Differentiable Manifolds, Due date: 11/11/2019

- 1. Let $f : \mathbb{C} \to \mathbb{C}$ be the complex function f(z) = z + c for some constant $c \in \mathbb{C}$. Compactify f to $\tilde{f} : \mathbb{CP}^1 \to \mathbb{CP}^1 = \mathbb{C} \cup \{\infty\}$, so that $\tilde{f}(z) = f(z)$ when $z \in \mathbb{C}$ and $\tilde{f}(\infty) = \infty$. Is \tilde{f} a diffeomorphism? Give your reasons.
- 2. Given two charts $(U; x_1, \ldots, x_n)$ and $(V; y_1, \ldots, y_n)$. Show that the change of coordinates induces the following equality for local expressions of tangent vectors.

$$\frac{\partial}{\partial x_i} = \sum_{j=1}^n \frac{\partial y_j}{\partial x_i}(p) \frac{\partial}{\partial y_j}.$$

- 3. Given a smooth map $f: M \to N$. For any $v \in T_pM$ and $h \in C^{\infty}(N)$, show that the assignment $h \mapsto v(h \circ f)$ defines a tangent vector. Prove this fact using both definitions given in the class as follows.
 - (i) Show that this assignment yields a derivation.
 - (ii) Given a smooth curve $c(t) \subset M$ such that c(0) = p. Show that this tangent vector is the equivalence class given by f(c(t)).

Derive the following local expression sketched in the class. Let $p \in (U; x_1, \ldots, x_m)$ and $f(p) \in (V; y_1, \ldots, y_n)$

$$df(\frac{\partial}{\partial x_i}) = \sum_{j=1}^n \frac{\partial y_j}{\partial x_i} \cdot \frac{\partial}{\partial y_j}$$

Given a heuristic explanation why this expression mimics the formula in Problem 2 closely.

- 4. (i) Let $V = \mathbb{R}^n$. Given a non-degenerate matrix $g = (g_{ij})_{n \times n}$ (meaning $det(g_{ij}) \neq 0$), show that g yields an isomorphism $V \xrightarrow{\sim} V^*$ by sending $v \mapsto \langle v, g(-) \rangle$, where $\langle -, \rangle$ is the standard inner product.
 - (ii) Given a metric g(-,-) on M, show that it induces an isomorphism of vector bundles $g: TM \to T^*M$.
- 5. (i) Show that the sum of a positive definite matrix and a non-negative definite matrix $(v^T g v \ge 0)$ is positive definite.
 - (ii) Use partition of unity to show that every smooth manifold M has a metric.
- 6. (i) Prove that every vector field on S^2 has at least one zero. (Hint: consider the time-1 flow of this vector field, and apply Lefschetz fixed point theorem. Show that the fixed point must come from a zero of the vector field.)
 - (ii) Prove that the tangent bundle TS^2 is not isomorphic to a trivial bundle $S^2 \times \mathbb{R}^2$.