(x) 9

Mnemonic: Low d-high minus high d-low

1.4 Asymptotes 11



I Integral Calculus

Proposition 1.6.4 (Inverse Rule).

- Often able to solve for @ this way.

ox

« Obtaining derivatives of inverse functions: if y = f~!(z) then write f(y) = z and implicitly
differentiate.

— 1.8 Related Rates ~

General series of steps: want to know some unknown rate y;

e Lay out known relation that involves y
o Take derivative implicitly (say w.r.t t) to obtain a relation between y; and other stuff.
e Isolate y; = known stuff

Ezample 1.8.1 (?): Example: ladder sliding down wall

o Setup: [, x; and z(t) are known for a given ¢, want y;.
z(t)? +yt)? =17 = 2zx + 2yy, =21, =0
(noting that [ is constant)

z(t)
y(t)

— x(t) is known, so obtain y(t) = /12 — z(t)? and solve.

—Soy=— Lt

2 ‘ Integral Calculus

— 2.1 Average Values ~

1.7 Implicit Differentiation 12



Integral Calculus

Proposition 2.1.1 (Integral formula for average value).

b
ff = bia/a f(t)dt

Proof (?2).
Apply MVT to F(z).

— 2.2 Area Between Curves

Area in polar coordinates:

— 2.3 Solids of Revolution
Disks A= / 7r(t)? dt
Cylinders A= / 2mr(D)h(t) dt.
o 2.4 Arc Lengths
L= [ ds ds = \Jda? + dy?

2.1 Average Values



I Integral Calculus

o 2.5 Center of Mass

Given a density p(x) of an object R, the z; coordinate is given by

/R xip(x) dx

T, =
/p(w) dz
R
— 2.6 Big List of Integration Techniques
: 0
Given f(z), we want to find an antiderivative F'(x /f satisfying — o F(x) = f(x)

e Guess and check: look for a function that differentiates to f.
e wu- substitution

— More generally, any change of variables

r—ot) = [ fa w= [’ O fo0)@) o (a) do

2.6.1 Integration by Parts:

The standard form:

/udvzuv—/vdu

« A more general form for repeated applications: let v™1 = / v, v 2= / / v, etc.

b 1
/ UV = uv
a

=>/uv— B

e Generally useful when one term’s nth derivative is a constant.

2.5 Center of Mass

14



Integral Calculus

2.6.2 Shoelace Method

e Note: you can choose u or v equal to 1! Useful if you know the derivative of the integrand.

Derivatives Integrals Signs Result

U v NA NA
o’ /v + u/v
u’ //v — —u'//v

Fill out until one column is zero (alternate signs). Get the result column by multiplying diagonally,
then sum down the column.

2.6.3 Differentiating under the integral

b(z) b(z) b(z)
[ e [ 2 fa e = fl)oe()

0z Ja() a(z)

Proof (?).
Let F(x) be an antiderivative and compute F’(x) using the chain rule.

o LIPET: Log, Inverse trig, Polynomial, Exponential, Trig: generally let « be whichever
one comes first.

e The ridiculous trig sub: for any integrand containing only trig terms
— Transforms any such integrand into a rational function of x

— Let u=2tan 'z, du then

D sl

/abf(m) dr = /Gtan% f(u) du

a
an2

Ezample 2.6.1 (?):

/2 1
/ o =1/2
0

sin 6

2.6 Big List of Integration Techniques 15



Integral Calculus

e Trigonometric Substitution

Va2 —z? = x = asin(f) dx = acos(6) df
Vva? + a2 = x = atan(f) dx = asec’(f) db
Va?—a? = x = asec(0) dx = asec(d) tan(0) do

2.6.4 Partial Fractions

2.6.5 Trigonometric Substitution

e Trig Formulas

1
sin?(z) = 5(1 —2cos )

e Products of trig functions

— Setup: /sina(m) cos’(z) dx

1
& Both a,b even: sin(z)cos(z) = 3 sin(z)

¢ a odd: sin? = 1 — cos?, u = cos(z)
¢ bodd: cos® =1 —sin?, u = sin(z)

— Setup: /tan“(z) sect(z) da
¢ a odd: tan® = sec? —1, u = sec(z)

¢ b even: sec? = tan? —1,u = tan(z)

Other small but useful facts:

21 27
/ sin 0 d9=/ cosf df = 0.
0 0

2.6 Big List of Integration Techniques 16



Integral Calculus

o 2.7 Optimization ~

o Critical points: boundary points and wherever f'(x) =0

e Second derivative test:

— f"(p) >0 = pisamin
— f"(p) <0 = pis amax

o Inflection points of h occur where the tangent of h' changes sign. (Note that this is where A’
itself changes sign.)

e Inverse function theorem: The slope of the inverse is reciprocal of the original slope
o If two equations are equal at exactly one real point, they are tangent to each other there
- therefore their derivatives are equal. Find the x that satisfies this; it can be used in the

original equation.

o Fundamental theorem of Calculus: If

[ fa)dz = F(b) - Fla) — F'(a) = f(a).

o Min/maxing - either derivatives of Lagranage multipliers!
e Distance from origin to plane: equation of a plane

P:ax+by+cz=d.

— You can always just read off the normal vector n = (a,b,c). So we have nx = d.

d

— Since An is normal to P for all A\, solve nAn = d, which is A = 7H ||2
n

e A plane can be constructed from a point p and a normal n by the equation np = 0.

o In a sine wave f(z) = sin(wz), the period is given by 27 /w. If w > 1, then the wave makes
exactly w full oscillations in the interval [0, 27].

e The directional derivative is the gradient dotted against a wunit vector in the direction of
interest

o Related rates problems can often be solved via implicit differentiation of some constraint
function

e The second derivative of a parametric equation is not exactly what you’d intuitively think!

2.7 Optimization 17



Vector Calculus

o For the love of god, remember the FTC!

8 x
9 dy —
o | f@dy = 1)
o Technique for asymptotic inequalities: WTS f < g, so show f(zg) < g(z¢) at a point and
then show Vr > x¢, f'(7) < ¢’(x). Good for big-O style problems too.

o Inflection points of h occur where the tangent of h' changes sign. (Note that this is where A’
itself changes sign.)

e Inverse function theorem: The slope of the inverse is reciprocal of the original slope
o If two equations are equal at exactly one real point, they are tangent to each other there
- therefore their derivatives are equal. Find the x that satisfies this; it can be used in the

original equation.

e Fundamental theorem of Calculus: If

/ f(z)dz = F(b) — F(a) — F'(z) = f(x).

o Min/maxing - either derivatives of Lagranage multipliers!

e Distance from origin to plane: equation of a plane

P:ax+by+cz=d.

3 ‘ Vector Calculus

Notation:
v,a,--- vectors in R"
R,A,--- matrices
r(t) A parameterized curve r : R — R"
- v
v —.
v

Vector Calculus 18



Vector Calculus

— 3.1 Plane Geometry ~

Proposition 3.1.1(Slope of a vector in RZ).

<

v=[r,y) €ER? = m=">.
x

Proposition 3.1.2 (Rotation matrices in R?).

cos —sinf 0 —1
RG_[SiDQ cos 6 1=>R%_l1 0 1

Corollary 3.1.1(?).

R:x = Rx H = [_y] € Rx*.
2 HH

Thus if a planar line is defined by the span of [z, y] and a slope of m = y/x, a normal vector

1
is given by the span of [—y, z] of slope —— = —z/y.
m

Ezample 3.1.1 (?): Given v, the rotated vector R%v is orthogonal to v, so this can be used to
obtain normals and other orthogonal vectors in the plane.

Proposition 3.1.3.
There is a direct way to come up with one orthogonal vector to any given vector:

— (b =[-1,-1,0
v=la,bc] = y:= [=(b+c),aa] v=[-1-1, ],ERVJ'.
[c,c,—(a+Db)] else
— 3.2 Projections ~
For a subspace given by a single vector a:
proja(x) = (x, a)a Proja () = x — proja (x) = x — {x, a)a

In general, for a subspace colspace(A) = {a;,---a,},

3.1 Plane Geometry 19



Vector Calculus

n
proja(x) = > (x, a;)a; = A(ATA)"'ATx
i=1

— 3.3 Lines ~o

General Equation Axr+By+C=0

Parametric Equation r(t) =tx+Db.

Characterized by an equation in inner products:

yeEL < (y,n)=0

Proposition 3.3.1(Equation for a line between two points).
Given pg, p1, take x = p; — pg and b = p; for either i:

r(t) = t(p1 — pPo) + Po =tp1 + (1 —t)po.

Proposition 3.3.2(Symmetric equation of a line).
If a line L is given by

r(t) = t[$1,$2,x3] + [p17p27p3]7

then

xr — - z —
(,y,2) € L <= R 103'
1 X9 xs3

Ezample 3.3.1 (?): The symmetric equation of the line through [2,1, —3] and [1,4, —3] is given by

x—2 y+1 =2z-3
1 =5 6

3.3.1 Tangent Lines / Planes

Key idea: just need a point and a normal vector, and the gradient is normal to level sets.

3.3 Lines 20
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Theorem 3.3.1(The Tangent Plane Equation).
For any locus f(x) = 0, we have

x € Ty(p) = (Vf(p), x—p) =0.

3.3.2 Normal Lines

Key idea: the gradient is normal.
To find a normal line, you just need a single point p and a normal vector n; then

L:{x‘x:p—ktv}.

— 3.4 Planes ~

General Equation Ar+ By+Cz+ D=0

Parametric Equation y(t,s) =tx; +sx2+b

Characterized by an equation in inner products:

yeP < (y—po, n)=0

Proposition 3.4.1(Writing equation from a point and a normal).
Determined by a point pg and a normal vector n

.

Proposition 3.4.2(Writing equation from two vectors).
Given vg, vy, set n = vg X vy.

3.4.1 Finding a Normal Vector

e Normal vector to a plane

— Can read normal off of equation: n = [a, b, ]
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e Computing D:

— D = (po, n) = pin1 + pana + p3ns
— Useful trick: once you have n, you can let pg be any point in the plane (don’t necessarily
need to use the one you started with, so pick any point that’s convenient to calculate)

3.4.2 Distance from origin to plane

o Given by D/||n|| = (po, n). Gives a signed distance.

3.4.3 Distance from point to plane

o Given by (-, n)
e Finding vectors in the plane

o Given P=[A,B,C] " [z,y,2] =0, can take {—g, 1,0], { ¢

_Zvov ]-:|

3.5 Curves

)
[

3.5.1 Tangent line to a curve

We have an equation for the tangent vector at each point:

~

T(t) =r/(t),
SO we can write

Ly (t) = r(to) + tT(to) == r(ty) + tr'(to).

3.5.2 Normal line to a curve

« Use the fact that r”(t) € Rr/(¢)*, so we have an equation for a normal vector at each point:

N(t) = r'(t).
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Thus we can write

Ly (t) = r(to) + tN(to) = r(to) + tr’(to).

Special case: planar graphs of functions Suppose y = f(z). Set g(z,y) = f(z) — y, then

1
Vg =[fz(z),—-1] = m= _fz(x)
o 3.6 Minimal Distances ~o

Fix a point p. Key idea: find a subspace and project onto it.

Key equations: projection and orthogonal projection of b onto a:

proj,(b) = (b, a)a proja (b) = b — proj,(b) = b — (b, a)a

3.6.1 Point to plane
o Given a point p and a plane S = {x € R3 ’ nox + N1y + noz = d}, let n = [ny,n9,n3], find

any point q € S, and project q — p onto S = Span(n) using

d = |[projn(q — p)|| = [{a — p, 0[] = (q — p, n).

e Given just two vectors u, v: manufacture a normal vector n = u X v and continue as above.

Origin to plane Special case: if p =0,

d = |[proju(a)ll = [[{p, m)n[| = (p, n)..

3.6.2 Point to line

o Given a line L : x(t) = tv for some fixed v, use

d = ||projy (p)|| = IIp = (B, V7.

o Given a line L : x(t) = wgo + tw, let v = x(1) — x(0) and proceed as above.
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3.6.3 Point to curve

3.6.4 Line to line

Given r;i(t) = p1 + tvy and ra(t) = pa + tva, let d be the desired distance.

e Letn= Vmg, which is orthogonal to both lines.

e Then project the vector connecting the two fixed points p; onto this subspace and take its

norm:
d = |[proj,(p2 — p1)|l
= ||{(p2 — p1, n)n||
- <p2 — P1, n>
= (P2 — P1, V1 X V2).
— 3.7 Surfaces ~o

S ={(@y.2) | fla.y.2) =0} 2= flay)

3.7.1 Tangent plane to a surface

e Need a point p and a normal n. By cases:
o flz,y,2)=0

— Vf is a normal vector.
— Write the tangent plane equation (n, x — po), done.

o z2=g(x,y):

— Let f(z,y,2) = g(x,y) — z, then p € S <= p is in a level set of f.
— Vf is normal to level sets (and thus the surface), so compute V f = [g4, gy, —1]
— Proceed as in previous case

3.7.2 Surfaces of revolution

o Given f(z1,z2) = 0, can be revolved around either the z1 or x9 axis.
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— f(z,y) around the z axis yields f(z,£y/y%>+ 22) =0

— f(x,y) around the y axis yields f(+vz?+ 22,y) =0

— Remaining cases proceed similarly - leave the axis variable alone, replace other variable
with square root involving missing axis.

o Equations of lines tangent to an intersection of surfaces f(z,vy,2) = g(z,y, 2):

— Find two normal vectors and take their cross product, e.g. n =V f x Vg, then
L:{X‘x:ertn}

e Level curves:

— Given a surface f(z,y,z) = 0, the level curves are obtained by looking at e.g. f(x,y,c) =
0.

4 ‘ Multivariable Calculus

Theorem 4.0.1 (Key Theorem).
Given a function f : R” — R, let S := {p e R" ‘ f(p) = k:} denote the level set for k € R.
Then

Vf(p) € Sy
— 4.1 Notation ~
v = [v1, Vg, ] a vector
ith term
~~ , )
e =1[0,0,---, 1 -0 the ith standard basis vector
p:R" =R a functional on R"
(p($171‘2’...) — ...
F:R"— R" a multivariable function

F(l‘l,$2,"’) - [F]_(SC],.’E27"'),FQ(I’]_,I’Q,’ : )7 7Fn($1ax27'”)]
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) 4.2 Partial Derivatives ~

Definition 4.2.1 (Partial Derivative).
For a functional f : R™ — R, the partial derivative of [ with respect to z; is

of .. f(p+he)— f(p)
&vi (p) o ilzlir%) h
Ezxample 4.2.1 (n=2):
f:RZSR
0 h —
67f (20, 90) = }g% f(xo + ,yO})L f(zo0,v0)
o 4.3 General Derivatives ~

Definition 4.3.1 (General definition of differentiability).
A function f : R" — R™ is differentiable iff there exists a linear transformation Dy : R" — R™
such that the following limit exists

|f(x) = f(p) — Dy(x —p)l|

lim = 0.
EE [x —pl|
Remark 4.3.1 : Dy is the “best linear approximation” to f.
Definition 4.3.2 (Jacobian).
When f is differentiable, D can be given in coordinates by
ofi
De)n =
( f) J axj
This yields the Jacobian of f:
i 6f1 8f1 8fl |
| am® g ® @
| | gy My .. Il
D¢(p) |Vfi(p) Vi2(p) Via@)| =| 971 02 Ozn
| | | : : :
Afm Ofm Ofm
_8371() 8x2<) axn()_

Remark 4.3.2 : This is equivalent to
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Taking the gradient of each component f; of f,
Evaluating V f; at p,

e Forming a matrix using these as the columns, and
o Transposing the resulting matrix.

Definition 4.3.3 (Hessian).
For a function f : R™ — R, the Hessian is a generalization of the second derivative, and is
given in coordinates by

0% f
(Hf)ij B 8$i$j
Explicitly, we have
o0 f o2 f
| | | g 0x1071 a 0x10z), a
Hi(p) = |DVfi(p) DVfa(p) -+ DVfu(p)| = : g ;
| | | 0*f o*f
0x,0x1 (@) - 0x,0x, &)

Remark 4.53.3 : Mnemonic: make matrix with V f as the columns, and then differentiate variables
left to right.

o 4.4 The Chain Rule ~

Ezample 4.4.1 (How to expand a partial derivative): Write out tree of dependent variables:

> T
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Then sum each possible path.

Let subscripts denote which variables are held constant, then

(5),=(52)
ox y_ 0T ) yyw

— 4.5 Approximation

Let z = f(z,y), then to approximate near pg = [xo, Yo,

f(x) ~ f(p) + Vf(x—Ppo)
= f(z,y) = f(p) + fo(P)(z — x0) + fy(P)(y — ¥0)

s 4.6 Optimization

4.6.1 Classifying Critical Points

Definition 4.6.1 (Critical Points).
Critical points of f given by points p such that the derivative vanishes:

crit(f) = {p € R" | Dy(p) = 0}

Proposition 4.6.1(Second Derivative Test).
1. Compute

fa:ct fxy

H =
‘ f(p)| |fy:z: fyy

2. Check by cases:

e |H(p)| = 0: No conclusion
e |H(p)| < 0: Saddle point
« |H(p)| > 0:

4.5 Approximation
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— faz(p) >0 = local min
— faz(P) <0 = local max

Remark 4.6.1 : What’s really going on?
o Figenvalues have same sign <= positive definite or negative definite

— Positive definite = convex = local min

— Negative definite = concave = local max

e Extrema occur on boundaries, so parameterize each boundary to obtain a function in one less
variable and apply standard optimization techniques to yield critical points. Test all critical
points to find extrema.

o If possible, use constraint to just reduce equation to one dimension and optimze like single-
variable case.

4.6.2 Lagrange Multipliers

The setup:

Optimize f(x) subject to g(x) =c
= Vf=2AVyg

1. Use this formula to obtain a system of equations in the components of x and the parameter A.

2. Use A to obtain a relation involving only components of x.
3. Substitute relations back into constraint to obtain a collection of critical points.

4. Evaluate f at critical points to find max/min.

— 4.7 Change of Variables ~

For any f : R"™ — R" and region R,

[ 100V = [[(£29)00 - 1Dy0)] av
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5 ‘ Vector Calculus
o 5.1 Notation

R is a region, S is a surface, V is a solid.

F.dr = f [F1,Fo,F3] - [dx, dy, dz] = f Fidz + Faody + Fsdz
oS oS oS

The main vector operators

V:R"—R)— (R"—R")
8$i

i=1

div(F) : (R" — R") — (R" — R)

= OF;
F—V-F=) —
= O

curl(F) : (R?* — R?) — (R® — R?)

F—VxF
Some terminology:
Scalar Field p: X =R
Vector Field F: X —-R"
Gradient Field F: X—>R" Jdp: X >R |Vp=F

o The Gradient: lifts scalar fields on R” to vector fields on R"
o Divergence: drops vector fields on R" to scalar fields on R"
o Curl: takes vector fields on R? to vector fields on R?

