## Algebra - Looking at real roots: - Let $p$ be number of sign changes in $f(x)$; - Let $q$ be number of sign changes in $f(-x)$; - Let $n$ be the degree of $f$. - Then $p$ gives the maximum number of positive real roots, $q$ gives the maximum number of negative real roots, and $n-p-q$ gives the _minimum_ number of complex roots. - Rational Roots Theorem: If $p(x) = ax^n +\cdots + c$ and $r = \frac{p}{q}$ where $p(r) = 0$, then $p \mid c$ and $q \mid a$. - Properties of logs: - $\ln(\prod) = \sum \ln$ but $\prod \ln \neq \ln \sum$ - $\log_b x = \frac{\ln x}{\ln b}$ Be careful! $\frac{\ln x}{\ln y} \neq \ln\frac{x}{y} = \ln x - \ln y$ - Completing the square: - $p(x) = ax^2 + bx + c \implies p(x) = a(x+\frac{b}{2a})^2 + -\frac{1}{2}\left(\frac{b^2-4ac}{2a}\right)$ ## Geometry - Generic Conic Sections $$A x ^ { 2 } + B x y + C y ^ { 2 } + D x + E y + F = 0$$ $$\frac{(x-x_0)^2}{w_0} \pm \frac{(y-y_0)^2}{h_0} = c$$ - Circles: $$ Ax^2 + By^2 + C = 0 \hspace{5em} (x-x_0)^2 + (y-y_0)^2 = r^2$$ - Defining trait: locus of points at a constant distance from the **center** - **Center** at $(x_0, y_0)$ - Parabolas: $$Ax^2 + Bx + Cy + D = 0 \hspace{5em} y = ax^2$$ - Defining Trait: - Locus of points equidistant from the **focus** (a point) and the **directrix** (a line) - #todo add image - **Focus** at $(0, \frac{1}{4a})$ - **Directrix** at the line $y = -\frac{1}{4a}$ - For an arbitrary quadratic: complete the square to write in the form $y = a(x - w_0)^2 + h_0$, and translate points of interest by by $(x+w_0, y+h_0)$ - Ellipses: $$\frac{x^2}{w^2} + \frac{y^2}{h^2} = 1$$ - Defining trait: - The locus of points where the *sum* of distances to two **focii** are constant. - **Center** at $(0,0)$ (can translate easily) - **Vertices** at $(\pm w, 0)$ and $(0, \pm h)$ - **Focii** at $F_1 = (\sqrt{w^2-h^2}, 0), F_2 = (-\sqrt{w^2-h^2}, 0)$ - Another useful shortcut form: - Hyperbolas: $$\frac{x^2}{w^2}-\frac{y^2}{h^2} = 1$$ - Defining trait: - Locus of points where the *difference* between the distances to two **focii** are constant. - **Vertices** at $(0, \pm h)$ and $(\pm w, 0)$ - **Focii** at $F_1 = (\sqrt{w^2+h^2}, 0), F_2 = (-\sqrt{w^2+h^2}, 0)$ - Summary of Traits: - One point $p$: - Distance to $p$ is constant: circle - Two points $a,b$: - Distance to $a$ equal to distance to $b$ equals a constant: a line bisecting the midpoint of the line connecting them - Difference of distances constant: ellipse - Sum of differences constant: hyperbola - Point $p$ and a line $l$: - Distance to $p$ equals distance to $l$ equals a constant: parabola - Areas of certain figures: