# Appendix: Precalculus **Formulas:** \[ e^{ix} = \cos(x) + i\sin(x) && \text{Euler's Identity} .\] :::{.proposition title="Angle Sum Identities"} On one hand, \[ e^{i(A+B)} = \cos(A+B) + i\sin(A+B) ,\] and on the other, \[ e^{i(A+B)} &= e^{iA} e^{iB} \\ &= \qty{ \cos(A) + i\sin(A) } \qty{\cos(B) + i\sin(B) } \\ &= \qty{ \cos(A) \cos(B) - \sin(A) \sin(B) } + i\qty{\sin(A)\cos(B) + \cos(A) \sin(B) } .\] Thus \[ \cos(A+B) &= \cos(A) \cos(B) - \sin(A) \sin(B) \sin(A+B) &= \sin(A)\cos(B) + \cos(A) \sin(B) .\] :::