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1 Prologue
1.1 References

• Hatcher’s Algebraic Topology [1].

2 Homology
What is homology? Seems to be ubiquitous in mathematics, pops up in number theory, algebraic
geometry, topology (obviously), etc.

Many routes to motivate it, we’ll take the topological tact. Coming up:

1. Simplicial Homology

• Of simplicial complexes, a la Poincaré ~1900
• Easier to compute

2. Singular Homology

• Easier to define and more general
• Harder to compute, need theorems

Definition 2.0.1 (n-simplex).
An n-simplex σ = (a0, · · · an) ⊆ Rn is a convex hull of n+ 1 points when the points are affinely
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independent.

The convex hull is given by {∑
λiaiL

∣∣∣ 0 ≤ λi ≤ 1,
∑

λi = 1
}
,

i.e. set of centers of gravity of masses placed at vertices.

They are affinely independent if there is a unique expression of every point in barycentric coordinates.

∑
viai = 0 and

∑
vi = 0 =⇒ vi = 0 ∀i.

It follows that ∑
λiai =

∑
µiai =⇒ λi = µi ∀i

The face of an n-simplex are the subsets where the barycentric coordinates are 0. Consider a
triangle with points λa, µb, νc, then one edge is a face (λ = 0), as is another (ν = 0), as is the point
µb where ν = λ = 0. An n-simplex has 2n − 1 faces, including the entire thing (2n − 2 otherwise)

Definition 2.0.2 (Simplicial Complex).
A simplicial complex is a set K of simplexes in Rn, say K = {σ0, σ1 · · ·σn}, such that they are
pasted together correctly, i.e.

1. σ ∈ K and τ ⊂ σ =⇒ τ ∈ K
2. If σ, σ′ ∈ K then they overlap in a common face, i.e. either σ ∩ σ′ = ∅ or σ ∩ σ′ is a face

of both σ, σ′.

Definition 2.0.3 (Geometric Realization).
Given such a K, its geometric realization is given by the topological space

|K| :=
⋃
σ∈K

σ ⊆ Rn.

Definition 2.0.4 (Triangulation).
A triangulation of a space X is a homeomorphism h : X → |K| for some K.

Example 2.0.1.
S1 is homeomorphic to a triangle, which has 6 total simplexes: three points ∆0, and 3 edges ∆1.
Similarly, S2 is homeomorphic to a tetrahedron with 14 simplexes.

Remark 2.0.1.
We don’t want to allow anything particularly curved, or anything with multiple edges.
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Definition 2.0.5 (Abstract Simplicial Complex).
An abstract simplicial complex is a set V of vertices together with a set K ⊂ P (V ) of subsets
of V which is closed under taking subsets (σ ∈ K and τ ⊆ σ =⇒ τ ∈ K)

Example 2.0.2.
V = {1, 2, 3, 4}, then the 4-simplex can be described as

K = {{1} , {2} , {3} , {4} , {1, 2} . {2, 3} , {1, 3} , {1, 2, 3}} .

Definition 2.0.6 (Geometric Realization of a Simplicial Complex).
We have a notion of geometric realization: we can embed K inside R|V | where each basis vector
is in correspondence with each vertex.

Remark 2.0.2.
Note that here σ maps to the convex hull of its vertices. The moral of the story here is that abstract
simplicial complexes can be realized as geometric simplicial complexes.

Definition 2.0.7 (Orientation of a Simplex).
An orientation of a simplex is a choice of ordering of vertices up to even permutations,
i.e. (a, b, c) = (c, a, b) = (b, c, a) 6= (b, a, c) = (c, b, a) = (a, c, b).

Example 2.0.3.
A point is a special case, there are two orientations, ±∗. Take +∗ to be the canonical orientation.

Example 2.0.4.
How does this work in 3 dimensions? Take (a, b, c, d) be an orientation on a tetrahedron - this is
roughly equivalent to choosing an oriented frame, but there are many interpretations. So just view
as equivalence classes after modding out by even permutations.

Definition 2.0.8 (?).
If K is a simplicial complex, let Cn(K) be the free abelian group on oriented n-simplexes in
K quotiented by σ ∼ −σ. Add twice as many simplexes then quotient out..? Avoids making
choices of orientation everywhere! Then each oriented n-simplex maps into Cn(K) in a natural
way.

