
Math 8100 Assignment 1

Preliminaries

Due date: Tuesday the 27th of August 2019

1. The Cantor set C is the set of all x ∈ [0, 1] that have a ternary expansion x =
∑∞
k=1 ak3−k with

ak 6= 1 for all k. Thus C is obtained from [0, 1] by removing the open middle third ( 1
3 ,

2
3 ), then removing

the open middle thirds ( 1
9 ,

2
9 ) and (7

9 ,
8
9 ) of the two remaining intervals, and so forth.

(a) Find a real number x belonging to the Cantor set which is not the endpoint of one of the intervals
used in its construction.

(b) Prove that C is both nowhere dense (and hence meager) and has measure zero.

(c) Prove that C is uncountable by showing that the function f(x) =
∑∞
k=1 bk2−k where bk = ak/2,

maps C onto [0, 1].

2. A set A ⊆ Rn is called an Fσ set if it can be written as the countable union of closed subsets of Rn. A
set B ⊆ Rn is called a Gδ set if it can be written as the countable intersection of open subsets of Rn.

(a) Argue that a set is a Gδ set if and only if its complement is an Fσ set.

(b) Show that every closed set is a Gδ set and every open set is an Fσ set.

Hint: One approach is to prove that every open subset of Rn can be written as a countable union
of closed cubes with disjoint interiors. This approach is however very specific to open sets in Rn.

(c) Give an example of an Fσ set which is not a Gδ set and a set which is neither an Fσ nor a Gδ set.

3. (a) Let {rn}∞n=1 be any enumeration of all the rationals in [0, 1] and define f : [0, 1]→ R by setting

f(x) =

{
1
n if x = rn

0 if x ∈ [0, 1] \Q
.

Prove that lim
x→c

f(x) = 0 for every c ∈ [0, 1] and conclude that set of all points at which f is

discontinuous is precisely [0, 1] ∩Q.

(b) Let f : R→ R be bounded.

i. Recall that we defined the oscillation of f at x to be

ωf (x) := lim
δ→0+

sup
y,z∈Bδ(x)

|f(y)− f(z)|.

Briefly explain why this is a well defined notion and prove that

f is continuous at x ⇐⇒ ωf (x) = 0.

ii. Prove that for every ε > 0 the set Aε = {x ∈ R : ωf (x) ≥ ε} is closed and deduce from this
that the set of all points at which f is discontinuous is an Fσ set.

4. Let {xn}∞n=1 be any enumeration of a given countable set X ⊆ R. For each n ∈ N define

fn(x) =

{
1 if x > xn

0 if x ≤ xn
.

Prove that

f(x) =

∞∑
n=1

1

n2
fn(x)

defines an increasing function f on R that is continuous on R \X.
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5. Let C([0, 1]) denote the collection of all real-valued continuous functions with domain [0, 1].

(a) Show that d∞(f, g) = sup
x∈[0,1]

|f(x)−g(x)| defines a metric on C([0, 1]) and that with the “uniform”

metric C([0, 1]) is in fact a complete metric space.

(b) Prove that the unit ball {f ∈ C([0, 1]) : d∞(f, 0) ≤ 1} is closed and bounded, but not compact.

(c) ** Challenge: Can you show that C([0, 1]) with the metric d∞ is not totally bounded.

A set is totally bounded if, for every ε > 0, it can be covered by finitely many balls of radius ε.

6. Let

g(x) =

∞∑
n=0

1

1 + n2x
.

(a) Show that the series defining g does not converge uniformly on (0,∞), but none the less still
defines a continuous function on (0,∞).

Hint for the first part: Show that if
∑∞
n=0 gn(x) converges uniformly on a set X, then the sequence

of functions {gn} must converge uniformly to 0 on X.

(b) Is g differentiable on (0,∞)? If so, is the derivative function g′ continuous on (0,∞)?

7. Let hn(x) =
x

(1 + x)n+1
.

(a) Prove that hn converges uniformly to 0 on [0,∞).

(b) i. Verify that
∞∑
n=0

hn(x) =

{
1 if x > 0

0 if x = 0

ii. Does
∑∞
n=0 hn converge uniformly on [0,∞)?

(c) Prove that
∑∞
n=0 hn converges uniformly on [a,∞) for any a > 0.

Extra Challenge Problems
Not to be handed in with the assignment

1. Given an arbitrary Fσ set V , can you produce a function whose discontinuities lie precisely in V ?

Hint: First try to do this for an arbitrary closed set.

2. (Baire Category Theorem) Prove that if X is a non-empty complete metric space, then X cannot be
written as a countable union of nowhere dense sets.

