Proof of Leray-Hirsch Theorem

D. Zack Garza

December 16, 2019

Contents

1 Preliminaries 1
2 Statement of the Theorem 1
3 Proof 3
3.1 The Top Row is Exact 5

1 Preliminaries

Definition: Fibre Bundle
Definition: Homology
Definition: Cup Product
Definition: Good Cover
Notation: Let R be an arbitrary ring, and let h denote the contravariant functor

$$
\begin{aligned}
h(\cdot ; R): \text { Top } & \rightarrow \text { Ring } \\
X & \mapsto H_{\text {sing }}^{*}(X ; R) \\
(X \xrightarrow{f} Y) & \mapsto\left(H^{*}(Y ; R) \xrightarrow{f^{*}} H^{*}(X ; R)\right)
\end{aligned}
$$

which corresponds to taking singular cohomology.
Note that $H_{\text {sing }}^{*}(X ; R)$ is a graded ring with multiplicative structure given by the cup product, and similarly $H_{\mathrm{dR}}^{*}(X ; \mathbb{R})$ is graded ring with multiplication induced by the wedge product of forms.

2 Statement of the Theorem

Let

be a fibre bundle. Taking cohomology induces maps

Suppose that

1. $h(F ; R)$ is a finitely-generated free R-module in each degree n, and
2. For every fiber F, there exists a collection of chains

$$
C_{F}:=\left\{c_{j} \mid j \in J\right\} \subseteq h(E ; R) \quad \text { for some index set } J
$$

such that their restrictions $\left\{i^{*}\left(c_{j}\right) \mid j \in J\right\} \subseteq h(F ; R)$ along i^{*} yield an R-basis for $h(F ; R)$, i.e.

$$
h(F ; R)=\operatorname{span}_{R}\left(\left\{i^{*}\left(c_{j}\right) \mid j \in J\right\}\right)
$$

as an R-module.
We can then define the following group action:

$$
\begin{aligned}
h(B ; R) & \curvearrowright h(E ; R) \\
\quad b \curvearrowright e & :=p^{*}(b) \smile e,
\end{aligned}
$$

and as a result we have

1. Both $h(E ; R)$ and $h(F ; R) \otimes_{R} h(B ; R)$ are modules over the ring $h(B ; R)$,
2. Letting $\left\{b_{k} \mid k \in K\right\} \subseteq h(B ; R)$ denote a (not necessarily finite) set of generators,

$$
h(B ; R) \otimes_{R} h(F ; R)=\operatorname{span}_{R}\left\{b_{i} \otimes i^{*}\left(c_{j}\right) \mid k \in K, j \in J\right\}
$$

3. The following map is an isomorphism in the category of $h(B ; R)$-modules:

$$
\begin{aligned}
\varphi: h(B ; R) \otimes_{R} h(F ; R) & \rightarrow h(E ; R) \\
\sum_{k \in K, j \in J} b_{k} \otimes_{R} i^{*}\left(c_{j}\right) & \mapsto \sum_{k \in K, j \in J} p^{*}\left(b_{k}\right) \smile c_{j}
\end{aligned}
$$

4. As an $h(B ; R)$ module,

$$
h_{E}(R)=\operatorname{span}_{h(B ; R)}\left(\left\{c_{j} \mid j \in J\right\}\right)
$$

so the cohomology of the total space is given by $h(B ; R)$ span of these c_{j}.
Note: this map is not an isomorphism in the category of rings.

Remark:

The assumption that each C_{F} exists is necessary, and can be guaranteed when $E \cong B \times F$ is homeomorphic to a product.

Letting $p_{B}: B \times F \rightarrow B$ and $p_{F}: B \times F \rightarrow F$ be the projections supplied by the universal property of the product, since $h(F ; R)$ is a free R-module, we can take its R-basis $\left\{f_{k} \mid j \in K\right\} \subseteq h(F ; R)$ and pull it back along p_{F} to obtain $\left\{p_{F}^{*}\left(f_{k}\right)\right\} \subseteq h(F \times B ; R)$.

