Math 8100 Assignment 1
 Preliminaries

Due date: Tuesday the 27th of August 2019

1. The Cantor set \mathcal{C} is the set of all $x \in[0,1]$ that have a ternary expansion $x=\sum_{k=1}^{\infty} a_{k} 3^{-k}$ with $a_{k} \neq 1$ for all k. Thus \mathcal{C} is obtained from $[0,1]$ by removing the open middle third $\left(\frac{1}{3}, \frac{2}{3}\right)$, then removing the open middle thirds $\left(\frac{1}{9}, \frac{2}{9}\right)$ and $\left(\frac{7}{9}, \frac{8}{9}\right)$ of the two remaining intervals, and so forth.
(a) Find a real number x belonging to the Cantor set which is not the endpoint of one of the intervals used in its construction.
(b) Prove that \mathcal{C} is both nowhere dense (and hence meager) and has measure zero.
(c) Prove that \mathcal{C} is uncountable by showing that the function $f(x)=\sum_{k=1}^{\infty} b_{k} 2^{-k}$ where $b_{k}=a_{k} / 2$, maps \mathcal{C} onto $[0,1]$.
2. A set $A \subseteq \mathbb{R}^{n}$ is called an F_{σ} set if it can be written as the countable union of closed subsets of \mathbb{R}^{n}. A set $B \subseteq \mathbb{R}^{n}$ is called a G_{δ} set if it can be written as the countable intersection of open subsets of \mathbb{R}^{n}.
(a) Argue that a set is a G_{δ} set if and only if its complement is an F_{σ} set.
(b) Show that every closed set is a G_{δ} set and every open set is an F_{σ} set.

Hint: One approach is to prove that every open subset of \mathbb{R}^{n} can be written as a countable union of closed cubes with disjoint interiors. This approach is however very specific to open sets in \mathbb{R}^{n}.
(c) Give an example of an F_{σ} set which is not a G_{δ} set and a set which is neither an F_{σ} nor a G_{δ} set.
3. (a) Let $\left\{r_{n}\right\}_{n=1}^{\infty}$ be any enumeration of all the rationals in $[0,1]$ and define $f:[0,1] \rightarrow \mathbb{R}$ by setting

$$
f(x)= \begin{cases}\frac{1}{n} & \text { if } x=r_{n} \\ 0 & \text { if } x \in[0,1] \backslash \mathbb{Q}\end{cases}
$$

Prove that $\lim _{x \rightarrow c} f(x)=0$ for every $c \in[0,1]$ and conclude that set of all points at which f is discontinuous is precisely $[0,1] \cap \mathbb{Q}$.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be bounded.
i. Recall that we defined the oscillation of f at x to be

$$
\omega_{f}(x):=\lim _{\delta \rightarrow 0^{+}} \sup _{y, z \in B_{\delta}(x)}|f(y)-f(z)|
$$

Briefly explain why this is a well defined notion and prove that

$$
f \text { is continuous at } x \quad \Longleftrightarrow \quad \omega_{f}(x)=0 .
$$

ii. Prove that for every $\varepsilon>0$ the set $A_{\varepsilon}=\left\{x \in \mathbb{R}: \omega_{f}(x) \geq \varepsilon\right\}$ is closed and deduce from this that the set of all points at which f is discontinuous is an F_{σ} set.
4. Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be any enumeration of a given countable set $X \subseteq \mathbb{R}$. For each $n \in \mathbb{N}$ define

$$
f_{n}(x)=\left\{\begin{array}{l}
1 \text { if } x>x_{n} \\
0 \text { if } x \leq x_{n}
\end{array}\right.
$$

Prove that

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} f_{n}(x)
$$

defines an increasing function f on \mathbb{R} that is continuous on $\mathbb{R} \backslash X$.
5. Let $C([0,1])$ denote the collection of all real-valued continuous functions with domain $[0,1]$.
(a) Show that $d_{\infty}(f, g)=\sup _{x \in[0,1]}|f(x)-g(x)|$ defines a metric on $C([0,1])$ and that with the "uniform" metric $C([0,1])$ is in fact a complete metric space.
(b) Prove that the unit ball $\left\{f \in C([0,1]): d_{\infty}(f, 0) \leq 1\right\}$ is closed and bounded, but not compact.
(c) ${ }^{* *}$ Challenge: Can you show that $C([0,1])$ with the metric d_{∞} is not totally bounded.

