# Thursday August 15th > We'll be using Hungerford's Algebra text. ## Definitions The following definitions will be useful to know by heart: - The order of a group - Cartesian product - Relations - Equivalence relation - Partition - Binary operation - Group - Isomorphism - Abelian group - Cyclic group - Subgroup - Greatest common divisor - Least common multiple - Permutation - Transposition - Orbit - Cycle - The symmetric group $S_{n}$ - The alternating group $A_{n}$ - Even and odd permutations - Cosets - Index - The direct product of groups - Homomorphism - Image of a function - Inverse image of a function - Kernel - Normal subgroup - Factor group - Simple group Here is a rough outline of the course: - Group Theory - Groups acting on sets - Sylow theorems and applications - Classification - Free and free abelian groups - Solvable and simple groups - Normal series - Galois Theory - Field extensions - Splitting fields - Separability - Finite fields - Cyclotomic extensions - Galois groups - Solvability by radicals - Module theory - Free modules - Homomorphisms - Projective and injective modules - Finitely generated modules over a PID - Linear Algebra - Matrices and linear transformations - Rank and determinants - Canonical forms - Characteristic polynomials - Eigenvalues and eigenvectors ## Preliminaries **Definition**: A **group** is an ordered pair $(G, \wait: G\cross G \to G)$ where $G$ is a set and $\wait$ is a binary operation, which satisfies the following axioms: 1. **Associativity**: $(g_1 g_2)g_3 = g_1(g_2 g_3)$, 2. **Identity**: $\exists e\in G \suchthat ge = eg = g$, 3. **Inverses**: $g\in G \implies \exists h\in G \suchthat gh = gh = e$. *Examples of groups:* - $(\ZZ, +)$ - $(\QQ, +)$ - $(\QQ\units, \times)$ - $(\RR\units, \times)$ - ($\GL(n, \RR), \times) = \theset{A \in \mathrm{Mat}_n \suchthat \det(A) \neq 0}$ - $(S_n, \circ)$ **Definition:** A subset $S \subseteq G$ is a **subgroup** of $G$ iff 1. **Closure**: $s_1, s_2 \in S \implies s_1 s_2 \in S$ 2. **Identity**: $e\in S$ 3. **Inverses**: $s\in S \implies s\inv \in S$ We denote such a subgroup $S \leq G$. *Examples of subgroups:* - $(\ZZ, +) \leq (\QQ, +)$ - $\SL(n, \RR) \leq \GL(n, \RR)$, where $\SL(n, \RR) = \theset{A\in \GL(n, \RR) \suchthat \det(A) = 1}$ ## Cyclic Groups **Definition**: A group $G$ is **cyclic** iff $G$ is generated by a single element. *Exercise*: Show $$ \generators{g} = \theset{g^n \suchthat n\in\ZZ} \cong \intersect_{g\in G} \theset{H \mid H \leq G \text{ and } g\in H} .$$ **Theorem:** Let $G$ be a cyclic group, so $G = \generators{g}$. - If $\abs{G} = \infty$, then $G \cong \ZZ$. - If $\abs{G} = n < \infty$, then $G \cong \ZZ_n$. **Definition**: Let $H \leq G$, and define a **right coset of $G$** by $aH = \theset{ah \suchthat H \in H}$. A similar definition can be made for **left cosets**. **The "Fundamental Theorem of Cosets"**: $$ aH = bH \iff b\inv a \in H \text{ and } Ha = Hb \iff ab\inv \in H .$$ **Some facts:** - Cosets partition $H$, i.e. $$ b\not\in H \implies aH \intersect bH = \theset{e} .$$ - $\abs{H} = \abs{aH} = \abs{Ha}$ for all $a\in G$. **Theorem (Lagrange)**: If $G$ is a finite group and $H \leq G$, then $\abs{H} \divides \abs{G}$. **Definition** A subgroup $N \leq G$ is **normal** iff $gN = Ng$ for all $g\in G$, or equivalently $gNg\inv \subseteq N$. (I denote this $N \normal G$.) When $N \normal G$, the set of left/right cosets of $N$ themselves have a group structure. So we define $$ G/N = \theset{gN \suchthat g\in G} \text{ where } (g_1 N)\cdot (g_2 N) \definedas (g_1 g_2) N .