Definition 2.0.9 (?).
A boundary map ∂ : CnK → Cn−1K by linearly extending the formula

∂(a0 · · · an) =
n∑
i=1

(−1)i(a0, · · · âi · · · an),

where the summand denotes the face spanned by all vertices except ai.
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Example 2.0.5.
We can directly compute ∂(a, b) = (b)−(a) and ∂(a, b, c) = (b, c)−(a, c)−+(a, b). So a line segment
a 7→ b goes to −a and +b. An oriented triangle abc goes to the three line segments oriented in the
same way.

What happens?

Need to check that ∂ is well defined - check that applying a transposition, e.g. (a0a1).

∂(a1, a0, a2, · · · an) = (a0, a2, · · · an)− (a1, a2, · · · an) +
∑

stuff = −∂(a0, a1, a2, · · · an),

so equality is preserved under even permutations.

Proposition 2.0.1(Simplicial Boundary Map is Well-Defined).

∂2 = 0.

Consider

CnK →∂n Cn−1K →∂n−1 Cn−2 → · · ·

3 The Bar Resolution and Group Homology
Last time: the Koszul complex and free resolutions. Today: group homology

3.1 Bar Resolutions
Let A be an associative, unital, generally not commutative algebra over a field k (or just a ring
over Z). Consider the category of A-A- bimodules, which has the fundamental structure of two
multiplication maps of the form

A⊗M ⊗A→M

a1 ⊗m⊗ a2 7→ a1ma2

There is a particularly interesting module AAA, the “diagonal” or “trivial” module. It’s trivial
because as functors, we have

( · )⊗A AAA = id.

Note that this module is not free. However, compare this to A(A ⊗k A)A. This is a free module,
since it is a vector space over k, of rank 1 with generator 1⊗ 1. So we can write a free resolution of
AAA as a bimodule:
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3.1 Bar Resolutions

(A⊗4) a⊗b⊗c⊗d 7→ab⊗c⊗d−a⊗bc⊗d+a⊗b⊗cd−−−−−−−−−−−−−−−−−−−−−−−−→ A(A⊗3)A
f1: a⊗b⊗c 7→ ab⊗c−a⊗bc−−−−−−−−−−−−−−−−→ A(A⊗k A)A

f0: a⊗b 7→ a1b−−−−−−−−−→ AAA → 0

Then f1 surjects onto ker f0, yielding the second term.

Continue to yield

B−n(A) = AA⊗k A⊗
n
k ⊗k AA,

which is free as an A-A- bimodule since it decomposes as a direct sum indexed by the middle term.

Then there is a differential

B−n → B−n+1 (n ≥ −1)
a0 ⊗ (a1 ⊗ · · · ⊗ ak)⊗ an+1 7→

∑
(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

You can check that d2 = 0 ⇐⇒ A is associative. This is something that works in general – for
example, with lie algebras, the associative multiplication is replaced by the lie bracket, and the
equivalence is to the Jacobi identity.

Claim: This is a resolution. Just write down a map A⊗A→ A⊗A⊗A that is chain homotopic
to the zero map. Something obvious works: let

h(a0 ⊗ · · · ⊗ an+1) = 1⊗ a0 ⊗ · · · ⊗ an+1,

then just check that dh+ hd = id− 0.

Remark 3.1.1.
This is not actually a bunch of maps of bimodules, only of right A modules – but this is enough to
show that this complex is acyclic, i.e. kernels = images.

We can define homologies associated to this. One example is the Hochschild Cohomology with
coefficients in a bimodule, denoted

HH∗(A;M) := Ext∗A-A-mod(AAA,AMA).

In other words, take the bar resolution of A, hom it into M (homA-A(B∗(A),M)), and take kernels
modulo images.

Whenever you have a derived functor, the original functor should come up in the zeroth homology.
In this case, it extends to HH0(A,M) is analogous to the “center” of M , i.e.

HH0(A,M) = {m ∈M : am = ma, ∀a ∈ A} .