Hint: Modify the proof given in class of the special case X = R replacing the use of the nested interval
property with the following fact (which you should prove):

If F1 ⊇ F2 ⊇ · · · is a nested sequence of closed non-empty and bounded sets in a complete

metric space X with lim
n→∞

diamFn = 0, then
∞⋂
n=1

Fn contains exactly one point.

3. Complete the proof, sketched in class, of the so-called Lebesgue Criterion: A bounded function on an
interval [a, b] is Riemann integrable if and only if its set of discontinuities has measure zero.

(a) Prove that if the set of discontinuities of f has measure zero, then f is Riemann integrable.

[Hint: Let ε > 0. Cover the compact set Aε (defined in Q3(b)ii. above) by a finite number of
open intervals whose total length is ≤ ε. Select and appropriate partition of [a, b] and estimate the
difference between the upper and lower sums of f over this partition.]

(b) Prove that if f is Riemann integrable on [a, b], then its set of discontinuities has measure zero.

[Hint: The set of discontinuities of f is contained in
⋃
nA1/n. Given ε > 0, choose a partition P

such that U(f, P )−L(f, P ) < ε/n. Show that the total length of the intervals in P whose interiors
intersect A1/n is ≤ ε. ]
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Math 8100 Assignment 2

Lebesgue measure and outer measure

Due date: Wednesday the 5th of September 2018

1. Prove that if E ⊆ R with m∗(E) = 0, then E2 := {x2 |x ∈ E} also has Lebesgue outer measure zero.

Hint: First consider the case when E is a bounded subset of R.

[To what extent can you generalize this result? ]

2. Prove that if E1 and E2 are measurable subsets of Rn, then

m(E1 ∪ E2) +m(E1 ∩ E2) = m(E1) +m(E2).

3. Suppose that A ⊆ E ⊆ B, where A and B are Lebesgue measurable subsets on Rn.

(a) Prove that if m(A) = m(B) <∞, then E is measurable.

(b) Give an example showing that the same conclusion does not hold if A and B have infinite measure.

4. Suppose A and B are a pair of compact subsets of Rn with A ⊆ B, and let a = m(A) and b = m(B).
Prove that for any c with a < c < b, there is a compact set E with A ⊆ E ⊆ B and m(E) = c.

Hint: As a warm-up example, consider the one dimensional example where A a compact measurable
subset of B := [0, 1] and the quantity m(A) + t−m(A ∩ [0, t]) as a function of t.

5. Let N denote the non-measurable subset of [0, 1] that was constructed in lecture.

(a) Prove that if E is a measurable subset of N , then m(E) = 0.

(b) Show that m∗([0, 1] \ N ) = 1

[Hint: Argue by contradiction and pick an open set G such that [0, 1] \ N ⊆ G ⊆ [0, 1] with
m∗(G) ≤ 1− ε.]

(c) Conclude that there exists disjoint sets E1 ⊆ [0, 1] and E2 ⊆ [0, 1] for which

m∗(E1 ∪ E2) 6= m∗(E1) +m∗(E2).

6. (a) The Borel-Cantelli Lemma. Suppose {Ej}∞j=1 is a countable family of measurable subsets of
Rn and that

∞∑
j=1

m(Ej) <∞.

Let
E = lim sup

j→∞
Ej := {x ∈ Rn : x ∈ Ej , for infinitely many j}.

Show that E is measurable and that m(E) = 0. Hint: Write E = ∩∞k=1 ∪j≥k Ej .

(b) Given any irrational x one can show (using the pigeonhole principle, for example) that there exists
infinitely many fractions a/q, with a and q relatively prime integers, such that∣∣∣x− a

q

∣∣∣ ≤ 1

q2
.

However, show that the set of those x ∈ R such that there exists infinitely many fractions a/q,
with a and q relatively prime integers, such that∣∣∣x− a

q

∣∣∣ ≤ 1

q3

is a set of Lebesgue measure zero.
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Extra Challenge Problems
Not to be handed in with the assignment

1. Prove that any E ⊂ R with m∗(E) > 0 necessarily contains a non-measurable set.

2. The outer Jordan content J∗(E) of a set E in R is defined by

J∗(E) = inf

N∑
j=1

|Ij |,

where the infimum is taken over every finite covering E ⊆ ∪Nj=1Ij , by intervals Ij .

(a) Prove that J∗(E) = J∗(Ē) for every set E (here Ē denotes the closure of E).

(b) Exhibit a countable subset E ⊆ [0, 1] such that J∗(E) = 1 while m∗(E) = 0.

