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1 Lecture 1
This course will use Geometry of differential forms by Shigeyuki Morita, another good reference
is Lee’s Topological Manifolds.

1.1 Overview
The key point of this class will be a discussion of smooth structures. As you may recall, a sensational
result of Milnor’s exhibited exotic spheres with smooth structures – i.e., a differentiable manifold M
which is homeomorphic but not diffeomorphic to a sphere.

Summary of this result: Look at bundles S3 → X → S4, then one can construct some X ∼= S7 ∈ Top
but X 6∼= S7 ∈ Diff∞. There are in fact 7 distinct choices for X.

It is not known if there are exotic smooth structures on S4. The Smooth Poincare’ conjecture
is that these do not exist; this is believed to be false.

The other key point of this course is to show that X ∈ Diff∞ =⇒ X ↪→ Rn for some n, and is in
fact a topological subspace.

A short list of words/topics we hope to describe:

• Differentiable manifolds
• Local charts
• Submanifolds
• Projective spaces
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• Lie groups
• Tangent spaces
• Vector fields
• Cotangent spaces
• Differentials of smooth maps G
• Differential forms
• de Rham’s theorem

1.2 Motivation
We’d like a notion of “convergence” for, say, curves in R2. Consider the following examples.

Note the problematic point on the bottom right, as well as the fact that neither of the usual notions
of pointwise or uniform convergence will yield a point on the LHS that converges to the red point
on the RHS.



Note the problematic point at the origin.



Note the problematic point in the middle, for which all neighborhoods of it are not homeomorphic
to either a 2-dimensional nor a 1-dimensional space.

1.3 Defining smooth manifolds
Definition 1. A topological space M is said to be a topological manifold when

• M is Hausdorff, so p 6= q ∈M =⇒ ∃N(p), N(q) such that N(p)
⋂

N(q) = ∅.
• x ∈ M =⇒ there exists some Ux ⊆ M and a ϕ : Ux → Rn for some n which is a

homeomorphism.
• M is 2nd countable

There are somewhat technical conditions – most of the theory goes through without M being
Hausdorff or 2nd countable, but these are needed to construction partitions of unity later.

Also note that these conditions exclude spaces such as the copy of D2 ∨ I from above.

The intuition here is that we’d like spaces that “locally look like Rn”, and we introduce the additional
structure of smoothness in the following way:

Definition 2. A family of coordinate systems {Uα, ϕα)} is a smooth atlas on M exactly when
the change-of-coordinate maps fα,β are C∞.

Exercise 1. Show that Sn is a smooth manifold for every n.

Supposing that f : Mn → Mn is a map, then locally there is a map f̃ : Rn → Rn. Moreover, we
can write

f(x1, x2, · · ·xn) = [f1(x1, x2, · · ·xn), f2(x1, x2, · · ·xn), · · · fn(x1, x2, · · ·xn)]



Figure 1: Smooth transition functions



Proposition 1. If M and N are smooth manifolds, then the product M × N is also a smooth
manifolds.

Being Hausdorff and 2nd countable can be checked on the basis elements, and it is indeed true that
B1 × B2 furnishes a basis that satisfies these conditions.

Example 1. The n-fold copy of 1-dimensional sphere is given by

(S1)n =
∏
n

S1 := Tn,

and is denoted the n-torus.
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Recall that last time we gave the definition of a smooth manifolds, discussed examples such as
spheres, and saw that this category is closed under products.

Theorem: In Rn, given smooth functions fi(x1, · · ·xn) where q ≤ i ≤ n, the set Z := {x ∈ Rn � fi(x) = 0 ∀i},
then Z is a smooth manifold if there exist {i1, · · · , im} ⊆ {q, · · · , n} such that the Jacobian(
∂fi
∂xij

)
6= 0.

Without loss of generality, assume ij = j, we can then write this matrix as

[∇f1,∇f2, · · · ∇fm]t ,

where the submatrix formed by first m columns has a nonzero determinant.

The implicit function theorem: In this situation, there exist a sequence of functions {gk}nk=m+1 such
that gk(x1, · · ·xm) = xk which are smooth.

Compare this to F (x, y) = 0 (the two variable case) and ∂F
∂x |x=x0 6= 0, then there exists and f

neared near x0 such that F (x, f(x)) = 0 ⇐⇒ y = f(x), and now just replace x with x (add bars
everywhere) to get the above theorem.

Say we have x0 =
[
x0

1, · · · , x0
n

]
. such that

(
∂fi

∂x0
j

) ∣∣∣
x=x0
6= 0, then there exists a U ⊂ Rn where inside

U
⋂

Z, all points have the form (x1, x2, · · · , xm, gm+1(x1, · · ·xm), · · · gn(x1, · · ·xm)).

So only the first m variables are free, and the remaining are determined by some functions gk.



\
Here U gives a defining region in Rm for x1, · · ·xm, and ϕα of this neighborhood satisfies ϕ−1

α (x1, · · ·xm) =
(x1, · · · , xm, gm+1, · · · gn). Now we can look at the transition function fαβ = ϕβ ◦ ϕ−1

α .

For example,

ϕα(x1, · · ·xn) = (x1, · · ·xm−1, xm)
ϕβ(x1, · · ·xn) = (x1, · · ·xm−1, xm+1)

ϕ−1
α (x1, · · ·xm) = (x1, · · ·xm, gm+1, · · · gn)

ϕ−1
β (x1, · · ·xm−1, xm+1) = (x1, xm−1, hm, xm+1, hm+2, · · ·hn)

For x ∈ Uα
⋂

Uβ, we have ϕβ ◦ ϕ−1
α (x1, · · ·xm) = (x1, · · ·xm−1, gm+1).

Example: the sphere revisited. Take F (x1, · · ·xn) = 0, where F (x1, · · ·xm) = −1 +
∑

x2
i . For any

(x1, · · ·xm) ∈ Sm−1, at least one xi 6= 0, wlog let this be x1. Then
(
∂F
∂x1

) ∣∣∣
x
= ∂x1 6= 0.

Example: the torus. We have Tn ⊂ R2n, where Tn =
∏n
i=1 S1. Write a point in R2n as

(x1, y1, · · ·xn, yn), then Tn =
{
(x, y) ∈ (R2)n � x2

i + y2
i = 1

}
.

Remark (Choice of atlas): If {(Uα, ϕα)} is an atlas for M , then

• Changing ϕα → εα◦ϕα where εα : ϕα(Uα)	 is a diffeomorphism, then the atlas {(Uα, εα ◦ ϕα)}
does not a priori yield the same smooth manifold; we will declare them to be the same though.
• If {(Uβ, ϕβ)} is another atlas of M such that the refinement {(Uα, ϕα)}

⋃
{(Uβ, ϕβ)} is again

an atlas of M , then they define the same smooth manifold M .

2.1 Submanifolds
If U ⊆M and M is a smooth manifold, then U also has the structure of a smooth manifold. This is
obtained by taking an atlas of M and intersecting each Uα with U , and then restricting ϕα to ϕα|U .

Examples:



• GL(n,R) ⊆ Mat(n,R) = {X � det X 6= 0}. Note that the det X = 0 is a closed subset, so its
complement is open.

• Knot complements

Definition: Nk ⊆ Mn is a submanifold if ∀p ∈ N, ∃Uα ⊆ M with p ∈ Uα such that N
⋂

Uα =
{q ∈ U � xk+1(q) = · · · = xn(q) = 0} where xi are the coordinate functions. (Note that we abuse
notation here, and we are applying ϕα to everything.)
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Figure 2: The coordinate chart situation.
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