# Tuesday November 26th ## Minimal and Characteristic Polynomials **Theorem** a. ? (Todo) b. **(Cayley Hamilton)** If $p$ is the minimal polynomial of a linear transformation $\phi$, then $p(\phi) = 0$ c. For any $f(x) \in k[x]$ that is irreducible, $f(x) \divides p_\phi(x) \iff f(x) \divides q_\phi(x)$. *Proof of (a):* ? $\qed$ *Proof of (b):* If $q_\phi(x) \divides p_\phi(x)$ and $q_\phi(\phi) = 0$, then $p_\phi(\phi) = 0$ as well. $\qed$ *Proof of (c):* We have $f(x) \divides q_\phi(x) \implies f(x) \divides p_\phi(x)$ and $f(x) \divides p_\phi(x) \implies f(x) \divides q_i(x)$ for some $i$, and so $f(x) \divides q_\phi(x)$. $\qed$ ## Eigenvalues and Eigenvectors **Definition:** Let $\phi: V\to V$ be a linear transformation. Then 1. An **eigenvector** is a vector $\vector v = \vector 0$ such that $\phi(\vector v) = \lambda \vector v$ for some $\lambda \in k$. 2. If such a $\vector v$ exists, then $\lambda$ is called an **eigenvalue** of $\phi$. **Theorem:** The eigenvalues of $\phi$ are the roots of $p_\phi(x)$ in $k$. *Proof:* Let $[\phi]_B = A$, then \begin{align*} &p_A(\lambda) = p_\phi(\lambda) = \det(\lambda I - A) = 0 \\ &\iff \exists \vector v\neq \vector 0 \text{ such that } (\lambda I - A)\vector v = \vector 0 \\ &\iff \lambda I\vector v = A \vector v \\ &\iff A\vector v = \lambda \vector v \\ &\iff \lambda \text{ is an eigenvalue and } \vector v \text{ is an eigenvector} .\end{align*} $\qed$