Then we can note that for a product, $p_{F} \circ i=\operatorname{id}_{F \times B}$, and so $i^{*} \circ p_{F}^{*}=\operatorname{id}_{F}$. Thus defining $c_{k}:=p_{F}^{*}\left(f_{k}\right)$ satisfies condition (2), i.e. $i^{*}\left(c_{k}\right):=\left(i^{*} p_{F}^{*}\right)\left(f_{k}\right)=f_{k}$ is an R-basis for $h(F ; R)$.

Corollary: Let $h(X)=H_{d R}^{*}(X ; \mathbb{R})$ denote taking deRham cohomology. If

1. $F \rightarrow E \rightarrow M$ is a fibre bundle of smooth manifolds where M has a good cover,
2. There exist a set of global forms $\left\{\omega_{j}\right\} \subseteq E$ such that $h(E)=\operatorname{span}_{\mathbb{R}}\left\{\omega_{j} \mid j \in J\right\}$, and
3. For each fiber F, the collection of restrictions $\left\{\left.\omega_{j}\right|_{F} \mid j \in J\right\}$ freely generated $h(F)$, then $h(E)$ is a free $h(M)$-module and

$$
h(E)=\operatorname{span}_{\mathbb{R}}\left\{\omega_{j} \mid j \in J\right\} \otimes h(M) \cong h(F) \otimes h(M) .
$$

3 Proof

We'll prove the special case given in the corollary.
Given a fibre bundle $F \rightarrow E \rightarrow M$, there are projections p_{F} and p_{M} which induce maps in the deRham complex,

This allows us to define a map on forms:

$$
\begin{aligned}
\phi: \Omega^{*}(M) & \otimes_{\mathbb{R}} \Omega^{*}(F) \\
\omega \otimes_{\mathbb{R}} \phi & \mapsto \Omega^{*}(E) \\
& p_{B}^{*}(\omega) \wedge p_{F}^{*}(\phi),
\end{aligned}
$$

which amounts to pulling the forms back and then wedging them.
Claim: ϕ induces a map on the deRham cohomology h^{*}.
By the claim, we obtain a map

$$
\begin{aligned}
\tilde{\phi}: h(M) \otimes_{\mathbb{R}} h(F) & \longrightarrow h(E) \\
{[\omega] \otimes_{\mathbb{R}}[\phi] } & \mapsto\left[p_{B}^{*}(\omega) \wedge p_{F}^{*}(\phi)\right] .
\end{aligned}
$$

Claim: ϕ is an isomorphism of graded modules (???).
Proof:
We will induct on the cardinality of the good cover \mathcal{U} of M. For the base case, suppose $\# \mathcal{U}=2$, so $M=U \bigcup V$.
Noting that here $h^{*}(X):=H_{\mathrm{dR}}^{*}(X ; \mathbb{R})$ is a graded ring, we can identify

$$
h(M) \otimes_{\mathbb{R}} h(F)=\bigoplus_{i+j=n} h^{i}(M) \otimes_{\mathbb{R}} h^{j}(F)
$$

and so the k th graded piece is given by

$$
\left(h(M) \otimes_{\mathbb{R}} h(F)\right)^{k}=\bigoplus_{i+j=k} h^{i}(M) \otimes_{\mathbb{R}} h^{j}(F) .
$$

Similarly, $h(E)=\bigoplus_{i=0}^{n} h^{i}(E)$, and thus ϕ is an isomorphism iff it is an isomorphism between k th graded pieces for every k. So it suffices to show that the maps

$$
\tilde{\phi}_{k}: \bigoplus_{i+j=k} h^{i}(M) \otimes_{\mathbb{R}} h^{j}(F) \rightarrow h^{k}(E)
$$

are isomorphisms for every $0 \leq k \leq n$.
To this end, fix an arbitrary $0 \leq k \leq n$ and consider the following diagram:

Claim:

Figure 1: Main Diagram

- The rows in this diagram are exact,
- The diagram commutes, and
- The 1st, 3rd, and 4th maps are isomorphisms.