Vector Calculus
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n
Xy =(X,y) =Y iy = T1y1 + Tay2 + - -
=1

Il = /{x, x) = | > af =/af+ 23 +
X y z
ax b = ljal|[bl sinfap = | a1 a> a3
b1 by b3
Du(SO):VSD u
"9 o 0 0
V= = |
;al’ie [8371 8952 8:Cn:|
v Op ‘_{8@6@... 3@}
14 — Ox; 0z Oz’ Omy,
P 0 Py 9%p
pI=V Ve ; ox?  Ox? N 0z e o2

" 9F; OF, OF, oF,
F = e Tl T
v Z ox; o0x1 + 0x9 + + o0z,

o o0 0
VxF= % aiy % = [F3y — FQZ, Flz - F3x7F2m - Fly]
Fl F2 Fd
//(VXF).dS://(VxF)-ndS
S S
o 5.2 Big Theorems

5.2.1 Stokes’ and Consequences

inner/dot product

norm

cross product

directional derivative

del operator

gradient

Laplacian

divergence

curl

surface integral

5.2 Big Theorems
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Theorem 5.2.1(Stokes’ Theorem).

8SF-dr://S(V><F)-dS.

Remark 5.2.1 : Note that if S is a closed surface, so S = (), this integral vanishes.

Corollary 5.2.1(Green’s Theorem).

" (OM 0L
Ldr+Mdy)= [ (22 -22) dudy.
fatt ot = [ (55 = 5;) dats

Proof (?).

Recovering Green’s Theorem from Stokes’ Theorem:
oM 0L

Let F = [L, M,0], then V x F = [0, 0, B a—y]

Corollary 5.2.2(Divergence Theorem).

//WF-dS:///V(V-F) dv.

Remark 5.2.2 :

e Vx(Vyp)=0
e V- (VXxF)=0

5.2.2 Directional Derivatives
Definition 5.2.1 (Directional Derivative).

Dyf(p) = 9 (p+ 1v)|

Remark 5.2.3 : Note that the directional derivative uses a normalized direction vector!

Theorem 5.2.2 (Dot product expression of directional derivative).
Suppose f : R” — R and v € R". Then

Dy f(p) =(Vf(P); v).

5.2 Big Theorems
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Proof (?).
We first use the fact that we can find L, the best linear approximation to f:

L(x) == f(p) + D¢(p)(x — p)

va(p) = DVL(p)
L(p +tv) — L(p)

= lim
t—0 t
iy @)+ Dy (P)(P +tv — p) — (£(P) + Ds(P)(P — P))
t—0 t
_ i 2 )(@V)
t—0 t
= Ds(p)v
=Vfp)-v
(oot
|
s 5.3 Computing Integrals ~

5.3.1 Changing Coordinates

Multivariable Chain Rule

Polar and Cylindrical Coordinates

T =rcosf
y =rsinf
dV —r dr df

Spherical Coordinates

x =rcosf = psinpcosf
y =rsinf = psin psin 6
dV — r?sing dr do df
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5.3.2 Line Integrals

Curves

o Parametrize the path C as {r(¢) : ¢t € [a, ]}, then

b
L fds=[on ] a

= [ 160,90, 20+ o7 + 7

Vector Fields

o If exact:

0 0

~Z F;=—F F, de +Fo dy = —
95 1= 5 2:>/193+ 2 dy = ¢(p1) — ¢(po)

The function ¢ can be found using the same method from ODEs.

o Parametrize the path C as {r(t) : t € [a,b]}, then

= [ [Fi(z(t),y(t), ), Fa(x(t),y(t), )] - [xt,ye, -] dt

= [ Fi(x(t),y(t) )z + Fo(z(t),y(t), - )y + - dt

o Equivalently written:

b
/ Fi dzx + Fo dy—i—-~~::/F-dr
a C

in which case [dz,dy, -] = [z, y,- -] =1/ (1).

o Remember to substitute dx back into the integrand!!

5.3.3 Flux

//SF-dS://SF-ﬁdS.
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5.3.4 Area

Proposition 5.3.1(Areas can be computed with Green’s Theorem).
Given R and f(z,y) =0,

' 1
A(R):% xdy:—y{ ydx:ff —y dz + x dy.
OR OR 2 Jor

Proof (?).
Compute

]{ xdy:—% y dz
OR OR
1 1
== —ydx—l—a:dy:f//l—(—l)dA:/ 1dA
2 Jor 2JJR R

5.3.5 Surface Integrals
o For a paramterization r(s,t) : U — S of a surface S and any function f : R" — R,
//fdA // or)(s,t) [n| dA
e Can obtain a normal vector n = T,, x T,
— 5.4 Other Results ~

Ezample 5.4.1 (¢): V-F =0 /~ 3G : F =V x G. A counterexample

1
Va2 4+ y? + 22

— VF =0 but // F-dS =41 #0
52

F(l‘,y,Z): [1:73/"2] ’ S:SQCRg

Where by Stokes’ theorem,

F=VxG —= /F:/ V x G
S2 S2

= G dr by Stokes
aS

=0
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since 85? = 0.

Proposition 5.4.1 (Sufficient Conditions).
Sufficient condition: if F is everywhere C*,

G : F=V x G < //F'dS:Ofor all closed surfaces S.
S

6 ‘ Linear Algebra

Remark 6.0.1 : The underlying field will be assumed to be R for this section.

— 6.1 Notation
Mat(m, n) the space of all m x n matrices
T a linear map R" — R™
A € Mat(m,n) an m X n matrix representing 7T’
A" € Mat(n, m) an n X m transposed matrix
a a 1 x n column vector
a' an n X 1 row vector
A=la, -, a] a matrix formed with a; as the columns
V.W vector spaces
[V|, dim(V) dimensions of vector spaces
det(A) the determinant of A

[A| b] :=[a1, 20,2, b]

[AI B} = lay, - ay, b1, -, byl
Spec(A)

Ax=Db

r = rank(A)

rp = rank ([A | bD

augmented matrices

block matrices

the multiset of eigenvalues of A
a system of linear equations
the rank of A

the rank of A augmented by b.

e 6.2 Big Theorems

Linear Algebra



I Linear Algebra

Theorem 6.2.1(Rank-Nullity).

[ker(A)[ + [im(A)[ = |dom(A)],

where nullspace(A) = [im Al,rank(A) = |im(A)|, and n is the number of columns in the
corresponding matrix.
Generalization: the following sequence is always exact:

0 — ker(A) 24 dom(A) Ay im(A) — 0.

Moreover, it always splits, so dom A = ker A @ im A and thus |[dom(A)| = |ker(A)| + [im(A)|.

Remark 6.2.1 : We also have

dim(rowspace(A)) = dim(colspace(A)) = rank(A).
— 6.3 Big List of Equivalent Properties ~

Let A be an m x n matrix. TFAE: - A is invertible and has a unique inverse A~ - AT is
invertible - det(A) # 0 - The linear system Ax = b has a unique solution for every b € R™ -
The homogeneous system Ax = 0 has only the trivial solution x = 0 - rank(A) = n - i.e. A is

k
full rank - nullity(A) := dimnullspace(4) = 0 - A = H E; for some finite k, where each E; is
i=1
an elementary matrix. - A is row-equivalent to the identity matrix I, - A has exactly n pivots -
The columns of A are a basis for R" - i.e. colspace(A) = R™ - The rows of A are a basis for R -
i.e. rowspace(A) = R™ - (colspace(A))" = (rowspaceA)™ = {0} - Zero is not an eigenvalue of A. -
A has n linearly independent eigenvectors - The rows of A are coplanar.

Similarly, by taking negations, TFAE:

e A is not invertible

o A is singular

« A" is not invertible

e detA=0

e The linear system Ax = b has either no solution or infinitely many solutions.
e The homogeneous system Ax = 0 has nontrivial solutions

e Ttank A <n

e dimnullspace A > 0

e At least one row of A is a linear combination of the others

e The RREF of A has a row of all zeros.
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Reformulated in terms of linear maps T, TFAE: - T~ : R™ — R" exists - im(7) = R" - ker(T) = 0
- T is injective - T' is surjective - T' is an isomorphism - The system Ax = 0 has infinitely many
solutions

— 6.4 Vector Spaces ~

6.4.1 Linear Transformations

Definition 6.4.1 (Linear Transformation).

Remark 6.4.1 : It is common to want to know the range and kernel of a specific linear transformation
T. T can be given in many ways, but a general strategy for deducing these properties involves:

e Express an arbitrary vector in V' as a linear combination of its basis vectors, and set it equal
to an arbitrary vector in W.

o Use the linear properties of T' to make a substitution from known transformations

e Find a restriction or relation given by the constants of the initial linear combination.
Remark 6.4.2 : Useful fact: if V< W is a subspace and dim(V') > dim(W), then V = W.

Definition 6.4.2 (Kernel).

Proposition 6.4.1 (Two-step vector subspace test).
If V. C W, then V is a subspace of W if the following hold:

(1) 0eV
(2) abeV = ta+beV.
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6.4.2 Linear Independence

Proposition 6.4.2(?).
Any set of two vectors {v,w} is linearly dependent <= 3\ : v = Aw, i.e. one is not a
scalar multiple of the other.

6.4.3 Bases

Definition 6.4.3 (Basis and dimension).
A set S forms a basis for a vector space V' iff

1. S is a set of linearly independent vectors, so Z ;8 =0 = «; = 0 for all 4.
2. S spans V, so ¥ € V implies there exist a; such that Z ;8 =170

In this case, we define the dimension of V' to be |S]|.

6.4.4 The Inner Product

The point of this section is to show how an inner product can induce a notion of “angle”, which
agrees with our intuition in Euclidean spaces such as R™, but can be extended to much less intuitive
things, like spaces of functions.

Definition 6.4.4 (The standard inner product).
The Euclidean inner product is defined as

n
(a, b) = Zaibi = a1by + agby + - - - + ayby,.
=1

Also sometimes written as a’b or a - b.

Proposition 6.4.3 (Inner products induce norms and angles).
Yields a norm

%[ =/ (%, %)

6.4 Vector Spaces 39



Linear Algebra

which has a useful alternative formulation
2
(x, x) = x|

This leads to a notion of angle:

X,y PO
(%, ¥) = [xlllyll cos8sy —> cos8yy = W ~® 9

where 0, , denotes the angle between the vectors x and y.

T
Remark 6.4.3 : Since cosf = 0 exactly when 6 = i§’ we can can declare two vectors to be

orthogonal exactly in this case:

xeyt <= (x, y)=0.
Note that this makes the zero vector orthogonal to everything.

Definition 6.4.5 (Orthogonal Complement/Perp).
Given a subspace S C V', we define its orthogonal complement

Sl:{VGV‘VSES, (v, s)=0}.

Remark 6.4.4 : Any choice of subspace S C V yields a decomposition V = S & S=.

Proposition 6.4.4 (Formula erxpanding a norm and ’Pythagorean theorem’).
A useful formula is

2 2 2
x4+ ylI” = lIx]" +2(x, y) + [ly[I*,-
When x € y*, this reduces to

I+ ylI* = [lx* + llyll*.

Proposition 6.4.5 (Properties of the inner product).
1. Bilinearity:
<Z ajaj, Zﬁkbk> => > a;Biaj, by).
j k joi
2. Symmetry:
(a, b) = (b, a)

3. Positivity:

a#0 = (a, a)>0
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4. Nondegeneracy:

a=0 <= (a, a)=0

6.4.5 Gram-Schmidt Process

Extending a basis {x;} to an orthonormal basis {u;}

u; = N(Xl)
ug = N(Xz — <X2, u1>u1)

u3z = N(x3 — (x3, uj)u; — (x3, uz)uy)

where N denotes normalizing the result.

In more detail The general setup here is that we are given an orthogonal basis {x;};"; and we
want to produce an orthonormal basis from them.

Why would we want such a thing? Recall that we often wanted to change from the standard basis €
to some different basis B = {b1, bg,---}. We could form the change of basis matrix B = [by, bg, - - -]
acts on vectors in the B basis according to

B[x|p = [x]¢.

But to change from £ to B requires computing B~!, which acts on vectors in the standard basis
according to

B 'x]e = [x]s.

If, on the other hand, the b; are orthonormal, then B~' = B” which is much easier to compute.
We also obtain a rather simple formula for the coordinates of x with respect to 5. This follows
because we can write

X

n n

<X, bz>bz = Z Cibi, .
1 i=1

)
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and we find that

This also allows us to simplify projection matrices. Supposing that A has orthonormal columns and
letting S be the column space of A, recall that the projection onto S is defined by

Ps=Q(Q"Q)'Q".

Since Q has orthogonal columns and satisfies Q7 Q = I, this simplifies to

Ps=QQ"..

The Algorithm Given the orthogonal basis {x;}, we form an orthonormal basis {u;} iteratively
as follows.

First define

which projects a vector onto the unit sphere in R by normalizing. Then,

u; = N(x1)
uy = N(x2 — (x2, uj)uy)

uz = N(x3 — (x3, uj)u; — (x3, ug)uy)

k—1

w, = N(xp — Y (xp, wi)w;)
=1

In words, at each stage, we take one of the original vectors x;, then subtract off its projections onto
all of the u; we’ve created up until that point. This leaves us with only the component of x; that
is orthogonal to the span of the previous u; we already have, and we then normalize each u; we
obtain this way.

Alternative Explanation:

Given a basis

S ={v1,va, - vn},
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the Gram-Schmidt process produces a corresponding orthogonal basis
S, = {ula uz,: - un}

that spans the same vector space as S.

S’ is found using the following pattern:
u; = Vi
Uz = Vg — Projy, V2

Uz = V3 — Proj,, V3 — Proj,, Vs

where
. u (v,u) u (v, u)
proj,v = (scalyv) = =
" Sl Tl (el (fu?

is a vector defined as the orthogonal projection of v onto u.

Projy,, va

€1
Figure 1: Image

The orthogonal set S’ can then be transformed into an orthonormal set S” by simply dividing the
vectors s € S’ by their magnitudes. The usual definition of a vector’s magnitude is

lall = /(a, a) and |a|* = (a, a)

As a final check, all vectors in S’ should be orthogonal to each other, such that

(vi, vj) =0 when ¢ # j

and all vectors in S” should be orthonormal, such that

(vi, vj) = 0y
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6.4.6 The Fundamental Subspaces Theorem

Given a matrix A € Mat(m,n), and noting that

A:R" - R™,
AT R™ 5 R"
We have the following decompositions:
R™ >~ ker A @ im A = nullspace(A) @& colspace(A”)
R™ >~ im A @ ker AT = colspace(A) @ nullspace(AT)

6.4.7 Computing change of basis matrices

— 6.5 Matrices ~o

Remark 6.5.1 : An m X n matrix is a map from n-dimensional space to m-dimensional space. The
number of rows tells you the dimension of the codomain, the number of columns tells you the
dimension of the domain.

/N Warning 6.1: The space of matrices is not an integral domain! Counterexample: if A is singular
and nonzero, there is some nonzero v such that Av = 0. Then setting B = [v, v, -] yields AB =0
with A # 0, B # 0.

Definition 6.5.1 (Rank of a matrix).
The rank of a matrix A representing a linear transformation 7" is dim colspace(A), or equiva-
lently dimim 7.

Proposition 6.5.1(%).
rank(A) is equal to the number of nonzero rows in RREF(A).

Definition 6.5.2 (Trace of a Matrix).
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Definition 6.5.3 (Elementary Row Operations).
The following are elementary row operations on a matrix:

o Permute rows
e Multiple a row by a scalar
e Add any row to another

Proposition 6.5.2 (Formula for matriz multiplication).
If A=Jap,as, | € Mat(m,n) and B = [by, bs, -] € Mat(n, p), then

C:=AB = ¢;j = Z aikbr; = <ai7 bj>
k=1

where 1 < ¢ <m and 1 < j <p. In words, each entry ¢;; is obtained by dotting row i of A
against column j of B.

6.5.1 Systems of Linear Equations

Definition 6.5.4 (Consistent and inconsistent).
A system of linear equations is consistent when it has at least one solution. The system is
inconsistent when it has no solutions.

Definition 6.5.5 (Homogeneous Systems).
?

Remark 6.5.2 : Homogeneous systems are always consistent, i.e. there is always at least one solution.

Remark 6.5.3 :

e Tall matrices: more equations than unknowns, overdetermined
e Wide matrices: more unknowns than equations, underdetermined

Proposition 6.5.3 (Characterizing solutions to a system of linear equations).
There are three possibilities for a system of linear equations:

1. No solutions (inconsistent)
2. One unique solution (consistent, square or tall matrices)
3. Infinitely many solutions (consistent, underdetermined, square or wide matrices)
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Unigue solution No solutions

A

Infinitely many
solutions

N

e 7 < 138 case 1, no solutions.

— rp = n: case 2, a unique solution.

7 dr + 2y
-1 dr + 2y

NN

i
4 Gz 4+ 4y

These possibilities can be check by considering r := rank(A):

e r =1y case 1 or 2, at least one solution.

— 1y < n: case 3, infinitely many solutions.

6.5.2 Determinants

e

Proposition 6.5.4(?).

det (A mod p) mod p = (det A) mod p

For 2 x 2 matrices,

-1
-1 _ a b
o=(0)

Proposition 6.5.5 (Inverse of a 2 x 2 matriz).

1 d —b
CdetA\ —c a

In words, swap the main diagonal entries, and flip the signs on the off-diagonal.

Let A € Mat(m,n), then there is a function

Proposition 6.5.6 (Properties of the determinant).

det : Mat(m, m) — R

A+ det(A)
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satisfying the following properties:
o det is a group homomorphism onto (R, -):
det(AB) = det(A) det(B)
— Some corollaries:

det A" = kdet A
det(A™1) = (det A) ! det(A") = det(A).

e Invariance under adding scalar multiples of any row to another:

det |— a; —| =det |— a; +ta; —

e Sign change under row permutation:

det

(—1) det

— More generally, for a permutation o € S,

- & Ar(j)
det : = (—1)%() det :
e Multilinearity in rows:
det |— ta; —| =tdet |— a; —
— ta; —] — a; —
— ta2 — — a —
det . = t"det
— tay, —| — ay, —
— tha —] — a —
- t2a2 - m J— as J—
det . = H t; det
: i=1
— tmanm — ] — Q; —
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e Linearity in each row:

det | — a;+a; —| =det|— a; —|+det|— a; —|.

o det(A) is the volume of the parallelepiped spanned by the columns of A.

o If any row of A is all zeros, det(A) = 0.

Proposition 6.5.7 (Characterizing singular matrices).
TFAE:

o det(4) =0
e A is singular.

6.5.3 Computing Determinants

Useful shortcuts:

o If A is upper or lower triangular, det(A) = H ;-
i

Definition 6.5.6 (Minors).
The minor M;; of A € Mat(n,n) is the determinant of the (n — 1) x (n — 1) matrix obtained
by deleting the ith row and jth column from A.

Definition 6.5.7 (Cofactors).
The cofactor Cj; is the scalar defined by

Cij = (—1)i+jMij o

Proposition 6.5.8(Laplace/Cofactor Erpansion).
For any fixed 4, there is a formula

det(A) = Z aijCij.
J=1
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Ezample 6.5.1 (?): Let

b

I
~N B~ =
co ot N
O O W

Then

6 6 4
e ]38 -a 2 5[]

: ! +3.| g':1.(_3)—2-<—6>+3-<—3>=0.