Also, HH∗(A;M) = Tor(A,M), and

HH0 = M

〈am = ma〉
,
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3.2 Homology of a Discrete Group

is the “cocenter” of M . This forcibly quotients out all of the commuting elements!

This resolution is easiest seen over bimodules, but the same basic complex can be formed in the
category of plain left/right modules. So given AM ∈ A-mod, regard it as AAA ⊗AM ∼= M where
a⊗m 7→ am. Then AB(A)A ⊗AM is still a complex of free left modules that only depends on the
module A, so this is a universal type of resolution.

We can use this to compute things like

ExtA-mod(AM,AA) = h(Hom ∗A-mod (AB≤0(A)⊗AM,AN))
TorA-mod(NA,AA) = h(N ⊗A B≤0(A)⊗AM).

3.2 Homology of a Discrete Group
Let G be a discrete group – note that we could always think of these of topological spaces, just not
in this instance. Let A = Z[G] be the group ring: formal finite integer linear sums of elements in G
with the obvious multiplication.

Remark 3.2.1.
Note that a general k-algebra is not always augmented, so there is not always a way to make k into
an A module.

This algebra is in fact augmented, i.e. it has an algebra homomorphism Z[G] ε−→ Z, so we can make
Z into a left A module for A = Z[G] where a ∈ A acts on n ∈ Z by a.n 7→ ε(a)n.

This allows us to define

H∗(G;M) := TorZ[G](ZZ[G], Z[G]M).

In particular, we could just define

H∗(G;Z) := TorZ[G](ZZ[G], Z[G]Z).

These extend the natural functors, the “coinvariants”, and

H0(G;M) =
{
m
∣∣∣ gm = m

}
H0(G;M) = M

〈g.m = m〉

Next Time

• Explicit chain complex using bar resolutions
• Explicit complexes using the resolution in the case G = Zn
• Relation to simplicial classifying spaces.
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Figure 1: Image

4 Group Homology
Let G be a discrete group and A = Z[G] a group ring, and consider the category of A-modules.

We can define the trivial module Z[G]Z where g acts by 1 for all g ∈ G. This has to come equipped
with a homomorphism

Z[G] ε−→ Z
g 7→ 1

Example 4.0.1.
Take G = Z2 and A = Z[Z2] which is equal to

Z[x]/(x2 − 1) =
{
a+ bx

∣∣∣ a, b ∈ Z, x2 = 1
}
.

Construct by hand a resolution of AZ – this will require some choices, but this will be alright as
long as they are reasonably constrained and uniform, i.e. there isn’t some infinite process of choices.

Given an algebra, we can think of it as a bimodule over itself (not free), so we can always use the
bar resolution. But in this case, that may be too big!

So look at

Z/(x2 − 1).e2
e2 7→(x+1).e1−−−−−−−−→ Z/(x2 − 1) e1 7→(x−1)e0−−−−−−−−→ Z→ 0.

Note that the polynomials just act by evaluation at 1, so there are several different ways of looking
at the indicated map - one of which is just to send the generator to 1.

So the kernel if this map actually is the ideal (x− 1). Think of elements

(a+ bx).e0 = (a+ bx)(1) = a+ b,

4 GROUP HOMOLOGY 8



so the kernel is generated by elements a = b, or equivalently the ideal (x − 1). A similar pattern
continues as you resolve, which is periodic – note that e3 7→ (x − 1).e2. So picking the minimal
thing worked, which ended up having a 2-periodic pattern – so relatively simple to work with.

So this 2-periodic free resolution can be used

A =
(
· · ·A x(x−1)−−−−→ A

x(x+1)−−−−→ A
x(x−1)−−−−→ · · ·

)

From this we can compute TorZ[G]
∗ (Z,Z), which is by definition H∗(G;Z). But working this out, we

find it is equal to h(A⊗ Z). Use the isomorphism

A⊗A Z a⊗17→ε(a)1−−−−−−−→ Z.

Note that ε(x− 1) = 0 and ε(x+ 1) = 2, so we have

h(· · · ×2−−→ Z ×0−−→ Z ×2−−→ Z · · · ).

Thus we have H∗(Z2,Z) = Zδ0 + Z2δodd.