A set is totally bounded if, for every $\varepsilon>0$, it can be covered by finitely many balls of radius ε.
6. Let

$$
g(x)=\sum_{n=0}^{\infty} \frac{1}{1+n^{2} x}
$$

(a) Show that the series defining g does not converge uniformly on $(0, \infty)$, but none the less still defines a continuous function on $(0, \infty)$.
Hint for the first part: Show that if $\sum_{n=0}^{\infty} g_{n}(x)$ converges uniformly on a set X, then the sequence of functions $\left\{g_{n}\right\}$ must converge uniformly to 0 on X.
(b) Is g differentiable on $(0, \infty)$? If so, is the derivative function g^{\prime} continuous on $(0, \infty)$?
7. Let $h_{n}(x)=\frac{x}{(1+x)^{n+1}}$.
(a) Prove that h_{n} converges uniformly to 0 on $[0, \infty)$.
(b) i. Verify that

$$
\sum_{n=0}^{\infty} h_{n}(x)=\left\{\begin{array}{l}
1 \text { if } x>0 \\
0 \text { if } x=0
\end{array}\right.
$$

ii. Does $\sum_{n=0}^{\infty} h_{n}$ converge uniformly on $[0, \infty)$?
(c) Prove that $\sum_{n=0}^{\infty} h_{n}$ converges uniformly on $[a, \infty)$ for any $a>0$.

Extra Challenge Problems
 Not to be handed in with the assignment

1. Given an arbitrary F_{σ} set V, can you produce a function whose discontinuities lie precisely in V ?

Hint: First try to do this for an arbitrary closed set.
2. (Baire Category Theorem) Prove that if X is a non-empty complete metric space, then X cannot be written as a countable union of nowhere dense sets.
Hint: Modify the proof given in class of the special case $X=\mathbb{R}$ replacing the use of the nested interval property with the following fact (which you should prove):

If $F_{1} \supseteq F_{2} \supseteq \cdots$ is a nested sequence of closed non-empty and bounded sets in a complete metric space X with $\lim _{n \rightarrow \infty} \operatorname{diam} F_{n}=0$, then $\bigcap_{n=1}^{\infty} F_{n}$ contains exactly one point.
3. Complete the proof, sketched in class, of the so-called Lebesgue Criterion: A bounded function on an interval $[a, b]$ is Riemann integrable if and only if its set of discontinuities has measure zero.
(a) Prove that if the set of discontinuities of f has measure zero, then f is Riemann integrable.
[Hint: Let $\varepsilon>0$. Cover the compact set A_{ε} (defined in Q3(b)ii. above) by a finite number of open intervals whose total length is $\leq \varepsilon$. Select and appropriate partition of $[a, b]$ and estimate the difference between the upper and lower sums of f over this partition.]
(b) Prove that if f is Riemann integrable on $[a, b]$, then its set of discontinuities has measure zero. [Hint: The set of discontinuities of f is contained in $\bigcup_{n} A_{1 / n}$. Given $\varepsilon>0$, choose a partition P such that $U(f, P)-L(f, P)<\varepsilon / n$. Show that the total length of the intervals in P whose interiors intersect $A_{1 / n}$ is $\leq \varepsilon$.]

Math 8100 Assignment 2 Lebesgue measure and outer measure

Due date: Wednesday the 5th of September 2018

1. Prove that if $E \subseteq \mathbb{R}$ with $m_{*}(E)=0$, then $E^{2}:=\left\{x^{2} \mid x \in E\right\}$ also has Lebesgue outer measure zero. Hint: First consider the case when E is a bounded subset of \mathbb{R}.
[To what extent can you generalize this result?]
2. Prove that if E_{1} and E_{2} are measurable subsets of \mathbb{R}^{n}, then

$$
m\left(E_{1} \cup E_{2}\right)+m\left(E_{1} \cap E_{2}\right)=m\left(E_{1}\right)+m\left(E_{2}\right)
$$

