Math 8100 Assignment 1 Preliminaries

Due date: Tuesday the 27th of August 2019

- 1. The **Cantor set** C is the set of all $x \in [0,1]$ that have a ternary expansion $x = \sum_{k=1}^{\infty} a_k 3^{-k}$ with $a_k \neq 1$ for all k. Thus C is obtained from [0,1] by removing the open middle third $(\frac{1}{3}, \frac{2}{3})$, then removing the open middle thirds $(\frac{1}{9}, \frac{2}{9})$ and $(\frac{7}{9}, \frac{8}{9})$ of the two remaining intervals, and so forth.
 - (a) Find a real number x belonging to the Cantor set which is not the endpoint of one of the intervals used in its construction.
 - (b) Prove that \mathcal{C} is both nowhere dense (and hence meager) and has measure zero.
 - (c) Prove that C is uncountable by showing that the function $f(x) = \sum_{k=1}^{\infty} b_k 2^{-k}$ where $b_k = a_k/2$, maps C onto [0, 1].
- 2. A set $A \subseteq \mathbb{R}^n$ is called an F_{σ} set if it can be written as the countable union of closed subsets of \mathbb{R}^n . A set $B \subseteq \mathbb{R}^n$ is called a G_{δ} set if it can be written as the countable intersection of open subsets of \mathbb{R}^n .
 - (a) Argue that a set is a G_{δ} set if and only if its complement is an F_{σ} set.
 - (b) Show that every closed set is a G_δ set and every open set is an F_σ set. Hint: One approach is to prove that every open subset of Rⁿ can be written as a countable union of closed cubes with disjoint interiors. This approach is however very specific to open sets in Rⁿ.
 - (c) Give an example of an F_{σ} set which is not a G_{δ} set and a set which is neither an F_{σ} nor a G_{δ} set.
- 3. (a) Let $\{r_n\}_{n=1}^{\infty}$ be any enumeration of all the rationals in [0,1] and define $f:[0,1] \to \mathbb{R}$ by setting

$$f(x) = \begin{cases} \frac{1}{n} & \text{if } x = r_n \\ 0 & \text{if } x \in [0,1] \setminus \mathbb{Q} \end{cases}$$

Prove that $\lim_{x\to c} f(x) = 0$ for every $c \in [0,1]$ and conclude that set of all points at which f is discontinuous is precisely $[0,1] \cap \mathbb{Q}$.

- (b) Let $f : \mathbb{R} \to \mathbb{R}$ be bounded.
 - i. Recall that we defined the oscillation of f at x to be

$$\omega_f(x) := \lim_{\delta \to 0^+} \sup_{y, z \in B_\delta(x)} |f(y) - f(z)|.$$

Briefly explain why this is a well defined notion and prove that

f is continuous at $x \iff \omega_f(x) = 0.$

- ii. Prove that for every $\varepsilon > 0$ the set $A_{\varepsilon} = \{x \in \mathbb{R} : \omega_f(x) \ge \varepsilon\}$ is closed and deduce from this that the set of all points at which f is discontinuous is an F_{σ} set.
- 4. Let $\{x_n\}_{n=1}^{\infty}$ be any enumeration of a given countable set $X \subseteq \mathbb{R}$. For each $n \in \mathbb{N}$ define

$$f_n(x) = \begin{cases} 1 \text{ if } x > x_n \\ 0 \text{ if } x \le x_n \end{cases}$$

Prove that

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} f_n(x)$$

defines an increasing function f on \mathbb{R} that is continuous on $\mathbb{R} \setminus X$.

- 5. Let C([0,1]) denote the collection of all real-valued continuous functions with domain [0,1].
 - (a) Show that $d_{\infty}(f,g) = \sup_{x \in [0,1]} |f(x) g(x)|$ defines a metric on C([0,1]) and that with the "uniform" metric C([0,1]) is in fact a *complete* metric space.
 - (b) Prove that the unit ball $\{f \in C([0,1]) : d_{\infty}(f,0) \leq 1\}$ is closed and bounded, but not compact.
 - (c) ** Challenge: Can you show that C([0,1]) with the metric d_{∞} is not totally bounded.
 - A set is totally bounded if, for every $\varepsilon > 0$, it can be covered by finitely many balls of radius ε .

6. Let

$$g(x) = \sum_{n=0}^{\infty} \frac{1}{1+n^2 x}$$

- (a) Show that the series defining q does not converge uniformly on $(0,\infty)$, but none the less still defines a continuous function on $(0, \infty)$. Hint for the first part: Show that if $\sum_{n=0}^{\infty} g_n(x)$ converges uniformly on a set X, then the sequence of functions $\{g_n\}$ must converge uniformly to 0 on X.
- (b) Is g differentiable on $(0,\infty)$? If so, is the derivative function g' continuous on $(0,\infty)$?

7. Let
$$h_n(x) = \frac{x}{(1+x)^{n+1}}$$
.

- (a) Prove that h_n converges uniformly to 0 on $[0, \infty)$.
- (b) i. Verify that

$$\sum_{n=0}^{\infty} h_n(x) = \begin{cases} 1 \text{ if } x > 0\\ 0 \text{ if } x = 0 \end{cases}$$

ii. Does $\sum_{n=0}^{\infty} h_n$ converge uniformly on $[0, \infty)$? (c) Prove that $\sum_{n=0}^{\infty} h_n$ converges uniformly on $[a, \infty)$ for any a > 0.

Extra Challenge Problems

Not to be handed in with the assignment

- 1. Given an arbitrary F_{σ} set V, can you produce a function whose discontinuities lie precisely in V? Hint: First try to do this for an arbitrary closed set.
- 2. (Baire Category Theorem) Prove that if X is a non-empty complete metric space, then X cannot be written as a countable union of nowhere dense sets.