Proposition 6.5.9 (Computing determinant from RREF).
det(A) can be computed by reducing A to RREF(A) (which is upper triangular) and keeping
track of the following effects:

o R; <+ R; £ tR;: no effect.
e R; = Rj;: multiply by (—1).
e R; <= tR;: multiply by t.

6.5.4 Inverting a Matrix

Proposition 6.5.10 (Cramer’s Rule).

Given a linear system Ax = b, writing x = [x1,- -, z,], there is a formula
det(Bi)
Tp = ———2
det(A)

where B; is A with the ith column deleted and replaced by b.

Proposition 6.5.11 (Gauss-Jordan Method for inverting a matrix).
Under the equivalence relation of elementary row operations, there is an equivalence of aug-
mented matrices:

A1)~ [r] 47

where [ is the n x n identity matrix.

Proposition 6.5.12(Cofactor formula for inverse).

-1 _

1 ¢
= m[cij] -

where Cyj is the cofactor(Definition 6.5.7)) at position 4, j[’]
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l “Note that the matrix appearing here is sometimes called the adjugate.

Ezample 6.5.2 (Inverting a 2 x 2 matriz):
b\ 1 d —b
a p—
(C d) _ad—bc<—c a> where ad — bc # 0

What’s the pattern?

1. Always divide by determinant
2. Swap the diagonals
3. Hadamard product with checkerboard

Ezample 6.5.3 (Inverting a 3 x 3 matriz):

a b ¢ 1 ei— fh  —(bi—ch) bf —ce
Al=|d e f = i d —(di—fg) ai—cg —(af —cd)
g h 1 dh —eg  —(ah—bg) ae—0bd

The pattern:

1. Divide by determinant
2. Each entry is determinant of submatrix of A with corresponding col/row deleted
3. Hadamard product with checkerboard

4. Transpose at the end!!

6.5.5 Bases for Spaces of a Matrix

Let A € Mat(m,n) represent a map 7" : R" — R™.
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I Definition 6.5.8 (Pivot).
?

Proposition 6.5.13.

dim rowspace(A) = dim colspace(A).

The row space

im(T)" = rowspace(4) C R".

Reduce to RREF, and take nonzero rows of RREF(A).

The column space

im(7") = colspace(A) C R™

Reduce to RREF, and take columns with pivots from original A.

Remark 6.5.4 : Not enough pivots implies columns don’t span the entire target domain

The nullspace

ker(7") = nullspace(A) C R"

Reduce to RREF, zero rows are free variables, convert back to equations and pull free variables out
as scalar multipliers.

Eigenspaces For each A\ € Spec(A), compute a basis for ker(A — A\I).

6.5.6 Eigenvalues and Eigenvectors

Definition 6.5.9 (Eigenvalues, eigenvectors, eigenspaces).
A vector v is said to be an eigenvector of A with eigenvalue \ € Spec(A) iff

Av = \v
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I For a fixed A, the corresponding eigenspace F) is the span of all such vectors.

Remark 6.5.5 :

e Similar matrices have identical eigenvalues and multiplicities.
« Eigenvectors corresponding to distinct eigenvalues are always linearly independent
e A has n distinct eigenvalues = A has n linearly independent eigenvectors.

e A matrix A is diagonalizable <= A has n linearly independent eigenvectors.

Proposition 6.5.14 (How to find eigenvectors).
For A € Spec(A),

veEE, < veker(4d—-1\).

Remark 6.5.6 : Some miscellaneous useful facts:
o )€ Spec(A) = \? € Spec(A?) with the same eigenvector.
° H >\Z = det A

e Y AM=TrA

Finding generalized eigenvectors

Diagonalizability

Remark 6.5.7 : An n x n matrix P is diagonalizable iff its eigenspace is all of R" (i.e. there are n
linearly independent eigenvectors, so they span the space.)

Remark 6.5.8 : A is diagonalizable if there is a basis of eigenvectors for the range of P.
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6.5.7 Useful Counterexamples

A::[é ”:A”:H ﬂ, Spec(4) = [1,1
A l(l) _11] — A=, Spec(A) = [1, 1]
— 6.6 Example Problems ~

Problem. (?)
Determine a basis for

S = {ao+a1x+a2x2 ag,a1,a2 € RAag—a; — 2as :O}.

Solution:
Let ao =t,a1 = s,a9 = s + 2t, then

S:{(s+2t) + (s2 + ta?) ‘s,teR}
= {(s+s2) + (2t + ta?) | 5,t € R}
:{5(1+x)+t(2+x)‘s,teR}
= span { (1 +2), (2 + 2%}

and a basis for  is

{1+2),(2+2)}

Problem. (?)
T/F: If V is an n-dimensional vector space, then every set S with fewer than n vectors can
be extended to a basis for V.

Solution:
False. Only linearly independent sets with fewer than n vectors can be extended to form a
basis for V.
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Problem. (?)
T /F: The set of all 3 x 3 upper triangular matrices forms a three-dimensional subspace of
M;3(R).

Solution:
False. This set forms a 6-dimensional subspace. A basis for this space would require six
elements.

Problem. (?)
Given A =

o

what is the dimension of the null space of A?

Solution:
The augmented matrix for the system Ax = 0 is

[cclc]l 3 0
[ 0 0 0]

which has one free variable.

Writing one variable in terms of another results in x1 + 322 = 0 = x1 = 3x2.

Let x5 = r where r € R, then S = {:U ER?:x=r(3,1),r¢c R} =span{(3,1)}.

So, the set B = {(3,1)} is a Dbasis for the null space of A and\
the dimension of the null space is 1.

Problem. (?)
Let S be the subspace of R? that consists of all solutions to the equation z — 3y + z = 0.
Determine a basis for S, and find dim[S].

Solution:

The first goal is to find a way to express the set of 3-tuples that satisfy this equation.

Let y =r and z = s, then x = r — s. Then vectors v that satisfy the equation are all of the
form

v=3r—s,rs)=(3rr0)+(-s0,s) =r(3,1,0) + s(—1,0,1).

(Note - the goal here is to separate the dependent variables into different vectors so they can
be written as a linear combination of something.)
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The set S that satisfies this equation is then
S={veRr®:v=r(31,00+5(-1,0,1) Ar,s € R}
= span{(?), 1, 0)7 (_17 0, 1)}

All that remains is to check that the vectors in this span are linearly independent. This can
be done by showing that if

a(3,1,0) + b(—1,0,1) = (0,0,0)

then a = b= 0.
Since the two vectors are linearly independent and span the solution set S, they form a basis
for S of dimension 2.

Problem. (?)
Determine a basis for the subspace of Ms(R) spanned by

.

1 4
1 1
5 6
5 1

Solution:

Note that because the set contains the zero matrix, it is linearly dependent. So only consider
the other three, as they span the same subspace as the original set.

First, determine if { Ay, A, A3} is linearly independent. Start with the equation

c1A1 + coAs + c3A3 = 09
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which gives

cp—ca+5c3=0
3c1 +4co —6c3 =0
—c14+cag—5c3=0
2c1 +co+c3=0

which has the solution (—2r,3r,r). So the set is linearly dependent by the relation

—2A7 + 345+ A3 =0 or
Az =241 — 34,

So {A1, A2} spans the same subspace as the original set. It is also linearly independent, and
therefore forms a basis for the original subspace.

Problem. (?)
Let A, B,C € Ms(R). Define (A, B) = a11b11 + 2a12b12 4 3ag1be1. Does this define an inner
product on My (R)?

Problem. (?)
Instead, let (A, B) = aj1 + baa. Does this define an inner product on My (R)?

Problem. (?)
2

Let p = ag + a1% + agx? and ¢ = by + byz + bpz®. Define (p,q) = Z(z + 1)a;b;. Does this
i=0

define an inner product on P»? '

7 ‘ Linear Algebra: Advanced Topics

— 7.1 Changing Basis ~
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Proposition 7.1.1(Changing to the standard basis).
The transition matrix from a given basis B = {b;};_, to the standard basis is given by

A= by by - bnl,

and the transition matrix from the standard basis to B is A™1.

o 7.2 Orthogonal Matrices ~

Given a notion of orthogonality for vectors, we can extend this to matrices. A square matrix
is said to be orthogonal iff QQT = QTQ = I. For rectangular matrices, we have the following
characterizations:

QQT = I = The rows of @ are orthogonal,
QTQ =1 = The columns of Q are orthogonal.

To remember which condition is which, just recall that matrix multiplication AB takes the inner
product between the rows of A and the columns of B. So if, for example, we want to inspect
whether or not the columns of () are orthogonal, we should let B = () in the above formulation —
then we just note that the rows of Q7 are indeed the columns of @, so Q7 Q computes the inner
products between all pairs of the columns of () and stores them in a matrix.

o 7.3 Projections ~

Remark 7.3.1 : A projection P induces a decomposition

dom(P) = ker(P) @ ker(P)*.

Distance from a point p to a line a + tb: let w = p — a, then: |w — P(w, V)]

Proposition 7.3.1(Projection onto range).

Projrange(A) (X) = A(AtA)_lAtX.
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Mnemonic:

AtA
P ~ E-

With an inner product in hand and a notion of orthogonality, we can define a notion of orthogonal
projection of one vector onto another, and more generally of a vector onto a subspace spanned by
multiple vectors.

7.3.1 Projection Onto a Vector

Say we have two vectors x and y, and we want to define “the component of x that lies along y”,
which we’ll call p. We can work out what the formula should be using a simple model:

We notice that whatever p is, it will in the direction of y, and thus p = Ay for some scalar A\, where
in fact A = ||p|| since ||y|| = 1. We will find that A\ = (x, ¥), and so

(x, y)
(v, y)

p=(x, )y =

Notice that we can then form a “residual” vector r = x — p, which should satisfy r'p. If we were
to let A vary as a function of a parameter ¢ (making r a function of ¢ as well) we would find that
this particular choice minimizes ||r(t)]|.

7.3.2 Projection Onto a Subspace

In general, supposing one has a subspace S = span{y1,y2, - ,¥n} and (importantly!) the y; are
orthogonal, then the projection of p of  onto S is given by the sum of the projections onto each
basis vector, yielding

Note: this is part of why having an orthogonal basis is desirable!

Letting A = [y1,y2," -], then the following matrix projects vectors onto S, expressing them in
terms of the basis yﬂ

Py = (AAT)71AT,

1 . . . . . .
For a derivation of this formula, see the section on least-squares approximations.
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while this matrix performs the projection and expresses it in terms of the standard basis:

Py = A(AAT) 1 AT,

Equation of a plane: given a point pg on a plane and a normal vector n, any vector x on the plane
satisfies

(x —po, n) =0
To find the distance between a point a and a plane, we need only project a onto the subspace

spanned by the normal n:

d = (a, n).

One important property of projections is that for any vector v and for any subspace S, we have
v — Ps(v) € S*. Moreover, if v € S+, then P,(v) must be zero. This follows by noting that in
equation ??, every inner product appearing in the sum vanishes, by definition of v € S+, and so
the projection is zero.

7.3.3 Least Squares

Proposition 7.3.2(Normal Equations).
X is a least squares solution to Ax = b iff

AlAx = A

The general setup here is that we would like to solve Ax = b for x, where b is not in fact in
the range of A. We thus settle for a unique “best” solution x such that the error ||[Ax — b|| is
minimized.

Geometrically, the solution is given by projecting b onto the column space of A. To see why this
is the case, define the residual vector r = AXx — b. We then seek to minimize ||r||, which happens
exactly when r~im A. But this happens exactly when r € (im A)J‘, which by the fundamental
subspaces theorem, is equivalent to r € ker AT .

From this, we get the equation
ATr=0
— AT(Ax-Db)=0
— ATAx = ATp,
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where the last line is described as the normal equations.

If A is an m x n matrix and is of full rank, so it has n linearly independent columns, then one can
show that AT A is nonsingular, and we thus arrive at the least-squares solution

x=(ATA)1ATbE

These equations can also be derived explicitly using Calculus applied to matrices, vectors, and inner
products. This requires the use of the following formulas:

2(x, a)=a

ox

0
e (x, Ax) = (A+ AT)x

as well as the adjoint formula

(Ax, x) = <x, ATX>..

From these, by letting A = I we can derive

D= 2k, x) = 2x

ox ox

The derivation proceeds by solving the equation

0 9
o 7.4 Normal Forms ~

Remark 7.4.1 : Every square matrix is similar to a matrix in Jordan canonical form.

— 7.5 Decompositions ~

7.5.1 The QR Decomposition

Gram-Schmidt is often computed to find an orthonormal basis for, say, the range of some matrix
A. With a small modification to this algorithm, we can write A = QR where R is upper triangular
and @ has orthogonal columns.
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Why is this useful? One reason is that this also allows for a particularly simple expression of
least-squares solutions. If A = QR, then R will be invertible, and a bit of algebraic manipulation
will show that

x=R1'Q"b..

How does it work? You simply perform Gram-Schmidt to obtain {u;}, then

Q = [u,ug,---].

The matrix R can then be written as

- <u’i7 Xj>7 ZS]a
“ 0, else.

Explicitly, this yields the matrix

<111, X1> 2111, XQ; 2111, X3§
0 ug, X3 Uz, X3
R = 0 0 (u3, x3)

8 ‘ Appendix: Lists of things to know

Textbook: Leon, Linear Algebra with Applications
— 8.1 Topics ~

e 1.6: Partition Matrices

e 3.5: Change of Basis

e 4.1: Linear Transformations
e 4.2: Matrix Representations
e 4.3: Similarity

— Eram 1
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e 5.1: Scalar Product in R"

e 5.2: Orthogonal Subspaces

e 5.3: Least Squares

e 5.4: Inner Product Spaces

e 5.5: Orthonormal Sets

e 5.6: Gram-Schmidt

e 6.1: Eigenvalues and Eigenvectors

— Ezxam 2

e 6.2: Systems of Linear Differential Equations
e 6.3: Diagonalization

e 6.6: Quadratic Forms

e 6.7: Positive Definite Matrices

e 6.5: Singular Value Decomposition

e 7.7: The Moore-Penrose Pseudo-Inverse

— Final Exam

o 8.2 Definitions

e System of equations

e Homogeneous system
 Consistent/inconsistent system
e Matrix

o Matrix (i.e. Ax = Db)

e Inverse matrix

e Singular matrix

e Determinant

o Trace

e Rank

e Elementary row operation
e Row equivalence

e Pivot

e Row Echelon Form

¢ Reduced Row Echelon Form
e Gaussian elimination

e Block matrix

e Vector space

e Vector subspace

e Linear transformation

e Span

e Linear independence

o Basis

e Change of basis

e Dimension

e Row space
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e Column space

o Image

e Null space

e Kernel

e Direct sum

e Projection

e Orthogonal subspaces
e Orthogonal complement
e Normal equations

o Least-squares solution
e Orthonormal

o Eigenvalue

o Eigenvector

e Characteristic polynomial
o Similarity

e Diagonalizable

e Inner product

e Bilinearity

e Multilinearity

o Defective

e Singular value decomposition
e QR factorization

e Gram-Schmidt process
e Spectral theorem

e Symmetric matrix

e Orthogonal matrix

o Positive-definite

¢ Quadratic form

o 8.3 Lower-division review

e Systems of linear equations

— Consistent vs. Inconsistent
— Possibilities for solutions
— Geometric interpretation

e Matrix Inverses

— Detecting if a matrix is singular
— Computing the inverse
{ Formula for 2x2 case
< Augment with the identity
¢ Cramer’s Rule

e Vector Spaces

8.3 Lower-division review
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Definition in terms of closures
Span

— Linear Independence

— Subspace and the subspace test
Basis

e Common Computations

— Reduction to RREF

— Eigenvalues and eigenvectors

Basis for the column space

Basis for the nullspace

Basis for the eigenspace

Construct matrix from a given linear map
— Construct change of basis matrix

— Construct matrix projection onto subspace
Convert a basis to an orthonormal basis

— 8.4 Things to compute ~

o Construct a matrix representing a linear map

— With respect to the standard basis in both domain and range

— With respect to a nonstandard basis in the range

— With respect to a nonstandard basis in the domain

— With respect to nonstandard bases in both the domain and range

e Construct a change of basis matrix
e Check that a map is a linear transformation
e Compute the following spaces of a matrix and their orthogonal complements:

— Row space
— Column space
— Null space

o Compute the shortest distance between a point and a plane
o Compute the least squares solution to linear system

e Prove that something is a vector space

e Prove that a map is an inner product

e Compute determinants

e Compute the RREF of a matrix

o Compute characteristic polynomials, eigenvalues, and eigenvectors
e Diagonalize a matrix

e Solve a system of ODEs resulting arising from tank mixing
e Compute the singular value decomposition of a matrix

e Compute the rank and nullity of a matrix

e Convert a set of vectors to a basis

e Convert a basis to an orthonormal basis
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¢ Determine if a matrix is diagonalizable
e Compute the matrix for a projection onto a subspace
e Find the QR factorization of a matrix

— 8.5 Things to prove ~

e Prove facts about block matrices

e Prove facts about injective linear maps

e Prove facts about similar matrices

e Prove facts about orthogonal spaces and orthogonal complements
e Prove facts about inner products

e Prove facts about orthonormal sets

« Prove facts about eigenvalues/eigenvectors

e Understand when a matrix can be diagonalized

e Prove facts about diagonalizable matrices

e Prove facts about the orthogonal decomposition theorem

9 ‘ Ordinary Differential Equations

— 9.1 Techniques Overview ~
p(y)y' = q(7) separable
Y +p(x)y = q(z) integrating factor
y = f(z,y), f(tz, ty) = f(z,y) y = xV (z) COV reduces to separable
v+ p(z)y = q(x)y” Bernoulli, divide by y" and COV u = y' ™
M(z,y)dz + N(z,y)dy = 0 My = Ny :¢p(2,y) = c(pz = M,y = N)
P(D)y = f(z,y) z*e™ for each root

Where e** yields e cos bx, e** sin bx
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— 9.2 Types of Equations ~

e Separable equations:

)Y 4y =0 = [ty = [ atarar+0

1
= f@e) = [ osdy= [ f@a 0

— Population growth:
dpP
@ _p — P = Pyt
dt
— Logistic growth:
dP
& General form: o (B(t) — D(t))P(t)
¢ Assume birth rate is constant B(t) = By and death rate is proportional to instan-
taneous population D(t) = DgP(t). Then let r = By, C = By/Dg be the carrying

capacity:
dP P Py
dt:r<1_C)P:> P(t):%+e—rt(1—%)
o First order linear
@y =ale) = 1) =% @) = o ([ a@)I@ds+C)
dx I(x)
o Exact

— M(z,y)dz + N(z,y)dy =0 is exact <= Jp: gi = M(z,y), ?gj = N(z,vy)
oM _ ON
oy  x

— General solution:

cp(x,y)—/mM(s,y)ds+/yN(a;,t)dt—/ygt (/wM(s,t)ds> dt

x
(where / f(t)dt means take the antiderivative of f and consider it a function of z)

o Cauchy Euler: #todo
e Bernoulli: todo

o 9.3 Linear Homogeneous ~

General form:
Y™+ ey ™ ey ey + ey =0
p(D)y =[(D—ri)™y =0

where p is a polynomial in the differential operator D with roots r;:
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e Real roots: contribute m; solutions of the form

BT‘T,.TBMU, L. ’xmiflerz

o Complex conjugate roots: for r = a + bi, contribute 2m,; solutions of the form

e(aibz)x7 xe(aibz)az7 e xmi—le(aibl)x

= e cos(bx), e sin(bx), ze*” cos(bx), ze” sin(bx), --- ,

Example: by cases, second order equation of the form
ay’ +by +cy=0

- Two distinct roots: c1e® + coe"* - One real root: c1e"™ + coxe™ - Complex conjugates o + i3:
e**(cy1 cos fx + cosin fx)

- 9.4 Linear Inhomogeneous ~

General form:
y" ey ey ey ey = Fla)
p(D)y =I[(D—=riy™y=0

Then solutions are of the form y. + y,, where y. is the solution to the associated homogeneous
system and y, is a particular solution.

