# Algebra \todo[inline]{This section is very sketchy!} ## To Sort - Burnside's Lemma - Cauchy's Theorem - If $\abs{G} = n = \prod p_i^{k_i}$, then for each $i$ there exists a subgroup $H$ of order $p_i$. - The Sylow Theorems - If $\abs{G} = n = \prod p_i^{k_i}$, for each $ii$ and each $1 \leq k_j \leq k_i$ then there exists a subgroup $H$ of order $p_i^{k_j}$. - Galois Theory - More terms: [http://mathroughguides.wikidot.com/glossary:abstract-algebra](http://mathroughguides.wikidot.com/glossary:abstract-algebra) - Order $p$: One, $Z_p$ - Order $p^2$: Two abelian groups, $Z_{p^2}, Z_p^2$ - Order $p^3$: - 3 abelian $Z_{p^3}, Z_p \times Z_{p^2}. Z_p^3$, - 2 others $Z_p \rtimes Z_{p^2}$. - The other is the quaternion group for p = 2 and a group of exponent p for p > 2. - Order $pq$: - $p \mid q-1$: Two groups, $Z_{pq}$ and $Z_q \rtimes Z_p$ - Else cyclic, $Z_{pq}$ - Every element in a permutation group is a product of disjoint cycles, and the order is the lcm of the order of the cycles. - The product ideal $IJ$ is _not_ just elements of the form $ij$, it is all sums of elements of this form! The product alone isn't enough. - The intersection of any number of ideals is also an ideal ## Big List of Notation \[ C(x) = && \theset{g\in G : gxg^{-1} = x} && \subseteq G && \text{Centralizer} \\ C_G(x) = && \theset{gxg^{-1} : g\in G} && \subseteq G && \text{Conjugacy Class} \\ G_x = && \theset{g.x : x\in X} && \subseteq X && \text{Orbit} \\ x_0 = && \theset{g\in G : g.x = x} && \subseteq G && \text{Stabilizer} \\ Z(G) = && \theset{x\in G: \forall g\in G,~ gxg^{-1} = x} && \subseteq G && \text{Center} \\ \mathrm{Inn}(G) = && \theset{\phi_g(x) = gxg^{-1} } && \subseteq \Aut(G) && \text{Inner Aut.} \\ \mathrm{Out}(G) = && \Aut(G) / \mathrm{Inn}(G) && \injects \Aut(G) && \text{Outer Aut.} \\ N(H) = && \theset{g\in G: gHg^{-1} = H} && \subseteq G && \text{Normalizer} \] ## Group Theory Notation: $H < G$ a subgroup, $N < G$ a normal subgroup, concatenation is a generic group operation. - $\ZZ_n$ the unique cyclic group of order $n$ - $\mathbf{Q}$ the quaternion group - $G^n = G\times G \times \cdots G$ - $Z(G)$ the center of $G$ - $o(G)$ the order of a group - $S_n$ the symmetric group - $A_n$ the alternating group - $D_n$ the dihedral group of order $2n$ - Group Axioms - Closure: $a,b \in G \implies ab \in G$ - Identity: $\exists e\in G \mid a\in G \implies ae = ea = a$ - Associativity: $a,b,c \in G \implies (ab)c = a(bc)$ - Inverses: $a\in G \implies \exists b \in G \mid ab =ba = e$ - Definitions: - Order - Of a group: $o(G) = \abs{G}$, the cardinality of $G$ - Of an element: $o(g) = \min\theset{n\in \NN : g^n = e}$ - Index - Center: the elements that commute with everything - Centralizer: all elements that commute with a given element/subgroup. - Group Action: a function $f: X\times G \to G$ satisfying - $x\in X, g_1,g_2 \in G \implies g_1.(g_2.x) = (g_1g_2). x$ - $x\in X \implies e.x = x$ - Orbits partition any set - Transitive Action - Conjugacy Class: $C \subset G$ is a conjugacy class $\iff$ - $x\in C, g\in G \implies gxg^{-1} \in C$ - $x,y \in C \implies \exists g\in G : gxg^{-1} = y$ - i.e. subsets that are closed under $G$ acting on itself by conjugation and on which the action is transitive - i.e. orbits under the conjugation action - The order of any conjugacy class divides the order of $G$ - $p$-group: Any group of order $p^n$. - Simple Group: no nontrivial normal subgroups - Normal Series: $0 \normal H_0 \normal H_1 \cdots \normal G$ - Composition Series: The successive quotients of the normal series - Solvable: $G$ is solvable $\iff$ $G$ has an abelian composition series. - One step subgroup test: \[ a,b \in H \implies a b^{-1} \in H \\ .