3. Suppose that $A \subseteq E \subseteq B$, where A and B are Lebesgue measurable subsets on \mathbb{R}^{n}.
(a) Prove that if $m(A)=m(B)<\infty$, then E is measurable.
(b) Give an example showing that the same conclusion does not hold if A and B have infinite measure.
4. Suppose A and B are a pair of compact subsets of \mathbb{R}^{n} with $A \subseteq B$, and let $a=m(A)$ and $b=m(B)$. Prove that for any c with $a<c<b$, there is a compact set E with $A \subseteq E \subseteq B$ and $m(E)=c$.
Hint: As a warm-up example, consider the one dimensional example where A a compact measurable subset of $B:=[0,1]$ and the quantity $m(A)+t-m(A \cap[0, t])$ as a function of t.
5. Let \mathcal{N} denote the non-measurable subset of $[0,1]$ that was constructed in lecture.
(a) Prove that if E is a measurable subset of \mathcal{N}, then $m(E)=0$.
(b) Show that $m_{*}([0,1] \backslash \mathcal{N})=1$
[Hint: Argue by contradiction and pick an open set G such that $[0,1] \backslash \mathcal{N} \subseteq G \subseteq[0,1]$ with $m_{*}(G) \leq 1-\varepsilon$.]
(c) Conclude that there exists disjoint sets $E_{1} \subseteq[0,1]$ and $E_{2} \subseteq[0,1]$ for which

$$
m_{*}\left(E_{1} \cup E_{2}\right) \neq m_{*}\left(E_{1}\right)+m_{*}\left(E_{2}\right)
$$

6. (a) The Borel-Cantelli Lemma. Suppose $\left\{E_{j}\right\}_{j=1}^{\infty}$ is a countable family of measurable subsets of \mathbb{R}^{n} and that

$$
\sum_{j=1}^{\infty} m\left(E_{j}\right)<\infty
$$

Let

$$
E=\limsup _{j \rightarrow \infty} E_{j}:=\left\{x \in \mathbb{R}^{n}: x \in E_{j}, \text { for infinitely many } j\right\}
$$

Show that E is measurable and that $m(E)=0$. Hint: Write $E=\cap_{k=1}^{\infty} \cup_{j \geq k} E_{j}$.
(b) Given any irrational x one can show (using the pigeonhole principle, for example) that there exists infinitely many fractions a / q, with a and q relatively prime integers, such that

$$
\left|x-\frac{a}{q}\right| \leq \frac{1}{q^{2}}
$$

However, show that the set of those $x \in \mathbb{R}$ such that there exists infinitely many fractions a / q, with a and q relatively prime integers, such that

$$
\left|x-\frac{a}{q}\right| \leq \frac{1}{q^{3}}
$$

is a set of Lebesgue measure zero.

Extra Challenge Problems
Not to be handed in with the assignment

1. Prove that any $E \subset \mathbb{R}$ with $m_{*}(E)>0$ necessarily contains a non-measurable set.
2. The outer Jordan content $J_{*}(E)$ of a set E in \mathbb{R} is defined by

$$
J_{*}(E)=\inf \sum_{j=1}^{N}\left|I_{j}\right|
$$

where the infimum is taken over every finite covering $E \subseteq \cup_{j=1}^{N} I_{j}$, by intervals I_{j}.
(a) Prove that $J_{*}(E)=J_{*}(\bar{E})$ for every set E (here \bar{E} denotes the closure of E).
(b) Exhibit a countable subset $E \subseteq[0,1]$ such that $J_{*}(E)=1$ while $m_{*}(E)=0$.
3. If I is a bounded interval and $\alpha \in(0,1)$, let us call the open interval with the same midpoint as I and length equal to α times the length of I the "open middle α th" of I. If $\left\{\alpha_{j}\right\}_{j=1}^{\infty}$ is any sequence of numbers in $(0,1)$, then, we can define a decreasing sequence $\left\{K_{j}\right\}$ of closed sets as follows: $K_{0}=[0,1]$, and K_{j} is obtained by removing the the open middle α_{j} th from each of the intervals that make up K_{j-1}. The resulting limiting set $K=\bigcap_{j=1}^{\infty} K_{j}$ is called a generalized Cantor set.
(a) Suppose $\left\{\alpha_{j}\right\}_{j=1}^{\infty}$ is any sequence of numbers in $(0,1)$.
i. Prove that $\prod_{j=1}^{\infty}\left(1-\alpha_{j}\right)>0$ if and only if $\sum_{j=1}^{\infty} \alpha_{j}<\infty$.
ii. Given $\beta \in(0,1)$, exhibit a sequence $\left\{\alpha_{j}\right\}$ such that $\prod_{j=1}^{\infty}\left(1-\alpha_{j}\right)=\beta$.
(b) Given $\beta \in(0,1)$, construct an open set G in $[0,1]$ whose boundary has Lebesgue measure β. Hint: Every closed nowhere dense set is the boundary of an open set.

