# Thursday October 10th ## Computation of Automorphisms Setup: - $F \leq E \leq K \leq \overline F$ - $[K: F] < \infty$ - $K$ is a normal extension of $F$ **Facts:** - $\Gal(K/E) = \theset{\sigma \in \Gal(K/F) \suchthat \sigma(e) = e ~\forall e\in E}$. - $\sigma, \tau \in \Gal(K/F)$ and $\restrictionof{\sigma}{E} = \restrictionof{\tau}{E} \iff \sigma, \tau$ are in the same left coset of $\Gal(K/F) / \Gal(K/E)$. *Example*: $K = \QQ(\sqrt 2, \sqrt 5)$. Then $\Gal(K/\QQ) \cong \ZZ_2^2$, given by the following automorphisms: \begin{align*} \id: \sqrt 2 &\mapsto \sqrt 2, \quad& \sqrt 5 &\mapsto \sqrt 5 \\ \rho_1: \sqrt 2 &\mapsto \sqrt 2, \quad& \sqrt 5 &\mapsto -\sqrt 5 \\ \rho_2: \sqrt 2 &\mapsto -\sqrt 2, \quad& \sqrt 5 &\mapsto \sqrt 5 \\ \rho_1 \circ \rho_2: \sqrt 2 &\mapsto -\sqrt 2, \quad& \sqrt 5 &\mapsto -\sqrt 5 .\end{align*} We then get the following subgroup/subfield correspondence: ```{=latex} \begin{center} \begin{tikzcd}[column sep=small] & & \ZZ_2^2 & & & & & & {\QQ(\sqrt 2, \sqrt 5)} \arrow[lldd] \arrow[dd] \arrow[rrdd] & & \\ & & & & & & & & & & \\ {\theset{\id, \rho_1}} \arrow[rruu] & & {\theset{\id, \rho_2}} \arrow[uu] & & {\theset{\id, \rho_1 \circ \rho_2}} \arrow[lluu] & & \QQ(\sqrt 2) \arrow[rrdd] & & \QQ(\sqrt 5) \arrow[dd] & & \QQ(\sqrt{10}) \arrow[lldd] \\ & & & & & & & & & & \\ & & \theset{\id} \arrow[lluu] \arrow[uu] \arrow[rruu] & & & & & & \RR & & \end{tikzcd} \end{center} ``` ## Fundamental Theorem of Galois Theory Recall that $\definedas \Gal(K/E)$. **Theorem (Fundamental Theorem of Galois Theory):** Let $\mathcal D$ be the collection of subgroups of $\Gal(K/F)$ and $\mathcal C$ be the collection of subfields $E$ such that $F \leq E \leq K$. Define a map \begin{align*} \lambda: \mathcal C &\to \mathcal D \\ \lambda(E) &\definedas \theset{\sigma \in \Gal(K/F) \mid \sigma(e) = e ~\forall e\in E} .\end{align*} Then $\lambda$ is a bijective map, and 1. $\lambda(E) = \Gal(K/E)$ 2. $E = K_{\lambda(E)}$ 3. If $H \leq \Gal(K/F)$ then $$ \lambda(K_H) = H $$ 4. $[K: E] = \abs{\lambda(E)}$ and $$ [E: F] = [\Gal(K/F): \lambda(E)] $$ 5. $E$ is normal over $F \iff \lambda(E) \normal \Gal(K/F)$, and in this case $$ \Gal(E/F) \cong \Gal(K/F) / \Gal(K/E) .$$ 6. $\lambda$ is order-reversing, i.e. $$ E_1 \leq E_2 \implies \lambda(E_2) \leq \lambda(E_1) .$$ *Proof of 1:* Proved earlier. $\qed$ *Proof of 2:* We know that $E \leq L_{\Gal(K/E)}$. Let $\alpha \in K\setminus E$; we want to show that $\alpha$ is not fixed by all automorphisms in $\Gal(K/E)$. We build the following tower: ```{=latex} \begin{center} \begin{tikzcd} K \arrow[rr, "\tau'", dotted] & & K \\ E(\alpha) \arrow[rr, "\tau"] \arrow[u] & & E(\beta) \arrow[u] \\ E \arrow[rr, "\id"] \arrow[u] & & E \arrow[u] \\ F \arrow[rr, "\id"] \arrow[u] & & F \arrow[u] \end{tikzcd} \end{center} ``` This uses the isomorphism extension theorem, and the fact that $K$ is normal over $F$. If $\beta\neq \alpha$, then $\beta$ must be a conjugate of $\alpha$, so $\tau'(\alpha) \neq \alpha$ while $\tau' \in \Gal(K/E)$. $\qed$ > **Claim:** > $\lambda$ is injective. > > *Proof:* > Suppose $\lambda(E_1) = \lambda(E_2)$. > Then by (2), $E_1 = K_{\lambda(E_1)} = K_{\lambda(E_2)} = E_2$. > $\qed$ *Proof of 3:* We want to show that if $H\leq \Gal(K/F)$ then $\lambda(K_H) = H$. We know $H \leq \lambda(K_H) = \Gal(K/K_H) \leq \Gal(K/F)$, so suppose $H \lneq \lambda(K_H)$. Since $K$ is a finite, separable extension, $K = K_H(\alpha)$ for some $\alpha \in K$. Let \begin{align*} n = [K: K_H] = {K: K_H} = \abs{\Gal(K/K_H)} .