3. If I is a bounded interval and α ∈ (0, 1), let us call the open interval with the same midpoint as I
and length equal to α times the length of I the “open middle αth” of I. If {αj}∞j=1 is any sequence of
numbers in (0, 1), then, we can define a decreasing sequence {Kj} of closed sets as follows: K0 = [0, 1],
and Kj is obtained by removing the the open middle αjth from each of the intervals that make up
Kj−1. The resulting limiting set K =

⋂∞
j=1Kj is called a generalized Cantor set.

(a) Suppose {αj}∞j=1 is any sequence of numbers in (0, 1).

i. Prove that
∏∞

j=1(1− αj) > 0 if and only if
∑∞

j=1 αj <∞.

ii. Given β ∈ (0, 1), exhibit a sequence {αj} such that
∏∞

j=1(1− αj) = β.

(b) Given β ∈ (0, 1), construct an open set G in [0, 1] whose boundary has Lebesgue measure β.

Hint: Every closed nowhere dense set is the boundary of an open set.
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Math 8100 Assignment 3

Lebesgue measurable sets and functions

Due date: 5:00 pm Friday the 20th of September 2019

1. (a) Prove that for every E ⊆ Rn there exists a Borel set B ⊇ E with the property that m(B) = m∗(E).

(b) Prove that if E ⊆ Rn is Lebesgue measurable, then there exists a Borel set B ⊆ E with the
property that m(B) = m(E).

(c) Prove that if E ⊆ Rn is Lebesgue measurable with m(E) < ∞, then for every ε > 0 there exists
a set A that is a finite union of closed cubes such that m(E4A) < ε.

[Recall that E4A stands for the symmetric difference, defined by E4A = (E \A) ∪ (A \ E)]

2. Let E be a Lebesgue measurable subset of Rn with m(E) > 0 and ε > 0.

(a) Prove that E “almost” contains a closed cube in the sense that there exists a closed cube Q such
that m(E ∩Q) ≥ (1− ε)m(Q).

(b) Prove that the so-called difference set E−E := {d : d = x−y with x, y ∈ E} necessarily contains
an open ball centered at the origin.

Hint: It may be useful to observe that d ∈ E − E ⇐⇒ E ∩ (E + d) 6= ∅.

3. We say that a function f : Rn → R is upper semicontinuous at a point x in Rn if

f(x) ≥ lim sup
y→x

f(y).

Prove that if f is upper semicontinuous at every point x in Rn, then f is Borel measurable.

4. Let {fn} be a sequence of measurable functions on Rn. Prove that {x ∈ Rn : limn→∞ fn(x) exists}
defines a measurable set.

5. Recall that the Cantor set C is the set of all x ∈ [0, 1] that have a ternary expansion x =
∑∞

k=1 ak3−k

with ak 6= 1 for all k. Consider the function

f(x) =

∞∑
k=1

bk2−k where bk = ak/2.

(a) Show that f is well defined and continuous on C, and moreover f(0) = 0 as well as f(1) = 1.

(b) Prove that there exists a continuous function that maps a measurable set to a non-measurable
set.

6. Let us examine the map f defined in Question 5 even more closely. One readily sees that if x, y ∈ C
and x < y, then f(x) < f(y) unless x and y are the two endpoints of one of the intervals removed from
[0, 1] to obtain C. In this case f(x) = `2m for some integers ` and m, and f(x) and f(y) are the two
binary expansions of this number. We can therefore extend f to a map F : [0, 1]→ [0, 1] by declaring
it to be constant on each interval missing from C. F is called the Cantor-Lebesgue function.

(a) Prove that F is non-decreasing and continuous.

(b) Let G(x) = F (x) + x. Show that G is a bijection from [0, 1] to [0, 2].

(c) i. Show that m(G(C)) = 1.

ii. By considering rational translates of N (the non-measurable subset of [0, 1] that we con-
structed in class), prove that G(C) necessarily contains a (Lebesgue) non-measurable set N ′.

iii. Let E = G−1(N ′). Show that E is Lebesgue measurable, but not Borel.

(d) Give an example of a measurable function ϕ such that ϕ ◦G−1 is not measurable.

Hint: Let ϕ be the characteristic function of a null set whose image under G is not measurable.
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Extra Challenge Problems
Not to be handed in with the assignment

1. Let χ[0,1] be the characteristic function of [0, 1]. Show that there is no function f satisfying f = χ[0,1]

almost everywhere which is also continuous on all of R.

2. Question 6d above supplies us with an example that if f and g are Lebesgue measurable, then it does
not necessarily follow that f ◦ g will be Lebesgue measurable, even if g is assumed to be continuous.