Hint: Modify the proof given in class of the special case $X = \mathbb{R}$ replacing the use of the nested interval property with the following fact (which you should prove):

If $F_1 \supseteq F_2 \supseteq \cdots$ is a nested sequence of closed non-empty and bounded sets in a complete metric space X with $\lim_{n\to\infty} \operatorname{diam} F_n = 0$, then $\bigcap_{n=1}^{\infty} F_n$ contains exactly one point.

- 3. Complete the proof, sketched in class, of the so-called Lebesgue Criterion: A bounded function on an interval [a, b] is Riemann integrable if and only if its set of discontinuities has measure zero.
 - (a) Prove that if the set of discontinuities of f has measure zero, then f is Riemann integrable. [Hint: Let $\varepsilon > 0$. Cover the compact set A_{ε} (defined in Q3(b)ii. above) by a finite number of open intervals whose total length is $\leq \varepsilon$. Select and appropriate partition of [a, b] and estimate the difference between the upper and lower sums of f over this partition.]
 - (b) Prove that if f is Riemann integrable on [a, b], then its set of discontinuities has measure zero. [*Hint:* The set of discontinuities of f is contained in $\bigcup_n A_{1/n}$. Given $\varepsilon > 0$, choose a partition P such that $U(f, P) - L(f, P) < \varepsilon/n$. Show that the total length of the intervals in P whose interiors intersect $A_{1/n}$ is $\leq \varepsilon$.

Math 8100 Assignment 2 Lebesgue measure and outer measure

Due date: Wednesday the 5th of September 2018

- Prove that if E ⊆ R with m_{*}(E) = 0, then E² := {x² | x ∈ E} also has Lebesgue outer measure zero. Hint: First consider the case when E is a bounded subset of R.
 [To what extent can you generalize this result?]
- 2. Prove that if E_1 and E_2 are measurable subsets of \mathbb{R}^n , then

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2).$$

- 3. Suppose that $A \subseteq E \subseteq B$, where A and B are Lebesgue measurable subsets on \mathbb{R}^n .
 - (a) Prove that if $m(A) = m(B) < \infty$, then E is measurable.
 - (b) Give an example showing that the same conclusion does not hold if A and B have infinite measure.
- 4. Suppose A and B are a pair of compact subsets of Rⁿ with A ⊆ B, and let a = m(A) and b = m(B). Prove that for any c with a < c < b, there is a compact set E with A ⊆ E ⊆ B and m(E) = c. Hint: As a warm-up example, consider the one dimensional example where A a compact measurable subset of B := [0,1] and the quantity m(A) + t m(A ∩ [0,t]) as a function of t.
- 5. Let \mathcal{N} denote the non-measurable subset of [0,1] that was constructed in lecture.
 - (a) Prove that if E is a measurable subset of \mathcal{N} , then m(E) = 0.
 - (b) Show that $m_*([0,1] \setminus \mathcal{N}) = 1$ [*Hint: Argue by contradiction and pick an open set* G such that $[0,1] \setminus \mathcal{N} \subseteq G \subseteq [0,1]$ with $m_*(G) \leq 1 - \varepsilon$.]
 - (c) Conclude that there exists *disjoint* sets $E_1 \subseteq [0,1]$ and $E_2 \subseteq [0,1]$ for which

$$m_*(E_1 \cup E_2) \neq m_*(E_1) + m_*(E_2).$$

6. (a) The Borel-Cantelli Lemma. Suppose $\{E_j\}_{j=1}^{\infty}$ is a countable family of measurable subsets of \mathbb{R}^n and that

$$\sum_{j=1}^{\infty} m(E_j) < \infty.$$

Let

$$E = \limsup_{j \to \infty} E_j := \{ x \in \mathbb{R}^n : x \in E_j, \text{ for infinitely many } j \}.$$

Show that E is measurable and that m(E) = 0. Hint: Write $E = \bigcap_{k=1}^{\infty} \bigcup_{j \ge k} E_j$.

(b) Given any irrational x one can show (using the pigeonhole principle, for example) that there exists infinitely many fractions a/q, with a and q relatively prime integers, such that

$$\left|x - \frac{a}{q}\right| \le \frac{1}{q^2}$$

However, show that the set of those $x \in \mathbb{R}$ such that there exists infinitely many fractions a/q, with a and q relatively prime integers, such that

$$\left|x - \frac{a}{q}\right| \le \frac{1}{q^3}$$

is a set of Lebesgue measure zero.

Extra Challenge Problems

Not to be handed in with the assignment

- 1. Prove that any $E \subset \mathbb{R}$ with $m_*(E) > 0$ necessarily contains a non-measurable set.
- 2. The outer Jordan content $J_*(E)$ of a set E in \mathbb{R} is defined by

$$J_*(E) = \inf \sum_{j=1}^N |I_j|,$$

where the infimum is taken over every *finite* covering $E \subseteq \bigcup_{j=1}^{N} I_j$, by intervals I_j .

