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1 Problem 1
We’ll use the following definition of a smooth map between manifolds:

Definition: Let M,N be smooth manifolds of dimensions m,n respectively and f : M → N a
continuous map. Then f is smooth iff for every p ∈ M , there exists a chart (U, ϕ) with p ∈ U
and a chart (V, ψ) with f(p) ∈ V such that f(U) ⊆ V , and the induced map

f : ϕ(U) → ψ(V )
f = ψ ◦ f ◦ ϕ−1

is smooth as a map from Rm → Rn.

We will thus show that both f̃ : CP1 → CP1 and f̃−1 : CP1 → CP1 are both smooth bijections,
from which we can conclude that f is a diffeomorphism.
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So identify 0 = [0, 1] and ∞ = [1, 0] in CP1 and choose the following charts on CP1 in terms of
homogeneous coordinates:

(U, ϕ) :=
U = CP1 \ {∞} = {[x, y] | x, y ∈ C, y 6= 0}

ϕ : CP1 → C
[x, y] 7→ x/y.

ϕ−1 : C → CP1

z 7→ [z, 1].

and

(V, ψ) :=
V = CP1 \ {0} = {[x, y] | x, y ∈ C, x 6= 0}

ψ : CP1 → C
[x, y] 7→ y/x.

ψ−1 : C → CP1

z 7→ [1, z].

Now define

f̃ : CP1 → CP1

p 7→
{
p, p = ∞
p+ c otherwise

We then need to determine a formula for f̃ in homogeneous coordinates. We compute

p ∈ U =⇒ p = [a, b], a, b,∈ C, b 6= 0

=⇒ f̃([a, b])
∣∣∣
U

= (ϕ−1 ◦ f ◦ ϕ)([a, b])

= (ϕ−1 ◦ f)(a
b

)

= ϕ−1(a
b

+ c)

= [a
b

+ c, 1]

= [a+ bc, b]
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and

p ∈ V =⇒ p = [a, b], a, b,∈ C, a 6= 0

=⇒ f̃([a, b])
∣∣∣
V

= (ψ−1 ◦ f ◦ ψ)([a, b])

= (ψ−1 ◦ f)( b
a

)

= (ψ−1)( b
a

+ c)

= [1, b
a

+ c]

= [a, b+ ac]

Since CP1 = U
⋃
V , we can note that if p ∈ M then either p ∈ U or p ∈ V . Moreover, p ∈ U =⇒

f̃(p) ∈ f̃(U) = U , since p = [a, b] with b 6= 0 =⇒ f(p) = [a + bc, b] where b 6= 0 as well, so
f̃(p) ∈ U and f̃(U) ⊆ U . Similarly, f̃(V ) ⊆ V . So it only remains to check that the following two
compositions are smooth:

• fU : C → C, fU := ϕ ◦ f̃ ◦ ϕ−1, and
• fV : C → C, fV := ψ ◦ f̃ ◦ ψ−1.

We can compute

fU (z) := (ϕ ◦ f̃ ◦ ϕ−1)(z)
= (ϕ ◦ f̃)([z, 1])
= ϕ([z + c, 1])
= z + c

fV (z) := (ϕ ◦ f̃ ◦ ϕ−1)(z)
= (ϕ ◦ f̃)([1, z])
= ϕ([1, z + c])
= z + c

And ∂
∂zfU (z) = ∂

∂zfV (z) = 1, so these are smooth maps on their domains.

To Summarize: Let p ∈ M be arbitrary. The map f̃ will be smooth iff there are charts (Uα, φα :
Uα → C), (Uβ, φβ : Uβ → C) with Uα, β ⊆ CP1 such that

• p ∈ Uα,
• f̃(p) ∈ Uβ,
• f̃(Uα) ⊆ Uβ
• φβ ◦ f̃ ◦ φ−1

α is smooth.

By cases,

• If p 6= ∞, then choose Uα = Uβ = U and φα = φβ = ϕ. Then f̃(p) 6= ∞, so f̃(U) ⊆ U , and
the composition ϕ ◦ f̃ ◦ ϕ−1(z) = z + c is smooth.
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• If p = ∞, then choose Uα = Uβ = V and φα = φβ = ψ. Then f̃(p) 6= 0, so f̃(V ) ⊆ V , and
the composition ψ ◦ f̃ ◦ ψ−1(z) = z + c is again smooth.

