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1 Problem 1

We'll use the following definition of a smooth map between manifolds:

Definition: Let M, N be smooth manifolds of dimensions m,n respectively and f: M — N a
continuous map. Then f is smooth iff for every p € M, there exists a chart (U, ¢) with p € U
and a chart (V,4) with f(p) € V such that f(U) C V, and the induced map

fo(U) = 9(V)
f=¢ofog
is smooth as a map from R™ — R™.

We will thus show that both f : CP* — CP' and f~! : CP' — CP! are both smooth bijections,
from which we can conclude that f is a diffeomorphism.



So identify 0 = [0,1] and co = [1,0] in CP' and choose the following charts on CP! in terms of
homogeneous coordinates:
(U7 ¢) =
U=CP"\ {00} = {[z,y] | 2,y € C, y # 0}
$:CP! - C
[z, y] = x/y.

$p~t:C— CP!
z [z, 1].

and

(V,¢) =

V =CP'\ {0} = {[z,y] | #,y € C, x # 0}
Y :CP' - C

[z,y] — y/z.

Y. C— CP!
z (1, 2].

Now define
f:CP! — CP!

=0
D b, p
p+c otherwise

We then need to determine a formula for f in homogeneous coordinates. We compute

pelU = p=a,b], a,b,e C,b#0
= f(la.t)) |, = (¢ o fo0)((a.b])
= (¢ o N(F)
=¢>‘1(%+c)

= [z +o1]

= [a + bc, b]



and
peV = p=la,b], a,b,e C,a#0
= J(la.t) | =@ "o fov)(at])

=@ o))
= (o)
=1L+
= [a, b+ ac]

S}nce (CIPil = UV, we can note that if p € M then either p € U or p € V. Moreover, p €c U =
f(p) € f(U) = U, since p = [a,b] with b # 0 = f(p) = [a + bc,b] where b # 0 as well, so

f(p) € U and f(U) C U. Similarly, f(V) C V. So it only remains to check that the following two
compositions are smooth:

« Ju:C=C, fu=¢ofo¢" and
e fv:C=C, fv=1ofoyp

We can compute

= (g0 f)([z1])
= o([z+ 1]
=z+c

fv(z) = (¢o fod ) (2)
= (¢ H)([1,2])
= ¢([1,2+d])
=z+c

And % fu(z) = % fv(2z) =1, so these are smooth maps on their domains.

To Summarize: Let p € M be arbitrary. The map f will be smooth iff there are charts (Ua, a -
Us — C), (Ug, s : Ug — C) with Uy, 8 C CP' such that

* p€Ua,
« f(p) € Ug,

* f(Ua) - Uﬁ

e pgo foyp,!is smooth.
By cases,

o If p # oo, then choose Uy = Ug = U and ¢ = ¢g = ¢. Then f(p) # o0, so f(U) C U, and
the composition ¢ o f o $~1(2) = z + ¢ is smooth.



o If p = o0, then choos~e Uy =Ug =V and ¢, = @3 = 9. Then f(p) £ 0, so f(V) CV,and
the composition ¥ o f 0 9~1(2) = z + ¢ is again smooth.

Note: I'm almost certain this argument is not correct, but I do not know why.

2 Problem 2

Following the example in Lee’s Smooth Manifolds (pp. 63), we want to show the following:

oyJ

-1 a - 8y3 i
d<w0@ )so(p) (axi w(p)) - Oxt (P,

%(p)

(U, ¢) and (V, 1)) are charts containing p,

e 7o <Z>*n1 : p(U) — (V) is the corresponding change of coordinates,
0 } | are the vectors spanning 7,M,
i) j=

which, at the point ¢(p), induces a map
dEy : Ty R™ = Ty R"
dF(v) = d(¢p o~ 1)(v)

since F(¢(p)) = ¥(p).

Identifying elements in the tangent space as derivations, we first note that given any F' : My — Ms,
at a point p € M; we define

de : TpM1 — TF(p)M2
dFy,(v) ~ (f : My = R) =v(fo F: M —R) (1)

which is well-defined because v € T,M; means that v : C*(M;) — R is a derivation, and fo F €
C°(My), so it makes sense to evaluate v on this composition.

