Proof of Leray-Hirsch Theorem

D. Zack Garza

December 16, 2019

Contents

1	Preliminaries	1
2	Statement of the Theorem	1
-	Proof 3.1 The Top Row is Exact	3 5

1 Preliminaries

Definition: Fibre Bundle

Definition: Homology

Definition: Cup Product

Definition: Good Cover

Notation: Let R be an arbitrary ring, and let h denote the contravariant functor

$$\begin{split} h(\,\cdot\,;R): \mathbf{Top} &\to \mathbf{Ring} \\ & X \mapsto H^*_{\mathrm{sing}}(X;R) \\ & (X \xrightarrow{f} Y) \mapsto (H^*(Y;R) \xrightarrow{f^*} H^*(X;R)) \end{split}$$

which corresponds to taking singular cohomology.

Note that $H^*_{\text{sing}}(X; R)$ is a graded ring with multiplicative structure given by the cup product, and similarly $H^*_{dR}(X; \mathbb{R})$ is graded ring with multiplication induced by the wedge product of forms.

2 Statement of the Theorem

 Let

$$F \xrightarrow{i} E \\ \downarrow^p \\ B$$

be a fibre bundle. Taking cohomology induces maps

$$h(F;R) \xleftarrow{i^*} h(E;R)$$

$$\uparrow^{p^*}$$

$$h(B;R)$$

Suppose that

- 1. h(F; R) is a finitely-generated free *R*-module in each degree *n*, and
- 2. For every fiber F, there exists a collection of chains

$$C_F := \left\{ c_j \mid j \in J \right\} \subseteq h(E; R) \text{ for some index set} J$$

such that their restrictions $\{i^*(c_j) \mid j \in J\} \subseteq h(F; R)$ along i^* yield an *R*-basis for h(F; R), i.e.

$$h(F; R) = \operatorname{span}_R\left(\left\{i^*(c_j) \mid j \in J\right\}\right)$$

as an R-module.

We can then define the following group action:

$$h(B;R) \curvearrowright h(E;R)$$
$$b \curvearrowright e \coloneqq p^*(b) \smile e,$$

and as a result we have

1. Both h(E; R) and $h(F; R) \otimes_R h(B; R)$ are modules over the ring h(B; R),

2. Letting $\{b_k \mid k \in K\} \subseteq h(B; R)$ denote a (not necessarily finite) set of generators,

$$h(B; R) \otimes_R h(F; R) = \operatorname{span}_R \left\{ b_i \otimes i^*(c_j) \mid k \in K, j \in J \right\}$$

3. The following map is an isomorphism in the category of h(B; R)-modules:

$$\varphi: h(B; R) \otimes_R h(F; R) \to h(E; R)$$
$$\sum_{k \in K, j \in J} b_k \otimes_R i^*(c_j) \mapsto \sum_{k \in K, j \in J} p^*(b_k) \smile c_j$$

4. As an h(B; R) module,

$$h_E(R) = \operatorname{span}_{h(B;R)} \left(\left\{ c_j \mid j \in J \right\} \right)$$

so the cohomology of the total space is given by h(B; R) span of these c_j .

```
Note: this map is not an isomorphism in the category of rings.
```

Remark:

The assumption that each C_F exists is necessary, and can be guaranteed when $E \cong B \times F$ is homeomorphic to a product.

Letting $p_B: B \times F \to B$ and $p_F: B \times F \to F$ be the projections supplied by the universal property of the product, since h(F; R) is a free *R*-module, we can take its *R*-basis $\{f_k \mid j \in K\} \subseteq h(F; R)$ and pull it back along p_F to obtain $\{p_F^*(f_k)\} \subseteq h(F \times B; R)$.

Then we can note that for a product, $p_F \circ i = \mathrm{id}_{F \times B}$, and so $i^* \circ p_F^* = \mathrm{id}_F$. Thus defining $c_k \coloneqq p_F^*(f_k)$ satisfies condition (2), i.e. $i^*(c_k) \coloneqq (i^* p_F^*)(f_k) = f_k$ is an *R*-basis for h(F; R).

Corollary: Let $h(X) = H^*_{dR}(X; \mathbb{R})$ denote taking deRham cohomology.

If

- 1. $F \to E \to M$ is a fibre bundle of smooth manifolds where M has a good cover,
- 2. There exist a set of global forms $\{\omega_j\} \subseteq E$ such that $h(E) = \operatorname{span}_{\mathbb{R}} \{\omega_j \mid j \in J\}$, and
- 3. For each fiber F, the collection of restrictions $\left\{ \omega_j |_F \mid j \in J \right\}$ freely generated h(F),

then h(E) is a free h(M)-module and

$$h(E) = \operatorname{span}_{\mathbb{R}} \left\{ \omega_j \mid j \in J \right\} \otimes h(M) \cong h(F) \otimes h(M).$$

3 Proof

We'll prove the special case given in the corollary.