Note: I’m almost certain this argument is not correct, but I do not know why.

2 Problem 2
Following the example in Lee’s Smooth Manifolds (pp. 63), we want to show the following:

d
(
ψ ◦ φ−1

)
φ(p)

 ∂

∂xi

∣∣∣∣∣
φ(p)

 = ∂yj

∂xi
(φ(p)) ∂

∂yj

∣∣∣∣∣
ψ(p)

where

• (U, ϕ) and (V, ψ) are charts containing p,
• ψ ◦ ϕ−1 : ϕ(U) → ψ(V ) is the corresponding change of coordinates,
•
{

∂
∂xi

}n
i=1

are the vectors spanning TpM ,

•
{

∂
∂xi

∣∣∣
φ(p)

}n
i=1

are the basis vectors spanning Tφ(U
⋂
V ) ∼= TRn at the point φ(p) ∈ φ(U

⋂
V ),

and
•
{

∂
∂yj

∣∣
ψ(p)

}n
i=1

are the basis vector spanning Tψ(U
⋂
V ) at the point ψ(p) ∈ ψ(U

⋂
V ).

Define

F : φ(U) → ψ(V )
F (v) = (ψ ◦ ϕ−1)(v)

which, at the point φ(p), induces a map

dFp : Tφ(p)Rn → Tψ(p)Rn

dF (v) = d(ψ ◦ φ−1)(v)

since F (φ(p)) = ψ(p).

Identifying elements in the tangent space as derivations, we first note that given any F : M1 → M2,
at a point p ∈ M1 we define

dFp : TpM1 → TF (p)M2

dFp(v) ↷ (f : M2 → R) := v(f ◦ F : M1 → R) (1)

which is well-defined because v ∈ TpM1 means that v : C∞(M1) → R is a derivation, and f ◦ F ∈
C∞(M1), so it makes sense to evaluate v on this composition.

We can then compute a formula for F in coordinates by computing its action on smooth functions
f : M → R where f ∈ C∞(M):
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dFp(
∂

∂xi

∣∣∣
φ(p)

) ↷ f := ∂

∂xi
(f ◦ F ) by equation (1)

=
∑
k

∂f

∂yk
(F (p)) ∂Fk

∂xi
(p) by the chain rule

=
∑
k

∂Fk
∂xi

(p) ∂f

∂yk
(F (p))

:=
(∑

k

∂Fk
∂xi

(p) ∂

∂yk

∣∣∣
F (p)

)
↷ f

But then we can write

∂

∂xi

∣∣∣
p

:= d(φ−1)
∣∣∣
φ(p)

(
∂

∂xi

∣∣∣
φ(p)

)
= d(id ◦ φ−1)

∣∣∣
φ(p)

(
∂

∂xi

∣∣∣
φ(p)

)
= d((ψ−1 ◦ ψ) ◦ φ−1)

∣∣∣
φ(p)

(
∂

∂xi

∣∣∣
φ(p)

)
= d(ψ−1)

∣∣∣
ψ(p)

◦ d(ψ ◦ φ−1)
∣∣∣
φ(p)

(
∂

∂xi

∣∣∣
φ(p)

)
by Lee Proposition 3.6b

= d(ψ−1)
(∑

k

∂Fk
∂xi

(p) ∂

∂yk

∣∣∣
F (p)

)
by previous computation

:=
∑
k

∂Fk
∂xi

(p) ∂

∂yk

∣∣∣
p

which is what we wanted to show.