Prove that if f is Borel measurable, then f ◦ g will be Lebesgue or Borel measurable whenever g is.

3. Let f be a measurable function on [0, 1] with |f(x)| <∞ for a.e. x. Prove that there exists a sequence
of continuous functions {gn} on [0, 1] such that gn → f for a.e. x ∈ [0, 1].
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Math 8100 Assignment 4

Lebesgue Integration

Due date: Tuesday the 1st of October 2019

Definition. Let E be a Lebesgue measurable subset of Rn.

We say that a measurable function f : E → C is integrable on E if

∫
E

|f(x)| dx <∞.

1. (a) Give an example of a continuous integrable function f on R for which f(x) 9 0 as |x| → ∞.

(b) Prove that if f is integrable on R and uniformly continuous, then lim
|x|→∞

f(x) = 0.

2. Let f be an integrable function on Rn.

(a) Prove that {x : |f(x)| =∞} has measure equal to zero.

(b) Let ε > 0. Prove that there exists a measurable set E with m(E) <∞ for which∫
E

|f | >
(∫
|f |
)
− ε.

3. Let f be a function in L+(Rn) that is finite almost everywhere.

Let E2k = {x : f(x) > 2k}, Fk = {x : 2k < f(x) ≤ 2k+1}, and note that since f is finite almost
everywhere it follows that

⋃∞
k=−∞ Fk = {x : f(x) > 0}, and the sets Fk are disjoint. Prove that∫

f(x) <∞ ⇐⇒
∞∑

k=−∞

2km(Fk) <∞ ⇐⇒
∞∑

k=−∞

2km(E2k) <∞.

4. Prove the following:

(a) ∫
{x∈Rn : |x|≤1}

|x|−p dx <∞ if and only if p < n.

(b) ∫
{x∈Rn : |x|≥1}

|x|−p dx <∞ if and only if p > n.

Hint: One possible approach is to use the first equivalence in Question 3 above. I suggest however that
in this case you also try simply writing Rn as a disjoint union of the annuli Ak = {2k < |x| ≤ 2k+1}.

5. Given any integrable function f on Rn, the Fourier transform of f is defined by

f̂(ξ) =

∫
Rn

f(x)e−2πix·ξ dx

where x · ξ = x1ξ1 + · · ·+ xnξn. Show that f̂ is a bounded continuous function of ξ.

6. Let {fk} be a sequence of integrable functions on Rn, f be integrable on Rn, and lim
k→∞

fk = f a.e.

(a) Suppose further that

lim
k→∞

∫
|fk(x)| dx = A <∞ and

∫
|f(x)| dx = B.
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i. Prove that

lim
k→∞

∫
|fk(x)− f(x)| dx = A−B.

Hint: Use the fact that

|fk(x)| − |f(x)| ≤ |fk(x)− f(x)| ≤ |fk(x)|+ |f(x)|.

ii. Give an example of a sequence {fk} of such functions for which A 6= B.

(b) Deduce that ∫
|f − fk| → 0 ⇐⇒

∫
|fk| →

∫
|f |.

7. (a) Suppose that f(x) and xf(x) are both integrable functions on R. Prove that the function

F (t) =

∫
R
f(x) cos(tx) dx.

is differentiable at every t and find a formula for F ′(t).

(b) Giving complete justification, evaluate

lim
t→0

∫ 1

0

et
√
x − 1

t
dx.

Extra Challenge Problems
Not to be handed in with the assignment

1. Assume Fatou’s theorem and deduce the monotone convergence theorem from it.

2. A sequence {fk} of integrable functions on Rn is said to converge in measure to f if for every ε > 0,

lim
k→∞

m({x ∈ Rn : |fk(x)− f(x)| ≥ ε}) = 0.

(a) Prove that if fk → f in L1 then fk → f in measure.

(b) Give an example to show that the converse of Question 2a is false.

(c) Prove that if we make the additional assumption that there exists an integrable function g such
that |fk| ≤ g for all k, then fk → f in measure implies that

i. * (Bonus points) f ∈ L1

Hint: First show that {fk} contains a subsequence which converges to f almost everywhere.

ii. fk → f in L1.
Hint: Try using absolute continuity and “small tails property” of the Lebesgue integral.

3. Let Ω ⊆ Rn be measurable with m(Ω) <∞. A set Φ ⊆ L1(Ω) is said to be uniformly integrable if, for
any ε > 0 there exists δ > 0 such that whenever f ∈ Φ and E ⊆ Ω is measurable with m(E) < δ, then∫

E

|f(x)| dx < ε.