Methods of obtaining particular solutions

9.4.1 Undetermined Coefficients

« Find an operator p(D) the annihilates F'(z) (so ¢(D)F = 0)

o Find solution of ¢(D)p(D) = 0, subtract of known solutions from homogeneous part to obtain
the form of the trial solution Agf(x), where Ap is the undetermined coefficient

e Substitute trial solution into original equation to determine Ag

Useful Annihilators:

F(z)=p(z): Ddeg(p)+1
F(z) = p(x)e : (D — q)desP)+1
F(z) = cos(az) + sin(az) : D? +a?
F(x) = e"(agcos(bz) + by sin(bz)) : (D—-2)(D—-%) = D? —2aD + a® + b?
F(z) = p(x)e* cos(bx) + p(x)e*” cos(bx) : (D - 2)(D — g))maX(deg(p)vdeg(q))H
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9.4.2 Variation of Parameters

9.4.3 Reduction of Order

)
[

9.5 Systems of Differential Equations

General form:

8’5_35) = Ax(t) + b(t) < x/(t) = Ax(t) + b(t)

General solution to homogeneous equation:

c1x1(t) + coxa(t) + - - + cpxn(t) = X(t)c

If A is a matrix of constants: x(t) = e v; is a solution for each eigenvalue /eigenvector pair (), v;)

- If A is defective, you'll need generalized eigenvectors.

Inhomogeneous Equation: particular solutions given by

%, () = X (t) / "X 1(s)b(s) ds

)
[

9.6 Laplace Transforms

Definitions:

Lifw) = Lif) = | TS (t)dt = F(s).
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Useful property: for a < b, Hy(t) — Hp(t) = 1 [[a,b]].

t"'neN <= Sn-i.—l’ s>0
t_% <~ \/Fs_% s>0
at 1
e = . s>a
s—a
S
cos(bt) <— 2y ° >0
. b
sin(bt) <— i >0
s
cosh(bt) <— 2 ?
b
sinh(bt) <= 22 ?
ot —a) <~ e as
Ha(t) — 871670,8
ef(t) <= F(s—a)
Ho(t)f(t—a) <= e (s)
)y = sL(f) — f(0
')y = s°L(f) — sf(0) — f'(0)
n—1
fM) = S"L(f) =Y 8" FO(0)
i=0
fMglt) = F(s) * G(s)
1 T
o For f periodic with period T', L(f) = T / e SLE(t) dt
0
P(y)yl = q(x) separable
! . .
Y +p(z)y = q(z) integrating factor
y = f(z,y), f(tz, ty) = f(z,y) y = xV (z) COV reduces to separable
v +p(x)y = q(x)y" Bernoulli, divide by 4" and COV u = y' ™
M(z,y)dz + N(z,y)dy =0 My = Ny p(z,y) = c(pz = M,py = N)
P(D)y = f(z,y) z*e"™ for each root

9.6 Laplace Transforms
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Theorem 9.6.1 (First Shifting Theorem).

Ll £(#)] = /0 o0 f(1)dt = F(s — a),.

Remark 9.6.1 : The general technique for solving differential equations with Laplace Transforms: -
Take the Laplace Transform of all terms on both sides. - Solve for L[y] in terms of s. - Attempt an
inverse Laplace Transformations - This may involve partial fraction decomposition, completing the
square, and splitting numerators to match terms with known inverse transformations.

— 9.7 Systems of Differential Equations ~

Definition 9.7.1 (Wronksian).
For a collection of n functions f; : R™ — R, define the n x 1 column vector

fi(p)
fi(p)

/!

The Wronskian of this collection is defined as

|
W(ft, -, fa)() =det [W(f1)(p) W(fe)p) --- W(fa)(p)
| | |

Proposition 9.7.1 (Wronskian detects linear dependence of functions).
A set of functions {f;} is linearly independent on I <= Jzg € I : W(xp) # 0.

&Warnmg 9.1: W = 0 on I does not imply that {f;} is linearly dependent! Counterexample:
z,x + 2%, 2z — 3:2} where W = 0 but = + 2% = 3(z) + (2z — 2°) is a linear combination of the
other two functions.

9.7.1 Linear Equations of Order n

The standard form of such equations is

y™ + a1y +aoy™ D+ a4y’ + an1y +y = Fl).
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All solutions will be the sum of the solution to the associated homogeneous equation and a single
particular solution.

In the homogeneous case, examine the discriminant of the characteristic polynomial. Three cases
arise:

1. D > 0 = 2 Real solutions, cie™? + ce™”
2. D =0= 1 Real, 1 Complex, (¢; + cox)e"*

3. D < 0= 2 Complex, e**(cj cos bz + co sin bx)

That is, every real root contributes a term of ce’™, while a multiplicity of m multiplies the solution
by a polynomial in = of degree m — 1.

Every pair of complex roots contributes a term ce”(a coswz + bsinwz), where r is the real part of
the roots and w is the complex part.

In the nonhomogeneous case, assume a solution in the most general form of F(x), and substitute it
into the equation to solve for constant terms. For example,

1. F(z)=P") = yp=a+br+cx®+ -+ (n+1)z"
2. F(z)=¢e" =y, = Ae”

3. F(x) = Acos(wz) = yp = acos(wz) + bsin(wz)

o 0.8 Annihilators ~

Use to reduce a nonhomogeneous equation to a homogeneous one as a polynomial in the operator
D.

1. (D—a)=e*

2. (D . a)k+1 = mkeax xkfleam ce. e

3. DML = gk gkl o

4. D* —2aD + a® + b* = ™ cos(bx), " sin(bx)

5. (D* — 2aD + a? + b*)*+1 = 2F et cos(bx), 257 1e cos(ba), 2e sin(bx), 2F71e® sin(bx), - - -
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s 9.9 Complex Solutions ~

F(x) of the form e*sin(kz) can be rewritten as (@92

10 ‘ Algebra

- 10.1 To Sort ~

e Burnside’s Lemma
e Cauchy’s Theorem

- If|Gl=n= H pfi, then for each i there exists a subgroup H of order p;.
e The Sylow Theorems

- If|G|=n= pr", for each ii and each 1 < k; < k; then there exists a subgroup H of

order pfj.

e Galois Theory
e More terms: http://mathroughguides.wikidot.com/glossary:abstract-algebra
e Order p: One, Z,
e Order p?: Two abelian groups, Zy2, Zg
e Order p*:

— 3abelian Z,3, Z, x Z,2.Z;,

— 2 others Z, X Z2.

¢ The other is the quaternion group for p = 2 and a group of exponent p for p > 2.

e Order pgq:
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Algebra

Notation: H < G a subgroup, N < G a normal subgroup, concatenation is a generic group

— p | q¢— 1: Two groups, Z,; and Z; X Z,
— Else cyclic, Zp,

Every element in a permutation group is a product of disjoint cycles, and the order is the lcm

of the order of the cycles.

The product ideal I.J is not just elements of the form ¢j, it is all sums of elements of this

form! The product alone isn’t enough.

The intersection of any number of ideals is also an ideal

10.2 Big List of Notation

C(x) = {gEG:gmg‘lzx}
Ca(x) = {927 g€ G}
Gy = {g.x 2z € X}

xo = {9eG:g.x =1}
Z(G) = {xeG:VgeG gxg’lzx}
Inn(G) = { = gxg 1}
Out(G) = Aut( )/Inn(G)
N(H) = {g €G:gHg' }

10.3 Group Theory

operation.

Z,, the unique cyclic group of order n
Q the quaternion group
G"=GxGx---G

Z(G) the center of G

o(G) the order of a group

Centralizer

Conjugacy Class

Orbit
Stabilizer

Center

Inner Aut.
Outer Aut.

Normalizer

10.2 Big List of Notation
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e S, the symmetric group
o A, the alternating group
e D, the dihedral group of order 2n

e Group Axioms

— Closure: a,be G = abe G

— Identity: de€c G|a € G = ae=ceca=a

— Associativity: a,b,c € G = (ab)c = a(bc)
— Inverses: a € G = EibeG‘ab:ba:e

e Definitions:

— Order
¢ Of a group: o(G) = |G|, the cardinality of G
& Of an element: o(g) = min{n € N: ¢g" = e}
— Index
— Center: the elements that commute with everything
— Centralizer: all elements that commute with a given element/subgroup.
— Group Action: a function f: X x G — G satisfying
O reX,g1,92€ G = g1.(92.2) = (9192).x
SreX — ex==x
— Orbits partition any set
— Transitive Action
— Conjugacy Class: C' C (G is a conjugacy class <=

SreCgeG@ = grg teC
SryeC = JgeG:gzg =y
¢ i.e. subsets that are closed under G acting on itself by conjugation and on which the
action is transitive
¢ i.e. orbits under the conjugation action
& The order of any conjugacy class divides the order of G
— p-group: Any group of order p".
— Simple Group: no nontrivial normal subgroups
— Normal Series: 0 < Hy < Hy--- < G
— Composition Series: The successive quotients of the normal series
— Solvable: G is solvable <= G has an abelian composition series.

e One step subgroup test:

abe H = ab e H

e Useful isomorphism invariants:
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— Order profile of elements: n1 elements of order p1, ng elements of order po, etc
{ Useful to look at elements of order 2!

— Order profile of subgroups

— Z(A) = Z(B)

— Number of generators (generators are sent to generators)
— Number and size of conjugacy classes

— Number of Sylow-p subgroups.

— Commutativity

— “Being cyclic”

Automorphism Groups

— Solvability

— Nilpotency

e Useful homomorphism invariants

— ple)=e
gl =m <00 = |p(g)| =
Inverses, i.e. p(a)~! = ¢(a™!)
H<G = oH)<G

O H <G = o '(H)<G
— |G| < 00 = ¢(G) divides |G|, |G|

o 10.4 Big Theorems
e Classification of Abelian Groups
G= Zplfl @Zpgz @"'@Zpﬁrm
where (p;, k;) are the set of elementary divisors of G.
e Isomorphism Theorems
! G ~
0:G—>G = = »(G)
ker ¢
K HK
H A K ~ 2
26, K<G = HnK H
G/K _ G
HKJG, K<H = I~
s As H/K  H
o Lagrange’s Theorem: H < G = o(H) ’ o(G)
— Converse is false: 0(A4) = 12 but has no order 6 subgroup.
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o The GZ Theorem: G/Z(G) cyclic implies that G € Ab.
o Orbit Stabilizer Theorem: G/z¢ = Gz

e The Class Equation

— Let G » X and O; C X be the nontrivial orbits, then

X[ =[Xol+ > |Gal.
[:Ei}EX/G

— The right hand side is the number of fixed points, plus a sum over all of the orbits of
size greater than 1, where any representative within the orbit is chosen and we look at
the index of its stabilizer in G.

— Let G ~ G and for each nontrivial conjugacy class C choose a representative [x;] =
Ca = Cg(z;) to obtain

Gl=1Z2@)+ Y (Gl
[zi]=Cc(z:)

e Useful facts:

H<GeAb — HJLG
& Converse doesn’t hold, even if all subgroups are normal. Counterexample: Q
G/Z(G) = Inn(Q)
H K <Gwith HK /= G/H=G/K
¢ Counterexample: G = Zy X Zo, H =< (0,1) >, K =< (2,0) >. Then G/H = Z4 %
7:=G/K
— G € Ab = for each p dividing o(G), there is an element of order p
Any surjective homomorphism ¢ : A — B where o(A) = o(B) is an isomorphism

If G is abelian, for each d ‘ |G| there is exactly one subgroup of order d.

e Sylow Subgroups:
— Todo

o Big List of Interesting Groups

24,75

- Dy

- Q = (a, b|a4 =1,a® = b?,ab = ba®) the quaternion group
— S3, the smallest nonabelian group
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e Chinese Remainder Theorem:

Lpg =Ly B Ly <= (p,q) =1

— Fundamental Theorem of Finitely Generated Abelian Groups:
- G=2"s Pz,

o Finding all of the unique groups of a given order: #todo
10.4.1 Cyclic Groups
e Generated by 7

o For each d dividing o(G), there exists a subgroup H of order d.

— If G =< a >, then take H =< ad >

10.4.2 The Symmetric Group

Generated by:

— Transpositions
— #todo

o Cycle types: characterized by the number of elements in the cycle.
— Two elements are in the same conjugacy class <= they have the same cycle type.

o Inversions: given 7 = (p1---py), a pair p;, p; is inverted iff i < j but p; < p;
o Can count inversions N (1)

— Equal to minimum number of transpositions to obtain non-decreasing permutation
« Sign of a permutation: o(7) = (—1)N (")
o Parity of permutations = (Z, +)

— even o even = even

— odd o odd = even

— even o odd = odd

— 10.5 Ring Theory ~

o Examples:
e Non-Examples:
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e Definition of an Ideal
e Definitions of types of rings:

— Field

— Unique Factorization Domain (UFD)
— Principal Ideal Domain (PID)

— Euclidean Domain:

Integral Domain

Division Ring

field = Euclidean Domain = PID — UFD — integral domain.

o Counterexamples to inclusions are strict:

— An ED that is not a field:

— A PID that is not an ED: Q[v/19)

— A UFD that is not a PID:

— An integral domain that is not a UFD:

e Integral Domains

e Unique Factorization Domains

e Prime Elements

e Prime Ideals

o Field Extensions

e The Chinese Remainder Theorem for Rings
e Polynomial Rings

— Irreducible Polynomials
$ Over Zog:

o, o+1, 22 +x+1, 2B +ax+1, 22+ +1
{ Eisenstein’s Criterion

¢ Gauss’ Lemma

1 1 ‘ Number Theory

s 11.1 Notation and Basic Definitions ~
(a,b) = ged(a,b) the greatest common divisor
L the ring of integers mod n
7y the group of units mod n.
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Definition 11.1.1 (Multiplicative Functions).
A function f :Z — Z is said to be multiplicative iff

(a,0) =1 = f(ab) = f(a)f(b).

o 11.2 Big Theorems ~

o 11.3 Primes ~

Theorem 11.3.1(The fundamental theorem of arithmetic).
Every n € Z can be written uniquely as

m
n = H pfi
i=1

where the p; are the m distinct prime divisors of n.
Remark 11.3.1 : Note that the number of distinct prime factors is m, while the total number of

factors is H(kl +1).
i=1

o 11.4 Divisibility ~

Definition 11.4.1 (Divisibility).

a‘b — b=0 moda < Ik such that ak = b

11.4.1 gcd,lem

Remark 11.4.1 : ged(a, b) can be computed by taking prime factorizations of a and b, intersecting the
primes occurring, and taking the lowest exponent that appears. Dually, lem(a, b) can be computed
by taking the union and the highest exponent.
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s N

Proposition 11.4.1(Relationship between gcd and lem).

zy = ged (z,y) lem(z, y)

Proposition 11.4.2(7?).
If d ‘ a:andd‘ y, then

Ty
d —d-ged (2,2
ged(z,y) ge (d,d>

z oy
1 —d-lem (=, 2
cm(z, y) cm<d,d>

\

s ~

Proposition 11.4.3 (Useful properties of ged).

ged(z,y, 2) = ged(ged(z, y), 2)
ged(z,y) = ged(x mod y, y)
ged(z,y) = ged(z — v, y).

11.4.2 The Euclidean Algorithm

ged(a, b) can be computed via the Euclidean algorithm, taking the final bottom-right coefficient.

) 11.5 Modular Arithmetic ~

Generally concerned with the multiplicative group (Z,, x).

I Theorem 11.5.1(The Chinese Remainder Theorem).
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The system
r=a; modmy
T =ay mod meg
r =a, modm,

has a unique solution x mod H m; <= (mj,m;) =1 for each pair i, j, given by

-1

= zr:ajnimi lemz]

j=1 m; mj mod m;
Theorem 11.5.2 (Euler’s Theorem).
a?® =1 mod n.

Theorem 11.5.3 (Fermat’s Little Theorem).

Y =x mod p

P 1=1 modp ifpfa

11.5.1 Diophantine Equations

Proposition 11.5.1(Solutions to linear Diophantine equations).
Consider ax 4 by = c¢. This has solutions iff c =0 mod (a,b) <= gcd(a,b) divides c.

11.5.2 Computations

Proposition 11.5.2(7).
If =0 mod n, then z =0 mod p* for all p* appearing in the prime factorization of n.

Remark 11.5.1 : If there are factors of the modulus in the equation, peel them off with addition,
using the fact that nk =0 mod n.

r=nk+r modn

=r modn
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So take x = 463, n = 4, then use 463 = 4 - 115 + 4 to write

463 =y mod 4
= 4-115+3=y mod 4
— 3=y mod 4.

Proposition 11.5.3 (Repeated square/fast exponentiation).
For any n,

2 mod n = (#*? mod n)? mod n.

Ezample 11.5.1 (?):

2% = (2° mod 5)® mod 5
=25 mod5
=2 mod?H

Remark 11.5.2 : Make things easier with negatives! For example, mod 5,

4% = (=1)® mod 5
=(-1) mod5
=4 mod5b

11.5.3 Invertibility

Proposition 11.5.4 (Reduction of modulus).

za=xzb modn — a=>0 mod

(z,m)’

Proposition 11.5.5(Characterization of invertibility).

r €, <= (z,n)=1,

and thus

and |Z)| = ¢(n).
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Ezample 11.5.2 (Using invertibility): One can reduce equations by dividing through by a unit. Pick

any z such that z ‘ a and x ’ b with (x,n) =1, then

a="> modn:>g:é mod n.
T x

— 11.6 The Totient Function ~

Definition 11.6.1 (Euler’s Totient Function).
pn)={1<z<n:(z,n) =1}

Ezample 11.6.1 (?):

p(1) = [{1} =1

p(2) = [{1} =1

p(3) = [{1,2}] =2
p(4) = [{1,3}] =2
p(5) = [{1,2,3,4}[ =4

Proposition 11.6.1 (Formulas involving the totient).

o) =" (p—-1)

()
z!:sO(d)

o(n)

d

Proof (?).
All numbers less than p are coprime to p; there are p* numbers less than p* and the only

numbers not coprime to p* are multiples of p, i.e. {p,pQ, . 'pkfl} of which there are k — 1,

yielding p* — p*~!