\] - Useful isomorphism invariants: - Order profile of elements: $n_1$ elements of order $p_1$, $n_2$ elements of order $p_2$, etc - Useful to look at elements of order $2$! - Order profile of subgroups - $Z(A) \cong Z(B)$ - Number of generators (generators are sent to generators) - Number and size of conjugacy classes - Number of Sylow$\dash p$ subgroups. - Commutativity - "Being cyclic" - Automorphism Groups - Solvability - Nilpotency - Useful homomorphism invariants - $\phi(e) = e$ - $\abs{g} = m < \infty \implies \abs{\phi(g)} = m$ - Inverses, i.e. $\phi(a)^{-1} = \phi(a^{-1})$ - $H < G \implies \phi(H) < G'$ - $H' < G' \implies \phi^{-1}(H') < G$ - $\abs{G} < \infty \implies \phi(G)$ divides $\abs{G}, \abs{G'}$ ## Big Theorems - Classification of Abelian Groups \[ G \cong \ZZ_{p_1^{k_1}} \oplus \ZZ_{p_2^{k_2}} \oplus \cdots \oplus \ZZ_{p_n^{k_n}} ,\] where $(p_i, k_i)$ are the set of elementary divisors of $G$. - Isomorphism Theorems \[ \phi: G \to G’ \implies && \frac{G}{\ker{\phi}} \cong &~ \phi(G) \\ H \normal G,~ K < G \implies && \frac{K}{H\intersect K} \cong &~ \frac{HK}{H} \\ H,K \normal G,~ K < H \implies && \frac{G/K}{H/K} \cong &~ \frac{G}{H} \] - Lagrange's Theorem: $H < G \implies o(H) \mid o(G)$ - Converse is false: $o(A_4) = 12$ but has no order 6 subgroup. - The $GZ$ Theorem: $G/Z(G)$ cyclic implies that $G \in \mathbf{Ab}$. - Orbit Stabilizer Theorem: $G / x_0 \cong Gx$ - The Class Equation - Let $G\actson X$ and $\mathcal{O}_i \subseteq X$ be the nontrivial orbits, then \[ \abs{X} = \abs{ X_0 } + \sum_{[x_i] \in X/G} \abs{Gx} .\] - The right hand side is the number of fixed points, plus a sum over all of the orbits of size greater than 1, where any representative within the orbit is chosen and we look at the index of its stabilizer in $G$. - Let $G\actson G$ and for each nontrivial conjugacy class $C_G$ choose a representative $[x_i] = C_G = C_G(x_i)$ to obtain \[ \abs{G} = \abs{Z(G)} + \sum_{[x_i] = C_G(x_i)} \left[ G: [x_i] \right] .\] - Useful facts: - $H < G \in \mathbf{Ab} \implies H \normal G$ - Converse doesn't hold, even if all subgroups are normal. Counterexample: $\mathbf{Q}$ - $G / Z(G) \cong \mathrm{Inn}(G)$ - $H, K < G$ with $H \cong K \not\implies G/H \cong G/K$ - Counterexample: $G = \ZZ_4 \cross \ZZ_2, H = <(0,1)>, K = <(2,0)>$. Then $G/H \cong \ZZ_4 \not\cong \ZZ_2^2 \cong G/K$ - $G\in\mathbf{Ab} \implies$ for each $p$ dividing $o(G)$, there is an element of order $p$ - Any surjective homomorphism $\phi: A \surjects B$ where $o(A) = o(B)$ is an isomorphism - If $G$ is abelian, for each $d\mid \abs{G}$ there is exactly one subgroup of order $d$. - Sylow Subgroups: - Todo - Big List of Interesting Groups - $\ZZ_4, \ZZ_2^2$ - $D_4$ - $Q = \langle a , b | a ^ { 4 } = 1 , a ^ { 2 } = b ^ { 2 } , a b = b a ^ { 3 } \rangle$ the quaternion group - $S^3$, the smallest nonabelian group - Chinese Remainder Theorem: \[ \ZZ_{pq} \cong \ZZ_p \oplus \ZZ_q \iff (p,q) = 1 \] - Fundamental Theorem of Finitely Generated Abelian Groups: - $G = \ZZ^n \oplus \bigoplus \ZZ_{q_i}$ - Finding all of the unique groups of a given order: #todo ### Cyclic Groups - Generated by ? - For each $d$ dividing $o(G)$, there exists a subgroup $H$ of order $d$. - If $G = $, then take $H = $ ### The Symmetric Group - Generated by: - Transpositions - #todo - Cycle types: characterized by the number of elements in the cycle. - Two elements are in the same conjugacy class $\iff$ they have the same cycle type. - Inversions: given $\tau = (p_1 \cdots p_n)$, a pair $p_i, p_j$ is *inverted* iff $i < j$ but $p_j < p_i$ - Can count inversions $N(\tau)$ - Equal to minimum number of transpositions to obtain non-decreasing permutation - Sign of a permutation: $\sigma(\tau) = (-1)^{N(\tau)}$ - Parity of permutations $\cong (\ZZ, +)$ - even $\circ$ even = even - odd $\circ$ odd = even - even $\circ$ odd = odd ## Ring Theory \todo[inline]{Ring Axioms} - Examples: - Non-Examples: - Definition of an Ideal - Definitions of types of rings: - Field - Unique Factorization Domain (UFD) - Principal Ideal Domain (PID) - Euclidean Domain: - Integral Domain - Division Ring \[ \text{field} \implies \text{Euclidean Domain} \implies \text{PID} \implies \text{UFD} \implies \text{integral domain} .\] - Counterexamples to inclusions are strict: - An ED that is not a field: - A PID that is not an ED: $\QQ[\sqrt {19}]$ - A UFD that is not a PID: - An integral domain that is not a UFD: - Integral Domains - Unique Factorization Domains - Prime Elements - Prime Ideals - Field Extensions - The Chinese Remainder Theorem for Rings - Polynomial Rings - Irreducible Polynomials - Over $\ZZ_2$:  \[ x,~ x+1,~ x^2+x+1,~ x^3+x+1,~ x^3+x^2+1 .\] - Eisenstein's Criterion - Gauss' Lemma \todo[inline]{When is $\QQ(\sqrt d)$ a field?}