- (a) Prove that $J_*(E) = J_*(\overline{E})$ for every set E (here \overline{E} denotes the closure of E).
- (b) Exhibit a countable subset $E \subseteq [0, 1]$ such that $J_*(E) = 1$ while $m_*(E) = 0$.
- 3. If I is a bounded interval and $\alpha \in (0, 1)$, let us call the open interval with the same midpoint as I and length equal to α times the length of I the "open middle α th" of I. If $\{\alpha_j\}_{j=1}^{\infty}$ is any sequence of numbers in (0, 1), then, we can define a decreasing sequence $\{K_j\}$ of closed sets as follows: $K_0 = [0, 1]$, and K_j is obtained by removing the the open middle α_j th from each of the intervals that make up K_{j-1} . The resulting limiting set $K = \bigcap_{j=1}^{\infty} K_j$ is called a **generalized Cantor set**.
 - (a) Suppose $\{\alpha_j\}_{j=1}^{\infty}$ is any sequence of numbers in (0, 1).
 - i. Prove that $\prod_{j=1}^{\infty} (1 \alpha_j) > 0$ if and only if $\sum_{j=1}^{\infty} \alpha_j < \infty$.
 - ii. Given $\beta \in (0, 1)$, exhibit a sequence $\{\alpha_j\}$ such that $\prod_{j=1}^{\infty} (1 \alpha_j) = \beta$.
 - (b) Given $\beta \in (0, 1)$, construct an open set G in [0, 1] whose boundary has Lebesgue measure β . Hint: Every closed nowhere dense set is the boundary of an open set.

Math 8100 Assignment 3 Lebesgue measurable sets and functions

Due date: 5:00 pm Friday the 20th of September 2019

- 1. (a) Prove that for every $E \subseteq \mathbb{R}^n$ there exists a Borel set $B \supseteq E$ with the property that $m(B) = m_*(E)$.
 - (b) Prove that if $E \subseteq \mathbb{R}^n$ is Lebesgue measurable, then there exists a Borel set $B \subseteq E$ with the property that m(B) = m(E).
 - (c) Prove that if $E \subseteq \mathbb{R}^n$ is Lebesgue measurable with $m(E) < \infty$, then for every $\varepsilon > 0$ there exists a set A that is a finite union of closed cubes such that $m(E \triangle A) < \varepsilon$. [Recall that $E \triangle A$ stands for the symmetric difference, defined by $E \triangle A = (E \setminus A) \cup (A \setminus E)$]
- 2. Let E be a Lebesgue measurable subset of \mathbb{R}^n with m(E) > 0 and $\varepsilon > 0$.
 - (a) Prove that E "almost" contains a closed cube in the sense that there exists a closed cube Q such that $m(E \cap Q) \ge (1 \varepsilon)m(Q)$.
 - (b) Prove that the so-called difference set E − E := {d : d = x − y with x, y ∈ E} necessarily contains an open ball centered at the origin. *Hint: It may be useful to observe that d* ∈ E − E ⇐⇒ E ∩ (E + d) ≠ Ø.
- 3. We say that a function $f : \mathbb{R}^n \to \mathbb{R}$ is upper semicontinuous at a point x in \mathbb{R}^n if

$$f(x) \ge \limsup_{y \to x} f(y).$$

Prove that if f is upper semicontinuous at every point x in \mathbb{R}^n , then f is Borel measurable.

- 4. Let $\{f_n\}$ be a sequence of measurable functions on \mathbb{R}^n . Prove that $\{x \in \mathbb{R}^n : \lim_{n \to \infty} f_n(x) \text{ exists}\}$ defines a measurable set.
- 5. Recall that the **Cantor set** C is the set of all $x \in [0, 1]$ that have a ternary expansion $x = \sum_{k=1}^{\infty} a_k 3^{-k}$ with $a_k \neq 1$ for all k. Consider the function

$$f(x) = \sum_{k=1}^{\infty} b_k 2^{-k}$$
 where $b_k = a_k/2$.

- (a) Show that f is well defined and continuous on C, and moreover f(0) = 0 as well as f(1) = 1.
- (b) Prove that there exists a continuous function that maps a measurable set to a non-measurable set.
- 6. Let us examine the map f defined in Question 5 even more closely. One readily sees that if $x, y \in C$ and x < y, then f(x) < f(y) unless x and y are the two endpoints of one of the intervals removed from [0,1] to obtain C. In this case $f(x) = \ell 2^m$ for some integers ℓ and m, and f(x) and f(y) are the two binary expansions of this number. We can therefore extend f to a map $F : [0,1] \to [0,1]$ by declaring it to be constant on each interval missing from C. F is called the **Cantor-Lebesgue function**.
 - (a) Prove that F is non-decreasing and continuous.
 - (b) Let G(x) = F(x) + x. Show that G is a bijection from [0, 1] to [0, 2].
 - (c) i. Show that $m(G(\mathcal{C})) = 1$.
 - ii. By considering rational translates of N (the non-measurable subset of [0, 1] that we constructed in class), prove that G(C) necessarily contains a (Lebesgue) non-measurable set N'.
 iii. Let E = G⁻¹(N'). Show that E is Lebesgue measurable, but not Borel.
 - (d) Give an example of a measurable function φ such that $\varphi \circ G^{-1}$ is not measurable. Hint: Let φ be the characteristic function of a null set whose image under G is not measurable.

Extra Challenge Problems

Not to be handed in with the assignment

- 1. Let $\chi_{[0,1]}$ be the characteristic function of [0,1]. Show that there is no function f satisfying $f = \chi_{[0,1]}$ almost everywhere which is also continuous on all of \mathbb{R} .
- 2. Question 6d above supplies us with an example that if f and g are Lebesgue measurable, then it does not necessarily follow that $f \circ g$ will be Lebesgue measurable, even if g is assumed to be continuous. Prove that if f is Borel measurable, then $f \circ g$ will be Lebesgue or Borel measurable whenever g is.
- 3. Let f be a measurable function on [0,1] with $|f(x)| < \infty$ for a.e. x. Prove that there exists a sequence of continuous functions $\{g_n\}$ on [0,1] such that $g_n \to f$ for a.e. $x \in [0,1]$.

Math 8100 Assignment 4 Lebesgue Integration

Due date: Tuesday the 1st of October 2019

Definition. Let *E* be a Lebesgue measurable subset of \mathbb{R}^n .