\end{align*} Since $H \lneq \lambda(K_H)$, we have $\abs{H} < n$. So denote $H = \theset{\sigma, \sigma_2, \cdots}$ and let define \begin{align*} f(x) = \prod_i (x - \sigma_i(\alpha)) .\end{align*} We then have - $\deg f = \abs{H}$ - The coefficients of $f$ are symmetric polynomials in the $\sigma_i(\alpha)$ and are fixed under any $\sigma\in H$ - $f(x) \in K_H(\alpha)[x]$ - $f(\alpha) = 0$ since $\sigma_i(\alpha) = \alpha$ for every $i$. This is a contradiction, so we must have $$ [K_H: K] = n = \deg \min(\alpha, K_H) \leq \deg f = \abs{H} .$$ $\qed$ > Assuming (3), $\lambda$ is surjective, so suppose $H < \Gal(K/F)$. > Then $\lambda(K_H) = H \implies \lambda$ is surjective. *Proof of 4:* \begin{align*} \abs{\lambda(E)} &= \abs{\Gal(K/E)} =_{\text{splitting field}} [K: E] \\ [E: F] &=_{\text{separable}} \{E: F\} =_{\text{previous part}} [\Gal(K/F): \lambda(E)] .\end{align*} *Proof of 5:* We have $F\leq E \leq K$ and $E$ is separable over $F$, so $E$ is normal over $F \iff E$ is a splitting field over $F$. That is, every extension $E'/E$ maps $K$ to itself, since $K$ is normal. ```{=latex} \begin{center} \begin{tikzcd} K & & K \\ E \arrow[u] & & E' \arrow[u] \\ F \arrow[rr, "id"] \arrow[u] & & F \arrow[u] \end{tikzcd} \end{center} ``` So $E$ is normal over $F \iff$ for all $\sigma \in \Gal(K/F), \sigma(\alpha) \in E$ for all $\alpha \in E$. By a previous property, $E = K_{\Gal(K/E)}$, and so \begin{align*} \sigma(\alpha) \in E &\iff \tau(\sigma(\alpha)) = \sigma(\alpha) &\quad \forall \tau \in \Gal(K/E) \\ &\iff (\sigma\inv \tau \sigma) (\alpha) = \alpha S&\quad \forall \tau \in \Gal(K/E) \\ &\iff \sigma\inv \tau\sigma \in \Gal(K/E) \\ &\iff \Gal(K/E) \normal \Gal(K/F) .\end{align*} Now assume $E$ is a normal extension of $F$, and let \begin{align*} \phi: \Gal(K/F) &\to \Gal(E/F) \\ \sigma &\mapsto \restrictionof{\sigma}{E} .\end{align*} Then $\phi$ is well-defined precisely because $E$ is normal over $F$, and we can apply the extension theorem: ```{=latex} \begin{center} \begin{tikzcd} K & & K \\ E \arrow[u] \arrow[rr, "\tau"] & & E \arrow[u] \\ F \arrow[rr, "\id"] \arrow[u] & & F \arrow[u] \end{tikzcd} \end{center} ``` $\phi$ is surjective by the extension theorem, and $\phi$ is a homomorphism, so consider $\ker \phi$. Let $\phi(\sigma) = \restrictionof{\sigma}{E} = \id$. Then $\phi$ fixes elements of $E \iff \sigma \in \Gal(K/E)$, and thus $\ker \phi = \Gal(K/E)$. $\qed$ *Proof of 6:* \begin{align*} E_1 \leq E_2 \iff &\Gal(K/E_2) \leq &\Gal(K/E_1) \\ & \shortparallel &\shortparallel \\ &\lambda(E_2) \leq &\lambda(E_1) .\end{align*} > Example: > $K = \QQ(\sqrt[3] 2, \zeta_3)$. > Then $\min(\zeta, \QQ) = x^2 + x + 1$ and $\Gal(K/\QQ) = S_3$. > There is a subgroup of order 2, $E = \Gal(K/\QQ(\sqrt[3] 2)) \leq \Gal(K/\QQ)$, but $E$ doesn't correspond to a normal extension of $F$, so this subgroup is not normal. > On the other hand, $\Gal(\QQ(\zeta_3), \QQ) \normal \Gal(K/ \QQ)$.