$$ Given $H, K \leq G$, define $$ HK = \theset{hk \mid h\in H, ~k\in K} .$$ We have a general formula, $$ \abs{HK} = \frac{\abs H \abs K}{\abs{H \intersect K}}. $$ ## Homomorphisms **Definition**: Let $G,G'$ be groups, then $\varphi: G \to G'$ is a **homomorphism** if $\varphi(ab) = \varphi(a) \varphi(b)$. *Examples of homomorphisms*: - $\exp: (\RR, +) \to (\RR^{> 0}, \wait)$ since $$ \exp(a+b) \definedas e^{a+b} = e^a e^b \definedas \exp(a) \exp(b) .$$ - $\det: (\GL(n, \RR), \times) \to (\RR\units, \times)$ since $$\det(AB) = \det(A) \det(B).$$ - Let $N \normal G$ and define \begin{align*} \varphi: G &\to G/N \\ g &\mapsto gN .\end{align*} - Let $\varphi: \ZZ \to \ZZ_n$ where $\phi(g) = [g] = g \mod n$ where $\ZZ_n \cong \ZZ/n\ZZ$ **Definition**: Let $\varphi: G \to G'$. Then $\varphi$ is a **monomorphism** iff it is injective, an **epimorphism** iff it is surjective, and an **isomorphism** iff it is bijective. ## Direct Products Let $G_1, G_2$ be groups, then define $$ G_1 \cross G_2 = \theset{(g_1, g_2) \suchthat g_1 \in G, g_2 \in G_2} \text{ where } (g_1, g_2)(h_1, h_2) = (g_1 h_1, g_2 ,h_2). $$ We have the formula $\abs{G_1 \cross G_2} = \abs{G_1} \abs{G_2}$. ## Finitely Generated Abelian Groups **Definition**: We say a group is **abelian** if $G$ is commutative, i.e. $g_1, g_2 \in G \implies g_1 g_2 = g_2 g_1$. **Definition**: A group is **finitely generated** if there exist $\theset{g_1, g_2, \cdots g_n} \subseteq G$ such that $G = \generators{g_1, g_2, \cdots g_n}$. This generalizes the notion of a cyclic group, where we can simply intersect all of the subgroups that contain the $g_i$ to define it. We know what cyclic groups look like -- they are all isomorphic to $\ZZ$ or $\ZZ_n$. So now we'd like a structure theorem for abelian finitely generated groups. **Theorem**: Let $G$ be a finitely generated abelian group. Then $$G \cong \ZZ^r \times \displaystyle\prod_{i=1}^s \ZZ_{p_i^{\alpha _i}}$$ for some finite $r,s \in \NN$ where the $p_i$ are (not necessarily distinct) primes. *Example*: Let $G$ be a finite abelian group of order 4. Then $G \cong \ZZ_4$ or $\ZZ_2^2$, which are not isomorphic because every element in $\ZZ_2^2$ has order 2 where $\ZZ_4$ contains an element of order 4. ## Fundamental Homomorphism Theorem Let $\varphi: G \to G'$ be a group homomorphism and define $$ \ker \varphi \definedas \theset{g\in G \suchthat \varphi(g) = e'} .$$ ### The First Homomorphism Theorem **Theorem**: There exists a map $\varphi': G/\ker \varphi \to G'$ such that the following diagram commutes: ```{=latex} \begin{center} \begin{tikzcd} G \arrow[dd, "\eta"'] \arrow[rr, "\varphi", dotted] & & G' \\ & & \\ G/\ker \varphi \arrow[rruu, "\varphi'"] & & \end{tikzcd} \end{center} ``` That is, $\varphi = \varphi' \circ \eta$, and $\varphi'$ is an isomorphism onto its image, so $G/\ker \varphi = \im \varphi$. This map is given by $$ \varphi'(g(\ker \varphi)) = \varphi(g) .$$ *Exercise*: Check that $\varphi$ is well-defined. ### The Second Theorem **Theorem**: Let $K, N \leq G$ where $N \normal G$. Then $$ \frac K {N \intersect K} \cong \frac {NK} N $$ *Proof:* Define a map \begin{align*} K &\mapsvia{\varphi} NK/N \\ k &\mapsto kN .\end{align*} You can show that $\varphi$ is onto, then look at $\ker \varphi$; note that $$ kN = \varphi(k) = N \iff k \in N ,$$ and so $\ker \varphi = N \intersect K$. $\qed$