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1 Preliminaries
Definition: Fibre Bundle

Definition: Homology

Definition: Cup Product

Definition: Good Cover

Notation: Let R be an arbitrary ring, and let h denote the contravariant functor

h( · ; R) : Top → Ring
X 7→ H∗

sing(X; R)

(X f−→ Y ) 7→ (H∗(Y ; R) f∗
−→ H∗(X; R))

which corresponds to taking singular cohomology.

Note that H∗
sing(X; R) is a graded ring with multiplicative structure given by the cup product,

and similarly H∗
dR(X;R) is graded ring with multiplication induced by the wedge product of

forms.

2 Statement of the Theorem
Let
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F E

B

i

p

be a fibre bundle. Taking cohomology induces maps

h(F ; R) h(E; R)

h(B; R)

i∗

p∗

Suppose that

1. h(F ; R) is a finitely-generated free R-module in each degree n, and
2. For every fiber F , there exists a collection of chains

CF :=
{

cj

∣∣∣ j ∈ J
}

⊆ h(E; R) for some index setJ

such that their restrictions
{

i∗(cj)
∣∣∣ j ∈ J

}
⊆ h(F ; R) along i∗ yield an R-basis for h(F ; R),

i.e.

h(F ; R) = spanR

({
i∗(cj)

∣∣∣ j ∈ J
})

as an R-module.

We can then define the following group action:

h(B; R) ↷ h(E; R)
b ↷ e := p∗(b) ⌣ e,

and as a result we have

1. Both h(E; R) and h(F ; R) ⊗R h(B; R) are modules over the ring h(B; R),

2. Letting
{

bk

∣∣∣ k ∈ K
}

⊆ h(B; R) denote a (not necessarily finite) set of generators,

h(B; R) ⊗R h(F ; R) = spanR

{
bi ⊗ i∗(cj)

∣∣∣ k ∈ K, j ∈ J
}

3. The following map is an isomorphism in the category of h(B; R)-modules:

φ : h(B; R) ⊗R h(F ; R) → h(E; R)∑
k∈K,j∈J

bk ⊗R i∗(cj) 7→
∑

k∈K,j∈J

p∗(bk) ⌣ cj
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4. As an h(B; R) module,

hE(R) = spanh(B;R)

({
cj

∣∣∣ j ∈ J
})

so the cohomology of the total space is given by h(B; R) span of these cj .

Note: this map is not an isomorphism in the category of rings.

Remark:

The assumption that each CF exists is necessary, and can be guaranteed when E ∼= B × F is
homeomorphic to a product.

Letting pB : B × F → B and pF : B × F → F be the projections supplied by the universal property
of the product, since h(F ; R) is a free R-module, we can take its R-basis

{
fk

∣∣∣ j ∈ K
}

⊆ h(F ; R)
and pull it back along pF to obtain {p∗

F (fk)} ⊆ h(F × B; R).

F F × B h(F ; R) h(F × B; R)

B h(B; R)

i

pB

pF p∗
F

p∗
B

i∗

Then we can note that for a product, pF ◦i = idF ×B, and so i∗◦p∗
F = idF . Thus defining ck := p∗

F (fk)
satisfies condition (2), i.e. i∗(ck) := (i∗p∗

F )(fk) = fk is an R-basis for h(F ; R).

Corollary: Let h(X) = H∗
dR(X;R) denote taking deRham cohomology.

If

1. F → E → M is a fibre bundle of smooth manifolds where M has a good cover,
2. There exist a set of global forms {ωj} ⊆ E such that h(E) = spanR

{
ωj

∣∣∣ j ∈ J
}

, and

3. For each fiber F , the collection of restrictions
{

ωj |F
∣∣∣ j ∈ J

}
freely generated h(F ),

then h(E) is a free h(M)-module and

h(E) = spanR

{
ωj

∣∣∣ j ∈ J
}

⊗ h(M) ∼= h(F ) ⊗ h(M).

3 Proof
We’ll prove the special case given in the corollary.

Given a fibre bundle F → E → M , there are projections pF and pM which induce maps in the
deRham complex,

F E Ω∗(F ) Ω∗(E)

M Ω∗(M)

pB

pF p∗
F

p∗
B
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This allows us to define a map on forms:

ϕ : Ω∗(M) ⊗R Ω∗(F ) −→ Ω∗(E)
ω ⊗R ϕ 7→ p∗

B(ω) ∧ p∗
F (ϕ),

which amounts to pulling the forms back and then wedging them.

Claim: ϕ induces a map on the deRham cohomology h∗.

By the claim, we obtain a map

ϕ̃ : h(M) ⊗R h(F ) −→ h(E)
[ω] ⊗R [ϕ] 7→ [p∗

B(ω) ∧ p∗
F (ϕ)].

Claim: ϕ is an isomorphism of graded modules (???).

Proof:

We will induct on the cardinality of the good cover U of M . For the base case, suppose #U = 2,
so M = U

⋃
V .

Noting that here h∗(X) := H∗
dR(X;R) is a graded ring, we can identify

h(M) ⊗R h(F ) =
⊕

i+j=n

hi(M) ⊗R hj(F )

and so the kth graded piece is given by

(h(M) ⊗R h(F ))k =
⊕

i+j=k

hi(M) ⊗R hj(F ).

Similarly, h(E) =
n⊕

i=0
hi(E), and thus ϕ is an isomorphism iff it is an isomorphism between kth

graded pieces for every k. So it suffices to show that the maps

ϕ̃k :
⊕

i+j=k

hi(M) ⊗R hj(F ) → hk(E)

.

are isomorphisms for every 0 ≤ k ≤ n.