Along with the fact that ¢ is multiplicative, so (p,q) =1 = @(pq) = ¢(p)p(q), compute
this for any n by taking the prime factorization.
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With these properties, one can compute:

o(n) = w(pr’)
= pri_l(m -1)

_ (ki —1)
B n( Hipi )
1
=nI1(1-)
\todol[inline]{Check and explain}
n
o 11.7 Quadratic Residues ~

Definition 11.7.1 (Quadratic Residue).
z is a quadratic residue modn iff there exists an a such that a®> = 2 mod n.

Proposition 11.7.1(%).
In Z,, exactly half of the elements (even powers of generator) are quadratic residues.

Proposition 11.7.2(%).

—11is a quadratic residue in Z, <= p=1 mod 4.

Definition 11.7.2 (The Jacobi Symbols).

Definition 11.7.3 (The Legendre Symbol).
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o 11.8 Primality Tests ~

Proposition 11.8.1(Fermat Primality Test).
If n is prime, then

a"'=1 modn

Proposition 11.8.2(Miller-Rabin Primality Test).
n is prime iff

22=1 modn — z=+1

— 11.9 Sequences in Metric Spaces ~

Theorem 11.9.1 (Bolzano- Weierstrass).
Every bounded sequence has a convergent subsequence.

Theorem 11.9.2 (Heine-Borel).
In R" X is compact <= X is closed and bounded.

Remark 11.9.1 : Necessity of R": X = (Z,d(z,y) = 1) is closed, complete, bounded, but not
compact since {1,2,---} has no convergent subsequence

Proposition 11.9.1 (Converse of Heine-Borel).
Converse holds iff bounded is replaced with totally bounded

12 ‘ Sequences

Notation: {an},y is a sequence, g a; is a series.
1€EN
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o 12.1 Known Examples ~

o Known sequences: let ¢ be a constant.

e, = {0, =0 Vie| <1
111 11
=z} =0 Vil > 1
¢ 23 L -
1 1 11
1, — —,...= — 0 Ve >0
2¢7 3¢ ne¢ n=1
— 12.2 Convergence ~

Definition 12.2.1 (Convergence of a Sequence).
A sequence {z;} converges to L iff

Ve >0,3dN >0such that n>N = |z, — L| <e.

Theorem 12.2.1(Squeeze Theorem).

b, <ap,<c,andb,, ¢, > L — a, > L

Theorem 12.2.2 (Monotone Convergence Theorem for Sequences).
If {a;} monotone and bounded, then a; — L = limsupa; < co.

Theorem 12.2.3 (Cauchy Criteria).
lam — an| - 0 € R = {a;} converges.

12.2.1 Checklist

e Is the sequence bounded?

— {a;} not bounded = not convergent
— If bounded, is it monotone?

¢ {ai} bounded and monotone = convergent
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I Sums (“Series”)

o Use algebraic properties of limits
o Epsilon-delta definition

o Algebraic properties and manipulation:

— Limits commute with 4+, x, Div and lim C = C for constants.
¢ E.g. Divide all terms by n before taking limit

{ Clear denominators

13 ‘ Sums (“Series”)

Definition 13.0.1 (Series).
A series is an function of the form

fl@) =) cal.
j=1

— 13.1 Known Examples

13.1.1 Conditionally Convergent

oo
kP < o0 — p<l1
k=1
<1
Zﬁ<oo — p>1
k=1
LTS
ok

Sums (“Series”)
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Sums (“Series”)

13.1.2 Convergent

=01
Zﬁ<oo
no:oll
Z$<oo
=
Z—§<oo
n=1"M2
> 1
S
1

NgE
%
Il
(@)
| 1o

3
Il
—

(]2
T
[—
S~—
3
@)
:|"
Il
o
+ o
—

3

s L
I
Naw
3
S|
I
=
[\

3
I
—

13.1.3 Divergent

n=1
< 1
PP
n=1 n
) 13.2 Convergence ~o

Useful reference: http://math.hawaii.edu/~ralph/Classes/242/SeriesConvTests.pdf

Definition 13.2.1 (Absolutely Convergent).

Remark 13.2.1 : a,, — 0 does not imply Z an < 0o. Counterexample: the harmonic series.

Proposition 13.2.1(%).
Absolute convergence = convergence
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Sums (“Series”)

Proposition 13.2.2(The Cauchy Criterion).

limsupa; - 0 = Z a; converges

13.2.1 The Big Tests

Theorem 13.2.1 (Comparison Test).

. an<anbn<oo = Zan<oo
. bn<an2bn=oo = Zanzoo

Theorem 13.2.2 (Ratio Test).

an+1
Qp,

R = lim

n—o0

e R < 1: absolutely convergent
e R > 1: divergent
e R =1: inconclusive

Theorem 13.2.3 (Root Test).

R = limsup {/|an|
n—oo

- R < 1: convergent - R > 1: divergent - R = 1: inconclusive

Theorem 13.2.4 (Integral Test).
o0
f(n)=a, = Zan <00 = / f(z)dx < 00
1
Theorem 13.2.5 (Limit Test).

.a
lim b—n:L<oo — Zan<oo <— an<oo

n—oo n
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Theorem 13.2.6 (Alternating Series Test).
an L 0 = Z(—l)”an < 00

Theorem 13.2.7 (Weierstrass M-Test).

[o.¢]
Z | fallo < 00 == 3f such that

I

In other words, the series converges uniformly.
Slogan: Convergence of the sup norms implies uniform convergence"

Remark 13.2.2 : The M in the name comes from defining sup { fx(z)} := M,, and requiring Z | M| <
0.

13.2.2 Checklist

e Do the terms tend to zero?

—a; A0 = Z a; = 00
¢ Can check with L’Hopital’s rule

e There are exactly 6 tests at our disposal:
— Comparison, root, ratio, integral, limit, alternating
e Is the series alternating?

— If so, does a,, | 07

& If so, convergent
e Is this series bounded above by a known convergent series?
. . . 1
— p series with p > 1, i.e. : Zan < Zﬁ < 00
— Geometric series with |z| < 1, i.e. Zan < Z:U”

e Is this series bounded below by a known divergent series?

. . . 1
— p series with p <1, i.e. 00 = Zﬁ < Zai
o Are the ratios strictly less than or greater than 1?7

— <1 = convergent
— >1 = convergent

e Does the integral analogue converge?
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— Integral converges <= sum converges
e Try the root test

— <1 = convergent
— >1 = convergent

e Try the limit test

— Attempt to divide each term to obtain a known convergent/divergent series

Some Pattern Recognition:

(stuff)!: Ratio test (only test that will work with factorials!!)
(stuff)™: Root test or ratio test
Replace a,, with an f(z) that’s easy to integrate - integral test

p(z) or \/p(x): comparison or limit test

o 13.3 Radius of Convergence

Proposition 13.3.1(Finding the radius of convergence).
Use the fact that

1
k+ g1

a

Ap41T
apzk

lim
k—o0

<l = Zakxk<oo,

= |z| lim
k—o00

a
so take L == lim kt1 and then obtain the radius as

k—oo Qg

R = 1 — lim 2
L k—o00 Q41

Remark 13.8.1 :

e Note L =0 = absolutely convergent everywhere
o L =00 = convergent only at x = 0.
e Also need to check endpoints R, —R manually.

14 ‘ Real Analysis

o 14.1 Notation

13.3 Radius of Convergence
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Definition 14.1.1 (Continuously Differentiable).
A function is continuously differentiable iff f is differentiable and f’ is continuous.

Conventions:

e Integrable means Riemann integrable.

a functional R” — R

a function R — R™

open sets

the limit points of A

the closure of A

the interior of A

a compact set

the space of Riemann integral functions on A

the space of j times continuously differentiable functions f : R™ — R
a sequence of functions

a sequence of real numbers

fn— f pointwise convergence
= uniform convergence
Tn ST x; < xz; and x; converges to x
T \(T x; > xj and z; converges to x
Z fr a series
keN
D(f) the set of discontinuities of f.
e 14.2 Big ldeas
Summary for GRE:
e Limits,
o Continuity,
e Boundedness,
o Compactness,
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¢ Definitions of topological spaces,
e Lipschitz continuity
e Sequences and series of functions.

e Know the interactions between the following major operations:

Continuity (pointwise limits)
— Differentiability
Integrability

Limits of sequences

Limits of series/sums

e The derivative of a continuous function need not be continuous

e A continuous function need not be differentiable

o A uniform limit of differentiable functions need not be differentiable
e A limit of integrable functions need not be integrable

e An integrable function need not be continuous

o An integrable function need not be differentiable

Theorem 14.2.1 (Generalized Mean Value Theore).

f, g differentiable on [a,b] = 3c € [a,b] : [f(b) — f(a)] ¢ (c) = [g(b) — g(a)] f'(c)

Corollary 14.2.1 (Mean Value Theorem).
?

— 14.3 Important Examples ~

e 14.4 Limits ~
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o 14.5 Commuting Limits ~

o Suppose f, — f (pointwise, not necessarily uniformly)
o Let F(z) = /f(t) be an antiderivative of f

_9f

o Let f/(x) D (z) be the derivative of f.

Then consider the following possible ways to commute various limiting operations:

Does taking the derivative of the integral of a function always return the original function?

[;x,/dx] : ;x/f(a:,t)dt =? /;xf(x,t)dt

Answer: Sort of (but possibly not).

Counterexample:

f(:zr)={1 "= [rapl,

-1 =<0
which is not differentiable. (This is remedied by the so-called “weak derivative”)

Sufficient Condition: If f is continuous, then both are always equal to f(z) by the FTC.

Is the derivative of a continuous function always continuous?

o .. _ '
(G i) Jim f(2,) =7 ['(Jim )
Answer: No.
Counterexample:
1 1
2 ) 1y 1 |
flz)=4"* sin(l/e) ifa#0 () = 2 sin (gg) cos <$> ifx#0
0 ifz=0 0 B

which is discontinuous at zero.

Sufficient Condition: There doesn’t seem to be a general one (which is perhaps why we study
C* functions).
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Is the limit of a sequence of differentiable functions differentiable and the derivative of the limit?

o . . a9
[%7]%321]0] : lim ?fn(x) =7 7]01121 fn(2)

Answer: Super no — even the uniform limit of differentiable functions need not be differentiable!

Counterexample: f,(z) = Sm\ij)
n

Sufficient Condition: f, = f and f, € C*.

—f=0but f, 4 f =0

Is the limit of a sequence of integrable functions integrable and the integral of the limit?

[ [ dz, lim |(f) : f}jglf fn(x)dz = fgglf fn(x)dz

fn=f

Answer: No.

Counterexample: Order QN [0, 1] as {¢;},cy, then take

n

fn(x) = Z 1 [Qn] —1 [Q N [Ov 1”

=1

where each f,, integrates to zero (only finitely many discontinuities) but f is not Riemann-integrable.

Sufficient Condition: - f, = f, or - f integrable and 3IM : Vn,|f,| < M (f, uniformly
bounded)

Is the integral of a continuous function also continuous?

[[ dz, lim ] : lim F(z;) =7 F(lim z;)
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Answer: Yes.

Proof: |f(x)| < M on I, so given ¢ pick a sequence = — ¢. Then

[f(@)] <M =

/C:c f(t)dt‘ < /C’” Mdt = |F(z)— F(c¢)] < M(b—a) = 0

Is the limit of a sequence of continuous functions also continuous?

[Jim , Tim ] Aim Jim f(z;) = lim i fo(2:)

Answer: No.
Counterexample: f,(z) =2z" — 6(1)

Sufficient Condition: f, = f

Does a sum of differentiable functions necessarily converge to a differentiable function?

0 0 & =0
[%;Z] : %ka =7 Z%fk‘

fn k=1 k=1

Answer: No.

Counterexample: f,(z) = s1ri§%w:) = 0:= f, but f; = v/ncos(nz) /A 0= f (at, say, x = 0)

Sufficient Condition: When f,, € C*,3x¢ : f,(x0) — f(x0) and Z /il < oo (continuously
differentiable, converges at a point, and the derivatives absolutely converge)

14.5 Commuting Limits 96



Real Analysis

— 14.6 Continuity ~

Definition 14.6.1 (Limit definition of continuity).

f continuous <= 91013}, f(z) = f(p)

Definition 14.6.2 (-9 definition of continuity).

f: (X,dx) = (Y,dy) contimuous <= Ve, 3 | dx(z,y) <6 = dy(f(2),f(y)) <=

Ezample 14.6.1 (A nonobviously discontinuous function):

f(z) = sin (1) — 0eD(f)

xT

Proof (?).

Ezample 14.6.2 (The Dirichlet function): The Dirichlet function is nowhere continuous:

Proposition 14.6.1(Thomae’s function: the set of points of continuity and of
discontinuity can both be infinite).

The following function continuous at infinitely many points and discontinuous at infinitely
many points:

z€eR\Q

0
fl@)=q1 =Pcq
q q

Then f is discontinuous on @ and continuous on R\ Q.

Proof (?).
f is continuous on Q:

1
e Fix e, let xg € R — Q, choose n : — < ¢ using Archimedean property.
n
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— Define S = mEQ:xE(O,l),xzn—f,n'<n
n

— Then |[S|<142+---(n—1),s0 chooseézmi§1|s—azo|
se
— Then

1
x € Ns(z9) = f(z) < o<
f is discontinuous on R\ Q:

o Let zog = S € Q and {z,} = {x— nix/ﬁ} Then
xn T xo but f(z,) =0—0# é = f(zo)

Remark 14.6.1 : There are no functions that are continuous on Q but discontinuous on R — Q

Definition 14.6.3 (Uniform Continuity).

I Definition 14.6.4 (Absolute Continuity).

Theorem 14.6.1 (Extreme Value Theorem).
A continuous function on a compact space attains its extrema.

14.6.1 Lipschitz Continuity

— 14.7 Differentiability ~

£ = L) =y LS

T—p T —p

;Vi — f differentiable
i

e For multivariable functions: existence and continuity of

— Necessity of continuity: example of a continuous functions with all partial and directional
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derivatives that is not differentiable:

3

fz,y) = x2i_y2 (x,y)#(o,()).

0 else

14.7.1 Properties, strongest to weakest

C> ¢ C* C differentiable € C° C Ry.

 Example showing f € C° =4 f is differentiable and f not differentiable =& f ¢ CV.
— Take f(z) = |z| at z = 0.

« Example showing that f differentiable =& f e C:
— Take

@) = a:%in(i) xr#0 — f2) = —cos(i)—i—?:csin(;) x#0
/ z=0 0 z=0

but lin% f'(z) does not exist and thus f’ is not continuous at zero.
T—

Proof that f differentiable = f e C°:

@ 2 SW) et gy T2

— 14.8 Giant Table of Relations ~

Bold are assumed hypothesis, regular text is the strongest conclusion you can reach, strikeout
denotes implications that aren’t necessarily true.

f f o f F

exists continuous K-integrable exists
continuous differentiable continuous exists
exists integrable continuous differentiable

Explanation of items in table:
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K-integrable: compactly integrable.
f integrable = F' differentiable — F € Cj

— By definition and FTC, and differentiability = continuity

f differentiable and K compact = f integrable on K.

— In general, f differentiable =% f integrable. Necessity of compactness:

f(z) =€* € C°(R) but /Rexdx — 0.

f integrable =4 f differentiable

— An integrable function that is not differentiable: f(x) = |z| on R

f differentiable = f continuous a.e.

— 14.9 Integrability ~

o Sufficient criteria for Riemann integrability:

— f continuous
— f bounded and continuous almost everywhere, or
— f uniformly continuous

o f integrable <= bounded and continuous a.e.

Theorem 14.9.1 (FTC for the Riemann Integral).
If F is a differentiable function on the interval [a, b], and F’ is bounded and continuous a.e.,
then F’ € Lg([a,b]) and

Vo € [a,b] : / F'(t) dt = F(z) — F(a)

Suppose f bounded and continuous a.e. on [a, b], and define

Then F is absolutely continuous on [a, b], and for p € [a, b],

f e C%p) = F differentiable at p, F'(p) = f(p), and F' = f.

Proposition 14.9.1.
The Dirichlet function is Lebesgue integrable but not Riemann integrable:

f(z) =Tz Q)]
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Proof (?).

— 14.10 List of Free Conclusions: ~

o f integrable on U = :

— f is bounded
— f is continuous a.e. (finitely many discontinuities)

— / f is continuous
— / f is differentiable

e f continuous on U:

— f is integrable on compact subsets of U
— f is bounded
— f is integrable

o f differentiable at a point p:
— f is continuous

o f is differentiable in U
— f is continuous a.e.

e Defining the Riemann integral: #todo

s 14.11 Convergence ~

14.11.1 Sequences and Series of Functions

Definition 14.11.1 (Convergence of an infinite series).
Define

sp(x) = i fr(z)
k=1
and
> fule) = Jim_ salo),
k=1

which can converge pointwise, absolutely, uniformly, or not all.
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Proposition 14.11.1(%).
If limsup | fx(x)| # 0 then fi is not convergent.
keN

L

Proposition 14.11.2(?).
If f is injective, then f’ is nonzero in some neighborhood of ???

14.11.2 Pointwise convergence

o= [ = nh—>nolo I
Summary:

gim T fo(25) # lim Lim fo(23).

lim/ n lim f,.
fo—f If 7 4

I fn—f

Proposition 14.11.3(%).
Pointwise convergence is strictly weaker than uniform convergence.

Proof (?).
fn(z) = 2" on [0, 1] converges pointwise but not uniformly.

1
o Towards a contradiction let € = 3

1
. LetnzN(%) andw:(§>n.

4
o Then f(x) =0 but

[fn(2) — f(2)] = 2" =

= w
\Y
N | =

e

Proposition 14.11.4 (A pointwise limit of continuous functions is not necessarily
continuous.).

fn continuous =4 f := lim f,, is continuous.
n

-
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Proof (?).
Take

falz) =2, fo(z) = L[z =1].

I
8

Proposition 14.11.5(The limit of derivatives need not equal the derivative of the
limit).

fn differentiable =4 f/ converges
f1, converges /= lim f} = f'.

Proof (?).
Take
1
falz) = - sin(n?z) — 0, but f/ = ncos(n’z) does not converge.
[ |
Proposition 14.11.6(%).
eER lim / lim f,.
o i fn=f Ifn 7 Ifn—>ffn
Proof (?).
May fail to converge to same value, take
2n2x 1 1
= ———5 —0 but =1l= —1#0.
(%) = (T w [ fam1-mg 12
|

14.11.3 Uniform Convergence

Notation:

fn:;fzgl_)ngofn and an:;S

n=1
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Summary:

mhgnw f}llm fu(zi) = f}zlgf xhgn fu(x) = fhm Il xlllglm x;).

lim/ —/ lim
fa—f In Ifn—>ffn

gjljffnzjjgfn.