We say that a measurable function $f: E \to \mathbb{C}$ is *integrable on* E if $\int_{E} |f(x)| dx < \infty$.

- 1. (a) Give an example of a continuous integrable function f on \mathbb{R} for which $f(x) \neq 0$ as $|x| \to \infty$.
 - (b) Prove that if f is integrable on \mathbb{R} and uniformly continuous, then $\lim_{|x|\to\infty} f(x) = 0$.
- 2. Let f be an integrable function on \mathbb{R}^n .
 - (a) Prove that $\{x : |f(x)| = \infty\}$ has measure equal to zero.
 - (b) Let $\varepsilon > 0$. Prove that there exists a measurable set E with $m(E) < \infty$ for which

$$\int_E |f| > \left(\int |f|\right) - \varepsilon$$

3. Let f be a function in $L^+(\mathbb{R}^n)$ that is finite almost everywhere.

Let $E_{2^k} = \{x : f(x) > 2^k\}$, $F_k = \{x : 2^k < f(x) \le 2^{k+1}\}$, and note that since f is finite almost everywhere it follows that $\bigcup_{k=-\infty}^{\infty} F_k = \{x : f(x) > 0\}$, and the sets F_k are disjoint. Prove that

$$\int f(x) < \infty \iff \sum_{k=-\infty}^{\infty} 2^k m(F_k) < \infty \iff \sum_{k=-\infty}^{\infty} 2^k m(E_{2^k}) < \infty.$$

4. Prove the following:

(a)

$$\int_{\{x \in \mathbb{R}^n : |x| \le 1\}} |x|^{-p} \, dx < \infty \quad \text{if and only if} \quad p < n.$$

(b)

$$\int_{\{x \in \mathbb{R}^n : |x| \ge 1\}} |x|^{-p} \, dx < \infty \quad \text{if and only if} \quad p > n.$$

Hint: One possible approach is to use the first equivalence in Question 3 above. I suggest however that in this case you also try simply writing \mathbb{R}^n as a disjoint union of the annuli $A_k = \{2^k < |x| \le 2^{k+1}\}$.

5. Given any integrable function f on \mathbb{R}^n , the Fourier transform of f is defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi} dx$$

where $x \cdot \xi = x_1 \xi_1 + \dots + x_n \xi_n$. Show that \widehat{f} is a bounded continuous function of ξ .

- 6. Let $\{f_k\}$ be a sequence of integrable functions on \mathbb{R}^n , f be integrable on \mathbb{R}^n , and $\lim_{k \to \infty} f_k = f$ a.e.
 - (a) Suppose further that

$$\lim_{k \to \infty} \int |f_k(x)| \, dx = A < \infty \quad \text{and} \quad \int |f(x)| \, dx = B.$$

i. Prove that

$$\lim_{k \to \infty} \int |f_k(x) - f(x)| \, dx = A - B.$$

Hint: Use the fact that

$$|f_k(x)| - |f(x)| \le |f_k(x) - f(x)| \le |f_k(x)| + |f(x)|.$$

ii. Give an example of a sequence $\{f_k\}$ of such functions for which $A \neq B$. (b) Deduce that

$$\int |f - f_k| \to 0 \quad \Longleftrightarrow \quad \int |f_k| \to \int |f|.$$

7. (a) Suppose that f(x) and xf(x) are both integrable functions on \mathbb{R} . Prove that the function

$$F(t) = \int_{\mathbb{R}} f(x) \cos(tx) \, dx.$$

is differentiable at every t and find a formula for F'(t).

(b) Giving complete justification, evaluate

$$\lim_{t \to 0} \int_0^1 \frac{e^{t\sqrt{x}} - 1}{t} \, dx$$

Extra Challenge Problems

Not to be handed in with the assignment

- 1. Assume Fatou's theorem and deduce the monotone convergence theorem from it.
- 2. A sequence $\{f_k\}$ of integrable functions on \mathbb{R}^n is said to *converge in measure* to f if for every $\varepsilon > 0$,

$$\lim_{k \to \infty} m(\{x \in \mathbb{R}^n : |f_k(x) - f(x)| \ge \varepsilon\}) = 0.$$

- (a) Prove that if $f_k \to f$ in L^1 then $f_k \to f$ in measure.
- (b) Give an example to show that the converse of Question 2a is false.
- (c) Prove that if we make the additional assumption that there exists an integrable function q such that $|f_k| \leq g$ for all k, then $f_k \to f$ in measure implies that
 - i. * (Bonus points) $f \in L^1$ Hint: First show that $\{f_k\}$ contains a subsequence which converges to f almost everywhere. ii. $f_k \to f$ in L^1 .

Hint: Try using absolute continuity and "small tails property" of the Lebesgue integral.

3. Let $\Omega \subseteq \mathbb{R}^n$ be measurable with $m(\Omega) < \infty$. A set $\Phi \subseteq L^1(\Omega)$ is said to be uniformly integrable if, for any $\varepsilon > 0$ there exists $\delta > 0$ such that whenever $f \in \Phi$ and $E \subseteq \Omega$ is measurable with $m(E) < \delta$, then

$$\int_E |f(x)| \, dx < \varepsilon.$$

- (a) Prove that if $f \in L^1(\Omega)$ and $\{f_k\}$ is a uniformly integrable sequence of functions in $L^1(\Omega)$ such that $f_k \to f$ almost everywhere on Ω , then $f_k \to f$ in $L^1(\Omega)$.
- (b) Is it necessary to assume that $f \in L^1(\Omega)$?