Math 8100 Assignment 3

Lebesgue measurable sets and functions

Due date: 5:00 pm Friday the 20th of September 2019

1. (a) Prove that for every $E \subseteq \mathbb{R}^{n}$ there exists a Borel set $B \supseteq E$ with the property that $m(B)=m_{*}(E)$.
(b) Prove that if $E \subseteq \mathbb{R}^{n}$ is Lebesgue measurable, then there exists a Borel set $B \subseteq E$ with the property that $m(B)=m(E)$.
(c) Prove that if $E \subseteq \mathbb{R}^{n}$ is Lebesgue measurable with $m(E)<\infty$, then for every $\varepsilon>0$ there exists a set A that is a finite union of closed cubes such that $m(E \triangle A)<\varepsilon$.
[Recall that $E \triangle A$ stands for the symmetric difference, defined by $E \triangle A=(E \backslash A) \cup(A \backslash E)$]
2. Let E be a Lebesgue measurable subset of \mathbb{R}^{n} with $m(E)>0$ and $\varepsilon>0$.
(a) Prove that E "almost" contains a closed cube in the sense that there exists a closed cube Q such that $m(E \cap Q) \geq(1-\varepsilon) m(Q)$.
(b) Prove that the so-called difference set $E-E:=\{d: d=x-y$ with $x, y \in E\}$ necessarily contains an open ball centered at the origin.
Hint: It may be useful to observe that $d \in E-E \Longleftrightarrow E \cap(E+d) \neq \emptyset$.
3. We say that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is upper semicontinuous at a point x in \mathbb{R}^{n} if

$$
f(x) \geq \limsup _{y \rightarrow x} f(y)
$$

Prove that if f is upper semicontinuous at every point x in \mathbb{R}^{n}, then f is Borel measurable.
4. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on \mathbb{R}^{n}. Prove that $\left\{x \in \mathbb{R}^{n}: \lim _{n \rightarrow \infty} f_{n}(x)\right.$ exists $\}$ defines a measurable set.
5. Recall that the Cantor set \mathcal{C} is the set of all $x \in[0,1]$ that have a ternary expansion $x=\sum_{k=1}^{\infty} a_{k} 3^{-k}$ with $a_{k} \neq 1$ for all k. Consider the function

$$
f(x)=\sum_{k=1}^{\infty} b_{k} 2^{-k} \text { where } b_{k}=a_{k} / 2
$$

(a) Show that f is well defined and continuous on \mathcal{C}, and moreover $f(0)=0$ as well as $f(1)=1$.
(b) Prove that there exists a continuous function that maps a measurable set to a non-measurable set.
6. Let us examine the map f defined in Question 5 even more closely. One readily sees that if $x, y \in \mathcal{C}$ and $x<y$, then $f(x)<f(y)$ unless x and y are the two endpoints of one of the intervals removed from $[0,1]$ to obtain \mathcal{C}. In this case $f(x)=\ell 2^{m}$ for some integers ℓ and m, and $f(x)$ and $f(y)$ are the two binary expansions of this number. We can therefore extend f to a map $F:[0,1] \rightarrow[0,1]$ by declaring it to be constant on each interval missing from \mathcal{C}. F is called the Cantor-Lebesgue function.
(a) Prove that F is non-decreasing and continuous.
(b) Let $G(x)=F(x)+x$. Show that G is a bijection from $[0,1]$ to $[0,2]$.
(c) i. Show that $m(G(\mathcal{C}))=1$.
ii. By considering rational translates of \mathcal{N} (the non-measurable subset of $[0,1]$ that we constructed in class), prove that $G(\mathcal{C})$ necessarily contains a (Lebesgue) non-measurable set \mathcal{N}^{\prime}. iii. Let $E=G^{-1}\left(\mathcal{N}^{\prime}\right)$. Show that E is Lebesgue measurable, but not Borel.
(d) Give an example of a measurable function φ such that $\varphi \circ G^{-1}$ is not measurable.