(a) Prove that if f ∈ L1(Ω) and {fk} is a uniformly integrable sequence of functions in L1(Ω) such
that fk → f almost everywhere on Ω, then fk → f in L1(Ω).

(b) Is it necessary to assume that f ∈ L1(Ω)?
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Math 8100 Assignment 5

Repeated Integration

Due date: Friday the 18th of October 2019

1. Prove that if {ajk}(j,k)∈N×N is a “double sequence” with ajk ≥ 0 for all (j, k) ∈ N× N, then

∞∑
j=1

∞∑
k=1

ajk = sup
{ ∑
(j,k)∈B

ajk : B is a finite subset of N× N
}

and deduce from this that
∞∑
j=1

∞∑
k=1

ajk =

∞∑
k=1

∞∑
j=1

ajk.

This conclusion holds more generally provided
∞∑
j=1

∞∑
k=1

|ajk| <∞, see Theorem 8.3 in “Baby Rudin”.

2. Let f ∈ L1([0, 1]), and for each x ∈ [0, 1] define

g(x) =

∫ 1

x

f(t)

t
dt.

Show that g ∈ L1([0, 1]) and that ∫ 1

0

g(x) dx =

∫ 1

0

f(x) dx.

3. Carefully prove that if we define

f(x, y) :=


x1/3

(1 + xy)
3/2

if 0 ≤ x ≤ y

0 otherwise

for each (x, y) ∈ R2, then f defines a function in L1(R2).

4. Let A,B ⊆ Rn be bounded measurable sets with positive Lebesgue measure. For each t ∈ Rn define
the function

g(t) = m (A ∩ (t−B))

where t−B = {t− b : b ∈ B}.

(a) Prove that g is a continuous function and∫
Rn

g(t) dt = m(A)m(B).

(b) Conclude that the sumset

A+B = {a+ b : a ∈ A and b ∈ B}

contains a non-empty open subset of Rn.

5. Let f, g ∈ L1([0, 1]) and for each 0 ≤ x ≤ 1 define

F (x) :=

∫ x

0

f(y) dy and G(x) :=

∫ x

0

g(y) dy.

Prove that ∫ 1

0

F (x)g(x) dx = F (1)G(1)−
∫ 1

0

f(x)G(x) dx.
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6. Let f ∈ L1(R). For any h > 0 we define

Ah(f)(x) :=
1

2h

∫ x+h

x−h
f(y) dy

(a) Prove that for all h > 0, ∫
R
|Ah(f)(x)| dx ≤

∫
R
|f(x)| dx.

(b) Prove that

lim
h→0+

∫
R
|Ah(f)(x)− f(x)| dx = 0.

One can in fact show that limh→0+ Ah(f) = f almost everywhere. This result is actually equivalent to
the Lebesgue Density Theorem in R and we will establish this later in the course.

Extra Challenge Problems
Not to be handed in with the assignment

1. (a) Prove that ∫ ∞
0

∣∣∣∣ sinxx
∣∣∣∣ dx =∞.

(b) By considering the iterated integral∫ ∞
0

(∫ ∞
0

xe−xy(1− cos y) dy

)
dx

show (with justification) that

lim
A→∞

∫ A

0

sinx

x
dx =

π

2
.

2. Suppose that F is a closed subset of R whose complement has finite measure. Let δ(x) denote the
distance from x to F , namely

δ(x) = d(x, F ) = inf{|x− y| : y ∈ F}

and

IF (x) =

∫ ∞
−∞

δ(y)

|x− y|2
dy.

(a) Prove that δ is continuous, by showing that it satisfies the Lipschitz condition |δ(x)−δ(y)| ≤ |x−y|.
(b) Show that IF (x) =∞ if x /∈ F .

(c) Show that IF (x) <∞ for a.e. x ∈ F , by showing that
∫
F
IF (x) dx <∞.
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Math 8100 Assignment 6

The Fourier Transform

Due date: Thursday the 31st of October 2019

Recall that we have defined the Fourier transform of an integrable function f on Rn by

f̂(ξ) =

∫
Rn

f(x)e−2πix·ξ dx

where x · ξ = x1ξ1 + · · ·+ xnξn and the convolution of two integrable functions f and g on Rn by

f ∗ g(x) =

∫
Rn

f(x− y)g(y) dy.

1. Prove that if f ∈ L1(Rn), then f̂(ξ)→ 0 as |ξ| → ∞. (This is called the Riemann-Lebesgue lemma.)

Hint: Write f̂(ξ) = 1
2

∫
[f(x)− f(x− ξ′)]e−2πix·ξ dx, where ξ′ = ξ

2|ξ|2 .