To this end, fix an arbitrary 0 ≤ k ≤ n and consider the following diagram:

Claim:
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0
k+1⊕
j=0

hj(U ∩ V ) ⊗R hn−k(F )
k⊕

j=0
hj(U ∪ V ) ⊗R hn−k(F )

k⊕
j=0

(hj(U) ⊗ hn−k(F )) ⊕ (hj(V ) ⊗ hn−k(F ))
k⊕

j=0
hj(U ∩ V ) ⊗R hn−k(F ) 0

0 hk+1(U ∩ V × F ) hk(E) hk(U × F )
⊕

hk(V × F ) hk(U ∩ V × F ) 0

ϕ̃k+1 ϕ̃k ϕ̃k⊕ϕ̃k ϕ̃k

Figure 1: Main Diagram

• The rows in this diagram are exact,
• The diagram commutes, and
• The 1st, 3rd, and 4th maps are isomorphisms.

If this is the case, the 5 lemma can be applied and this will imply that the 2nd map

ϕ̃k :
k⊕

j=0
hj(U ∪ V ) ⊗R hn−k(F ) −→ hk(E)

is an isomorphism. Since k was arbitrary, ϕ̃k will be an isomorphism for every k, which is precisely
what we want to show.

3.1 The Top Row is Exact
By Mayer-Vietoris, there is a long exact sequence:

0 hn(U ∪ V ) hn(U) ⊕ hn(V ) hn(U ∩ V )

hn−1(U ∪ V ) hn−1(U) ⊕ hn−1(V ) hn−1(U ∩ V )

hk(U ∪ V ) hk(U) ⊕ hk(V ) hk(U ∩ V )

h0(U ∪ V ) h0(U) ⊕ h0(V ) h0(U ∩ V ) 0

δ

δ

δ

where δ is the connecting map supplied by the Snake Lemma.

Since h∗(F ) was assumed to be a free R-module, the functor ( · ) ⊗R hj(F ) is exact for any j.
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Fixing j for the moment, we note that applying ( · ) ⊗ hj(F ) to the above sequence yields a new
long exact sequence:

0 hn(U ∪ V ) ⊗R hj(F ) hn(U) ⊗R hj(F ) ⊕ hn(V ) ⊗R hj(F ) hn(U ∩ V ) ⊗R hj(F )

hn−1(U ∪ V ) ⊗R hj(F ) hn−1(U) ⊗R hj(F ) ⊕ hn−1(V ) ⊗R hj(F ) hn−1(U ∩ V ) ⊗R hj(F )

hk(U ∪ V ) ⊗R hj(F ) hk(U) ⊗R hj(F ) ⊕ hk(V ) ⊗R hj(F ) hk(U ∩ V ) ⊗R hj(F )

h0(U ∪ V ) ⊗R hj(F ) h0(U) ⊗R hj(F ) ⊕ h0(V ) ⊗R hj(F ) h0(U ∩ V ) ⊗R hj(F ) 0

δ⊗id
hj (F )

δ⊗id
hj (F )

δ⊗id
hj (F )

where the tensor product has been distributed across the direct sums in the middle column.

Consider doing this for every j; we then obtain a collection of long exact sequences

j = k + 1 0 h0(U
⋃

V ) ⊗ hk+1(F ) · · ·

j = k 0 h0(U
⋃

V ) ⊗ hk(F ) h0(U) ⊗ hk(F ) ⊕ h0(V ) ⊗ hk(F ) h0(U
⋂

V ) ⊗ hk(F ) h1(U
⋃

V ) ⊗ hk(F ) · · ·

j = k − 1 : · · · h1(U
⋃

V ) ⊗ hk−1(F ) h1(U) ⊗ hk−1(F ) ⊕ h1(V ) ⊗ hk−1(F ) h1(U
⋂

V ) ⊗ hk−1(F ) h2(U
⋃

V ) ⊗ hk−1(F ) · · ·

j = k − 2 : · · · h2(U
⋃

V ) ⊗ hk−2(F ) h2(U) ⊗ hk−2(F ) ⊕ h2(V ) ⊗ hk−2(F ) h2(U
⋂

V ) ⊗ hk−2(F ) h2(U
⋃

V ) ⊗ hk−2(F ) · · ·

...
...

...
...

...
...

j = 0 : · · · hk(U
⋃

V ) ⊗ h0(F ) hk(U) ⊗ h0(F ) ⊕ hk(V ) ⊗ h0(F ) hk(U
⋂

V ) ⊗ h0(F ) hk+1(U
⋃

V ) ⊗ h0(F ) · · ·

δ

δ δ

δ δ

δ δ

Then summing along the columns will preserve exactness in each each degree. Moreover, taking
the direct sum down the first, second, third, and fourth columns respectively yields
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Column 1 :C1 :=
k⊕

j=0
hj(U

⋃
V ) ⊗ hk−j(F )

Column 2 :C2 :=
k⊕

j=0
hj(U) ⊗ hk−j(F ) ⊕ hj(V ) ⊗ hk−j(F )

Column 3 :C3 :=
k⊕

j=0
hj(U

⋂
V ) ⊗ hk−j(F )

Column 4 :C4 :=
k+1⊕
j=0

hj(U
⋃

V ) ⊗ hk−j(F )

,

and the exactness of the sequence C1 → C2 → C3 → C4 is precisely the exactness of the top row
in figure (1). $$ ## The Bottom Row is Exact
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