# October 27th ## Modules Let $R$ be a ring and $M$ be an $R\dash$module. **Definition:** For a subset $X\subseteq M$, we can define the *submodule generated by $X$* as $$ \generators{X} \definedas \intersect_{X \subseteq N \leq M} N \subseteq M .$$ Then $M$ is generated by $X$ iff $M = \generators{X}$. As a special case, when $X = \theset{m}$ consists of a single element, we write $$ \generators{m} = Rm \definedas \theset{rm \suchthat r\in R} .$$ In general, we have \begin{align*} \generators{X} = \theset{\sum r_i x_i \mid r_i \in R, x_i \in X} .\end{align*} ## Direct Products and Direct Sums **Definition:** Let $\theset{M_i}$ be a finite collection of $R\dash$modules, and let \begin{align*} N = \bigoplus M_i = \theset{\sum m_i \mid m_i \in M_i} \end{align*} with multiplication given by $\gamma \sum m_i = \sum \gamma m_i$ denote the **direct sum**. For an infinite collection, we require that all but finitely many terms are zero. **Definition:** Define $N = \prod M_i$ denote the **direct product**, where we now drop the condition that finitely many terms are zero. When the indexing set is finite, $\bigoplus M_i \cong \prod M_i$. In general, $\bigoplus M_i \injects \prod M_i$. Note that the natural inclusions $$ \iota_j: M_j \injects \prod M_i $$ and projections $$ \pi_j: \prod M_i \surjects M_j $$ are both $R\dash$module homomorphisms. Theorem: $M \cong \bigoplus M_i$ iff there exist maps $\pi_j: M \to M_j$ and $\iota_j: M_j \to M$ such that 1. $$ \pi_j \circ \iota_k = \begin{cases} 1m & j=k \\ 0 & \text{else}\end{cases} $$ 2. $\sum_j \iota_j \circ \pi_j = \id_M$ **Remark:** Let $M, N$ be $R\dash$modules. Then $\hom_{R-\text{mod}}(M, N)$ is an abelian group. ## Internal Direct Sums For a collection of submodules of $M$ given by $\theset{M_i}$, denote the *internal direct sum* \begin{align*} \sum M_i \definedas \theset{m_1 + m_2 + \cdots \mid m_i \in M_i} \end{align*} iff it satisfies the following conditions: 1. $M = \sum_i M_i$ 2. $M_i \intersect M_j = \theset{0}$ for $i\neq j$. ## Exact Sequences **Definition:** A sequence of the form $$ 0 \to M_1 \mapsvia{i} M_2 \mapsvia{p} M_3 \to 0 $$ where - $i$ is a monomorphism - $p$ is an empimorphism - $\im i = \ker p$ is said to be **short exact**. *Examples*: - $$ 0 \to 2\ZZ \injects \ZZ \surjects \ZZ/2\ZZ \to 0 $$ - For any epimorphism $\pi: M\to N$, $$ 0 \to \ker \pi \to M \to N \to 0 $$ - $$ 0 \to M_1 \to M_1 \oplus M_2 \to M_2 \to 0 $$ In general, any sequence $$ \cdots \to M_i \mapsvia{f_i} M_{i+1} \mapsvia{f_{i+1}} \cdots $$ is **exact** iff $\im f_i = \ker f_{i+1}$. 1. If $\alpha, \gamma$ are monomorphisms then $\beta$ is a monomorphism.