We can then compute a formula for F' in coordinates by computing its action on smooth functions
f:M — R where f € C®°(M):



(foF) by equation (1)

= ——(F(p)) oz, (p) by the chain rule

But then we can write

0 0
il (&)
P (v) ‘«p(p) Ox; (

(9.7,'1'
(1 ) ‘go(p 837@ p(p
6

—d(w " owor | (5

<ﬂ(p)>

0
=d(yp~! od(thop? ( ) by Lee Proposition 3.6b
w™) ’w(p) Woe™) ‘so(p) 9z; e(p) Y P
Z aFk ‘ by previous computation
8$Z F(p)
OFy 0
= Z , (p) D
& Ly Yk 'p
which is what we wanted to show. [
3 Problem 3
Note: Throughout this question, we will identify {f: C>°(M) — R} = C(M)Y as vector
spaces.

Let M, N be smooth manifolds and f : M — N be a fixed smooth map, and define a map

¢: C®(N)x TM — R
(h,v) = v(ho f)

3.1 Part 1

Using the derivation definition, we can identify this assignment as a map

¢:C®(N) x C®(M)” - R
(h,v) — v(ho f)



We’d like to show that this yields a well-defined element of T,M = C*°(M). So for some fixed
v € T,M, define a map

¢y : C°(N) =R
h+ v(ho f),

which will be an element of T'M if it is a derivation. For x € N, we have

Go(h1 - he)(x) = v((h1h2) o f)(z)
=v((h1 o f)(h2 o f))(x)
=w(hyo f)(x) - ho(z)+ hi(x) - v(he o f)(x) since v is a derivation
= ¢u(h1) () - ha(x) + ha(z) - po(h2)(2),

so this is indeed a derivation.

3.2 Part 2
Given ¢(t) : I — M, we define the map
W:TM — TN
v = [e(t)] = ve = [(f o c)(2)]

where ¢ ~ ¢y <= %cl (t) ‘ o= %cz(t) ’ . We can then associate [c(t)] with the derivation
t= t=
De: C®(M) — R

g Sgoo)n)|

and similarly we can define

0
hs (ho(foe)®)|
and the question now is whether v.(h o f) = %(h o(foc))(t) ‘ , where v, € T'N is the tangent

=0
vector obtained by applying .

Thus the preimage of v, under ¥ is a class [¢(t)], and by definition we have

o(ho f) = 2((ho foc)(t) |

ot t=0
0
= 5 (ho(Fo)® | _
- Dfoc(h)7

which is what we wanted to show.



3.3 Part 3

Not sure how to proceed.

4 Problem 4

4.1 Part 1
Let V = R"™ as a vector space, let g be a nonsingular matrix, and define a map
¢:V =V
v (g s w = (v, gw))
The claim is that ¢ is a natural isomorphism. It is clearly linear (following from the linearity of
the inner product and matrix multiplication), so it remains to check that it is a bijection.

To see that ker ¢ = 0, so that only the zero gets sent to the zero map, we can suppose that x € ker ¢.
Then ¢, : w — (x, gw) is the zero map. But the inner product is nondegenerate by definition,
ie. (x, y) =0Vy = 2 =0. So x could only have been the zero vector to begin with.

But dim V = dim V'V, so any injective linear map will necessarily be surjective as well.

