# Tuesday October 1st ## Isomorphism Extension Theorem Suppose we have $F\leq E \leq \overline F$ and $F' \leq E' \leq \overline{F}'$. Supposing also that we have an isomorphism $\sigma: F \to F'$, we want to extend this to an isomorphism from $E$ to *some* subfield of $\overline{F}'$ over $F'$. **Theorem:** Let $E$ be an algebraic extension of $F$ and $\sigma: F \to F'$ be an isomorphism of fields. Let $\overline{F}'$ be the algebraic closure of $F'$. Then there exists a $\tau: E \to E'$ where $E' \leq F'$ such that $\tau(f) = \sigma(f)$ for all $f \in F$. *Proof:* See Fraleigh. Uses Zorn's lemma. $\qed$ **Corollary:** Let $F$ be a field and $\overline F, \overline F'$ be algebraic closures of $F$. Then $\overline F \cong \overline F'$. *Proof:* Take the identity $F \to F$ and lift it to some $\tau: \overline F \to E = \tau(\overline F)$ inside $\overline F '$. \begin{center} \begin{tikzcd} & \bar F'\ar[d, dash] \\ \bar F\ar[r, "\tau", red]\ar[d, dash] & E = \tau(\bar F)\ar[d, dash] \\ F\ar[r, "\id"] & F \end{tikzcd} \end{center} Then $\tau(\overline F)$ is algebraically closed, and $\overline F' \geq \tau(\overline F)$ is an algebraic extension. But then $\overline F' = \tau(\overline F)$. $\qed$ **Corollary:** Let $E \geq F$ be an algebraic extension with $\alpha, \beta \in E$ conjugates. Then the conjugation isomorphism that sends $\alpha \to \beta$ can be extended to $E$. *Proof:* \begin{center} \begin{tikzcd} \bar F \ar[d, dash] & \bar F \ar[d, dash, red] \\ E \ar[r, "\tau", red]\ar[d, dash] & {\color{red}E }\ar[d, dash] \\ F(\alpha) \ar[r, "\psi"]\ar[d, dash] & F(\beta)\ar[d, dash] \\ F \ar[r, "\id"] & F \\ \end{tikzcd} \end{center} > Note: Any isomorphism needs to send algebraic elements to algebraic elements, and even more strictly, conjugates to conjugates. Counting the number of isomorphisms: Let $E \geq F$ be a finite extension. We want to count the number of isomorphisms from $E$ to a subfield of $\overline F$ that leave $F$ fixed. I.e., how many ways can we fill in the following diagram? \begin{center} \begin{tikzcd} \bar F \ar[d, dash] & \bar F \ar[d, dash, red] \\ E \ar[r, "\tau", red]\ar[d, dash] & {\color{red}E }\ar[d, dash] \\ F \ar[r, "\id"] & F \\ \end{tikzcd} \end{center} Let $G(E/F) \definedas \Gal(E/F)$; this will be a finite group if $[E: F] < \infty$. **Theorem:** Let $E \geq F$ with $[E: F] < \infty$ and $\sigma: F \to F'$ be an isomorphism. Then the number of isomorphisms $\tau: E \to E'$ extending $\sigma$ is *finite*. *Proof:* Since $[E: F]$ is finite, we have $F_0 \definedas F(\alpha_1, \alpha_2, \cdots, \alpha_t)$ for some $t\in \NN$. Let $\tau: F_0 \to E'$ be an isomorphism extending $\sigma$. Then $\tau(\alpha_i)$ must be a conjugate of $\alpha_i$, of which there are only finitely many since $\deg \min(\alpha_j, F)$ is finite. So there are at most $\prod_i \deg\min(\alpha_i, F)$ isomorphisms. *Example:* $f(x) = x^3 - 2$, which has roots $\sqrt[3] 2, \sqrt[3] 2 \zeta, \sqrt[3] \zeta^2$. Two other concepts to address: - Separability (multiple roots) - Splitting Fields (containing all roots) **Definition:** Let $$ \theset{E: F} \definedas \abs{ \theset{\sigma: E \to E' \suchthat \sigma \text{ is an isomorphism extending } \id: F \to F}} ,$$ and define this to be the *index*. **Theorem:** Suppose $F \leq E \leq K$, then $$ \theset{K: F} = \theset{K: E} \theset{E: F}. $$ *Proof:* Exercise. $\qed$ *Example:* $\QQ(\sqrt 2, \sqrt 5)/\QQ$, which is an extension of *degree* 4. It also turns out that $$ \theset{\QQ(\sqrt 2, \sqrt 5) : \QQ} = 4. $$ **Questions:** 1. When does $[E: F] = \theset{E: F}$? (This is always true in characteristic zero.) 2. When is $\theset{E: F} = \abs{\Gal(E/F)}$? Note that in this example, $\sqrt 5 \mapsto \pm \sqrt 5$ and likewise for $\sqrt 2$, so any isomorphism extending the identity must in fact be an *automorphism*. We have automorphisms \begin{align*} \sigma_1: (\sqrt 2, \sqrt 5) &\mapsto (-\sqrt 2,\sqrt 5) \\ \sigma_2: (\sqrt 2, \sqrt 5) &\mapsto (\sqrt 2, -\sqrt 5) ,\end{align*} as well as $\id$ and $\sigma_1 \circ \sigma_2$. Thus $\Gal(E/F) \cong \ZZ_2^2$. ## Separable Extensions **Goal**: When is $\theset{E: F} = [E: F]$? We'll first see what happens for simple extensions. **Definition:** Let $f \in F[x]$ and $\alpha$ be a zero of $f$ in $\overline F$. The maximum $\nu$ such that $(x-\alpha)^\nu \divides f$ is called the *multiplicity* of $f$. **Theorem:** Let $f$ be irreducible. Then all zeros of $f$ in $\overline F$ have the same multiplicity. *Proof:* Let $\alpha, \beta$ satisfy $f$, where $f$ is irreducible. Then consider the following lift: \begin{center} \begin{tikzcd} \bar F\ar[d, dash] & \bar F\ar[d, dash] \\ F(\alpha) \ar[r, "\psi"]\ar[d, dash] & F(\beta) \ar[d, dash] \\ F \ar[r, "\id"] & F \\ \end{tikzcd} \end{center} This induces a map \begin{align*} F(\alpha)[x] &\mapsvia{\tau} F(\beta)[x] \\ \sum c_i x^i &\mapsto \sum \psi(c_i) x^i ,\end{align*} so $x\mapsto x$ and $\alpha \mapsto \beta$, so $x\mapsto x$ and $\alpha \mapsto \beta$. Then $\tau(f(x)) = f(x)$ and $$ \tau((x-\alpha)^\nu) = (x-\beta)^\nu .$$ So write $f(x) = (x-\alpha)^\nu h(x)$, then $$ \tau(f(x)) = \tau((x-\alpha)^\nu) \tau(h(x)) .$$ Since $\tau(f(x)) = f(x)$, we then have $$ f(x) = (x-\beta)^\nu \tau(h(x)) .$$ So we get $\mathrm{mult}(\alpha) \leq \mathrm{mult}(\beta)$. But repeating the argument with $\alpha, \beta$ switched yields the reverse inequality, so they are equal. $\qed$ *Observation:* If $F(\alpha) \to E'$ extends the identity on $F$, then $E' = F(\beta)$ where $\beta$ is a root of $f \definedas \min(\alpha, F)$. Thus we have $$ \theset{F(\alpha): F} = \abs{\theset{\text{distinct roots of } f}} .$$ Moreover, $$ [F(\alpha): F] = \theset{F(\alpha) : F} \nu $$ where $\nu$ is the multiplicity of a root of $\min(\alpha, F)$. **Theorem:** Let $E \geq F$, then $\theset{E: F} \divides [E: F]$.