Hint: Let φ be the characteristic function of a null set whose image under G is not measurable.

Extra Challenge Problems
Not to be handed in with the assignment

1. Let $\chi_{[0,1]}$ be the characteristic function of $[0,1]$. Show that there is no function f satisfying $f=\chi_{[0,1]}$ almost everywhere which is also continuous on all of \mathbb{R}.
2. Question 6d above supplies us with an example that if f and g are Lebesgue measurable, then it does not necessarily follow that $f \circ g$ will be Lebesgue measurable, even if g is assumed to be continuous. Prove that if f is Borel measurable, then $f \circ g$ will be Lebesgue or Borel measurable whenever g is.
3. Let f be a measurable function on $[0,1]$ with $|f(x)|<\infty$ for a.e. x. Prove that there exists a sequence of continuous functions $\left\{g_{n}\right\}$ on $[0,1]$ such that $g_{n} \rightarrow f$ for a.e. $x \in[0,1]$.

Math 8100 Assignment 4

 Lebesgue Integration

 Lebesgue Integration}

Due date: Tuesday the 1st of October 2019

Definition. Let E be a Lebesgue measurable subset of \mathbb{R}^{n}.
We say that a measurable function $f: E \rightarrow \mathbb{C}$ is integrable on E if $\int_{E}|f(x)| d x<\infty$.

1. (a) Give an example of a continuous integrable function f on \mathbb{R} for which $f(x) \nrightarrow 0$ as $|x| \rightarrow \infty$.
(b) Prove that if f is integrable on \mathbb{R} and uniformly continuous, then $\lim _{|x| \rightarrow \infty} f(x)=0$.
2. Let f be an integrable function on \mathbb{R}^{n}.
(a) Prove that $\{x:|f(x)|=\infty\}$ has measure equal to zero.
(b) Let $\varepsilon>0$. Prove that there exists a measurable set E with $m(E)<\infty$ for which

$$
\int_{E}|f|>\left(\int|f|\right)-\varepsilon .
$$

3. Let f be a function in $L^{+}\left(\mathbb{R}^{n}\right)$ that is finite almost everywhere.

Let $E_{2^{k}}=\left\{x: f(x)>2^{k}\right\}, F_{k}=\left\{x: 2^{k}<f(x) \leq 2^{k+1}\right\}$, and note that since f is finite almost everywhere it follows that $\bigcup_{k=-\infty}^{\infty} F_{k}=\{x: f(x)>0\}$, and the sets F_{k} are disjoint. Prove that

$$
\int f(x)<\infty \Longleftrightarrow \sum_{k=-\infty}^{\infty} 2^{k} m\left(F_{k}\right)<\infty \Longleftrightarrow \sum_{k=-\infty}^{\infty} 2^{k} m\left(E_{2^{k}}\right)<\infty .
$$

4. Prove the following:
(a)

$$
\int_{\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}}|x|^{-p} d x<\infty \quad \text { if and only if } \quad p<n
$$

(b)

$$
\int_{\left\{x \in \mathbb{R}^{n}:|x| \geq 1\right\}}|x|^{-p} d x<\infty \quad \text { if and only if } \quad p>n .
$$

Hint: One possible approach is to use the first equivalence in Question 3 above. I suggest however that in this case you also try simply writing \mathbb{R}^{n} as a disjoint union of the annuli $A_{k}=\left\{2^{k}<|x| \leq 2^{k+1}\right\}$.
5. Given any integrable function f on \mathbb{R}^{n}, the Fourier transform of f is defined by

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot \xi} d x
$$

where $x \cdot \xi=x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}$. Show that \widehat{f} is a bounded continuous function of ξ.
6. Let $\left\{f_{k}\right\}$ be a sequence of integrable functions on \mathbb{R}^{n}, f be integrable on \mathbb{R}^{n}, and $\lim _{k \rightarrow \infty} f_{k}=f$ a.e.
(a) Suppose further that

$$
\lim _{k \rightarrow \infty} \int\left|f_{k}(x)\right| d x=A<\infty \quad \text { and } \quad \int|f(x)| d x=B
$$

i. Prove that

$$
\lim _{k \rightarrow \infty} \int\left|f_{k}(x)-f(x)\right| d x=A-B
$$

Hint: Use the fact that

$$
\left|f_{k}(x)\right|-|f(x)| \leq\left|f_{k}(x)-f(x)\right| \leq\left|f_{k}(x)\right|+|f(x)|
$$

ii. Give an example of a sequence $\left\{f_{k}\right\}$ of such functions for which $A \neq B$.
(b) Deduce that

$$
\int\left|f-f_{k}\right| \rightarrow 0 \quad \Longleftrightarrow \quad \int\left|f_{k}\right| \rightarrow \int|f|
$$