“The uniform limit of a(n) = function is z”, for € {continuous, bounded}

o Equivalent to convergence in the uniform metric on the metric space of bounded functions on
X:

fa =t f = sup |fu(@) — f(2)] = 0.
zeX

— (B(X,Y),||l,) is a metric space and f, = f <= || fn — flloc = 0 (where B(X,Y) are
bounded functions from X to Y and || f||,, =sup{f(x)}
zel

fo=f = fn— [ pointwise

e f, continuous = f continuous

— l.e. “the uniform limit of continuous functions is continuous”

fn€CY, 3o : fulzg) — f(zo), and f = g = f differentiable and f' =g (ie. f. — f')

— Necessity of C! — look at failures of /7, to be continuous:
1
¢ Take fy(x) =4/ — + 22 = |z|, not differentiable
n
& Take fr(x) = n"z sin(nz) = 0but f, A f/=0and f' #g

fn integrable = f integrable and / fn— / f

fn bounded = f bounded

m=fh == f,'L converges

— Says nothing about it general
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e N e =V

— Unless f converges at one or more points.

Proposition 14.11.7(All subsequences of a convergent sequence share a limit).
{z;} = p = every subsequence also converges to p.

Definition 14.11.2 (Cauchy Sequence).

Every convergent sequence in X is a Cauchy sequence.

Proposition 14.11.8(7). ]

Remark 14.11.1 : The converse need not hold in general, but if X is complete, every Cauchy sequence
converges. An example of a Cauchy sequence that doesn’t converge: take X = Q and set x; =7
truncated to ¢ decimal places.

Remark 14.11.2 : If any subsequence of a Cauchy sequence converges, the entire sequence converges.

Definition 14.11.3 (Metric).

d(z,y) >0 Positive

dz,y) =0 <= z=y Nondegenerate
d(z,y) = d(y,z) Symmetric

d(x,y) < d(z,p) +d(p,y) Vp Triangle Inequality.

Definition 14.11.4 (Complete).

?
S
Definition 14.11.5 (Bounded).

?

s 14.12 Topology ~
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Definition 14.12.1 (Axioms for a Topology).

Open Set Characterization: Arbitrary unions and finite intersections of open sets are open.
Closed Set Characterization: Arbitrary intersections and finite unions of closed sets are
closed.

Remark 14.12.1 : The best source of examples and counterexamples is the open/closed unit interval
in R. Always test against these first!

Remark 14.12.2 : If f is a continuous function. the preimage of every open set is open and the
preimage of every closed set is closed.

Proposition 14.12.1(%).
In R, singleton sets and finite discrete sets are closed.

Proof (?).
A singleton set can be written

{pO} = (—oo,p) U (pv OO)

A finite discrete set {po}, which wlog (by relabeling) can be assumed to satisfy po < p; < ---,
can be written

{p()apl: o 7pn} = (_oo)pO) U (pOapl) UoeolU (pn7oo)

Proposition 14.12.2(?).
This yields a good way to produce counterexamples to continuity.

In R, singletons are closed. This means any finite subset is closed, as a finite union of singleton
sets!

Proposition 14.12.3(%).
If X is a compact metric space, then X is complete and bounded.

s ~

Proposition 14.12.4(%).
If X complete and X C Y, then X closed in Y.

\ J

Remark 14.12.8 : The converse generally does not hold, and completeness is a necessary condition.
Counterexample: Q C Q is closed but Q C R is not.
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Proposition 14.12.5(7).
If X is compact, then Y C X = Y is compact <= Y closed.

Definition 14.12.2 (Sequential Compactness).
A topological space X is sequentially compact iff every sequence {z,} has a subsequence
converging to a point in X.

Proposition 14.12.6 (Compactness and sequential compactness).
If X is a metric space, X is compact iff X is sequentially compact.

Remark 14.12.4 : Note that in general, neither form of compactness implies the other.

o 14.13 Counterexamples ~

Proposition 14.13.1(?).
There are functions differentiable only at a single point. Example:

B z? T € QQ
f(av)—{_x2 reR\Q'

This is discontinuous everywhere except for x = 0, and you can compute

o f@ )~ f(@)

h—0 h

h z2€Q
= J1m =
z=0 h—0 | —h :[;ER\Q

Proposition 14.13.2(?).
The product of two non-differentiable functions can be differentiable: take f(z) = g(x) = |z|
which are not differentiable at = 0, then fg(z) = |z|? is differentiable at z = 0.

Proposition 14.13.3(%).
A continuous function that is zero on a dense set A C X is identically zero.
Proof (?).
Since A is dense, for any x € X \ A take a sequence {z,} in A converging to x. Then

0= f(xzp) = f(z) implies f(x) = 0.
|
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15 ‘ Point-Set Topology

— 15.1 Definitions ~

e Epsilon-neighborhood

- No(p) = {g | dx(p,q) < v}

e Limit Point

p is a limit point of F iff VN,.(p), ¢ # p ) q € N.(p)
Equivalently, VN, (p), Ny(p) NE # 0

Let L(E) be the set of limit points of E.

Example: £ = (0,1) = 0¢€ L(E)

e Isolated Point

— p is an isolated point of E iff p is not a limit point of
— Equivalently, 3N, (p) ‘ N.(p)NE=10
— Equivalently, F — L(E)

e Perfect

— FE is perfect iff E is closed and E C L(E)
— Equivalently, L(E) = E

o Interior

— p is an interior point of E iff 3N, (p) ‘ N,(p) C FE
— Denote the interior of E by E°

o Exterior

¢ Closed sets

— F is closed iff p a limit point of £ — pe E
— Equivalently if L(E) C E
— Closed under finite unions, arbitrary intersections
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e Open sets

— Fisopeniffpe E — pe E°
— Equivalently, if £ C E°
— Closed under arbitrary unions, finite intersections

e Boundary
e Closure

e Dense
— Eisdense in X iff X C EU L(E)
e Connected

— Space of connected sets closed under union, product, closures
— Convex = connected

¢ Disconnected

e Path Connected

—Va,y € X3f 11— X | f(0) ==, f(1) =y
— Path connected = connected

e Simply Connected
e Totally Disconnected
e Hausdorff

o Compact

— Every covering has a finite subcovering.
— X compact and U C X : (U closed = U compact )

& U compact = U closed iff X is Hausdorff

— Closed under products

1
Ezample 15.1.1 (?): The space {—} .
1 ) neN

List of properties preserved by continuous maps:

¢ Connectedness
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o Compactness
Checking if a map is homeomorphism:

e f continuous, X compact and Hausdorff = f is a homeomorphism.

16| Probability

o 16.1 Definitions ~
LX) = {f X - R: / f(x) dz < oo} square integrable functions
R
(9, flo= /Rg(a:)f(:n) dx the L? inner product
1718 =4 = [ )P da norm
R
E[-]=(-, f) expectation
(pf)(@) = f(p— ) translation
(F+9)@) = [ 109 —1) dt = [ FOT9)0 dt = (Tg. ) convolution

Definition 16.1.1 (Random Variable).
For (X, E, i) a probability space with sample space ¥ and probability measure u, a random
variable is a function X : ¥ — R

Definition 16.1.2 (Probability Density Function (PDF)).
For any U C R, given by the relation

Definition 16.1.3 (Cumulative Distribution Function (CDF)).
The antiderivative of the PDF

F(z) = P(X < z) = /_; ) @
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I Yields Z—F = f(z)

X

Definition 16.1.4 (Mean/Expected Value).

E[X]=(d, f)= /Rmf(:c) dx

Also denoted px-.

Proposition 16.1.1(Linearity of Expectation).

€N 1€EN

E?Z%&lzzwm&]

Does not matter whether or not the X; are independent.

Definition 16.1.5 (Variance).

Var(X) = E[(X — E[X])Q]
—/ z—F f(z) dx
= E[X? - HMQ
= UZ(X)

where o is the standard deviation. Can also defined as <(id —(d, ) f > Take the portion
of the id function in the orthogonal complement of f, squared, and project it back onto f?

e

Proposition 16.1.2(Properties of Variance).

Var(aX + b) = a*Var(X)

Var (Z X@-> = ZVar(Xi) +2 Z Cov(X;, Xj).
N i

1<j

I Definition 16.1.6 (Covariance).
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Cov(X,Y) = E[(X — ux)(Y — uy)]
— E[XY] — E[X]E[Y]

Proposition 16.1.3 (Properties of Covariance).

Cov(X, X) = Var(X)
Cov(aX,Y) =aCov(X,Y)

COV(Z Xi, ZYJ) = ZZ Cov(Xi,Y;)
N N (]

Proposition 16.1.4(Stirling’s Approxzimation).

ko~ kS e ko

Proposition 16.1.5(Markov Inequality).

P(X > a) < EE[X]

One-sided Markov:

0.2

P(X € Ne(n)) =255

Proposition 16.1.6 (Chebyshev’s Inequality).

P(X = > a) < (%)2

Proof (?).
Apply Markov to the variable (X — p)? and a = k2

Theorem 16.1.1(Central Limit Theorem).
For X; i.i.d.,
T X —np
=1 “*17
==———— ~ N(0,1).
o e

lim
n
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Theorem 16.1.2(Strong Large of Large Numbers).
1
P(EZXi —p) =1
Proposition 16.1.7 (Chernoff Bounds).

For all t > 0,

P(X € N.(a)°) < 2e“Mx(t)

Proposition 16.1.8 (Jensen’s Inequality).
E[f(X)] = f(E[X])
Definition 16.1.7 (Entropy).

H(X)=-) pilnp;
o 16.2 Theory and Background ~

Definition 16.2.1 (Axioms for a Probability Space).
Given a sample space ¥ with events S, 1. u(X) =11. Yields S € ¥ = 0 < P(S) <1 2. For
mutually exclusive events, P(UnS;) = Z P(S;) 1. Yields P(0) =0

N

Proposition 16.2.1(Properties that follow from azxioms).

e P(S°)=1-P(5)

« ECF = P(E)< P(F)

o Proof: EC F = F = EU(E°NF), which are disjoint, so P(E) < P(E)+P(E‘NF) =
P(F).

« P(EUF)=P(E)+ P(F)— P(ENF)

Definition 16.2.2 (Conditional Probability).

P(F)P(E ‘ F)=P(ENF) = P(E)P(F ‘ E)

16.2 Theory and Background 113



Probability

Generalization:

P(NwE:) = P(Ex)P(E; | E1)P(Es | By Ey)---
Theorem 16.2.1(Bayes’ Rule).

P(E) = P(F)P(E | F) + P(F*)P(E | F°)

P(E) = 3 P(A)P(E | A)

n
Generalization: for H A; =Y and A = A; for some 1,
i=1

P(A)P(B | 4)

P(A|B) = P A

The LHS: the posterior probability, while P(A;) are the priors.

Definition 16.2.3 (Odds).

P(A)/P(A)
Conditional odds:

P(A(E) P P(E | 4)

pac|B) PAY) pE | 49)

Definition 16.2.4 (Independence).
P(AnB)= P(A)P(B)

Proposition 16.2.2(Change of Variables for PDFs).
If g is differentiable and monotonic and Y = ¢g(X), then

(Jx o g-1><y>\§yg-1<y>] y € im(g)

0 else

fr(y) =
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Proposition 16.2.3(PDF for a sum of independent random variables).

x4y = (Fx * fy)

— 16.3 Distributions ~

Let X be a random variable, and f be its probability density function satisfying f(k) = P(X = k)

16.3.1 Uniform

e Consider an event with n mutually exclusive outcomes of equal probability, and let X €

{1,2,...,n} denote which outcome occurs. Then,
1
flk)y =~

n

H=3

?=a

o Examples:

— Dice rolls where n = 6.
— Fair coin toss where n = 2.

o Continuous: p = (1/2)(b+a),0? = (1/12)(b — a)?

16.3.2 Bernoulli

o Consider a trial with either a positive or negative outcome, and let X € {0, 1} where 1 denotes
a success with probability p. Then,

D, k=
p= p
o= p(l-p)

- Examples: - A weighted coin with P(Heads) = p
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16.3.3 Binomial

o Consider a sequence of independent Bernoulli trials, let X € {1,...,n} denote the number of
successes occurring in n trials. Then,

o Examples:

— A sequence of coin flips and the numbers of total heads occurring.

16.3.4 Poisson

e Given a parameter A > 0 that denotes the rate per unit time of an event occurring and X the
number of times the event occurs in one unit of time,

PUIN
f(k) = 7€
p= A
2=\

e Approximates binomial when n >> 1 and p << 1 by using A = np

16.3.5 Negative Binomial

e B (r,p): similar to binomial, where X is the number of trials it takes to accumulate r
successes

f(k) = (f:i)p’"(l—p)k”
" r
p

1_
o2 = T(pQP)
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16.3.6 Geometric

o Consider a sequence of independent Bernoulli trials, let X € {1,
the first success happening on the k-th trial. Then,

f(k)= (1-p)" p
1
p= -
p
1—-p
2 _
o° = p2

» Note this is equal to B~ (1, p)
o Examples:

— A sequence of coin flips and the number of flips before the

16.3.7 Hypergeometric

...,n} where X = k denotes

first heads appears.

e H(n,m,s) An urn filled with n balls, where m are white and n — m are black; pick a sample

of size s and let X denote the number of white balls:

w= ()00

ms
= —
n
9 ms m s — 1)
= Z1=-(1=
? n ( n ) ( n—1
16.3.8 Normal
1 _(e=p)?
fla) = —=e n?
oV 2w
z D(2)
0 0.5
1 0.69
1.5 0.84
2 0.93
2.5 097
>3 0.99

16.3 Distributions
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) 16.4 Table of Distributions ~

Table: let ¢ =1 — p.

Distribution f (z) ,u o?M(t)
n T N—T t n
B(n,p){  |P"a np npq(pe” + q)
AT Aet—1)
P(A)ge A Ae
_ 1 qg pée
z—1 - ~
G(p)d"p , k"
_ n—1 _ r rq pet "
B r n—r - -1 -
(r,p) (r 1>p q ” 2 (1 — qet>
1 1 1 el — eta
Difa<z<b — b —(b—a)—-
Ulab)ila<e < sath 50—
1 1 A
-z
e M (Az)s ! s s AN
T'(s,\)1]0 < — —
(s VL0 < 2] =5 X\ A2 ()\ —t)
1 _@=w? 1 2,2
N ,0‘2 —e 202 02€ut+§ot
(v >0'\/27T H
1
o Why you need the Stieltjes Integral: let X ~ B(n, 2), Y ~U(0,1), and
X, X=1
7 =
Y, else

1
then |Z| = |R| so Z is not discrete, but P(X =1) = 3 # 0 so Z is not continuous. Definition:

b n
| 9@ dF(@) =tim " g (@) (F (@) = F (@i1))
@ i=1

) 16.5 Common Problems ~

e Birthday Paradox
¢ Coupon Collectors

— Given X = {1,---n}, what is the expected number of draws until all n outcomes are
seen?
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— 16.6 Notes, Shortcuts, Misc ~

e When computing expected values, variation, etc, just insert a parameter £ and compute the
moments E[X*]. Then with a solution in terms of k, let k = 1,2 etc.
o Neat property of pdfs: P(X € N.(a)) = ef(a)

Definition 16.6.1 (The Gamma Function).

Nz+1) = / e T dt.
R>0

Integrate by parts to obtain functional relation I'(z + 1) = z'(x)

Proposition 16.6.1(Boole’s Inequality).

N

o For any function f: X — R, there is a lower bound: max f(z) > E[f(z)]

Definition 16.6.2 (Moment Generating Functions).
Define

M(t) = E[e]

Then M (0) is the n-th moment, i.e. M’(0) = E[X], M"(0) = E[X?], etc.
o Mx+y(t) = Mx (t)My(t) (if independent)

MaXer(t) = €th)((at)

fx = F 1 (Mx(it)), denoting the inverse Fourier transform,

17‘ Combinatorics

) 17.1 Notation ~
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Sp=A{1,2,...n} the symmetric group
!
<Z> = m binomial coefficient
nf=nn-1)(n—k+1) =k (Z) falling factorial
= —1
nf=nn+1)- (n+k—-1) =k (n n ) rising factorial
n
|
" = kL multinomial coefficient
My, Mo, -+ My [Ti=q m;!

Note that the rising and falling factorials always have exactly k terms.

Multinomial: A set of n items divided into k distinct, disjoint subsets of sizes m; - - - my. Multinomial
theorem:

n
(1+ao+-ap)" = Y oMyt
o 1 T2 k
mi,ma, - , Mg my,ma, , M
m;=n
which contains (" tfl_ 1) terms.

Inclusion-Exclusion:

(s2) (s8)
U Al =D 1AL = D A NAyl+ D0 A NA, N A+ -+ (=1)" TN, A

7 11 <ig 11 <t2<i3
n
:Z Z (—1)k+1‘ﬁ§:1A¢j
k=1 i1<-<ij,
— 17.2 The Important Numbers ~

¢ Binomial Coeflicients

— The Binomial Theorem:

— Choosing: (Z)

— Choosing with repetition allowed: (n k- 1)

k
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o Signed Stirling Numbers of the First Kind: s(n, k)

— Count the number of permutations of n elements with k disjoint cycles, i.e. the number
of elements elements in S, that are the product of k disjoint cycles (including trivial
cycles that fix a point).

— Recurrence relation:

s(n,k) =s(n—1,k—1)+ ks(n—1,k).

n
— Relation to falling factorial: ™ = Z s(n, k)z*
k=1

e Stirling Numbers of the Second Kind: {Z}

— Counts the number of ways to partition a set N into k non-empty subsets S; (i.e. such

k

that S; N S; =10, HSZZN)
i=1
— Recurrence relation:

k
g Cfn) et (F)
— Explicit formula: {k:} =1 Z(—l) <>z
“[n
s

i=0
e Betti Numbers
e Bell Numbers

o Compositions

— A composition of n is a way of writing n as a sum of strictly positive integers, ie.
k1 + ko + - - k; = n where each 0 < k; < n, where order matters (and distinct orders
count as distinct compositions).

— Weak compositions: identical, but some terms are allowed to be zero.

Number of compositions of n into k parts: (n];ll)
n —+ k — 1)
n

Number of weak compositions of n into k parts: (
Total number of compositions of n (into any number of parts): 27

o Partitions
— A partition of n is a composition of n quotiented by permutations of the ordering of
terms.

{ Example: 2 compositions of 5 involving 1 and 4, given by 4 + 1 and 1 + 4, whereas
there is only one such partition of 5 given by 4 + 1.

— Visualize with Young diagrams
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17.2.1 Common Problems

e Stars and Bars

— No two bars adjacent: (nkjll)
. . .m+k—1
— Allowing adjacent bars: w1 )

Coupon Collectors Problem

17.2.2 The Twelvefold Way

Consider a function f : N — K where |[N| =n, |K| = k.