4.2 Part 2

Let g : TM ® TM — R be a metric, and consider the tangent space TM. By definition, the
cotangent space Ty M = (T,M)"

5 Problem 5
5.1 Part 1

Let A € Mat(n,n) be a positive definite n X n matrix, so
(v, Av) >0 YveR",
and B € Math(n,n) be positive semi-definite, so

(v, Bu) >0 VveR"

‘We’d like to show

(v, (A+B)v) >0 YveR"

which follows directly from

(v, (A4 B)v) = (v, Av) + (v, Bv)
> (v, Av)+0
>0+0



5.2 Part 2

Let M be a smooth manifold with tangent bundle TM and a maximal smooth atlas A. Choose a
covering of M by charts C = {(U;, ¢;) | i € I} C A such that M C (J;c; U;.Then choose a partition
of unity {f;},c; subordinate to C, so for each i we have

el

In each copy of ¢;(U;) = R", let g° be the Euclidean metric given by the identity matrix, i.e. gék =
k. We then have

g Toi(U) @ Ths(U;) = R
1 e
(8.%'2',8.%']') — ! J .
0 otherwise

which is defined for pairs of vectors in T'¢;(U;) = TR™ = spang {0z;},—; on basis vectors as the
Kronecker delta and extended linearly.

Note that each coordinate function ¢; : U; — R™ induces a map ¢; : TU; — TR™.
Let G be the pullback of ¢* along these induced maps ¢;, so
G :TU; ® TU; — R
Gi(a,y) = ((6) ¢') (2.9) = g'(du(2), bi(w))

Then, for a point p € M, define the following map:
gp : TyM @ T,M — R

i€l

The claim is that g, defines a metric on M, and thus the family {g, | p € M} yields a tensor field
and thus a Riemannian metric on M. If we define the map

g: M — (TM & TM)"

P gp

then g can be expressed as

g=>_ fG"

iel
We can check that this is positive definite by considering x € T, M and computing

g9(z,z) = gp(z, )
=>" filp) G'(v,v)
iel

=Y filp) g'(di(x), di(y)),

iel



where each term is positive semi-definite, and at least one term is positive definite because Y, fi(p)
must equal 1. By part 1, this means that the entire expression is positive definite, so ¢ is a metric.
O

6 Problem 6
6.1 Part 1

Let M = S? as a smooth manifold, and consider a vector field on M,
X:M-—>TM

We want to show that there is a point p € M such that X (p) = 0.

Every vector field on a compact manifold without boundary is complete, and since S? is compact
with 05% = (), X is necessarily a complete vector field.

Thus every integral curve of X exists for all time, yielding a well-defined flow

¢ MxR— M

given by solving the initial value problems

0
%qﬁS(p) ot
$o(p) =p

at every point p € M.

This yields a one-parameter family

¢ M — M € Diff (M, M).
In particular, ¢g = idys, and ¢1 € Diff (M, M). Moreover ¢q is homotopic to ¢; via the homotopy
H:MxI—M

(p,t) = d1(p).-

We can now apply the Lefschetz fixed-point theorem to ¢ and ¢;. For an arbitrary map f : M — M,
we have

A = zk:Tr (f* Hk(X;@)) '

where f, : H.(X;Q) — H.(X;Q) is the induced map on homology, and

A(f) #0 < f has at least one fixed point.



In particular, we have
A(idy) = Tr(idp, (x;0))
k
=) dim Hy(X; Q)
k

= x(M),
the Euler characteristic of M.
Since homotopic maps induce equal maps on homology, we also have A(¢1) = x(M).

Since

Z k=02

0 otherwise

Hy(S?) = {

we have x(S?) = 2 # 0, and thus ¢; has a fixed point pg, thus

%Cf)t(po) ’t_l S0

oe(p) =p
0 0 . .
N &gﬁt(p) =50 = 0 by differentiating wrt ¢
8 .
— gdst(p) ’t:l =0 ’t:OZ 0 by evaluating at ¢ =0
0 o
= X(¢1(po)) = aqﬁt(]?) ‘t:l =0 by definition of ¢

50 X (¢1(po)) = 0, which shows that pg is a zero of X. So X has at least one zero, as desired.

6.2 Part 2
The trivial bundle

R? ———— 82 x R?

52

has a nowhere vanishing section, namely

5:8% = §% x R?
x — (x,[1,1])

which is the identity on the S? component and assigns the constant vector [1, 1] to every point.

However, as part 1 shows, the bundle

10



can not have a nowhere vanishing section.

O]

11
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