7. (a) Suppose that $f(x)$ and $x f(x)$ are both integrable functions on \mathbb{R}. Prove that the function

$$
F(t)=\int_{\mathbb{R}} f(x) \cos (t x) d x
$$

is differentiable at every t and find a formula for $F^{\prime}(t)$.
(b) Giving complete justification, evaluate

$$
\lim _{t \rightarrow 0} \int_{0}^{1} \frac{e^{t \sqrt{x}}-1}{t} d x
$$

Extra Challenge Problems
 Not to be handed in with the assignment

1. Assume Fatou's theorem and deduce the monotone convergence theorem from it.
2. A sequence $\left\{f_{k}\right\}$ of integrable functions on \mathbb{R}^{n} is said to converge in measure to f if for every $\varepsilon>0$,

$$
\lim _{k \rightarrow \infty} m\left(\left\{x \in \mathbb{R}^{n}:\left|f_{k}(x)-f(x)\right| \geq \varepsilon\right\}\right)=0
$$

(a) Prove that if $f_{k} \rightarrow f$ in L^{1} then $f_{k} \rightarrow f$ in measure.
(b) Give an example to show that the converse of Question 2a is false.
(c) Prove that if we make the additional assumption that there exists an integrable function g such that $\left|f_{k}\right| \leq g$ for all k, then $f_{k} \rightarrow f$ in measure implies that
i. * (Bonus points) $f \in L^{1}$

Hint: First show that $\left\{f_{k}\right\}$ contains a subsequence which converges to f almost everywhere.
ii. $f_{k} \rightarrow f$ in L^{1}.

Hint: Try using absolute continuity and "small tails property" of the Lebesgue integral.
3. Let $\Omega \subseteq \mathbb{R}^{n}$ be measurable with $m(\Omega)<\infty$. A set $\Phi \subseteq L^{1}(\Omega)$ is said to be uniformly integrable if, for any $\varepsilon>0$ there exists $\delta>0$ such that whenever $f \in \Phi$ and $E \subseteq \Omega$ is measurable with $m(E)<\delta$, then

$$
\int_{E}|f(x)| d x<\varepsilon
$$

(a) Prove that if $f \in L^{1}(\Omega)$ and $\left\{f_{k}\right\}$ is a uniformly integrable sequence of functions in $L^{1}(\Omega)$ such that $f_{k} \rightarrow f$ almost everywhere on Ω, then $f_{k} \rightarrow f$ in $L^{1}(\Omega)$.
(b) Is it necessary to assume that $f \in L^{1}(\Omega)$?

Math 8100 Assignment 5
 Repeated Integration

Due date: Friday the 18th of October 2019

1. Prove that if $\left\{a_{j k}\right\}_{(j, k) \in \mathbb{N} \times \mathbb{N}}$ is a "double sequence" with $a_{j k} \geq 0$ for all $(j, k) \in \mathbb{N} \times \mathbb{N}$, then

$$
\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{j k}=\sup \left\{\sum_{(j, k) \in B} a_{j k}: B \text { is a finite subset of } \mathbb{N} \times \mathbb{N}\right\}
$$

and deduce from this that

$$
\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{j k}=\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} a_{j k}
$$

