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1 Preliminaries

Definition: Fibre Bundle

Definition: Homology

Definition: Cup Product

Definition: Good Cover

Notation: Let R be an arbitrary ring, and let A denote the contravariant functor

h(-;R): Top — Ring
X — H; (X R)

sing

X L vy (1 (v;R) L HY (X R))

which corresponds to taking singular cohomology.

Note that Hg,,(X; R) is a graded ring with multiplicative structure given by the cup product,

and similarly HJg(X;R) is graded ring with multiplication induced by the wedge product of
forms.

2 Statement of the Theorem

Let



E
lp
B

hF;R) «+—~ W(E;R)

be a fibre bundle. Taking cohomology induces maps

h(B; R)
Suppose that

1. h(F;R) is a finitely-generated free R-module in each degree n, and
2. For every fiber F', there exists a collection of chains

Cr = {cj 'j € J} C h(E;R) for some index setJ
such that their restrictions {i*(cj) ‘ jE€ J} C h(F;R) along i* yield an R-basis for h(F; R),
ie.
h(F; R) = spang ({z*(cj) ‘ S J})
as an R-module.

We can then define the following group action:

h(B; R) ~ h(E; R)
b~ e:=p"(b) —e,

and as a result we have
1. Both h(E; R) and h(F; R) ®g h(B; R) are modules over the ring h(B; R),

2. Letting {bk ‘ ke K } C h(B; R) denote a (not necessarily finite) set of generators,
h(B; R) @ h(F; R) = spang {b; @ i*(c;) ] kek,jelJ}

3. The following map is an isomorphism in the category of h(B; R)-modules:
¢:h(B;R)®r h(F;R) — h(E;R)
Z br ®r i*(Cj) — Z p*(bk) — ¢

keK jeJ keK,jeJ



4. As an h(B; R) module,

hg(R) = span,g.g) ({cj ‘ je J})
so the cohomology of the total space is given by h(B; R) span of these c;.
Note: this map is not an isomorphism in the category of rings.
Remark:

The assumption that each Cr exists is necessary, and can be guaranteed when F = B x F is
homeomorphic to a product.

Letting pp : BX F' — B and pg : B X F' — F' be the projections supplied by the universal property
of the product, since h(F; R) is a free R-module, we can take its R-basis {fk ’ je€ K} C h(F;R)
and pull it back along pr to obtain {pp(fi)} C h(F x B;R).

i L .

F+——— FxB WEF;R) — > h(F x B;R)
F Pr
PB Pp
B h(B;R)

Then we can note that for a product, ppoi = idpx g, and so i*opy = idp. Thus defining ¢ = pr(fx)
satisfies condition (2), i.e. i*(cx) == (i*pr)(fx) = fr is an R-basis for h(F; R).

Corollary: Let h(X) = Hjr(X;R) denote taking deRham cohomology.
If

1. F - E — M is a fibre bundle of smooth manifolds where M has a good cover,
2. There exist a set of global forms {w;} C E such that h(E) = spang {wj ’ J€ J}, and

3. For each fiber F, the collection of restrictions {wj| P ‘ jeJ } freely generated h(F),

then h(F) is a free h(M)-module and

W(E) = spang, {w; | j € J } @ h(M) = h(F) @ h(M),

3 Proof

We’ll prove the special case given in the corollary.

Given a fibre bundle FF — E — M, there are projections pr and pjs which induce maps in the
deRham complex,

Fe——b—E QO(F) —— O*(E)
F Pr

PB Pp

M Q* (M)



This allows us to define a map on forms:

¢ : Q" (M) @r Q(F) — Q*(E)
wer¢ = pr(w) ApR(e),

which amounts to pulling the forms back and then wedging them.
Claim: ¢ induces a map on the deRham cohomology h*.

By the claim, we obtain a map

¢ : h(M) @ h(F) — h(E)
Wl r[¢] = [pp(w) App()]

Claim: ¢ is an isomorphism of graded modules (777).
Proof:

We will induct on the cardinality of the good cover U of M. For the base case, suppose #U = 2,
so M =UJV.