A number of valid interpretations: - f labels elements of N by elements of K - For each element of
N, f chooses an element of K - f partitions IV into classes that are mapped to the same element
of K - Throw each of N balls into some of K boxes

Dictionary: - No restrictions: - Assign n labels, repetition allowed - Form a multiset of K of size
n - Injectivity - Assign n labels without repetition - Select n distinct elements from K - Number
of n-combinations of k elements - No more than one ball per box - Surjectivity: - Use every label
at least once - Every element of K is selected at least once - “Indistinguishable” - Quotient by the
action of S,, or Sk - n-permutations = injective functions - n-combinations = injective functions /
Sp - n-multisets = all functions / S™ - Partitions of N into k subsets = surjective functions / Sy -
Compositions of n into k parts = surjective functions / S,

Permutations Restrictions N i) K

f k"

k—1 k -1
f OON (n:_ n ) (n) (nn—k )
n n
oxof ;}{Z} 1[n <K {k}
oxofoon pr(n+k) | 1[n<k]| pr(n)
In words (todo: explain)
Perm. / Rest. — Injective Surjective

— A sequence of any n
elements of K

Permutations of Multisets of K with n
N elements

Sequences of n distinct
elements of K

An n-element subset of K

Compositions of
N with exactly k
subsets
Compositions of
n with k terms

17.2 The Important Numbers
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Perm. / Rest. — Injective Surjective
Permutations of Partitions of N into < k 7 Partitions of N
X subsets into exactly k
nonempty subsets
Both Partitions of n into < k ? Partitions of n
parts into exactly k
parts

Proofs/Explanations: todo

¢ Counting non-isomorphic things: Pick a systematic way. Can descend my maximum vertex
degree, or ascend by adding nodes/leaves.

18 ‘ Complex Analysis

. li_>m f(2) = zo + iyo iff the component functions limit to zp and yp respectively. Moreover,
Z2—20

both ways are equal!

Notation: z = a + b, f(z) = u(z,y) + iv(z,y)

— 18.1 Useful Equations and Definitions ~
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|z|=\/m
|z\2:zfza2+b2
ﬁz(a—&-ib)(a—ib):l
BE a2 + b2
1z  a—ib

2 2 a2+b?

e = (0t — 9 (cog(bx) + i sin(bx))

77 = eF Inz

Log(z) = In|z| + ¢ Arg(z)

1 . .
cos z = 5(622 +e7 %)
(eiz o 6—iz)

1
2i
(z —2)(z —2) = 2% — 2R](2)z + (a® + b?)
o 1/0 .0
82_2<6x_18y>

2 _1(2 ;0
0z 2\ 0z oy

— 18.2 Complex Arithmetic and Calculus

sinz =

e n-th roots:

18.2.1 Complex Differentiability

fz+h) - f(2)
h

7 = lim
h—0

- A complex function that is not differentiable at a point: f(z) = z/z at z =0

e (Cauchy-Riemann Equations
Uy = Uy Uy = —Vy

o Alternatively:

18.1 Useful Equations and Definitions
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ol .. _
- @ ]Z =0
— (Vu, Vo) =0
— Au = Av = 0 (both components are harmonic)
s 18.3 Complex Integrals ~

The main theorem:

% f(z) dz = 27riZRes(f, 2k)
¢ k

Computing residues:

n—1
Res(f.€) = ooy fim Sy (= 00" £ (2)
f(z) = ZEZ = Res(f,c) = g,((cc))

Definitions

e Analytic: differentiable everywhere
o Entire

e Holomorphic

e Meromorphic

Complex Analytic = smooth and all derivatives are analytic

Not true in real case, take the everywhere differentiable but not C' function

L,
fa) = {Iix z <0

5352 x>0

o 18.4 Definitions ~

In these notes, C' generally denotes some closed contour, H is the upper half-plane, Cg is a semicircle
of radius R in H, f will denote a complex function.

1. Analytic
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f is analytic at zg if it can be expanded as a convergent power series in some neighborhood
of 20-

2. Holomorphic
A function f is holomorphic at a point zg if f’(20) exists in a neighborhood of 2.
(Note - this is more than just being differentiable at a single point!)
Big Theorem: f is a holomorphic complex function iff f is analytic.
3. Meromorphic
Holomorphic, except for possibly a finite number of singularities.
4. Conformal
f is conformal at zq if f is analytic at zo and f'(zg) # 0.
5. Harmonic

A function u(z,y) is harmonic if it satisfies Laplace’s equation,

AU = Ugy + Uyy =0

Some other notions to look up:

e Conformal maps

e Analytic

e Theorem: Analytic = conformal
e The Sterographic projection. Is it conformal?
e Branch points and branch cuts

e Loxodromic transformations

e Horocycles

e Analytic Continuation

e The complex logarithm

e Mobius transformations

e Curvature

e Angular Excess

— 18.5 Preliminary Notions ~
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18.5.1 What is the Complex Derivative?

In small neighborhoods, the derivative of a function at a point rotates it by an angle Af and scales
it by a real number \ according to

A = arg f'(z0), A= |f(20)]

18.5.2 nth roots of a complex number

The nth roots of zy are given by writing zo = re'®, and are

(:{wexp[i<z+m)] ‘k:O,1,2,...,n—1}

n

or equivalently

2mi

CZ{\”/;WfL’k::O,l,Z...,n—l} where w, = e n

1
This can be derived by looking at (rew”k”) "

It is also useful to immediately recognize that 2% 4+ a = (z — iv/a)(z + iva).

18.5.3 The Cauchy-Riemann Equations

If f(x+iy) = u(z,y) +iv(z,y) or f(re?) =u(r,0) +iv(r,0), then f is complex differentiable if u, v
satisfy

Up = Uy Uy = —Vg
U, = Vg Uy = —Trvp

In this case,

fl(m + Zy) = u$($7 y) + ivz(xa y)
or in polar coordinates,

f(re?®y = e (u,(r,0) + iv,(r,0))
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s 18.6 Integration ~

18.6.1 The Residue Theorem

If f is meromorphic inside of a closed contour C, then

7{0 f(z)dz = 2mi Z ZResf(z)

=25
where Res f(z) is the coefficient of z~! in the Laurent expansion of f.
2=z

If f is analytic everywhere in the interior of C, then j{ f(z)dz = 0.
C

If f is meromorphic inside of a contour C' and analytic everywhere else, one can equivalently
calculate the residue at infinity

jé‘ f(2)dz = 2mi %: E{:eg 272f(z7h

18.6.2 Computing Residues
18.6.3 Simple Poles

If zy is a pole of order m, define g(z) := (z — 29)™ f(2).
If g(2) is analytic and g(zg) # 0, then

Res f(2) = g z0)

2 (m — 1)

In the case where m = 1, this reduces to

Res f(2) = ¢(20)

z2=2z0

To compute residues this way, attempt to write f in the form

where ¢ only needs to be analytic at zp.
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18.6.4 Rational Functions

If f(2) = 222 where

L. p(z0) #0
2. q(20) =0

3. ¢'(20) #0

then the residue can be computed as

SP(Z) ~ p(20)
=x0q(z)  ¢(20)

18.6.5 Computing Integrals

When computing real integrals, the following contours can be useful:
One often needs bounds, which can come from the following lemmas
The Arc Length Bound If |f(z)| < M everywhere on C, then
| § Fz)de) < ML
C
where L¢ is the length of C.

Jordan’s Lemma: If f is analytic outside of a semicircle Cr and |f(z)] < Mg on Cr where
Mg — 0, then

(2)e"*dz — 0

f
Cr

Can also be used for integrals of the form / f(2)cosazdz or / f(2)sinazdz, just take real /imaginary

parts of €' respectively.

— 18.7 Conformal Maps ~

1. Linear Fractional Transformations:
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f(z):az—i-b f_l(z):—dz—i-b

cz+d cz—a

2. [z1, 22, 23] = (w1, wa, ws]

Every linear fractional transformation is determined by its action on three points. Given 3
pairs points z; — w;, construct one using the implicit equation

(w—wi)(w2 —wz) (2 — 21)(22 — 23)

(w—ws)(we —w1) (2 —23)(22 — 21)

3. 2F . Wedge — H
Just multiplies the angle by k. If a wedge makes angle 6, use 2%,

It is useful to know that z — 22 is equivalent to (z,y) — (22 — %, 2zy).

4. ¢ :C—C
Horizontal lines +— rays from origin
Vertical lines — circles at origin
Rectangles —  portions of wedges/sectors
N L
#
b 1 :.r
o
i
;i
i L
___________ S ;
. \'«'ﬂ =y
&
i i 7 T
FIGURE 126
o= CNpI

Figure 2: image
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bl o B ] .\_' = .':

B
A,
i} i LRy i
FIGURE 124
= Ep I,
Figure 3: image

¥
o D L
i h B
0 N I v i

FIGURE 125
PR T

5. log : H — R+ [0, 7]

Figure 4: image

Just the inverse of what the exponential map does.

Rays —  Horizontal Lines
Wedges — Horizontal Strips
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¥ t
i
=,
\'J.. ]
() X 0 T}
Figure 5: z — log z
6. sin : [0, 7/2] + iR — Hg(;)>0
Maps the infinite strip to the first quadrant.
v I
JI.]' [45 _-.._-.“‘.-
A
T=0 T=10 T=1
C:_. g A ._-H-L Jl'il
I T=I v T
2 1

Figure 6: z <+ sinw

1 — 2z

7. 2+ H— D°.

1+ 2z

R<o +~ Upper half of D°
Ry + Bottom half of D°

. 1 —w
Has inverse w > 1

+w

8 z—z+21:9D—R
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! \
— N
- -+ = -
| X

Figure 7: z +— 2 + 27!

Maps the boundary of the circle to the real axis, and the plane to H.

18.7.1 Applications

It is mostly important to know that composing a harmonic function on one domain with an analytic
function produces a new harmonic function on the new domain.

Similarly, composing the solution to a boundary value problem on a domain with a conformal map
produces a new solution to a new boundary problem in the new domain, where the new boundary
is given by the conformal image of the old one.

The general technique is use solutions to the boundary value problem on a simple domain D,
and compose one or several conformal maps to map a given problem into D, then pull back the
solution.

Heat Flow: Steady Temperatures Generally interested in finding a harmonic function T'(x,y)
which represents the steady-state temperature at any point. Usually given as a Dirichlet problem
on a domain D of the form

Tl B
/ LET \\
[ A o

T=10 i

Figure 8: image
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AT =0
T(0D) = f(0D)
where f is a given function that prescribes values on 0D, the boundary of D.

Embed this in an analytic function with its harmonic conjugate to yield solutions of the form
F(z +iy) = T(z,y) +iS(z,y).

The isotherms are given by T'(x,y) = c.

The lines of flow are given by S(z,y) = c.

Figure 9: image

Any easy solution on the domain R x ¢[0, ] in the u, v plane, where

1
is given by T'(u,v) = —wv.
™
It is harmonic, as the imaginary part of the analytic F'(u + iv) = —(u + iv), since every analytic
T
function has harmonic component functions.

Similar methods work with different domains, just pick a smooth interpolation between the boundary
conditions.
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"

Figure 10: image
Fluid Flow Write F(z) = ¢(z,y) + it)(x,y). Then F is the complex potential of the flow, F” is
the velocity, and setting 1(z,y) = ¢ yields the streamlines.

A solution in H is F'(z) = Az some some velocity A. Apply conformal mapping appropriately.

.l' !
[ —

V

Figure 11: image

18.7.2 Theorems

General Theorems
1. Liouville’s Theorem:
If f is entire and bounded on C, then f is constant.
2. If f is continuous in a region D, f is bounded in D.
3. If f is differentiable at zg, f is continuous at z.
Note - the converse need not hold!

4. If f = u+iv , where u, v satisfy the Cauchy-Riemann equations and have continuous partials,
then f is differentiable.

Note - continuous partials are not enough, consider f(z) = |z|2.

5. Rouché’s Theorem
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If p(2) = f(2)+g(z) and |g(2)| < |f(2)| everywhere on C, then f and p have the same number
of zeros with C.

6. The Argument Principle
If f is analytic on a closed contour C' and meromorphic within C', then
1
W:=—Acargf(z)=2Z—P
2

f'(2)
f(2)

the FTC, and second by using residues directly from the Laurent series.

Proof: Evaluate the integral j{ dz first by parameterizing, changing to polar, and using
C

7. The Main Story: The following are equivalent

f is continuous

f exists

f is analytic

f is conformal

f satisfies the Cauchy-Riemann equations

Theorems About Analytic Functions

1. If f is analytic on D, then -7{ f(2)dz = 0 for any closed contour C' C D.
C

Note: this does not require f to be f’ to be continuous on C.
2. Maximum Modulus Principle
If f is analytic in a region D and not constant, then |f(z)| attains its maximum on 9D.

3. If f is analytic, then f(™ is analytic for every n. If f = u(x,y) + iv(x,y), then all partials of
u, v are continuous.

4. If f is analytic at zo and f’(z0) # 0, then f is conformal at z.
5. If f =wu+ iv is analytic, then u, v are harmonic conjugates.

6. If f is holomorphic, f is C (smooth).
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7. If f is analytic, f is holomorphic.
Proof: Since f has a power series expansion at zg, its derivative is given by the term-by-term

differentiation of this series.

18.7.3 Some Useful Formulae

o) = (o) + F'(z0) (@ — 70) + g (o) (& — 20)? + ...

cosz:%(eiz—ke*iz) :1_j+i_"'
coshz:é(ez—l—e_z) :cosizzl—i—i—l—j—i—...
sinz:%(eiz—e*iz) :z—i—i—j—...
sinhz:%(ez—e_z) :—isiniz:z+§+i+...

Mnemonic: just remember that cosine is an even function, and that the even terms of e* are kept.
Similarly, sine is an odd function, so keep the odd terms of e*.

Harmonic Conjugate

(zy)
v(z,y) = /(0 0 —ut(s,t)ds + us(s,t)dt

The Gamma Function

1
Useful to know: I’(§) = /7.
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s 18.8 Questions ~o

1. True or False: If f is analytic and bounded in H, then f is constant on H.

False: Take f(z) = e *, where |f(2)| <1 in H.

o0 sin x
2. C t / —d
ompute . a;(a:2 n a2) €T

Two semicircles needed to avoid singularity at zero. Limit equals the residue at zero, solution
is ( 1 e*“)
ism(—= ——)-

a2 a?
1

21
. t —df
3. Compute /0 yp—

. .. 27
Cosine sub, solution is —

V3

e +1

4. Find the first three terms of the Laurent expansion of — T
e J—

Equals 22 ' +0+6"12+...

1
5. Compute [ ————d
ompute e B z

2
Equals z%

6. True or false: If f is analytic on the unit disk £ = {z : |z| < 1}, then there exists an a € E
such that |f(a)| > |f(0)].

True, by the maximum modulus principal. Suppose otherwise. Then f(0) is a maximum of f
inside S7. But by the MMP, f must attain its maximum on 951.

7. Prove that if f(z) and f(z) are both analytic on a domain D, then f is constant on D

Analytic = Cauchy-Riemann equations are satisfied. Also have the identity f = u, + iv,,
and f' =0 == f is constant.
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19 ‘ Common Mistakes

1
—x_Q#/x_lz/f:lnx
x

1
775/lnx:a:lnx—x
x

1 1
—k _ —k41 —(k+1)
/:C ey SR gl (IS S
e.g /‘x_Q =—g 14 —lx_?’ lim — =1 #0
e 37 n=oon+1
0 z_axlna_ rlna _
%a =9 =e Ina =a"Ina.
Exponentials: when in doubt, write a® = @
0
= @) 9
8mx
1 1
k_ _ ko k
Z:c N 1—:57'é 1—|—m_z( e
20 ‘ Appendix 1
— 20.1 Neat Tricks ~

o Commuting differentials and integrals:

. /a(x) fat)dt = f(z,b(z)) —b(z) = f(z,a(z)) —alz) + /a(m) (. t)dt

d
e Need f,dfdzf, d—f to be continuous in both variables. Also need a(x),b(z) € Cla(x),b(z) €
x

Cr.
e If a,b are constant, boundary terms vanish.
o Recover the fundamental theorem with a(z) = a,b(z) = ba(z) = a,b(z) = b, and f(z,t) =

f)f(z,t) = f(B).
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0
of _ I = / fd
ox
1 2 3
N ve 3"
1
n—1 n n+1
-1
nw " n # T
g (nHD) R b ey
n n—1
1
= 1 1 _
. n(z) zln(z) —x
a.’E
1‘1 z R
a” In(a) a na
cos(z) sin(x) — cos(x)
— csc(x) cot(x) csc(x) In |esc(x) — cot(x)|
— sin(z) cos(z) sin(x)
sec(z) tan(z) sec(x) In [sec(z) + tan(z)|
1
2
t |
sec”(x) an(x) nj|——
—esc?(z) cot(x) In |sin z|
1 -1 -1 1 2
2 tan™ " (x) rtan "z 5 In(1 + z*)
1
N sin~!(x) zsin~lz + /1 — 22
1 1 -1 \/—
—— cos  (z xcos x—1—212
V1—a? (=)
1

ln‘x—i-\/x?—i-a‘

1

2sin x cos sin?(z) 5(:5 — sin x cos x)
1
—2sinx cosx cos®(x) 5(3: + sin z cos z)
2 csc?(z) cot(x) csc?(x) — cot(x)
2sec?(x) tan(x) sec?(x) tan(x)
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
axr axr 1 axr
(ax +1e xe —(az —1)e
a
1
? e sin(bx) ——¢€*“(asinbr — bcosbx)
20.2 Big Derivative / Integral Table @ —1'_ v 141
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o 20.3 Useful Series and Sequences ~

Notation: 71, : monotonically converges from below/above.

o Taylor Series:

e Cauchy Product:

o Differentiation:

a o oo
a—mZakxk = Z kaka:k 1
k=i k=it+1
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o Common Series
P 1—2
> 1
ka =1 for |z| < 1
k=1 -
> 1
kaht = for |z| < 1
1; (1—x)?
i k(k —1)z*2 _ 2 5 for|z[ <1
= (1—2x)
S (k- 1)(k — 2)a = <1
= (1—2)
— [n k, n—k n
> <k>m y = (z+y)
k=1
ook
Z % = —log(1 —x)
k=1
oo $k .
> Tl =€
k=0
00 k 3 5
(=D opp1 T .
nz::O Cn+ 1" TR = sin(z)
00 2 4
DF o _, 2%z _
];) @), x =l-o+ = cos(z)
0 (_1)k 3 5
,;) 2(71 +) 1x2k+1 =z % + % = arctan(z)
o) 3 5
1 2n+1 z z .
= — 4+ — = h
kZ:% (2k+1)!$ T+ a0 + 5l + sinh(z)
o) 2 4
T o T T B
kzz%)@k)!x 1+§+I+ = cosh(z)
0 2k+1
Z = arctanh z
s 2k + 1
>+ x
ik
> 1
Z(_l)kE =1In(2)
k=1
N
1 1
- =~ In(N —
> ; ~ In(N) 4+ o
k=1
o
: - =
=k 6
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— 20.4 Partial Fraction Decomposition ~

Given R(z) = M, factor ¢(z) into qu(:v)

q(x)
o Linear factors of the form ¢;(x) = (ax + b)" contribute
T~ A A A
rile) _kgl (ax + bk ax+b+ (azx + b)? e

o Trreducible quadratics of the form ¢;(z) = (az® + bz + ¢)" contribute

(az2 + bz +c)k  az?+br+c  (az?+ bz +c)?