This conclusion holds more generally provided $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty}\left|a_{j k}\right|<\infty$, see Theorem 8.3 in "Baby Rudin".
2. Let $f \in L^{1}([0,1])$, and for each $x \in[0,1]$ define

$$
g(x)=\int_{x}^{1} \frac{f(t)}{t} d t
$$

Show that $g \in L^{1}([0,1])$ and that

$$
\int_{0}^{1} g(x) d x=\int_{0}^{1} f(x) d x
$$

3. Carefully prove that if we define

$$
f(x, y):= \begin{cases}\frac{x^{1 / 3}}{(1+x y)^{3 / 2}} & \text { if } 0 \leq x \leq y \\ 0 & \text { otherwise }\end{cases}
$$

for each $(x, y) \in \mathbb{R}^{2}$, then f defines a function in $L^{1}\left(\mathbb{R}^{2}\right)$.
4. Let $A, B \subseteq \mathbb{R}^{n}$ be bounded measurable sets with positive Lebesgue measure. For each $t \in \mathbb{R}^{n}$ define the function

$$
g(t)=m(A \cap(t-B))
$$

where $t-B=\{t-b: b \in B\}$.
(a) Prove that g is a continuous function and

$$
\int_{\mathbb{R}^{n}} g(t) d t=m(A) m(B)
$$

(b) Conclude that the sumset

$$
A+B=\{a+b: a \in A \text { and } b \in B\}
$$

contains a non-empty open subset of \mathbb{R}^{n}.
5. Let $f, g \in L^{1}([0,1])$ and for each $0 \leq x \leq 1$ define

$$
F(x):=\int_{0}^{x} f(y) d y \quad \text { and } \quad G(x):=\int_{0}^{x} g(y) d y
$$

Prove that

$$
\int_{0}^{1} F(x) g(x) d x=F(1) G(1)-\int_{0}^{1} f(x) G(x) d x
$$

6. Let $f \in L^{1}(\mathbb{R})$. For any $h>0$ we define

$$
A_{h}(f)(x):=\frac{1}{2 h} \int_{x-h}^{x+h} f(y) d y
$$

(a) Prove that for all $h>0$,

$$
\int_{\mathbb{R}}\left|A_{h}(f)(x)\right| d x \leq \int_{\mathbb{R}}|f(x)| d x
$$

(b) Prove that

$$
\lim _{h \rightarrow 0^{+}} \int_{\mathbb{R}}\left|A_{h}(f)(x)-f(x)\right| d x=0
$$

One can in fact show that $\lim _{h \rightarrow 0^{+}} A_{h}(f)=f$ almost everywhere. This result is actually equivalent to the Lebesgue Density Theorem in \mathbb{R} and we will establish this later in the course.

Extra Challenge Problems

Not to be handed in with the assignment

1. (a) Prove that

$$
\int_{0}^{\infty}\left|\frac{\sin x}{x}\right| d x=\infty
$$

(b) By considering the iterated integral

$$
\int_{0}^{\infty}\left(\int_{0}^{\infty} x e^{-x y}(1-\cos y) d y\right) d x
$$

show (with justification) that

$$
\lim _{A \rightarrow \infty} \int_{0}^{A} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

2. Suppose that F is a closed subset of \mathbb{R} whose complement has finite measure. Let $\delta(x)$ denote the distance from x to F, namely

$$
\delta(x)=d(x, F)=\inf \{|x-y|: y \in F\}
$$

and

$$
I_{F}(x)=\int_{-\infty}^{\infty} \frac{\delta(y)}{|x-y|^{2}} d y
$$

(a) Prove that δ is continuous, by showing that it satisfies the Lipschitz condition $|\delta(x)-\delta(y)| \leq|x-y|$.
(b) Show that $I_{F}(x)=\infty$ if $x \notin F$.
(c) Show that $I_{F}(x)<\infty$ for a.e. $x \in F$, by showing that $\int_{F} I_{F}(x) d x<\infty$.

Math 8100 Assignment 6 The Fourier Transform

Due date: Thursday the 31st of October 2019

Recall that we have defined the Fourier transform of an integrable function f on \mathbb{R}^{n} by

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot \xi} d x
$$

where $x \cdot \xi=x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}$ and the convolution of two integrable functions f and g on \mathbb{R}^{n} by