3 Problem 3
Note: Throughout this question, we will identify {f : C∞(M) → R} ∼= C∞(M)∨ as vector
spaces.

Let M,N be smooth manifolds and f : M → N be a fixed smooth map, and define a map

ϕ : C∞(N) × TM → R
(h, v) 7→ v(h ◦ f)

3.1 Part 1
Using the derivation definition, we can identify this assignment as a map

ϕ : C∞(N) × C∞(M)∨ → R
(h, v) 7→ v(h ◦ f)
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We’d like to show that this yields a well-defined element of TpM = C∞(M). So for some fixed
v ∈ TpM , define a map

ϕv : C∞(N) → R
h 7→ v(h ◦ f),

which will be an element of TM if it is a derivation. For x ∈ N , we have

ϕv(h1 · h2)(x) := v((h1h2) ◦ f)(x)
= v((h1 ◦ f)(h2 ◦ f))(x)
= v(h1 ◦ f)(x) · h2(x) + h1(x) · v(h2 ◦ f)(x) since v is a derivation
= ϕv(h1)(x) · h2(x) + h1(x) · ϕv(h2)(x),

so this is indeed a derivation.

3.2 Part 2
Given c(t) : I → M , we define the map

ψ : TM → TN

v := [c(t)] 7→ vc := [(f ◦ c)(t)]

where c1 ∼ c2 ⇐⇒ ∂
∂tc1(t)

∣∣∣
t=0

= ∂
∂tc2(t)

∣∣∣
t=0

. We can then associate [c(t)] with the derivation

Dc : C∞(M) → R

g 7→ ∂

∂t
(g ◦ c)(t)

∣∣∣
t=0

and similarly we can define

Df◦c : C∞(N) → R

h 7→ ∂

∂t
(h ◦ (f ◦ c))(t)

∣∣∣
t=0

and the question now is whether vc(h ◦ f) = ∂
∂t(h ◦ (f ◦ c))(t)

∣∣∣
t=0

, where vc ∈ TN is the tangent
vector obtained by applying ψ.

Thus the preimage of vc under ψ is a class [c(t)], and by definition we have

v(h ◦ f) = ∂

∂t
((h ◦ f) ◦ c)(t)

∣∣∣
t=0

= ∂

∂t
(h ◦ (f ◦ c))(t)

∣∣∣
t=0

= Df◦c(h),

which is what we wanted to show.
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3.3 Part 3
Not sure how to proceed.

4 Problem 4
4.1 Part 1
Let V = Rn as a vector space, let g be a nonsingular matrix, and define a map

ϕ : V → V ∨

v 7→ (ϕv : w 7→ 〈v, gw〉)

The claim is that ϕ is a natural isomorphism. It is clearly linear (following from the linearity of
the inner product and matrix multiplication), so it remains to check that it is a bijection.

To see that kerϕ = 0, so that only the zero gets sent to the zero map, we can suppose that x ∈ kerϕ.
Then ϕx : w → 〈x, gw〉 is the zero map. But the inner product is nondegenerate by definition,
i.e. 〈x, y〉 = 0 ∀y =⇒ x = 0. So x could only have been the zero vector to begin with.

But dimV = dimV ∨, so any injective linear map will necessarily be surjective as well.

4.2 Part 2
Let g : TM ⊗ TM → R be a metric, and consider the tangent space TM . By definition, the
cotangent space T ∗

pM = (TpM)∨

5 Problem 5
5.1 Part 1
Let A ∈ Mat(n, n) be a positive definite n× n matrix, so

〈v, Av〉 > 0 ∀v ∈ Rn,

and B ∈ Math(n, n) be positive semi-definite, so

〈v, Bv〉 ≥ 0 ∀v ∈ Rn.

We’d like to show

〈v, (A+B)v〉 ≥ 0 ∀v ∈ Rn,

which follows directly from

〈v, (A+B)v〉 = 〈v, Av〉 + 〈v, Bv〉
> 〈v, Av〉 + 0
≥ 0 + 0
= 0.
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5.2 Part 2
Let M be a smooth manifold with tangent bundle TM and a maximal smooth atlas A. Choose a
covering of M by charts C = {(Ui, ϕi) | i ∈ I} ⊆ A such that M ⊆

⋃
i∈I Ui.Then choose a partition

of unity {fi}i∈I subordinate to C, so for each i we have

fi : M → I

∀p ∈ M,
∑
i∈I

fi(p) = 1

In each copy of ϕi(Ui) ∼= Rn, let gi be the Euclidean metric given by the identity matrix, i.e. gijk :=
δjk. We then have

gi : Tϕi(Ui) ⊗ Tϕi(Ui) → R

(∂xi, ∂xj) 7→
{

1 i = j

0 otherwise

which is defined for pairs of vectors in Tϕi(Ui) ∼= TRn = spanR {∂xi}ni=1 on basis vectors as the
Kronecker delta and extended linearly.