Math 8100 Assignment 5 Repeated Integration

Due date: Friday the 18th of October 2019

1. Prove that if $\{a_{jk}\}_{(j,k)\in\mathbb{N}\times\mathbb{N}}$ is a "double sequence" with $a_{jk} \ge 0$ for all $(j,k)\in\mathbb{N}\times\mathbb{N}$, then

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk} = \sup \left\{ \sum_{(j,k) \in B} a_{jk} : B \text{ is a finite subset of } \mathbb{N} \times \mathbb{N} \right\}$$

and deduce from this that

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk} = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} a_{jk}.$$

This conclusion holds more generally provided $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |a_{jk}| < \infty$, see Theorem 8.3 in "Baby Rudin".

2. Let $f \in L^1([0,1])$, and for each $x \in [0,1]$ define

$$g(x) = \int_{x}^{1} \frac{f(t)}{t} dt$$

Show that $g \in L^1([0,1])$ and that

$$\int_0^1 g(x) \, dx = \int_0^1 f(x) \, dx.$$

3. Carefully prove that if we define

$$f(x,y) := \begin{cases} \frac{x^{1/3}}{\left(1+xy\right)^{3/2}} & \text{ if } 0 \le x \le y\\ 0 & \text{ otherwise} \end{cases}$$

for each $(x, y) \in \mathbb{R}^2$, then f defines a function in $L^1(\mathbb{R}^2)$.

4. Let $A,B\subseteq \mathbb{R}^n$ be bounded measurable sets with positive Lebesgue measure. For each $t\in \mathbb{R}^n$ define the function

$$g(t) = m \left(A \cap (t - B) \right)$$

where $t - B = \{t - b : b \in B\}.$

(a) Prove that g is a continuous function and

$$\int_{\mathbb{R}^n} g(t) \, dt = m(A) \, m(B).$$

(b) Conclude that the sumset

$$A + B = \{a + b : a \in A \text{ and } b \in B\}$$

contains a non-empty open subset of \mathbb{R}^n .

5. Let $f, g \in L^1([0, 1])$ and for each $0 \le x \le 1$ define

$$F(x) := \int_0^x f(y) \, dy$$
 and $G(x) := \int_0^x g(y) \, dy$.

Prove that

$$\int_0^1 F(x)g(x)\,dx = F(1)G(1) - \int_0^1 f(x)G(x)\,dx.$$

6. Let $f \in L^1(\mathbb{R})$. For any h > 0 we define

$$A_h(f)(x) := \frac{1}{2h} \int_{x-h}^{x+h} f(y) \, dy$$

(a) Prove that for all h > 0,

$$\int_{\mathbb{R}} |A_h(f)(x)| \, dx \le \int_{\mathbb{R}} |f(x)| \, dx.$$

(b) Prove that

$$\lim_{h \to 0^+} \int_{\mathbb{R}} |A_h(f)(x) - f(x)| \, dx = 0.$$

One can in fact show that $\lim_{h\to 0^+} A_h(f) = f$ almost everywhere. This result is actually equivalent to the Lebesgue Density Theorem in \mathbb{R} and we will establish this later in the course.

Extra Challenge Problems

Not to be handed in with the assignment

1. (a) Prove that

$$\int_0^\infty \left|\frac{\sin x}{x}\right| \, dx = \infty.$$

(b) By considering the iterated integral

$$\int_0^\infty \left(\int_0^\infty x e^{-xy} (1 - \cos y) \, dy \right) \, dx$$

show (with justification) that

$$\lim_{A \to \infty} \int_0^A \frac{\sin x}{x} \, dx = \frac{\pi}{2}.$$

2. Suppose that F is a closed subset of \mathbb{R} whose complement has finite measure. Let $\delta(x)$ denote the distance from x to F, namely

$$\delta(x) = d(x, F) = \inf\{|x - y| : y \in F\}$$

and

$$I_F(x) = \int_{-\infty}^{\infty} \frac{\delta(y)}{|x-y|^2} \, dy.$$

- (a) Prove that δ is continuous, by showing that it satisfies the Lipschitz condition $|\delta(x) \delta(y)| \le |x y|$.
- (b) Show that $I_F(x) = \infty$ if $x \notin F$.
- (c) Show that $I_F(x) < \infty$ for a.e. $x \in F$, by showing that $\int_F I_F(x) dx < \infty$.

Math 8100 Assignment 6 The Fourier Transform

Due date: Thursday the 31st of October 2019

Recall that we have defined the Fourier transform of an integrable function f on \mathbb{R}^n by

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi} \, dx$$

where $x \cdot \xi = x_1 \xi_1 + \cdots + x_n \xi_n$ and the convolution of two integrable functions f and g on \mathbb{R}^n by

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y)g(y) \, dy.$$

- 1. Prove that if $f \in L^1(\mathbb{R}^n)$, then $\widehat{f}(\xi) \to 0$ as $|\xi| \to \infty$. (This is called the Riemann-Lebesgue lemma.) *Hint: Write* $\widehat{f}(\xi) = \frac{1}{2} \int [f(x) - f(x - \xi')] e^{-2\pi i x \cdot \xi} dx$, where $\xi' = \frac{\xi}{2|\xi|^2}$.
- 2. (a) Prove that if $f, g \in L^1(\mathbb{R}^n)$, then $\widehat{f * g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$ for all $\xi \in \mathbb{R}^n$.
 - (b) Conclude from part (a) that
 i. if f, g, h ∈ L¹(ℝⁿ), then f * g = g * f and (f * g) * h = f * (g * h) almost everywhere.
 ii. there does not exist I ∈ L¹(ℝⁿ) such that f * I = f almost everywhere for all f ∈ L¹(ℝⁿ).
- 3. Let $f \in L^1(\mathbb{R}^n)$.

