# Common Mistakes \[ -x^{-2} &\neq \int x^{-1} = \int \frac{1}{x} = \ln x \\ \frac{1}{x} &\neq \int \ln x = x\ln x - x \\ \int x^{-k} = \frac{1}{-k+1}x^{-k+1} &\neq \frac{1}{-(k+1)}x^{-(k+1)} \\ \text{ e.g. } \int x^{-2} = -x^{-1} &\neq -\frac{1}{3}x^{-3} \lim_{n\to\infty} \frac{n}{n+1} = 1 \neq 0\\ \frac{\partial}{\partial x}a^x = \frac{\partial}{\partial x}e^{x\ln a} = e^{x\ln a} \ln a = a^x \ln a. \] Exponentials: when in doubt, write $a^b = e^{b\ln a}$ \[ \frac{\partial}{\partial x} x^{f(x)} = ? \] \[ \sum x^k = \frac{1}{1-x} \neq \frac{1}{1+x} = \sum (-1)^k x^k \]