# Wednesday December 04 ## Summary of Lie Algebras - Overview - Definition of Lie Algebra, abelian, nilpotent, solvable, (semi)simple, reductive = semisimple and abelian. - Killing form $\kappa(x, y) = \tr(\ad x \circ \ad y)$ - Solvable iff $\kappa(x, y) = 0$ for all $x\in [\lieg, \lieg], y\in \lieg$. - Semisimple iff $\kappa$ is non-degenerate - Interested in Kac-Moody algebras - Finite = semisimple Lie algebra, finite dimensional - Affine = infinite dimensional - Indefinite = hard! - Structure theory for semisimple Lie Algebras - Semisimple = direct sum of simples - Semisimples are in 1-to-1 correspondence with Dynkin diagrams for $A_\ell \to D_\ell$ (classical) or $E_{6-8}, F_4 ,G_2$ (exceptional), which are also in 1-to-1 correspondence with Cartan matrices $A$ - Presentations of $\lieg(A) = \generators{e_i, f_i, h_i}$ mod Cartan relations and Serre relations using $a_{ij}$ - $\liesl(2) = \generators{e,f,h}/\sim$ where $[h, e] = 2e, [e,f] = h, [h, f] = -2f$ - Cartan subalgebras $\lieh \definedas$ nilpotent + self-normalizing $\iff$ maximal toral subalgebra - By the conjugacy theorem, $\rank \lieg \definedas \dim \lieh$ is well-defined - By the abstract Jordan decomposition yields a root-space decomposition $\lieg = \lieh + \sum_{\alpha \in \Phi} \lieg_\alpha$ - If $\Pi$ is a fixed set of simple roots, then there exists a triangular decomposition $\lieg = n^- \oplus \lieh \oplus n$ where $n^- = f's, \lieh = h's, n = e's$ - Semisimple $\iff \kappa$ non-degenerate $\iff \lieh^* \cong \lieh$ by the map $\alpha \mapsto t\alpha$, where $\alpha = \kappa(t_\alpha, \wait)$ - $(\alpha, \beta) \definedas \kappa(t_\alpha, t_\beta)$, coroots $\beta\dual = 2\beta/(\beta, \beta)$ - $(\alpha, \beta\dual) = \kappa(t_\alpha, h_\beta) = \alpha(h_\beta)$ yields an inner product - Generates reflections $s_\alpha: \lieh^* \to \lieh*$ where $\lambda \mapsto \lambda - (\lambda, \alpha\dual)\alpha$ - Yields the Weyl group $W = \generators{s_\alpha \mid \alpha \in \Pi}$ - Every $w\in W$ has a reduced expression $w = \prod_i S_{\alpha_i}$ - $\ell(w) =\text{ length of $w$ } = \#\theset{\alpha \in \Phi^+ \mid w\alpha \in \Phi^-}$ - Universal enveloping algebra has a PBW basis - $Z(U(\lieg)) \cong \mathcal{S}(\lieh)^W$ - Yields central characters $x_\lambda = x_\mu \iff \lambda \in W \cdot \mu$ where $w\cdot \mu = ?$ - $Z(U(\lieg)) \ni \Omega = \sum x_i x_i'$ where $\kappa(x_i, x_j') = \delta_{ij}$ the Casimir element - This acts on simple modules by a scalar, where $\Omega \actson M(\lambda)$ by $(\lambda+p, \lambda+p) - (p, p) = (\lambda + 2p, \lambda)$ ## Representation Theory of Semisimple Lie Algebras - Simple = irreducible modules, but simple $\neq$ indecomposable modules - Composition series, completely reducible = direct sum of irreducibles - Construct new modules by $V\tensor W, V\dual, \hom(V, W) = V\dual \tensor W$ - Theorem (Weyl): If $\lieg$ is semisimple, then any finite-dimensional module is completely reducible - Integral weights $\Lambda = \sum_i \ZZ w_i$, where $w_i$ is a fundamental weight such that $(w_i, \alpha_j\dual) = \delta_{ij}$ - The dominant integral weights are given by $\Lambda^+ = \sum_i \ZZ_{\geq 0} w_i$ - For $\lieg = \liesl(2)$, we have - $\lieg^* \cong \CC$ - $\lambda \mapsto \ZZ$ - $\alpha_1 \mapsto 2$ - $\rho = w_j \mapsto 1$ - Verma $M(\lambda) = \spanof(v_0, v_1, \cdots)$ corresponding to weights $\lambda, \lambda-2, \cdots -\lambda$. - Irreducible $L(\lambda) = \spanof(\overline v_0, \overline v_1, \cdots)$ - Formal characters $\ch M(\lambda) = e(\lambda) + e(\lambda - 2) + \cdots \sim e(\lambda)(1 + e(-2) + e(-2)^2 + \cdots) \sim \frac{e(\lambda)}{1 - e(-2)}$ as a formal power series - Similarly, $\ch L(\lambda) = e(\lambda) + e(\lambda - 2) + \cdots$ - If $\lieg$ is semisimple, then there is a weight module, highest weight module, and maximal vectors - Verma modules $M(\lambda) = \Ind_\lieh^\lieg \CC_\lambda = U(\lieg) \tensor_{U( \lieh )} \CC_\lambda$ - Yields $\mathfrak{b}$ the Borel subalgebra given by $\mathfrak{b} = n \oplus \lieh$, has basis $\theset{\vector{f}^{\vector{b}} v^+}$ - Irreducible modules $L(\lambda) = M(\lambda)/ N(\lambda)$ where $N(\lambda)$ is the sum of proper submodules of $M(\lambda)$. - $\ch M(\lambda) = e(\lambda) / \prod_{\alpha \in \Phi^+} (1 - e(-\alpha))$ - Theorem (Weyl): If $\lambda \in \Lambda^+$, then there is a formula for $\ch L(\lambda)$. - If $\lambda \not\in \Lambda^+$, then $\ch L(\lambda)$ can be deduced using composition multiplicity $[M(\lambda) : L(\mu)]$. - These are obtained from the Kazhdan-Lusztig polynomials - Extended to category $\mathcal{O}$ # Some Possible Generalizations - Swap $\CC$ with $\RR$ of $\overline \FF_p$ - Finite leads to affine or indefinite - Lie Algebras lead to Algebraic groups/ Lie groups - Can also consider Lie super-algebras - Quantisation leads to quantum groups