# Friday August 16 Last time, we looked at ideals such as $0, \lieg, Z(\lieg),$ and $[\lieg, \lieg]$. **Definition:** If $I \normal \lieg$ is an ideal, then the quotient $\lieg/I$ also yields a Lie algebra with the bracket given by $[x+I, y+I] = [x,y] + I$. *Exercise:* Check that this is well-defined, so that if $x + I = x' + I$ and $y+I = y' + I$ then $[x,y] + I = [x', y'] + I$. ## Homomorphisms and Representations **Definition:** A linear map $\phi: \lieg_{1} \to \lieg_{2}$ is a *Lie homomorphism* if $\phi[x,y] = [\phi(x), \phi(y)]$. > Remark: $\ker \phi \normal \lieg_{1}$ and $\im\phi \leq \lieg_{2}$ are subalgebras. **Fact:** There is a canonical way to set up a 1-to-1 correspondence $\theset{I \normal \lieg} \iff \theset{\hom \phi: \lieg \to \lieg'}$ where $I \mapsto (x \mapsto x + I)$ and the inverse is given by $\phi \mapsto \ker \phi$. **Theorem (Isomorphism theorem for Lie algebras):** - If $\phi: \lieg_{1} \to \lieg_{2}$ is a Lie algebra homomorphism, then $\lieg/\ker\phi \cong \im \phi$ - If $I,J \normal \lieg$ are ideals and $I \subset J$ then $J/I \normal \lieg g/I$ and $(\lieg/I)/(J/I) \cong \lieg/J$. - If $I, J \normal \lieg$ then $(I+J)/J \cong I/(I\intersect J)$. **Definition:** A *representation* of a Lie algebra $\lieg$ is a Lie algebra homomorphism $\phi:\lieg \to \liegl(V)$ into a linear Lie algebra for some vector space $V$. We call $V$ a $\lieg\dash$module with action $g\cdot v = \phi(g)(v)$. *Example:* The *adjoint representation*: \begin{align*} \ad: \lieg \to \liegl(\lieg) \\ x \mapsto [x, \wait] .\end{align*} **Corollary:** Any simple Lie algebra is isomorphic to a linear Lie algebra. *Proof:* Since $\lieg$ is simple, the center $Z(\lieg) = 0$. We can rewrite the center as \begin{align*} Z(\lieg) = \theset{x\in\lieg \suchthat \ad_{x(y)} = 0 \quad \forall y\in\lieg} \\ = \ker \ad_{x} .\end{align*} Using the first isomorphism theorem, we have $\lieg/Z(\lieg) \cong \im \ad \subseteq \liegl (\lieg)$. But $\lieg/Z(\lieg) = \lieg$ here, so we are done. ## Automorphisms **Definition:** An automorphism of $\lieg$ is an isomorphism $\lieg\selfmap$, and we define \begin{align*} \Aut(\lieg) = \theset{\phi:\lieg\selfmap \suchthat \phi \text{ is an isomorphism }} .\end{align*} **Proposition:** If $\delta \in \mathrm{Der}(\lieg)$ is nilpotent, then $$ \exp(\delta)\coloneqq\sum \frac{\delta^{n}} {n!} \in \Aut(\lieg). $$ This is well-defined because $\delta$ is nilpotent, and a binomial formula holds: \begin{align*} \frac{\delta^{n([x,y])}}{n!} = \sum_{i=0}^{n} [\frac{\delta^{i}(x)}{i!}, \frac{\delta^{n-i}(y)}{(n-i)!}] .\end{align*} and for $n=1, \delta([x,y]) = [x, \delta(y)] + [\delta(x), y]$. *Exercise:* Show that \begin{align*} [(\exp \delta)(x), (\exp\delta)(y)] = \sum_{n=0}^{k-1} \frac {\delta^{n}([x, y])} {n!} .\end{align*} *Example:* Let $\lieg = \liesl(2, \FF)$ and define \begin{align*} s = \exp(\ad_{e}) \exp(\ad_{-f}) \exp(\ad_{e}) \in \Aut \lieg .\end{align*} where $e,f$ are defined as (todo, see written notes). Then define the Weyl group $W = \generators{s}$. *Exercise:* Check that $s(e) = -f, s(f) = -e, s(h) = -h$, and so the order of $s$ is 2 and $W = \theset{1, s}$.