Noting that here h*(X) := Hjr(X;R) is a graded ring, we can identify

h(M)@r h(F)= @ h'(M)®r I (F)
i+j=n

and so the kth graded piece is given by

(h(M) @r h(F))* = € B (M) @r b (F).
it+j=k

n
Similarly, h(E) = @ h'(E), and thus ¢ is an isomorphism iff it is an isomorphism between kth
1=0

graded pieces for evgry k. So it suffices to show that the maps

o P h(M)@r W (F) — h*(E)
it+j=k

are isomorphisms for every 0 < k < n.

To this end, fix an arbitrary 0 < k < n and consider the following diagram:

Claim:



k+1 k k k
0— PrHUNV)@rh"HEF) — PHUUV)@r " HEF) — PR (U) @ h"(F) & (W (V)@ " HEF) «— @rUNV)@rA"FEF) — 0
Jj=0 j=0 j=0 j=0

J$k+l J&k J(l’k Oy, Jéx

0 +—— WU NV xF) R*(E) WU x FYE@P RV x F) ¢——————— WNUNV xF) «— 0

Figure 1: Main Diagram

e The rows in this diagram are exact,
e The diagram commutes, and
e The 1st, 3rd, and 4th maps are isomorphisms.

If this is the case, the 5 lemma can be applied and this will imply that the 2nd map

br : é W (UUV)@ph"*(F) — h*E)
§=0

is an isomorphism. Since k& was arbitrary, <f~7k will be an isomorphism for every k, which is precisely
what we want to show.

3.1 The Top Row is Exact

By Mayer-Vietoris, there is a long exact sequence:

0+—— R(UUV) e W) & (V) +—-— BT NV)

WUUV) e ) & hO(V) ¢ (U NV) — 0
where ¢ is the connecting map supplied by the Snake Lemma.

Since h*(F) was assumed to be a free R-module, the functor (-) ®p b’ (F) is exact for any ;.



Fixing j for the moment, we note that applying (-) ® h?(F) to the above sequence yields a new
long exact sequence:

0 +— A"(UUV)@g W (F) «—— h(U)@r W (F)® h"(V)®g b (F) +— K(UNV)®gh(F)

0®id,j ()

RN U UV)@r W (F) «+— WY U)@r W(F) @ k" Y(V)@r W (F) «+ W YU NV)@r b (F)

WE(U U V) @p b (F) «—— W*U) @k W (F) & hE (V) @ 1 (F) «—— BHU N V) @k b (F)

=Y

5®idhj(F) _/7___,———"/

(U UV)®ph (F) — ROU(U) @ W (F) @ hO(V) @ W (F) «+—— YU NV)@r W (F) «+— 0
where the tensor product has been distributed across the direct sums in the middle column.

Consider doing this for every j; we then obtain a collection of long exact sequences

j=k+1 00— RUUV)@rH(F) — -
j=k 0 — KU JV)®hHF) —— BO(U) @ h*(F) @ B(V) @ h*(F) — RO(U (V) @ k¥ (F) 2= k(U V) @ BF(F) — ---
j=k—1: - SR UUV)@hHF) = BHU) @ BHE) @ hL(V) @ BYEF) » RO V) @ BFYE) S iU V) @ B YE) -
j=k-2: - L RAUJV)@hHE) — B2(U) @ BF2(F) @ h2(V) @ hE2(F) + B2(U V) @ hF2(F) % iU JV) @ hF2(F) — -
j=0: - L RO V)@ R(F) —— hFU) @ hO(F) @ h¥(V) @ hO(F) — hRU (V) @ hO(F) 2 YU V) @ BO(F) — -

Then summing along the columns will preserve exactness in each each degree. Moreover, taking
the direct sum down the first, second, third, and fourth columns respectively yields



Column 1 :C; = @ hI (U U V) ® h*I(F)
=0

k
Column 2 :Cy = @hj(U) Q@ hFI(F) @ W (V) @ hFI(F)
§=0
k
Column 3 :C5 = U ﬂ V)® hkE= J
7=0
k+1

Column 4 :Cy = @ vYv)erI(F
Jj=

and the exactness of the sequence C; — Cs — C5 — (Y is precisely the exactness of the top row
in figure (1). $$ ## The Bottom Row is Exact
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