2. (a) Prove that if f, g ∈ L1(Rn), then f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ) for all ξ ∈ Rn.

(b) Conclude from part (a) that

i. if f, g, h ∈ L1(Rn), then f ∗ g = g ∗ f and (f ∗ g) ∗ h = f ∗ (g ∗ h) almost everywhere.

ii. there does not exist I ∈ L1(Rn) such that f ∗ I = f almost everywhere for all f ∈ L1(Rn).

3. Let f ∈ L1(Rn).

(a) Show that if y ∈ Rn and

i. g(x) = f(x− y) for all x ∈ Rn, then ĝ(ξ) = e−2πiy·ξ f̂(ξ) for all ξ ∈ Rn.

ii. h(x) = e2πix·yf(x) for all x ∈ Rn, then ĥ(ξ) = f̂(ξ − y) for all ξ ∈ Rn.

(b) Show that if T be a non-singular linear transformation of Rn and S = (T ∗)−1 denote its inverse
transpose, then

f̂ ◦ T (ξ) =
1

|detT |
f̂(Sξ)

for all ξ ∈ Rn.

4. (a) Let f ∈ L1(R).

i. Let g(x) = xf(x). Show that if g ∈ L1, then f̂ is differentiable and d
dξ f̂(ξ) = −2πi ĝ(ξ).

ii. Let f ∈ C1
0 (R) and h(x) = d

dxf(x). Show that if h ∈ L1, then ĥ(ξ) = 2πiξf̂(ξ).

Recall that C1
0 (R) is the collection of functions in C1(R) which vanishes at infinity.

(b) Let G(x) = e−πx
2

. By considering the derivative of Ĝ(ξ)/G(ξ), show that Ĝ(ξ) = G(ξ).

Hint: You may also want to use the fact that
∫
RG(x) dx = 1 (see “challenge” problem).

5. The functions D, F , and P defined below are all bounded L+(R) functions with integrals equal to 1.

(a) Show that if

D(x) =

{
1 if |x| ≤ 1/2

0 otherwise

then

D̂(ξ) =
sinπξ

πξ
.

This gives, in light of Assignment 5 Challenge Problem 1(a), an explicit example of a function
which is not in L1(R), but yet is the Fourier transform of an L1 function. See Question 6 for
additional higher dimensional examples.

1



(b) Let

F (x) =

{
1− |x| if |x| ≤ 1

0 otherwise
.

i. Show that

F̂ (ξ) =

(
sinπξ

πξ

)2

.

Hint: It may help to write F̂ (ξ) = h(ξ) + h(−ξ) where h(ξ) = e2πiξ
∫ 1

0
ye−2πiyξdy.

ii. Find the Fourier transform of the function

f(x) =

(
sinπx

πx

)2

.

Be careful to fully justify your answer.

(c) Show that if

P (x) =
1

π

1

1 + x2
.

then ∫ ∞
−∞

e−2π|ξ|e2πixξ dξ = P (x)

and hence that
P̂ (ξ) = e−2π|ξ|.

Be careful to fully justify your answer.

Remark: In Questions 4b and 5 above D is for Dirichlet, F is for Fejér, P is for Poisson, and G is for
Gauss-Weierstrass. The respective “approximate identities”, namely {(D̂)t}t>0, {(F̂ )t}t>0, {Pt}t>0,
and {G√t}t>0, are generally referred to as Dirichlet, Fejér, Poisson, and Gauss-Weierstrass kernels.

6. Show that for any ε > 0 the function F (ξ) = (1+|ξ|2)−ε is the Fourier transform of an L1(Rn) function.

Hint: Consider the function

f(x) =

∫ ∞
0

Gt(x)e−πt
2

t2ε−1 dt,

where Gt(x) = t−ne−π|x|
2/t2 . Now use Fubini/Tonelli to prove that f ∈ L1(Rn) with f̂(ξ) = F (ξ)‖f‖1.

Extra Challenge Problems
Not to be handed in with the assignment

1. By considering the iterated integral∫ ∞
0

(∫ ∞
0

xe−x
2(1+y2) dx

)
dy

show (with justification) that ∫ ∞
0

e−x
2

dx =

√
π

2

and hence that ∫ ∞
−∞

e−πx
2

dx = 1.

2



Math 8100 Assignment 7

Hilbert Spaces

Due date: Thursday 14th of November 2019

1. (a) Prove that `2(N) is complete.