Given a fibre bundle $F \to E \to M$, there are projections p_F and p_M which induce maps in the deRham complex,

This allows us to define a map on forms:

$$\begin{split} \phi : \Omega^*(M) \otimes_{\mathbb{R}} \Omega^*(F) &\longrightarrow \Omega^*(E) \\ \omega \otimes_{\mathbb{R}} \phi &\mapsto p_B^*(\omega) \wedge p_F^*(\phi), \end{split}$$

which amounts to pulling the forms back and then wedging them.

Claim: ϕ induces a map on the deRham cohomology h^* .

By the claim, we obtain a map

$$\begin{split} \tilde{\phi} &: h(M) \otimes_{\mathbb{R}} h(F) \longrightarrow h(E) \\ & [\omega] \otimes_{\mathbb{R}} [\phi] \quad \mapsto \quad [p_B^*(\omega) \wedge p_F^*(\phi)]. \end{split}$$

Claim: ϕ is an isomorphism of graded modules (???).

Proof:

We will induct on the cardinality of the good cover \mathcal{U} of M. For the base case, suppose $\#\mathcal{U} = 2$, so $M = U \bigcup V$.

Noting that here $h^*(X) \coloneqq H^*_{\mathrm{dR}}(X;\mathbb{R})$ is a graded ring, we can identify

$$h(M) \otimes_{\mathbb{R}} h(F) = \bigoplus_{i+j=n} h^i(M) \otimes_{\mathbb{R}} h^j(F)$$

and so the kth graded piece is given by

$$(h(M) \otimes_{\mathbb{R}} h(F))^k = \bigoplus_{i+j=k} h^i(M) \otimes_{\mathbb{R}} h^j(F).$$

Similarly, $h(E) = \bigoplus_{i=0}^{n} h^{i}(E)$, and thus ϕ is an isomorphism iff it is an isomorphism between kth graded pieces for every k. So it suffices to show that the maps

$$\tilde{\phi}_k : \bigoplus_{i+j=k} h^i(M) \otimes_{\mathbb{R}} h^j(F) \to h^k(E)$$

are isomorphisms for every $0 \le k \le n$.

To this end, fix an arbitrary $0 \le k \le n$ and consider the following diagram:

Claim:

Figure 1: Main Diagram

- The rows in this diagram are exact,
- The diagram commutes, and
- The 1st, 3rd, and 4th maps are isomorphisms.

If this is the case, the 5 lemma can be applied and this will imply that the 2nd map

$$\tilde{\phi}_k: \bigoplus_{j=0}^k h^j(U \cup V) \otimes_R h^{n-k}(F) \longrightarrow h^k(E)$$

is an isomorphism. Since k was arbitrary, $\tilde{\phi}_k$ will be an isomorphism for every k, which is precisely what we want to show.

3.1 The Top Row is Exact

By Mayer-Vietoris, there is a long exact sequence:

$$0 \longleftarrow h^{n}(U \cup V) \longleftarrow h^{n}(U) \oplus h^{n}(V) \longleftarrow h^{n}(U \cap V)$$

$$h^{n-1}(U \cup V) \longleftarrow h^{n-1}(U) \oplus h^{n-1}(V) \longleftarrow h^{n-1}(U \cap V)$$

$$h^{k}(U \cup V) \longleftarrow h^{k}(U) \oplus h^{k}(V) \longleftarrow h^{k}(U \cap V)$$

$$h^{0}(U \cup V) \longleftarrow h^{0}(U) \oplus h^{0}(V) \longleftarrow h^{0}(U \cap V) \longleftarrow 0$$

where δ is the connecting map supplied by the Snake Lemma.

Since $h^*(F)$ was assumed to be a free *R*-module, the functor $(\cdot) \otimes_R h^j(F)$ is exact for any *j*.

Fixing j for the moment, we note that applying $(\cdot) \otimes h^{j}(F)$ to the above sequence yields a new long exact sequence:

$$j = 0: \qquad \cdots \xrightarrow{\delta} h^k(U \bigcup V) \otimes h^0(F) \longrightarrow h^k(U) \otimes h^0(F) \oplus h^k(V) \otimes h^0(F) \longrightarrow h^k(U \bigcap V) \otimes h^0(F) \xrightarrow{\delta} h^{k+1}(U \bigcup V) \otimes h^0(F) \longrightarrow \cdots$$

Then summing along the columns will preserve exactness in each each degree. Moreover, taking the direct sum down the first, second, third, and fourth columns respectively yields

Column 1:
$$C_1 := \bigoplus_{j=0}^k h^j(U \bigcup V) \otimes h^{k-j}(F)$$

Column 2:
$$C_2 := \bigoplus_{j=0}^k h^j(U) \otimes h^{k-j}(F) \oplus h^j(V) \otimes h^{k-j}(F)$$

Column 3:
$$C_3 := \bigoplus_{j=0}^k h^j(U \bigcap V) \otimes h^{k-j}(F)$$

Column 4:
$$C_4 := \bigoplus_{j=0}^{k+1} h^j(U \bigcup V) \otimes h^{k-j}(F)$$

,

and the exactness of the sequence $C_1 \to C_2 \to C_3 \to C_4$ is precisely the exactness of the top row in figure (1).