Note that this is equal to H∗(RP∞;Z)!

Example 4.0.2.
Similarly, we can do this for Zn, looking at A = Z[x]/(xn − 1), yielding a similar resolution:

· · ·A ×(x−1)−−−−−→ A
×(1+x+···xn−1)−−−−−−−−−−→ A

×(x−1)−−−−−→ A→ Z→ 0

Delete the right hand side, tensor this over Z to yield

· · ·A ×n−−→ A
×0−−→ A

×n−−→ A · · ·

This is equal to H∗(L∞n ;Z), which is equal to S2n−1/Zn which can be constructed in a CW fashion.
This is an interesting space which is contractible, but not a point – note that there is a free action
on it via Zn which has no fixed points, so it’s “big”.

So this allows us to look at groups as spaces of some sort.

It turns out that there is a universal way to resolve any Z[G]-module. Look at

⊕
h∈G

Z[G].eh −→ Z[G] g 7→1−−−→ Z→ 0

What is the kernel of the first map? It is Z
{
g − 1

∣∣∣ g ∈ G}
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Switch up the notation, and write it like a free resolution of abelian groups

Z[G3] (g,h,k)7→(g−h)+(h−k)+(k−g)−−−−−−−−−−−−−−−−−−−→ Z[G2] (g,h)7→g−h−−−−−−−→ Z[G] g 7→1−−−→ Z→ 0

We can then define a complex Cn = Z[Gn] of free abelian groups that is acyclic, using

∂((g0, g1, · · · gn)) =
∑

(−1)i(g0, · · · gi, · · · gn)

You can write down a contracting homotopy, as in the case of the bar complex, as

h(g0 · · · gn) 7→ (1, g0, · · · gn)

This is a chain homotopy between the identity map and the zero map, i.e. ∂h+ h∂ = id− 0, so the
induced map on homology by the identity is equal to the induced map on homology by the zero
map - thus zero homology.

In the bar complex, we only acted on the boundary terms and the middle didn’t play much of
an algebraic role. This is a complex of left G-modules if we use the diagonal action of G, where
g.(g0, · · · gn) = (gg0, · · · , ggn).

So to compute H∗(G;Z), we want to tensor with a right module so we take TorZ[G]
∗ (Zn, nZ), where

the right slot has already been resolved.

We identify, although this isomorphism must be handled carefully - we don’t want to make g0 a
privileged choice in a map like

Z⊗Z[G] Z[Gn+1] ∼= Z[Gn]

(g0, g1, · · · gn) 7→ (1, g1g
−1
0 , · · · gng−1

0 ).

It’s better to label by the differences, i.e.

(g0, g1, g2, · · · ) = (g0, g
−1
0 g1, g

−1
1 g2, · · · ),

which is a g0 invariant sort of notation.

This is the resolution usually seen in books, i.e. you might see

∂(g1, g2, · · · gn) = (g2, · · · gn) +
∑

(−1)i(· · · , gigi+1, · · · ) + · · ·

5 Intersection Theory
Goal: we’d like a geometric interpretation of the cup product.

Recall that we had an idea of representing homology classes in a space X by maps from a closed
connected manifolds f : P → X. We can then take the push forward of a fundamental class

f∗[P ] ∈ Hp(X;Z) where [P ] ∈ Hp(P )
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Remark 5.0.1.
The best case is when X = Mn is a closed n-dimensional closed manifold and f is the inclusion of
a locally flat submanifold.

Definition 5.0.1 (?).
A subset of P ⊆ Mn which is locally homeomorphic to Rp is a locally flat submanifold if at
every point x ∈ P there exists a neighborhood U of x in M and a homeomorphism

ϕ : (U,U ∩ P, x)→ (Rn,Rp × {0} , {0})

.

4! Warning 5.1: An example of a non locally flat submanifold: take the trefoil knot K in S3 ⊂ B4

and cone it to the origin to produce CK. This fails local flatness at the origin, despite the fact
that CK ∼= B2. Every neighborhood of the origin contains a copy of K and not a copy of S1 ∈ S3

unknotted. In general, the operation of taking a cone on a smooth manifold will not produce a
smooth manifold - but in the topological world, sometimes this works out.