(a) Show that if
$$y \in \mathbb{R}^n$$
 and

- i. g(x) = f(x-y) for all $x \in \mathbb{R}^n$, then $\widehat{g}(\xi) = e^{-2\pi i y \cdot \xi} \widehat{f}(\xi)$ for all $\xi \in \mathbb{R}^n$.
- ii. $h(x) = e^{2\pi i x \cdot y} f(x)$ for all $x \in \mathbb{R}^n$, then $\hat{h}(\xi) = \hat{f}(\xi y)$ for all $\xi \in \mathbb{R}^n$.
- (b) Show that if T be a non-singular linear transformation of \mathbb{R}^n and $S = (T^*)^{-1}$ denote its inverse transpose, then

$$\widehat{f \circ T}(\xi) = \frac{1}{|\det T|} \widehat{f}(S\xi)$$

for all $\xi \in \mathbb{R}^n$.

- 4. (a) Let $f \in L^1(\mathbb{R})$.
 - i. Let g(x) = xf(x). Show that if $g \in L^1$, then \widehat{f} is differentiable and $\frac{d}{d\xi}\widehat{f}(\xi) = -2\pi i \,\widehat{g}(\xi)$.
 - ii. Let $f \in C_0^1(\mathbb{R})$ and $h(x) = \frac{d}{dx}f(x)$. Show that if $h \in L^1$, then $\widehat{h}(\xi) = 2\pi i \xi \widehat{f}(\xi)$.

Recall that $C_0^1(\mathbb{R})$ is the collection of functions in $C^1(\mathbb{R})$ which vanishes at infinity.

- (b) Let $G(x) = e^{-\pi x^2}$. By considering the derivative of $\widehat{G}(\xi)/G(\xi)$, show that $\widehat{G}(\xi) = G(\xi)$. Hint: You may also want to use the fact that $\int_{\mathbb{R}} G(x) dx = 1$ (see "challenge" problem).
- 5. The functions D, F, and P defined below are all bounded $L^+(\mathbb{R})$ functions with integrals equal to 1.
 - (a) Show that if

$$D(x) = \begin{cases} 1 & \text{if } |x| \le 1/2\\ 0 & \text{otherwise} \end{cases}$$

then

$$\widehat{D}(\xi) = \frac{\sin \pi \xi}{\pi \xi}.$$

This gives, in light of Assignment 5 Challenge Problem 1(a), an explicit example of a function which is not in $L^1(\mathbb{R})$, but yet is the Fourier transform of an L^1 function. See Question 6 for additional higher dimensional examples.

(b) Let

$$F(x) = \begin{cases} 1 - |x| & \text{if } |x| \le 1\\ 0 & \text{otherwise} \end{cases}$$

i. Show that

$$\widehat{F}(\xi) = \left(\frac{\sin \pi \xi}{\pi \xi}\right)^2.$$

Hint: It may help to write $\hat{F}(\xi) = h(\xi) + h(-\xi)$ where $h(\xi) = e^{2\pi i \xi} \int_0^1 y e^{-2\pi i y \xi} dy$. ii. Find the Fourier transform of the function

$$f(x) = \left(\frac{\sin \pi x}{\pi x}\right)^2.$$

Be careful to fully justify your answer.

(c) Show that if

$$P(x)=\frac{1}{\pi}\frac{1}{1+x^2}.$$

then

$$\int_{-\infty}^{\infty} e^{-2\pi|\xi|} e^{2\pi i x\xi} d\xi = P(x)$$

and hence that

$$\widehat{P}(\xi) = e^{-2\pi|\xi|}.$$

Be careful to fully justify your answer.

Remark: In Questions 4b and 5 above D is for Dirichlet, F is for Fejér, P is for Poisson, and G is for Gauss-Weierstrass. The respective "approximate identities", namely $\{(\hat{D})_t\}_{t>0}$, $\{(\hat{F})_t\}_{t>0}$, $\{P_t\}_{t>0}$, and $\{G_{\sqrt{t}}\}_{t>0}$, are generally referred to as Dirichlet, Fejér, Poisson, and Gauss-Weierstrass kernels.

6. Show that for any $\varepsilon > 0$ the function $F(\xi) = (1+|\xi|^2)^{-\varepsilon}$ is the Fourier transform of an $L^1(\mathbb{R}^n)$ function. Hint: Consider the function

$$f(x) = \int_0^\infty G_t(x) e^{-\pi t^2} t^{2\varepsilon - 1} dt,$$

where $G_t(x) = t^{-n} e^{-\pi |x|^2/t^2}$. Now use Fubini/Tonelli to prove that $f \in L^1(\mathbb{R}^n)$ with $\widehat{f}(\xi) = F(\xi) ||f||_1$.

Extra Challenge Problems

Not to be handed in with the assignment

1. By considering the iterated integral

$$\int_0^\infty \left(\int_0^\infty x e^{-x^2(1+y^2)} \, dx\right) \, dy$$

show (with justification) that

$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$
$$\int_{-\infty}^\infty e^{-\pi x^2} dx = 1.$$

and hence that

Math 8100 Assignment 7 Hilbert Spaces

Due date: Thursday 14th of November 2019

1. (a) Prove that $\ell^2(\mathbb{N})$ is complete.

Recall that $\ell^2(\mathbb{N}) := \{x = \{x_j\}_{j=1}^\infty : \|x\|_{\ell^2} < \infty\}, \text{ where } \|x\|_{\ell^2} := \left(\sum_{j=1}^\infty |x_j|^2\right)^{1/2}.$

(b) Let H be a Hilbert space. Prove the so-called *polarization identity*, namely that for any $x, y \in H$,

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2 \right)$$

and conclude that any invertible linear map from H to $\ell^2(\mathbb{N})$ is unitary if and only if it is isometric.