TZ(.I') _ i Apx + By, Ajx+ By Aox + Bo

k=1
— Note: ax? + bz + ¢ is irreducible <= b? < 4dac

__p(=)
[Tai(=)

o Write R(x) = Z ri(z), then solve for the unknown coefficients Ay, By.

— IMPORTANT SHORTCUT: don’t try to solve the resulting linear system: for each ¢;(x),
multiply through by that factor and evaluate at its root to zero out many terms!

— For linear terms ¢;(x) = (ax + b)", define P(x) = (ax + b)" R(x); then

—( k)'P(”_k)(a), k=1,2,---n
n—k)!

- An:P(CL), An_1:P/<a), s, A =

|
—~
7
o
—~
N
~—

— Note: #todo check, might need to evaluate at —b/a instead, extend to quadratics.

— 20.5 Properties of Norms ~

[t = [el]]x]
(=, ¥)I < [l
Ix +yll < Il + [yl
% —z| < [x =yl +ly — =l
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o 20.6 Logic ldentities ~

P = @Q < Qor P

P = Q < -Q = —-P

Por (Qand S) <= (Por Q) and (P or S)
P and (Q or S) <= (P and Q) or (P and S)
—(P and Q) <= —-P or =Q

—(P or Q) <= —P and —Q

— 20.7 Set ldentities ~

AUB = AU (A°N B)
A = (BNA)U(B°NA)
(UnA;)¢ Ny AS
(NnA;)° UnAY
A—B AN B¢
(A— B)° A°UB
(AUB)-C (A-C)u(B-0C)
(ANnB)-C (A-C)Nn(B-0C)
A—(BUCQO) (A—B)n(A-20)
A—(BNCQO) (A-B)U(A-0)
A—(B- C) (A-B)U(ANCO)

(A—B)N (ANnC)-B = AN (C - B)

(A-B)U

ﬂuﬂllHIIIIIIIIIIIIIIIIHIIH

AU(BOC) (AUB)N(AUCQ)
AN(BUCQC) (ANB)U(ANCQC)
ACCand BCC AUuBCC(C
CCAand CCB CCAUB
A}, countable H Ap, UpZ Ay countable
k=1
o 20.8 Preimage ldentities ~

Summary

o Injectivity: left cancellation
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e Surjectivity: right cancellation

Everything commutes with unions

e Preimage commutes with everything

o Image generally only results in an inequality

Preimage Equations

« ACB = f(A)C f(B)or f71(4) C f7Y(B)
o [T (UierAi) = Uier f 7 (Ai)

— Also holds for f(U;erA;) = Uierf(A;)
o fTHNierAi) = Nierf 1 (A))

— Also holds for f(NjerAi) = Nierf(A;)
« fTHA) - fHB)=fT(A-D)

— BUT f(4) - f(B) € f(A-B)
e For X CA)Y C B:

~ (fl) " =XnfiY)

= (fofHY)=YNf(4)
e Summary: preimage commutes with:

— Union

Intersection
Complements
Difference

— Symmetric Difference

Image Equations

L ACB = [()C (B

o f(UAi) = Uf(A)

« f(NAi) CNf(Ai)

» f(A=B)> f(4) - f(B)
o« J(A%) =im(f) - f(A)

Equations Involving Both

« AC THf(A)

— Equal <= f is injective

« f(FH(A)CcA

— Equal < f is surjective
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s 20.9 Pascal’s Triangle: ~

Sequence

1,2,1
1,3,3,1

1,4,6,4,1
1,5,10,10,5,1
1,6,15,20,15, 16, 1
1,7,21,35,35,21,7, 1

0~ O U WS

Obtain new entries by adding in L pattern rotated by 7 (e.g. 7 = 146, 12 = 6 + 15, etc). Note
that (72) is given by the entry in the n-th row, i-th column.

o 20.10 Table of Small Factorials ~o

n!

2

6

24

120

720

5040

40320

362880
3628800

© 00~ G WS

—_
)

7~ 3.1415926535 e ~ 2.71828 /2 ~ 1.4142135
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20.11 Primes Under 100:

2,3,5,7,
11,13,17,19,
23,29,
31,37,
41,43, 47,
53,59,
61,67,
71,73, 79,
83, 89,

97,

101

— 20.12 Checking Divisibility by Small Numbers ~

Note that n mod 10* yields the last k digits. Let d; denote the i-th digit of n.

The recursive prime procedure (RPP): for each prime p, there exists a k such recursive application
of this procedure to n yields the same remainder mod p as n itself.

o Write ng = 10z + y where y =0...9
e Let n; = x + ky, repeat until n; < 10.

D P ’ n < Mnemonic
2 n=2,4,6,8 mod 10 Last digit is even
3 Z d; =0 mod 3 3 divides the sum of digits
(apply recursively)
4 n =4k mod 102 Last two digits are divisible
by 4
5 n=0,5 mod 10 Last digit is 0 or 5
6 n=0 mod2andn=0 Reduce to 2, 3 case
mod 3
7 RPP, k= -2 —20=1 mod 7 =
10z +y = 10(z — 2y) mod 7
8 n =8k mod 103 Manually divide the last 3

digits by 8 (or peel off factors
of 2)

20.11 Primes Under 100:
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D P ’ n <= Mnemonic
9 Z d; =0 mod 9 9 divides the sum of digits
(apply recursively)
10 n =0 mod 10 Last digit is 0
11 Z(—l)idi =0 mod 11 or 11 divides alternating sum
13 RPP, k=4 40=1 mod 13 =
10z 4+y = 10(x + 4y) mod 13
17 RPP, k= -5 —50=1 mod 17 =
10z +y = 10(x — 5y) mod 19
19 RPP, k=2 20=1 mod 19 =

10z 4+y = 10(x + 2y) mod 19

o 20.13 Hyperbolic Functions ~

1
cosh(z) = 5(69[: +e™ )

]' —x
S —e)

cos(iz) = cosh z

sinh(z) =

cosh(iz) = cos z

sinh(iz) = sin z
sinh™z=? =In(z+Va2+1)
cosh 'z =? =In(z+ Va2 -1)

1—i—a:)
1—=x

(
sin(iz) = sinh z
(i

1
tanh ™!z = 3 In(

— 20.14 Integral Tables ~
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|
S <
1)

[N}
Ql‘l—\
&

3

8
3
L

8=

IS}
8
—
=
=)

Q
@]
o2}
8

—sin

8

8

2sec?(x) tan

2 csc?(x) cot

[

w
@
a
8

sec(z) tan

8

8

~ o~~~ o~~~ =
—_ — M M Y Y

— csc(x) cot
1

1+ 22
2

1

V1
i
Va2t a

1
1
2

S

-z
_I_
—esc?(x)
o

-~

-~

-~

-~

-~

cos 1(x)

ln‘x—i- Va? —i—a‘
cot(z)
cos?(z)
sin?(x)

$eax

e sin(bx)

e cos(bx)

?

rtan 'z — ~In(1 4 2?)

1

a? —H)Qe
1

a2+ 52"

DO =

rsin 'z 4+ V1 — 22
xcos Lo — /1 — 22

?
?
?
1
— (azx —1)e™®
a

“(asinbx — bcos bx)

am(

asinbx + bcos bx)

?

20.14 Integral Tables
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21 ‘ Definitions

o 21.1 Set Theory

e Injectivity

f: X =Y injective <= Vi, z0€ X, f(x1)=f(r2) = x1 =2
<~ Vi, 20 € X, x1 75 To — f(xl) 7'5 f(.%‘g)

e Surjectivity

f:X = Y surjective <= VyeVY, dJxec X: f(z)=y.

e Preimage

f:X =Y UCY = fLU)={zcX: f(x)cU}.
— 21.2 Calculus

e Limit
%igéf(m) =L < Ve, 30:

d(z,p) <d = d(f(x),L)<e

e Continuity

— Epsilon-delta definition:

f: X — Y continuous at p <= Ve, 30 :
dx(z,p) <6 = dy(f(z),f(p)) <e

— Limit/Sequential definition:

f:X =Y continuous at p <= V{z;};cy € X : {z;} = p,
lim f(x;) = f(lim x;) = f(p)
71— 00 1—r 00

Definitions
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— Topological Definition:

f:X — Y continuous <= U open in im(f) CY = f~}(U) open in X.

o Differentiability and the Derivative

— For single variable functions:

J R — R differentiable at p <= V{z;},cy — p,

)t 10 IO

i—00 Ty — P

— For multivariable functions:

f: R™ — R™ differentiable at p <= 3 a linear map J : R®™ — R™ such that:
. |f(p+h)—1f(p)—I(h)||gn

lim —0

b0 e
e Gradient

vf = [fxafya fz]
e Divergence
e Curl
o Taylor Series (at a point a)
— Single Variable R — R
! " "
oo f(n) (a) .

— Multivariable R" — R:

— Multivariable R™ — R™:
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T(a,b)(xvy) = f(a> b) + (:L‘ - a)f:ﬁ(“? b) + (y - b)fy((l, b)+
(@ = @2 Faa@,5) + 202 — @)y — D)y (@,5) + (3 — 52 Fyala,)) + -+

2!
T.(x) = f(a) + (x —a)TJ(a) + %(X —a)lH(a)(x—a)+---
— T = Y X ey @)
a>0  *
— 21.3 Analysis ~

1
e Archimedean Property: 1€ R = dne€N: z<nandz >0 = dn: — <=z
n

o Upper Bound (for S C R)

« is an upper bound for S <— se€ S5 —= s<a.

o Triangle Inequality

= la+b| <a] + ||
= la—bl <[a] + ||

o Reverse Triangle Inequality
= [la] = [b]] < [a — 0]
o Least Upper Bound / Supremum (for S C R)

aisaLUBfor § <= se€S = s<aandVt:(se€S = s<t), a<t.

o Greatest Lower Bound / Infimum (for S C R)

aisaGLBfor § <= s€S = a<sandVt:(se€S = t<s), t<a.

e Open Set
e Closed Set

e Limit Point
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o Interior Point

e Closure of a Set
e Boundary

o Metric

o Cauchy Sequence:

{a;} is a cauchy sequence <= Ve IN e N: m,n>N = d(zp,z,) < €.

e Connected: S is connected < AU,V C S nonempty, open, disjoint such that S=UUV

e Compact: Every open cover has a finite subcover:

X CUjegV; = I CJ:|I| <ooand X C Ui Vj.

e Sequential Compactness Every sequence has a convergent subsequence:

{zitier € X = 3JCL IpeX: A{zjlic; 2 p

o Bounded (sequences, subsets, metric spaces)

UCXisbounded <= Fr e X,IM eR: welU = d(z,u) < M.

o Totally Bounded

e Pointwise Convergence

For {f, : X — Y} en,
fan—=f <= Ve>0,VezeX, AN(z,e) e N: n>N = dy (fu(z), f(x)) <e¢

e Uniform Convergence

For {fn:XﬁY}neNa
fm=f < Ve>0,3IN(E)eN: VeeX, n>N = dy(fu(z), f(zx)) <e

e Generalized Mean Value Theorem
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o 21.4 Linear Algebra ~

Convention: always over a field k, and T': k" — k™ is a generic linear map (or m X n matrix).

o Consistent
A system of linear equations is consistent when it has at least one solution.
o Inconsistent
A system of linear equations is inconsistent when it has no solutions.
e Rank
The number of nonzero rows in RREF
e Elementary Matrix
e Row Equivalent
e Pivot

¢ Cofactor

cofactor(A); ; = (—1)" M; ;

where M; ; is the minor obtained by deleting the i-th row and j-th column of A.

e Adjugate

adjugate(A) = cofactor(A)T = (—1)i+ij,i~

e Vector Space Axioms

— Let k be a field and u,v,w € V and r, s,t € k. A vector space V over k satisfies:

1. Closure under addition: v+w €V

Closure under scalar multiplication: rv € V

Commutativity of addition: v4+w=w 4+ v

Associativity of addition: u+ (v+w)=(u+v)+w
Existence of an additive zero O satisfying v+ 0=0+v=v
Existence of additive inverse —v satisfying v + (—v) =0
Unit property: lv=v

Associativity of scalar multiplication: (rs)v = r(sv)

X NSO W
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9. Distribution of scalars multiplication over vector addition: (v +w) = v 4+ rw
10. Distribution of scalar multiplication over scalar addition: (r + s)v =1rv + sv

e Subspace

— A nonempty subset W C V' that is a vector space and satisfies

(e

c €T, szW}gW

— Quick counter-check: find x,y such that ax + by ¢ W

 Span Given a set of n vectors S = {x;};__,, defined as

Span(S) = {Z cX; | ¢ € k} )
i=1

e Row Space

— The range of the linear map 7.

X1 —

X9 —
— Given T = . , defined as

Span({x;};~,) C k™.

— rowspace(T)T = null(T)
— |rowspace(T')| = Rank(T)
e Column Space

e Null Space

— Defined as null(7") = {x S ‘ T(x)=0¢€ km}
— null(T)* = rowspace(T)

o Eigenvalue

— A value ) such that Az = \z

— Invariant under similarity.
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e Eigenspace
— For a linear map T" with eigenvalue A, defined as F) = {X €kK" ‘ T(x) = /\x}

e Dimension
— The cardinality of a basis of V
o Basis
— A linearly independent set of vectors S = {x;} C V such that Span(S) =V

e Linear independence

n

— A set of vectors {x;};-; is linearly independent <= Z cx; =0 = ¢; =0 for all 3.
i=1

— Can be detected by considering the matrix

T = [X17X27' o )Xn]T'

(linearly independent iff 7" is singular)

o Rank

— Dimension of rowspace
o Rank-Nullity Theorem

— |Nullspace(A)| + |Rank(A)| = |Codomain(A)]
e Nullspace

— nullspace(4) = {x € R" : Ax = 0}
e Singular

— A square n x n matrix 7' is singular iff Rank(T") < n
o Similarity

— Two matrices A, B are similar iff there exists an invertible matrix S such that B = SAS™!

o Diagonalizable
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— A matrix X is diagonalizable if it can be written X = EDE~! where D is diagonal.

— If X is n x n and has n linearly independent eigenvectors A;, then D; = X;, and
Mo Ao e A,
E =
[ TP

e Positive Definite
— A matrix A is positive definite iff Vx € k™, we have the scalar inequality x’ Ax > 0
e Projection

— The projection of a vector v onto u is given by Py(v) = (u,v)u
— The projection of a vector v onto a space U = Span({u;}) is given by

Py(v) = ZPUZ.(V) = Z (u;, v) u;.

i

e Orthogonal Complement
— Given a subspace U C V, defined as U+ = {v eV ’ Vue U, (u,v) = 0}

e Determinant

det(A) = Z HO‘(T)CLZ-’T(i).

TES™ i=1

e Trace

o Characteristic Polynomial

— pa(x) = det(zI — A)
— Roots of pa are eigenvalues of A

« Symmetric: A = AT
o Skew-Symmetric: A = —AT

e Inner Product
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— ([ F)xly = k(x, y) = (x, ky)
- (x+y, >—< z) + ([, )=
— ([ a)xlby = (x, x) + (ax, y) + (x, by) +(y, ¥)

— Defines a norm: ||x|| = ,/<x, x) = |x|* = (x, x)
o Cauchy-Schwarz Inequality: |(x, y)| < [|x]||¥ll
e Orthogonality:

— For vectors: xTy <= (x, y) =0
— For matrices: A is orthogonal <= A~! = AT

e Orthogonal Projection of x onto y:

P(x,y) = (x, ¥)j = (X, y)—y.
Iyl

~ Note [P(x,y) = x| cos b,

e Defective: Annxn matrix A is defective <= the number of linearly independent eigenvectors
of A is less than n.

— 21.5 Differential Equations ~

o Homogeneous

f(x,y) homogeneous of degree n <= In € N: f(tx,ty) =t" f(x,y)..

e Separable

p) L~ () =0
e Wronskian:
Ji(z) fa(@) k()
fa(z) fr(@)

W f1, for oo fi] () =

o Laplace Transform:
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21.6 Algebra

Ring
Group
Subgroup

— Two step subgroups test:

Integral Domain

Division Ring

Principal Ideal Domain

Tensor Product: #todo insert construction

21.7 Complex Analysis

Analytic

Harmonic

Cauchy-Euler Equations
Holomorphic

The Complex Derivative
Meromorphic

The Gamma Function: Satisfies I'(p + 1) + pI'(p) and I'(1) = 1, defined as

o
T'(p) :/ tP~tetdt, p>0.
0

21.8 Algebra

e Looking at real roots:

— Let p be number of sign changes in f(x);
Let ¢ be number of sign changes in f(—z);
Let n be the degree of f.

Then p gives the maximum number of positive real roots, ¢ gives the maximum number

of negative real roots, and n — p — ¢ gives the minimum number of complex roots.

— Rational Roots Theorem: If p(z) = az™ + -+ cand r = P here p(r) =0, then p | ¢
q

and g ' a.

e Properties of logs:

— ln(H) :ZIn but Hln#lnz
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1
Be carefull —— #In L e nz-— Iny
Iny Y

e Completing the square:

b 1 (b2 — dac
_ — g2 N — N2, - T
ple) = aa” +br e p(x) = afe + Qa) + 2 ( 2a )

w 21.9 Geometry ~

¢ Generic Conic Sections

Az? + Bay+Cy? + Dx+Ey+F =0

(x—x0)*  (y—w0)* _

wo ho

e Circles:

Az’ +By*+C =0 (z —20)” + (y — yo)* =17

— Defining trait: locus of points at a constant distance from the center
— Center at (z9, o)

e Parabolas:

Az®> + Bz +Cy+D =0 y = ax?

— Defining Trait:

¢ Locus of points equidistant from the focus (a point) and the directrix (a line)
& #todo add image

1
— F t (0, —
ocus at ( ,4@) 1

— Directrix at the line y = ——
4a

¢ For an arbitrary quadratic: complete the square to write in the form y = a(x —
wg)? + hg, and translate points of interest by by (z 4 wo, y + ho)
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o Ellipses:

.1'2 y2

w2 Tz

— Defining trait:
& The locus of points where the sum of distances to two focii are constant.

— Center at (0,0) (can translate easily)
— Vertices at (+w,0) and (0, +h)
Focii at F1 = (Vw? — h2,0), F; = (—vVw? — h2,0)

— Another useful shortcut form:

o Hyperbolas:

=1

r v
w2 h?
— Defining trait:

& Locus of points where the difference between the distances to two focii are constant.
— Vertices at (0,+h) and (£+w,0)

— Focii at F} = (Vw? + h2,0), F» = (—Vw? + h2,0)
e Summary of Traits:

— One point p:
{ Distance to p is constant: circle
— Two points a, b:
¢ Distance to a equal to distance to b equals a constant: a line bisecting the midpoint
of the line connecting them

¢ Difference of distances constant: ellipse
¢ Sum of differences constant: hyperbola

— Point p and a line I:

¢ Distance to p equals distance to [ equals a constant: parabola

o Areas of certain figures:
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22 ‘ Indices

List of Todos

[Find examples.| . . . . . . . e 8
Moddl. . . o o 8
odd . . . . 8
............................................... 10
[ For constants, this should allow difterentiating under the integral when f, f, are "jointly |
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