Recall that `2(N) := {x = {xj}∞j=1 : ‖x‖`2 <∞}, where ‖x‖`2 :=
( ∞∑
j=1

|xj |2
)1/2

.

(b) Let H be a Hilbert space. Prove the so-called polarization identity, namely that for any x, y ∈ H,

〈x, y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
and conclude that any invertible linear map from H to `2(N) is unitary if and only if it is isometric.

Recall that if H1 and H2 are Hilbert spaces with inner products 〈·, ·〉1 and 〈·, ·〉2, then a mapping
U : H1 → H2 is said to be unitary if it is an invertible linear map that preserves inner products,
namely 〈Ux,Uy〉2 = 〈x, y〉1, and an isometry if it preserves “lengths”, namely ‖Ux‖2 = ‖x‖1.

2. Let E be a subset of a Hilbert space H.

(a) Show that E⊥ := {x ∈ H : 〈x, y〉 = 0 for all y ∈ E} is a closed subspace of H.

(b) Show that (E⊥)⊥ is the smallest closed subspace of H that contains E.

3. In L2([0, 1]) let e0(x) = 1, e1(x) =
√

3(2x− 1) for all x ∈ (0, 1).

(a) Show that e0, e1 is an orthonormal system in L2(0, 1).

(b) Show that the polynomial of degree 1 which is closest with respect to the norm of L2(0, 1) to the
function f(x) = x2 is given by g(x) = x− 1/6. What is ‖f − g‖2?

4. (a) Verify that the following systems are orthogonal in L2([0, 1]):

i. {1/
√

2, cos(2πx), sin(2πx), . . . , cos(2πkx), sin(2πkx), . . . }
ii. {e2πikx}∞k=−∞

(b) Let f ∈ L1([0, 1]).

i. Show that for any ε > 0 we can write f = g + h, where g ∈ L2 and ‖h‖1 < ε.

ii. Use this decomposition of f to prove the so-called Riemann-Lebesgue lemma:

lim
k→∞

∫ 1

0

f(x) cos(2πkx) dx = lim
k→∞

∫ 1

0

f(x) sin(2πkx) dx = 0

5. (a) The first three Legendre polynomials are

P0(x) = 1, P1(x) = x, P2(x) = (3x2 − 1)/2.

Show that the orthonormal system in L2([−1, 1]) obtained by applying the Gram-Schmidt process
to 1, x, x2 are scalar multiples of these.

1



(b) Compute

min
a,b,c

∫ 1

−1
|x3 − a− bx− cx2|2 dx

(c) Find

max

∫ 1

−1
x3g(x) dx

where g is subject to the restrictions∫ 1

−1
g(x) dx =

∫ 1

−1
xg(x) dx =

∫ 1

−1
x2g(x) dx = 0 ;

∫ 1

−1
|g(x)|2 dx = 1.

6. Let

C =

{
f ∈ L2([0, 1]) :

∫ 1

0

f(x) dx = 1 and

∫ 1

0

xf(x) dx = 2

}
(a) Let g(x) = 18x2 − 5. Show that g ∈ C and that

C = g + S⊥

where S⊥ denotes the orthogonal complement of S = Span ({1, x}) .
(b) Find the function f0 ∈ C for which∫ 1

0

|f0(x)|2dx = inf
f∈C

∫ 1

0

|f(x)|2dx.

Extra Challenge Problems
Not to be handed in with the assignment

1. Prove that every closed convex set K in a Hilbert space has a unique element of minimal norm.

2. The Mean Ergodic Theorem: Let U be a unitary operator on a Hilbert space H.

Prove that if M = {x : Ux = x} and SN = 1
N

∑N−1
n=0 U

n, then lim
N→∞

‖SNx− Px‖ = 0

for all x ∈ H, where Px denotes the orthogonal projection of x onto M .
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Math 8100 Assignment 8

Basic Function Spaces

Due date: Tuesday the 26th of November 2019

1. Prove the following basic properties of L∞ = L∞(X), where X is a measurable subset of Rn:

(a) ‖ · ‖∞ is a norm on L∞ and when equipped with this norm L∞ is a Banach space.

(b) ‖fn − f‖∞ → 0 iff there exists E ∈ Rn such that m(Ec) = 0 and fn → f uniformly on E.

(c) Simple functions are dense in L∞, but continuous functions with compact support are not.

Recall that if X ⊆ Rn is measurable and f is a measurable function on X, then we define

‖f‖∞ = inf{a ≥ 0 : m({x ∈ X : |f(x)| > a}) = 0},

with the convention that inf ∅ =∞, and

L∞ = L∞(X) = {f : X → C measuarable : ‖f‖∞ <∞},

with the usual convention that two functions that are equal a.e. define the same element
of L∞. Thus f ∈ L∞ if and only if there is a bounded function g such that f = g almost
everywhere; we can take g = fχE where E = {x : |f(x)| ≤ ‖f‖∞}.