Recall that if H_1 and H_2 are Hilbert spaces with inner products $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$, then a mapping $U : H_1 \to H_2$ is said to be **unitary** if it is an invertible linear map that preserves inner products, namely $\langle Ux, Uy \rangle_2 = \langle x, y \rangle_1$, and an **isometry** if it preserves "lengths", namely $||Ux||_2 = ||x||_1$.

- 2. Let E be a subset of a Hilbert space H.
 - (a) Show that $E^{\perp} := \{x \in H : \langle x, y \rangle = 0 \text{ for all } y \in E\}$ is a closed subspace of H.
 - (b) Show that $(E^{\perp})^{\perp}$ is the smallest closed subspace of H that contains E.
- 3. In $L^2([0,1])$ let $e_0(x) = 1$, $e_1(x) = \sqrt{3}(2x-1)$ for all $x \in (0,1)$.
 - (a) Show that e_0 , e_1 is an orthonormal system in $L^2(0,1)$.
 - (b) Show that the polynomial of degree 1 which is closest with respect to the norm of $L^2(0,1)$ to the function $f(x) = x^2$ is given by g(x) = x 1/6. What is $||f g||_2$?
- 4. (a) Verify that the following systems are orthogonal in $L^2([0,1])$:
 - i. $\{1/\sqrt{2}, \cos(2\pi x), \sin(2\pi x), \dots, \cos(2\pi kx), \sin(2\pi kx), \dots\}$ ii. $\{e^{2\pi i kx}\}_{k=-\infty}^{\infty}$
 - In $\begin{bmatrix} 0 \\ \end{bmatrix}_{k=-\infty}$
 - (b) Let $f \in L^1([0,1])$.
 - i. Show that for any $\epsilon > 0$ we can write f = g + h, where $g \in L^2$ and $||h||_1 < \epsilon$.
 - ii. Use this decomposition of f to prove the so-called *Riemann-Lebesgue lemma*:

$$\lim_{k \to \infty} \int_0^1 f(x) \cos(2\pi kx) \, dx = \lim_{k \to \infty} \int_0^1 f(x) \sin(2\pi kx) \, dx = 0$$

5. (a) The first three Legendre polynomials are

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = (3x^2 - 1)/2$.

Show that the orthonormal system in $L^2([-1, 1])$ obtained by applying the Gram-Schmidt process to $1, x, x^2$ are scalar multiples of these.

(b) Compute

$$\min_{a,b,c} \int_{-1}^{1} |x^3 - a - bx - cx^2|^2 \, dx$$

(c) Find

$$\max \int_{-1}^{1} x^3 g(x) \, dx$$

where g is subject to the restrictions

$$\int_{-1}^{1} g(x) \, dx = \int_{-1}^{1} xg(x) \, dx = \int_{-1}^{1} x^2 g(x) \, dx = 0; \quad \int_{-1}^{1} |g(x)|^2 \, dx = 1.$$

6. Let

$$\mathcal{C} = \left\{ f \in L^2([0,1]) : \int_0^1 f(x) \, dx = 1 \text{ and } \int_0^1 x f(x) \, dx = 2 \right\}$$

(a) Let $g(x) = 18x^2 - 5$. Show that $g \in \mathcal{C}$ and that

$$\mathcal{C} = g + \mathcal{S}^{\perp}$$

where \mathcal{S}^{\perp} denotes the orthogonal complement of $\mathcal{S} = \text{Span}(\{1, x\})$.

(b) Find the function $f_0 \in \mathcal{C}$ for which

$$\int_0^1 |f_0(x)|^2 dx = \inf_{f \in \mathcal{C}} \int_0^1 |f(x)|^2 dx.$$

Extra Challenge Problems

Not to be handed in with the assignment

- 1. Prove that every closed convex set K in a Hilbert space has a unique element of minimal norm.
- 2. The Mean Ergodic Theorem: Let U be a unitary operator on a Hilbert space H.

Prove that if $M = \{x : Ux = x\}$ and $S_N = \frac{1}{N} \sum_{n=0}^{N-1} U^n$, then $\lim_{N \to \infty} ||S_N x - Px|| = 0$ for all $x \in H$, where Px denotes the orthogonal projection of x onto M.

Math 8100 Assignment 8 Basic Function Spaces

Due date: Tuesday the 26th of November 2019

- 1. Prove the following basic properties of $L^{\infty} = L^{\infty}(X)$, where X is a measurable subset of \mathbb{R}^n :
 - (a) $\|\cdot\|_{\infty}$ is a norm on L^{∞} and when equipped with this norm L^{∞} is a Banach space.
 - (b) $||f_n f||_{\infty} \to 0$ iff there exists $E \in \mathbb{R}^n$ such that $m(E^c) = 0$ and $f_n \to f$ uniformly on E.
 - (c) Simple functions are dense in L^{∞} , but continuous functions with compact support are not.

Recall that if $X \subseteq \mathbb{R}^n$ is measurable and f is a measurable function on X, then we define

 $||f||_{\infty} = \inf\{a \ge 0 : m(\{x \in X : |f(x)| > a\}) = 0\},\$

with the convention that $\inf \emptyset = \infty$, and

$$L^{\infty} = L^{\infty}(X) = \{ f : X \to \mathbb{C} \text{ measuarable} : \|f\|_{\infty} < \infty \},\$$

with the usual convention that two functions that are equal a.e. define the same element of L^{∞} . Thus $f \in L^{\infty}$ if and only if there is a bounded function g such that f = g almost everywhere; we can take $g = f\chi_E$ where $E = \{x : |f(x)| \le ||f||_{\infty}\}$.