If this is the case, the 5 lemma can be applied and this will imply that the 2 nd map

$$
\tilde{\phi}_{k}: \bigoplus_{j=0}^{k} h^{j}(U \cup V) \otimes_{R} h^{n-k}(F) \longrightarrow h^{k}(E)
$$

is an isomorphism. Since k was arbitrary, $\tilde{\phi}_{k}$ will be an isomorphism for every k, which is precisely what we want to show.

3.1 The Top Row is Exact

By Mayer-Vietoris, there is a long exact sequence:

where δ is the connecting map supplied by the Snake Lemma.
Since $h^{*}(F)$ was assumed to be a free R-module, the functor $(\cdot) \otimes_{R} h^{j}(F)$ is exact for any j.

Fixing j for the moment, we note that applying $(\cdot) \otimes h^{j}(F)$ to the above sequence yields a new long exact sequence:

where the tensor product has been distributed across the direct sums in the middle column.
Consider doing this for every j; we then obtain a collection of long exact sequences

$$
\begin{aligned}
& j=k+1 \\
& 0 \longrightarrow h^{0}(U \bigcup V) \otimes h^{k+1}(F) \rightarrow \cdots \\
& j=k \quad 0 \longrightarrow h^{0}(U \bigcup V) \otimes h^{k}(F) \longrightarrow h^{0}(U) \otimes h^{k}(F) \oplus h^{0}(V) \otimes h^{k}(F) \longrightarrow h^{0}(U \bigcap V) \otimes h^{k}(F) \xrightarrow{\delta} h^{1}(U \bigcup V) \otimes h^{k}(F) \longrightarrow \cdots \\
& j=k-1: \quad \cdots \xrightarrow{\delta} h^{1}(U \bigcup V) \otimes h^{k-1}(F) \rightarrow h^{1}(U) \otimes h^{k-1}(F) \oplus h^{1}(V) \otimes h^{k-1}(F) \rightarrow h^{1}(U \bigcap V) \otimes h^{k-1}(F) \xrightarrow{\delta} h^{2}(U \bigcup V) \otimes h^{k-1}(F) \rightarrow \cdots \\
& j=k-2: \quad \cdots \stackrel{\delta}{\rightarrow} h^{2}(U \bigcup V) \otimes h^{k-2}(F) \rightarrow h^{2}(U) \otimes h^{k-2}(F) \oplus h^{2}(V) \otimes h^{k-2}(F) \rightarrow h^{2}(U \bigcap V) \otimes h^{k-2}(F) \xrightarrow{\delta} h^{2}(U \bigcup V) \otimes h^{k-2}(F) \rightarrow \cdots \\
& j=0: \quad \cdots \xrightarrow{\delta} h^{k}(U \bigcup V) \otimes h^{0}(F) \longrightarrow h^{k}(U) \otimes h^{0}(F) \oplus h^{k}(V) \otimes h^{0}(F) \longrightarrow h^{k}(U \bigcap V) \otimes h^{0}(F) \xrightarrow{\delta} h^{k+1}(U \bigcup V) \otimes h^{0}(F) \rightarrow \cdots
\end{aligned}
$$

Then summing along the columns will preserve exactness in each each degree. Moreover, taking the direct sum down the first, second, third, and fourth columns respectively yields

$$
\begin{aligned}
& \text { Column } 1: C_{1}:=\bigoplus_{j=0}^{k} h^{j}(U \bigcup V) \otimes h^{k-j}(F) \\
& \text { Column } 2: C_{2}:=\bigoplus_{j=0}^{k} h^{j}(U) \otimes h^{k-j}(F) \oplus h^{j}(V) \otimes h^{k-j}(F)
\end{aligned}
$$

$$
\text { Column } 3: C_{3}:=\bigoplus_{j=0}^{k} h^{j}(U \bigcap V) \otimes h^{k-j}(F)
$$

$$
\text { Column } 4: C_{4}:=\bigoplus_{j=0}^{k+1} h^{j}(U \bigcup V) \otimes h^{k-j}(F)
$$

and the exactness of the sequence $C_{1} \rightarrow C_{2} \rightarrow C_{3} \rightarrow C_{4}$ is precisely the exactness of the top row in figure (1). $\$ \$$ \#\# The Bottom Row is Exact