Note that each coordinate function ϕi : Ui → Rn induces a map ϕ̃i : TUi → TRn.

Let Gi be the pullback of gi along these induced maps ϕ̃i, so

Gi : TUi ⊗ TUi → R

Gi(x, y) :=
((
ϕ̃i
)∗
gi
)

(x, y) := gi(ϕ̃i(x), ϕ̃i(y))

Then, for a point p ∈ M , define the following map:

gp : TpM ⊗ TpM → R

(x, y) 7→
∑
i∈I

fi(p)Gi(x, y).

The claim is that gp defines a metric on M , and thus the family {gp | p ∈ M} yields a tensor field
and thus a Riemannian metric on M . If we define the map

g : M → (TM ⊗ TM)∨

p 7→ gp

then g can be expressed as

g =
∑
i∈I

fiG
i.

We can check that this is positive definite by considering x ∈ TpM and computing

g(x, x) := gp(x, x)

=
∑
i∈I

fi(p) Gi(v, v)

=
∑
i∈I

fi(p) gi(ϕ̃i(x), ϕ̃i(y)),
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where each term is positive semi-definite, and at least one term is positive definite because ∑i fi(p)
must equal 1. By part 1, this means that the entire expression is positive definite, so g is a metric.

6 Problem 6
6.1 Part 1
Let M = S2 as a smooth manifold, and consider a vector field on M ,

X : M → TM

We want to show that there is a point p ∈ M such that X(p) = 0.

Every vector field on a compact manifold without boundary is complete, and since S2 is compact
with ∂S2 = ∅, X is necessarily a complete vector field.

Thus every integral curve of X exists for all time, yielding a well-defined flow

ϕ : M × R → M

given by solving the initial value problems

∂

∂s
ϕs(p)

∣∣∣
s=t

= X(ϕt(p)),

ϕ0(p) = p

at every point p ∈ M .

This yields a one-parameter family

ϕt : M → M ∈ Diff(M,M).

In particular, ϕ0 = idM , and ϕ1 ∈ Diff(M,M). Moreover ϕ0 is homotopic to ϕ1 via the homotopy

H : M × I → M

(p, t) 7→ ϕt(p).

We can now apply the Lefschetz fixed-point theorem to ϕ0 and ϕ1. For an arbitrary map f : M → M ,
we have

Λ(f) =
∑
k

Tr
(
f∗
∣∣∣
Hk(X;Q)

)
.

where f∗ : H∗(X;Q) → H∗(X;Q) is the induced map on homology, and

Λ(f) 6= 0 ⇐⇒ f has at least one fixed point.
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In particular, we have

Λ(idM ) =
∑
k

Tr(idHk(X;Q))

=
∑
k

dimHk(X;Q)

= χ(M),

the Euler characteristic of M .

Since homotopic maps induce equal maps on homology, we also have Λ(ϕ1) = χ(M).

Since

Hk(S2) =
{
Z k = 0, 2
0 otherwise

we have χ(S2) = 2 6= 0, and thus ϕ1 has a fixed point p0, thus
∂
∂tϕt(p0)

∣∣∣
t=1

so

ϕt(p) =p

=⇒ ∂

∂t
ϕt(p) = ∂

∂t
p = 0 by differentiating wrt t

=⇒ ∂

∂t
ϕt(p)

∣∣∣
t=1

= 0
∣∣∣
t=0

= 0 by evaluating at t = 0

=⇒ X(ϕ1(p0)) := ∂

∂t
ϕt(p)

∣∣∣
t=1

= 0 by definition of ϕ1

so X(ϕ1(p0)) = 0, which shows that p0 is a zero of X. So X has at least one zero, as desired.

6.2 Part 2
The trivial bundle

R2 S2 × R2

S2

s

has a nowhere vanishing section, namely

s : S2 → S2 × R2

x → (x, [1, 1])

which is the identity on the S2 component and assigns the constant vector [1, 1] to every point.

However, as part 1 shows, the bundle
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R2 TS2

S2

s

can not have a nowhere vanishing section.
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