Differentiable Manifolds, Due date: 11/11/2019

1. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the complex function $f(z)=z+c$ for some constant $c \in \mathbb{C}$. Compactify f to $\tilde{f}: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\}$, so that $\widetilde{f}(z)=f(z)$ when $z \in \mathbb{C}$ and $\widetilde{f}(\infty)=\infty$. Is \widetilde{f} a diffeomorphism? Give your reasons.
2. Given two charts $\left(U ; x_{1}, \ldots x_{n}\right)$ and $\left(V ; y_{1}, \ldots, y_{n}\right)$. Show that the change of coordinates induces the following equality for local expressions of tangent vectors.

$$
\frac{\partial}{\partial x_{i}}=\sum_{j=1}^{n} \frac{\partial y_{j}}{\partial x_{i}}(p) \frac{\partial}{\partial y_{j}}
$$

3. Given a smooth map $f: M \rightarrow N$. For any $v \in T_{p} M$ and $h \in C^{\infty}(N)$, show that the assignment $h \mapsto v(h \circ f)$ defines a tangent vector. Prove this fact using both definitions given in the class as follows.
(i) Show that this assignment yields a derivation.
(ii) Given a smooth curve $c(t) \subset M$ such that $c(0)=p$. Show that this tangent vector is the equivalence class given by $f(c(t))$.
Derive the following local expression sketched in the class. Let $p \in\left(U ; x_{1}, \ldots, x_{m}\right)$ and $f(p) \in$ $\left(V ; y_{1}, \ldots, y_{n}\right)$

$$
d f\left(\frac{\partial}{\partial x_{i}}\right)=\sum_{j=1}^{n} \frac{\partial y_{j}}{\partial x_{i}} \cdot \frac{\partial}{\partial y_{j}}
$$

Given a heuristic explanation why this expression mimics the formula in Problem 2 closely.
4. (i) Let $V=\mathbb{R}^{n}$. Given a non-degenerate matrix $g=\left(g_{i j}\right)_{n \times n}$ (meaning $\left.\operatorname{det}\left(g_{i j}\right) \neq 0\right)$, show that g yields an isomorphism $V \xrightarrow{\sim} V^{*}$ by sending $v \mapsto\langle v, g(-)\rangle$, where $\langle-,-\rangle$ is the standard inner product.
(ii) Given a metric $g(-,-)$ on M, show that it induces an isomorphism of vector bundles $g: T M \rightarrow T^{*} M$.
5. (i) Show that the sum of a positive definite matrix and a non-negative definite matrix ($v^{T} g v \geq$ 0) is positive definite.
(ii) Use partition of unity to show that every smooth manifold M has a metric.
6. (i) Prove that every vector field on S^{2} has at least one zero. (Hint: consider the time-1 flow of this vector field, and apply Lefschetz fixed point theorem. Show that the fixed point must come from a zero of the vector field.)
(ii) Prove that the tangent bundle $T S^{2}$ is not isomorphic to a trivial bundle $S^{2} \times \mathbb{R}^{2}$.

