# Monday November 25 Today: The Conjugacy theorem December 2nd: Kac-Moody Algebras (i.e. infinite-dimensional lie algebras) December 4th: Summary of semisimple lie algebras over $\CC$ Last time: We had the following goal: If $L(\mu)$ is a composition factor of $M(\lambda)$, then $\mu \in W\cdot \lambda$. We then get a central character $\chi: Z(U(\lieg)) \to \CC$, e.g. $\chi_\lambda: Z\to \CC$. Any $z\in Z$ acts on the highest weight module $M$ of highest weight $\lambda$ by $\chi_\lambda(z)$. *Example:* $\lieg = \liesl(2, \CC)$ and $\lambda \in \ZZ_{\geq 0}$. ![Image](figures/2019-11-25-09:18.png)\ We now want to prove this using the twisted Harish-Chandra homomorphism, where here we have $$ \psi: Z \to U(\lieh) = S(\lieg) \\ z \mapsto \iota \circ \xi(z) $$ where \begin{align*} \iota: S(\lieh) &\to S(\lieh) \\ \rho(h_1, \cdots, h_\ell) &\mapsto \rho(h_1-1, \cdots, h_\ell - 1) .\end{align*} For example, $h^2 + 2h \mapsto (h-1)^2 + 2(h-1)$. **Theorem (Harish-Chandra):** For all $\lambda, \mu \in \lieh^*$, we have $\chi_\mu = \chi_\lambda \iff \mu \in W \cdot \lambda$. *Proof (sketch):* 1. Assuming *Chevalley's restriction theorem*, we have \begin{align*} P(\lieg)^G \cong P(\lieh)^W \end{align*} where $G \definedas \generators{\exp(\ad x) \mid x\in \lieg} \subseteq \aut(\lieg)$. Then the map $Z \to S(\lieh)^W$ given by $z \mapsto \psi(z)$ is an isomorphism. > Note: the RHS denote a subset invariant under the Weyl group action. *Example:* $\lieg = \liesl(2, \CC)$ and $W = \theset{e, s}$ where $s(h) = -h$. Then $\Omega = h^2 + 2h + fe$, and $$ \psi(\Omega) = (h-1)^2 + 2(h-1) = h^2-1 \in S(\lieh)^W $$ because $$ S \cdot (h^2-1) = (-h)^2 - 1 = h^2 - 1 .$$ 2. $\impliedby$ It suffices to prove the case $\lambda, \mu \in \Lambda$ since $\Lambda$ is dense in $\lieh^*$ in the Zariski topology. We can check that \begin{align*} \chi_\lambda &= \chi_{W\cdot \lambda} \\ \iff \lambda(\xi(z)) &= (W\cdot \lambda) (\xi(z)) \forall z\in Z \\ \iff (\lambda + \rho)(\psi(z)) &= ((\lambda + \rho))(\psi(z)) \forall z\in Z \\ &= (\lambda + \rho)(W\inv \cdot \psi(z)) \\ &= (\lambda + \rho)(\psi(z)) \quad \text{by (1)} .\end{align*} $\implies$ Suppose that $\chi_\lambda = \chi_\mu$ but $\mu \not\in W\cdot \lambda$. Construct $g \in S(\lieh)^W$ such that $g(W\cdot \lambda) = 1$ and $g(W\cdot \mu) = 0$. By 1, there exists a $z = \psi\inv(g) \in Z$ such that $$ \chi_\lambda(z) = (\lambda + \rho) (g) = g(\lambda) + g(\rho) \neq g(\mu) + g(\rho) = \cdots = \chi_\mu(z). $$ $\qed$ ## Cartan Subalgebra (Chapter 15) Recall that the Cartan subalgebra (CSA) is equal to the maximal toral subalgebra, which is nilpotent and self-normalizing. Then $\rank \lieg = \dim \lieh$ is well-defined by any CSA, since they are all conjugate under $G$. ### Engel Subalgebras **Definition:** The *Engel subalgebra* $x\in \lieg$ of $\lieg$ is the generalized eigenspace of $\ad x$ with eigenvalue 0. We can then define $\lieg_{0, x} \definedas \theset{y\in\lieg \suchthat (\ad x)^n (y) = 0 \text{ for } n \gg 0}$. An element $x\in\lieg$ is *regular* if $\dim \lieg_{0, x}$ is minimal. Some facts: a. $\lieg_{0, x} = N_\lieg(\lieg_{0, x})$ b. If $x$ is regular then $\lieg_{0, x}$ is nilpotent c. Combining (a) + (b), if $x$ is regular then $\lieg_{0, x}$ is a Cartan subalgebra. *Example:* $\lieg = \liesl(2, \CC)$, then - $\lieg_{0, e} = \lieg$ since $\ad e$ kills everything eventually. - $\lieg_{0, h} = \CC h$, a 1-dimensional algebra spanned by $h$, and $h$ is regular, and $\CC h = \lieh$ is a CSA, which is nilpotent. ### CSAs **Theorem:** Let $\lieh \leq \lieg$, then a. $\lieh$ is a CSA $\iff$ $\lieh = \lieg_{0, x}$ for some regular $x\in \lieg$ b. If $\lieg$ is semisimple and $\ch \FF \neq 0$, then $\lieh$ is maximal toral $\iff \lieh$ is a CSA. *Proof (sketch):* *Proof of (a):* $\impliedby$: Easy to check. $\implies$: Suppose $\lieh$ is nilpotent and $\lieh \subseteq \lieg_{0, x}$ for all $x\in\lieh$. Then suppose that $\lieh \not\in \lieg_{0, x}$ for all $x\in\lieh$. So pick $z\in \lieh$ such that $\dim \lieg_{0, z} \leq \dim \lieg_{0, x}$ for all $x\in \lieh$. Then $\lieg_{0, z} \subseteq \lieg_{0, x}$ for all $x\in \lieh$. This implies that $x\in \lieh \actson \lieg{0, z} / \lieh$ is a nilpotent action (where this quotient is nonzero). By Theorem 3.3, there exists a $y+\lieh \neq \lieg$ such that $\ad \lieh(y+\lieh) = \lieh$, or there exists a $y\not\in\lieh$ such that $[\lieh, y] \subseteq \lieh$ with $\lieh = N_\lieg(\lieh)$. $\qed$ *Proof of (b):* $\implies$: $\lieh$ is abelian and thus nilpotent, so $\lieg = \lieh + \sum_\alpha \lieg_\alpha$ with $[\lieh, \lieh] = \theset{0} \subseteq \lieh$, and $[\lieh, \lieg_\alpha] \subseteq \lieg_\alpha$ Thus $N_\lieg(\lieh)$. $\impliedby$: *Next time.*