2. Let $X \subseteq \mathbb{R}^n$ be measurable.

(a) i. Prove that if $m(X) < \infty$, then

$$L^{\infty}(X) \subset L^{2}(X) \subset L^{1}(X) \tag{1}$$

with strict inclusion in each case, and that for any measurable $f: X \to \mathbb{C}$ one in fact has

$$||f||_{L^1(X)} \le m(X)^{1/2} ||f||_{L^2(X)} \le m(X) ||f||_{L^\infty(X)}.$$

- ii. Give examples to show that no such result of the form (1) can hold if one drops the assumption that $m(x) < \infty$. Prove, furthermore, that if $L^2(X) \subseteq L^1(X)$, then $m(X) < \infty$.
- (b) Prove that

$$\underbrace{L^1(X) \cap L^\infty(X) \subset L^2(X)}_{(\star)} \subset L^1(X) + L^\infty(X)$$

and that in addition to (\star) one in fact has

$$||f||_{L^{2}(X)} \leq ||f||_{L^{1}(X)}^{1/2} ||f||_{L^{\infty}(X)}^{1/2}$$

for any measurable function $f: X \to \mathbb{C}$.

3. Prove that

$$\ell^1(\mathbb{Z}) \subset \ell^2(\mathbb{Z}) \subset \ell^\infty(\mathbb{Z})$$

with strict inclusion in each case, and that for any sequence $a = \{a_j\}_{j \in \mathbb{Z}}$ of complex numbers one in fact has

$$||a||_{\ell^{\infty}(\mathbb{Z})} \le ||a||_{\ell^{2}(\mathbb{Z})} \le ||a||_{\ell^{1}(\mathbb{Z})}.$$

Recall that for $p = 1, 2, \infty$ we define

$$\ell^p(\mathbb{Z}) = \{a = \{a_j\}_{j \in \mathbb{Z}} \subseteq \mathbb{C} : \|a\|_{\ell^p(\mathbb{Z})} < \infty\}$$

where

$$||a||_{\ell^{1}(\mathbb{Z})} = \sum_{j=-\infty}^{\infty} |a_{j}|, \quad ||a||_{\ell^{2}(\mathbb{Z})} = \left(\sum_{j=-\infty}^{\infty} |a_{j}|^{2}\right)^{1/2}, \text{ and } \quad ||a||_{\ell^{\infty}(\mathbb{Z})} = \sup_{j} |a_{j}|.$$

- 4. Let C([0,1]) denote the space of all continuous real-valued functions on [0,1].
 - (a) Prove that C([0,1]) is complete under the uniform norm $||f||_u := \sup_{x \in [0,1]} |f(x)|$.
 - (b) Prove that C([0,1]) is <u>not</u> complete under the L^1 -norm $||f||_1 = \int_0^1 |f(x)| dx$
- 5. Let H be a Hilbert space with orthonormal basis $\{u_n\}_{n=1}^{\infty}$.
 - (a) Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of complex numbers. Prove that

$$\sum_{n=1}^{\infty} a_n u_n \text{ converges in } H \iff \sum_{n=1}^{\infty} |a_n|^2 < \infty,$$

and moreover that if $\sum_{n=1}^{\infty} |a_n|^2 < \infty$, then $\left\|\sum_{n=1}^{\infty} a_n u_n\right\| = \left(\sum_{n=1}^{\infty} |a_n|^2\right)^{1/2}.$

- (b) i. Is there a continuous linear functional L on H such that $L(u_n) = n^{-1}$ for all $n \in \mathbb{N}$? If L exists, find its norm.
 - ii. Is there a continuous linear functional L on H such that $L(u_n) = n^{-1/2}$ for all $n \in \mathbb{N}$? If L exists, find its norm.
- 6. For each $1 \leq p \leq \infty$, define $\Lambda_p : L^p([0,1]) \to \mathbb{R}$ by

$$\Lambda_p(f) = \int_0^1 x^2 f(x) \, dx$$

Explain why Λ_p is a continuous linear functional and compute its norm (in terms of p).

Extra Practice Problems

Not to be handed in with the assignment

1. Let f and g be two non-negative Lebesgue measurable functions on $[0, \infty)$. Suppose that

$$A := \int_0^\infty f(y) y^{-1/2} dy < \infty$$
 and $B := \left(\int_0^\infty |g(y)|^2 dy \right)^{1/2} < \infty$

Prove that

$$\int_0^\infty \left(\int_0^x f(y)\,dy\right) \frac{g(x)}{x}\,dx \le AB$$

- 2. Let $\{f_k\}$ be any sequence of functions in $L^2([0,1])$ satisfying $||f_k||_2 \leq 1$ for all $k \in \mathbb{N}$.
 - (a) i. Prove that if $f_k \to f$ either a.e. on [0,1] or in $L^1([0,1])$, then $f \in L^2([0,1])$ with $||f||_2 \le 1$. ii. Do either of the above hypotheses guarantee that $f_k \to f$ in $L^2([0,1])$?
 - (b) Prove that if $f_k \to f$ a.e. on [0, 1], then this in fact implies that $f_k \to f$ in $L^1([0, 1])$.
- 3. Let $1 \leq p \leq \infty$. Prove that if $\{f_k\}_{k=1}^{\infty}$ is a sequence of functions in $L^p(\mathbb{R}^n)$ with the property that

$$\sum_{k=1}^{\infty} \|f_k\|_p < \infty,$$

then $\sum f_k$ converges almost everywhere to an $L^p(\mathbb{R}^n)$ function with

$$\left\|\sum_{k=1}^{\infty} f_k\right\|_p \le \sum_{k=1}^{\infty} \|f_k\|_p$$