## Counterexamples :::{.proposition title="?"} There are functions differentiable only at a single point. Example: \[ f(x) = \begin{cases} x^2 & x\in QQ\\ -x^2 & x\in \RR\sm\QQ \end{cases} .\] This is discontinuous everywhere except for $x=0$, and you can compute \[ \lim_{h\to 0} {f(x+h) - f(x) \over h}\evalfrom_{x=0} = \lim_{h\to 0} \begin{cases} h & x\in \QQ \\ -h & x\in \RR\sm\QQ \end{cases} =0 .\] ::: :::{.proposition title="?"} The product of two non-differentiable functions can be differentiable: take $f(x) = g(x) = \abs{x}$ which are not differentiable at $x=0$, then $fg(x) = \abs{x}^2$ is differentiable at $x=0$. ::: :::{.proposition title="?"} A continuous function that is zero on a dense set $A\subset X$ is identically zero. :::{.proof title="?"} Since $A$ is dense, for any $x\in X\sm A$ take a sequence $\ts{x_n}$ in $A$ converging to $x$. Then $0 = f(x_n) \to f(x)$ implies $f(x) = 0$. ::: :::