# Monday December 02 Last time: Something about Engel. *Sketch of proof of (b):* $\implies$: If $\lieh$ is abelian, then it is nilpotent, so $\lieg = \lieh + \sum_\alpha \lieg_\alpha$ and $N_\lieg(\lieh) = \lieh$. $\impliedby$: (a) implies that $\lieh = \lieg_{0, x}$ for some $x$, write $x = x_s + x_n$ using Jordan decomposition, then $\lieg_{0, x} \subseteq \sum {n\choose i} (\ad x_j)^i (\ad x_n)^{n-i}$. From this, you can deduce that \begin{align*} \lieh &= \lieg_{0, x_s} \quad\text{by regularity of $x$} \\ &= C_\lieg(x_s) \quad\text{because $\ad x_s$ is diagonalizable} \\ &\supseteq \lieh \quad\text{for some maximal toral} \\ &= CSA \quad\text{from the forward implication} \\ &= \lieg_{0, x'} \quad\text{from (a) for some regular $x'$} .\end{align*} Thus equality holds by regularity and $\lieh = CSA$. ## Conjugacy Theorems [Carter '05] Now we show that any two CSAs are conjugate under $$ G = \generators{\exp \ad x \mid \ad x \text{ is nilpotent }} \normal \Aut(G). $$ Thus $\rank \lieg \definedas \dim CSA$ is well-defined. For a CSA $\lieh$, define $f = f(\lieh)$ by $$ f(x) = \left( \exp(\ad x_1) \circ \cdots \circ \exp(\ad x_m) \right)(x_0) $$ where \begin{align*} \lieg &\mapsvia{\sim} \lieh \oplus \lieg_{\alpha_1} \oplus \cdots \lieg_{\alpha_m} \\ x &\mapsto (x_0, x_1, \cdots, x_m) .\end{align*} Some facts: a. $p(x) \neq 0 \iff \lieh = \lieg_{0, x}$. b. For nonzero polynomials $p: \lieg \to \CC$, there exists a nonzero polynomial $q: \lieg \to \CC$ such that $f(V_p) \supset V_q$ where $$ V_p = \theset{x\in\lieg\suchthat p(x) \neq 0},\quad V_q = \cdots $$ **Theorem:** Any 2 CSAs are conjugate under $G$. *Proof* Define $f= f(\lieh), p = p(\lieh), q= q(\lieh)$ for the CSA $\lieh$, and similarly $f' = f(\lieh')$, etc. Since $q, q'$ are nonzero, $V_q \intersect V_{q'} \neq \emptyset$, or $\exists z\neq 0 \in V_q \intersect V_{q'} \subset f(V_p) \intersect f'(V_p)$. We then get can $x\in \lieg, x' \in \lieg$ such that $z = f(x) = f'(x')$ with $p(x) \neq 0, p'(x') \neq 0 \iff \lieh = \lieg_{0, x}, \lieh' = \lieg_{0, x'}$. Then there exists some $\theta \in G$ such that $\theta(x_0) = x_0'$. For all $h \in \lieh$, we have $(\ad x_0)^{n(h)}(h) = 0$ and $(\ad x_0')^{n(h)}(h) = 0 \implies \theta(h) \in \lieh'$. Thus $\theta(h) \subseteq \lieh'$, and by symmetry $\theta(h) \supseteq \lieh'$. > Note: this concludes the content of Humphrey's book. ## Affine Lie Algebras Recall from section 18 that we had a 1-to-1 correspondence $$ \theset{\text{Cartan matrices } A} \iff \theset{\text{semisimple Lie algebras } \lieg(A)}. $$ *Definition:* A matrix $A = (a_{ij})$ is a *generalized Cartan matrix* if $a_{ii} = 2, i\neq j \implies a_{ij} \in \ZZ_{\leq 0}$, and $a_{ij} = 0 \iff = a_{ji} = 0$. *Definition:* A generalized Cartan matrix $A$ is of *finite type* if there exists a vector $\vector{v} > \vector{0}$ (coordinate-wise) such that $A\vector{v} > \vector{0}$. It is of *affine* type if $\exists \vector{v}$ such that $A \vector{v} = \vector{0}$. It is of *indefinite* type if $\exists \vector{v}$ such that $A \vector{v} < \vector{0}$. Examples: \begin{align*} &\left[\begin{array}{cc} 2 & -3 \\ -1 & 2 \end{array}\right] ~\text{finite type, take } \vector{v} = [5,3]^t \quad \\ &\left[\begin{array}{cc} 2 & -2 \\ -2 & 2 \end{array}\right] ~ \text{affine type, take } \vector{v} = [0, 0]^t \quad \\ &\left[\begin{array}{cc} 2 & -3 \\ -2 & 2 \end{array}\right] ~ \text{indefinite type, take } \vector{v} = [4, 3]^t .\end{align*} **Theorem:** If $A$ is indecomposable, i.e. $A \neq A_1 \oplus A_2$, then $A$ has exactly one of these three types. **Facts:** Let $A$ be an indecomposable generalized Cartan matrix. Then a. $A$ has finite type $\iff$ $A$ is a Cartan matrix b. $A$ has affine type $\iff$ $\det(A) = 0$ > Every connected proper subgraph of $\mathrm{Dynkin}(A)$ is a Dynkin diagram of finite type. This allows us to classify all affine generalized Cartan matrices. Affine Coxeter diagrams: ![Affine Coxeter Diagrams](figures/2019-12-02-09:54.png)\ A Comparison: |Finite | Affine| | ---- | --- | | Killing form | Standard invariant form using data from $A$ | | Weyl group (finite) | Affine Weyl group (infinite) | | Roots $\Phi$ | Real roots and imaginary roots | | Verma modules $M(\lambda) \surjects L(\lambda)$ | Similar | | Weyl character formula for finite dimensional irreducible modules | Kac character formula for integrable modules | | Kazhdan-Lusztig theory | Similar |