2. Let X ⊆ Rn be measurable.

(a) i. Prove that if m(X) <∞, then

L∞(X) ⊂ L2(X) ⊂ L1(X) (1)

with strict inclusion in each case, and that for any measurable f : X → C one in fact has

‖f‖L1(X) ≤ m(X)1/2‖f‖L2(X) ≤ m(X)‖f‖L∞(X).

ii. Give examples to show that no such result of the form (1) can hold if one drops the assumption
that m(x) <∞. Prove, furthermore, that if L2(X) ⊆ L1(X), then m(X) <∞.

(b) Prove that
L1(X) ∩ L∞(X) ⊂ L2(X)︸ ︷︷ ︸

(?)

⊂ L1(X) + L∞(X)

and that in addition to (?) one in fact has

‖f‖L2(X) ≤ ‖f‖
1/2
L1(X)‖f‖

1/2
L∞(X)

for any measurable function f : X → C.

3. Prove that
`1(Z) ⊂ `2(Z) ⊂ `∞(Z)

with strict inclusion in each case, and that for any sequence a = {aj}j∈Z of complex numbers one in
fact has

‖a‖`∞(Z) ≤ ‖a‖`2(Z) ≤ ‖a‖`1(Z).

Recall that for p = 1, 2,∞ we define

`p(Z) = {a = {aj}j∈Z ⊆ C : ‖a‖`p(Z) <∞}

where

‖a‖`1(Z) =

∞∑
j=−∞

|aj |, ‖a‖`2(Z) =
( ∞∑
j=−∞

|aj |2
)1/2

, and ‖a‖`∞(Z) = sup
j
|aj |.

1



4. Let C([0, 1]) denote the space of all continuous real-valued functions on [0, 1].

(a) Prove that C([0, 1]) is complete under the uniform norm ‖f‖u := sup
x∈[0,1]

|f(x)|.

(b) Prove that C([0, 1]) is not complete under the L1-norm ‖f‖1 =

∫ 1

0

|f(x)| dx

5. Let H be a Hilbert space with orthonormal basis {un}∞n=1.

(a) Let {an}∞n=1 be a sequence of complex numbers. Prove that

∞∑
n=1

anun converges in H ⇐⇒
∞∑

n=1

|an|2 <∞,

and moreover that if

∞∑
n=1

|an|2 <∞, then
∥∥∥ ∞∑
n=1

anun

∥∥∥ =
( ∞∑
n=1

|an|2
)1/2

.

(b) i. Is there a continuous linear functional L on H such that L(un) = n−1 for all n ∈ N?
If L exists, find its norm.

ii. Is there a continuous linear functional L on H such that L(un) = n−1/2 for all n ∈ N?
If L exists, find its norm.

6. For each 1 ≤ p ≤ ∞, define Λp : Lp([0, 1])→ R by

Λp(f) =

∫ 1

0

x2f(x) dx.

Explain why Λp is a continuous linear functional and compute its norm (in terms of p).

Extra Practice Problems
Not to be handed in with the assignment

1. Let f and g be two non-negative Lebesgue measurable functions on [0,∞). Suppose that

A :=

∫ ∞
0

f(y) y−1/2dy <∞ and B :=

(∫ ∞
0

|g(y)|2dy
)1/2

<∞

Prove that ∫ ∞
0

(∫ x

0

f(y) dy

)
g(x)

x
dx ≤ AB

2. Let {fk} be any sequence of functions in L2([0, 1]) satisfying ‖fk‖2 ≤ 1 for all k ∈ N.

(a) i. Prove that if fk → f either a.e. on [0, 1] or in L1([0, 1]), then f ∈ L2([0, 1]) with ‖f‖2 ≤ 1.

ii. Do either of the above hypotheses guarantee that fk → f in L2([0, 1])?

(b) Prove that if fk → f a.e. on [0, 1], then this in fact implies that fk → f in L1([0, 1]).

3. Let 1 ≤ p ≤ ∞. Prove that if {fk}∞k=1 is a sequence of functions in Lp(Rn) with the property that

∞∑
k=1

‖fk‖p <∞,

then
∑
fk converges almost everywhere to an Lp(Rn) function with∥∥∥ ∞∑

k=1

fk

∥∥∥
p
≤
∞∑
k=1

‖fk‖p.
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