Example 5.0.1.
Consider the Poincaré 3-sphere P 3, which has the same homology as S3. Even though ΣP 3 may
not be a manifold a priori, we actually have Σ2P 3 ∼= S5.

Note that while we may expect two p- dimensional submanifolds to just intersect in some number of
points (e.g. a curve intersecting a torus inside B4 or something), but there may be some degenerate
cases: they might be tangent, or part of one may lie inside the other.

Definition 5.0.2 (Locally Flat Submanifolds).
If P p, Qq are locally flat submanifolds of M , we say that they intersect transversally P t Q
when:

1. Case 1 p+ q < n =⇒ P ∩Q = ∅
2. Case 2 p + 1 ≥ n then we require that ∀x ∈ P ∩ Q, there exists a local neighborhood
U ⊂M and a homeomorphism

ϕ : (U,U ∩ P ∪Q, x)→ (Rn,Rp × {0} ∪ {0} × Rq, {0})

Note: this ensures that P ∩Q is a (p+ q − n)-manifold.

Remark 5.0.2.
For vector spaces X,Y ⊂ V where p, q ≤ n, we can then say they are transverse exactly when
X⊕Y = V (so X,Y span V ). This is primarily because dim(X∩Y ) = dimX+dimY −dim(X⊕Y ).
In the case of smooth manifolds, you might actually use this as a definition: two manifolds intersect
transversally iff their tangent planes span the ambient tangent space.

Remark 5.0.3.
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If we had smooth manifolds P,Q (i.e. differential topology), then Sard’s theorem plus extra work
would show that there exist arbitrarily small perturbations of P,Q such that P t Q.

Example 5.0.2.
Consider a parabola hitting a plane at a point. Move one way to make disjoint, get empty set
intersection – this trivially satisfies conditions of transversality. You can move this slightly to make
it intersect exactly twice.

This makes certain degenerate cases easier - i.e. a curve intersecting a plane in an interval, or doing
something like sin(1/x) on a surface.

The number of points of intersection is not exactly a homotopy invariant, since in the above example
we could make the intersection number either 2 or 0. However, the parity can be proved to be
such an invariant in the smooth setting. This leads into Morse theory. For example, look at cubic
intersecting plane – perturbations will coalesce two intersection points, which would be a Morse
critical point.

In this world, you’ll have vocabulary available

• Generic
• Stable
• Regular
• Transverse
• Random

Example 5.0.3.
For example, look atM = [S1,R3]. Transverse maps are an open and dense subset of this parameter
space. Imagine as blob cut up by “walls” which are the closed subsets of bad maps. Not only are
the good maps dense, but they are stable – everything in a small enough neighborhood will also be
good. A random map picked from this space will be good with probability 1.

Two such maps can be generically homotoped without hitting the intersection of the singular walls,
i.e. just going through walls with no intersection points). This ultimately just boils down to looking
at Taylor series - generically, the first coefficient is nonzero, so intersects x-axis transversally. If not,
the second coefficient is probably nonzero, so intersects quadratically, etc.

Theorem 5.0.1(?).
If P p, Qq are transverse in Mn where p+ q = n (and everything closed and oriented), then

#(P ∩Q) =
〈
D−1[P ] ^ D−1[Q], [M ]

〉
,

where the first entry is a cup product between Hq(M ;Z) and Hp(M ;Z). This is an algebraic
and homotopy invariant on the RHS, and geometric on the LHS.
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6 Relative Homology
Continuing discussion of relative homology:

H∗(X,A) = H(C∗X/C∗A)

When axiomatized, generally relies on property of excision, which relates to the following theorem:

Theorem 6.0.1(?).
If U ⊆ A ⊆ X and cl(U) ⊆ int(A), then

H(X,A) ∼= H(X − U,A− U)

or equivalently setting X = A ∪B where X = int(A) ∪ int(B), then

H(X,A) ∼= H(B,A ∩B)

Proof .
Recall from proof of Mayer Vietoris we used

C∗(A+B) ≤ C∗X = {singular simplexes from A or B}

This yields a SES

0 −→ C∗(A) −→ C∗(A+B) −→ C∗(B,A ∩B) −→ 0

Look at inclusion C∗(A+B) ι−→ C∗(X) and its placement in the SES

0 −→ C∗(A) −→ C∗(X) −→ C∗(X,A) −→ 0

These yield commuting long exact sequences:

Hn(A) −→ Hn(A+B) −→ Hn(A,A ∩B) −→ Hn−1(A) −→ Hn−1(A+B) −→ · · ·

Hn(A) −→ Hn(X) −→ Hn(X,A) −→ Hn−1(A) −→ Hn−1(X) −→ · · ·

Here the 5 lemma applies, since there are two maps that are identifications and H∗(A+B) ∼=
H∗(X) by Mayer-Vietoris.

�

Example 6.0.1.
Look at local homology, i.e. look at H∗(X,X − {∗}), this is equivalent to H∗(U,U − {∗}) for any
open neighborhood U ⊇ {∗}. Take any open V ⊆ Rn as an example, then

H∗(V, V − {pt}) ∼= H∗(U,U − {pt})
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6.1 Collapsing Theorem

for U an epsilon ball around the point, but then by homeomorphism this is equal to

H∗(Rn,Rn − {pt}) = Z1 [dim = n]

Remark 6.0.1.
This is a stronger statement than “Brouwer’s Invariance of Domain”, because this invariant picks
up the dimension n.

Note that this invariance is given by the following statement: no open set of Rn can be homeomorphic
to a subset of Rm for m 6= n.

This can be used to show that e.g. singular points are weird, e.g. if this doesn’t yield Z everywhere
in a space X then X can not be a manifold.

6.1 Collapsing Theorem
If X ⊇ A and A has an open neighborhood V ⊇ A which deformation retracts onto it then
H∗(X,A) ∼= H̃∗(X/A).

Aside:

Definition 6.1.1 (Deformation).
A deformation is given by A ↪→i V �p A where p ◦ i = idA

Definition 6.1.2 (Deformation Retract).
A deformation retract is given by V �p A ↪→i V where i ◦ p ' idV

Proof .
Take a homeomorphism

(X −A, V −A) ∼= (X/A−A/A, V/A−A/A)

by homeomorphisms of each component.
By excision, the LHS is isomorphic to H∗(X,V ), while the RHS is given by

H∗(X/A− {pt}, V/A− {pt}) ∼= H∗(X/A, V/A)

Yields LES of triple

0 = Hn(V,A) −→ Hn(X,A) −→ Hn(X,V ) −→ Hn−1(V,A) = 0

so Hn(X,A) ∼= Hn(X,V ).
So the RHS is equal to

H∗(X/A, V/A) = H∗(X/A,A/A) = H∗(X/A, {pt}) = H̃∗(X/A)

�
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6.2 Cellular Homology

Note that the collapsing argument doesn’t work for local homology.

Example 6.1.1.
Consider

H∗(Rn,Rn − {pt}) 6∼= H̃∗(Rn/Rn − {pt}).

The LHS depends on n while the RHS doesn’t. Note also the weird quotient topology on the RHS.

6.2 Cellular Homology
If X is a CW-complex, then let Xn be the n-skeleton. We can then define

Ccell
n (X) := Hn(Xn, Xn−1) ∼= Hn(Xn/Xn−1) ∼=

∨
α∈In

Snα =
⊕
α

Z.

Can now introduce a boundary map ∂ : Cn → Cn−1 from

δ : Hn(Xn, Xn−1)→ Hn(Xn−1, Xn−2)

obtained from the LES of the triple (Xn, Xn−1, Xn−2).

Why is this a chain complex? Does ∂2 = 0?

Look at [z] ∈ Hn(Xn, Xn−1). Then z ∈ Cn(X) is a singular n simplex, must be a cycle such that

∂z ∈ Cn−1X
n−1 ⊆ Cn−1X

n

Then

δ([z]) = [∂z] ∈ Cn−1(Xn−1)/Cn−1(Xn−2)

Note the distinction between actual cycles and relative cycles. But then

[∂∂z] = [0] ∈ Hn−1(Xn−2, Xn−3)

Makes the problem tractable, yields integer linear algebra for finite CW complexes! This makes
things easier to actually compute.
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