$$
f * g(x)=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y
$$

1. Prove that if $f \in L^{1}\left(\mathbb{R}^{n}\right)$, then $\widehat{f}(\xi) \rightarrow 0$ as $|\xi| \rightarrow \infty$. (This is called the Riemann-Lebesgue lemma.) Hint: Write $\widehat{f}(\xi)=\frac{1}{2} \int\left[f(x)-f\left(x-\xi^{\prime}\right)\right] e^{-2 \pi i x \cdot \xi} d x$, where $\xi^{\prime}=\frac{\xi}{2|\xi|^{2}}$.
2. (a) Prove that if $f, g \in L^{1}\left(\mathbb{R}^{n}\right)$, then $\widehat{f * g}(\xi)=\widehat{f}(\xi) \widehat{g}(\xi)$ for all $\xi \in \mathbb{R}^{n}$.
(b) Conclude from part (a) that
i. if $f, g, h \in L^{1}\left(\mathbb{R}^{n}\right)$, then $f * g=g * f$ and $(f * g) * h=f *(g * h)$ almost everywhere.
ii. there does not exist $I \in L^{1}\left(\mathbb{R}^{n}\right)$ such that $f * I=f$ almost everywhere for all $f \in L^{1}\left(\mathbb{R}^{n}\right)$.
3. Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$.
(a) Show that if $y \in \mathbb{R}^{n}$ and
i. $g(x)=f(x-y)$ for all $x \in \mathbb{R}^{n}$, then $\widehat{g}(\xi)=e^{-2 \pi i y \cdot \xi} \widehat{f}(\xi)$ for all $\xi \in \mathbb{R}^{n}$.
ii. $h(x)=e^{2 \pi i x \cdot y} f(x)$ for all $x \in \mathbb{R}^{n}$, then $\widehat{h}(\xi)=\widehat{f}(\xi-y)$ for all $\xi \in \mathbb{R}^{n}$.
(b) Show that if T be a non-singular linear transformation of \mathbb{R}^{n} and $S=\left(T^{*}\right)^{-1}$ denote its inverse transpose, then

$$
\widehat{f \circ T}(\xi)=\frac{1}{|\operatorname{det} T|} \widehat{f}(S \xi)
$$

for all $\xi \in \mathbb{R}^{n}$.
4. (a) Let $f \in L^{1}(\mathbb{R})$.
i. Let $g(x)=x f(x)$. Show that if $g \in L^{1}$, then \widehat{f} is differentiable and $\frac{d}{d \xi} \widehat{f}(\xi)=-2 \pi i \widehat{g}(\xi)$.
ii. Let $f \in C_{0}^{1}(\mathbb{R})$ and $h(x)=\frac{d}{d x} f(x)$. Show that if $h \in L^{1}$, then $\widehat{h}(\xi)=2 \pi i \xi \widehat{f}(\xi)$.

Recall that $C_{0}^{1}(\mathbb{R})$ is the collection of functions in $C^{1}(\mathbb{R})$ which vanishes at infinity.
(b) Let $G(x)=e^{-\pi x^{2}}$. By considering the derivative of $\widehat{G}(\xi) / G(\xi)$, show that $\widehat{G}(\xi)=G(\xi)$.

Hint: You may also want to use the fact that $\int_{\mathbb{R}} G(x) d x=1$ (see "challenge" problem).
5. The functions D, F, and P defined below are all bounded $L^{+}(\mathbb{R})$ functions with integrals equal to 1 .
(a) Show that if

$$
D(x)= \begin{cases}1 & \text { if }|x| \leq 1 / 2 \\ 0 & \text { otherwise }\end{cases}
$$

then

$$
\widehat{D}(\xi)=\frac{\sin \pi \xi}{\pi \xi}
$$

This gives, in light of Assignment 5 Challenge Problem 1(a), an explicit example of a function which is not in $L^{1}(\mathbb{R})$, but yet is the Fourier transform of an L^{1} function. See Question 6 for additional higher dimensional examples.
(b) Let

$$
F(x)=\left\{\begin{array}{ll}
1-|x| & \text { if }|x| \leq 1 \\
0 & \text { otherwise }
\end{array} .\right.
$$

i. Show that

$$
\widehat{F}(\xi)=\left(\frac{\sin \pi \xi}{\pi \xi}\right)^{2}
$$

Hint: It may help to write $\widehat{F}(\xi)=h(\xi)+h(-\xi)$ where $h(\xi)=e^{2 \pi i \xi} \int_{0}^{1} y e^{-2 \pi i y \xi} d y$.
ii. Find the Fourier transform of the function

$$
f(x)=\left(\frac{\sin \pi x}{\pi x}\right)^{2}
$$

Be careful to fully justify your answer.
(c) Show that if

$$
P(x)=\frac{1}{\pi} \frac{1}{1+x^{2}} .
$$

then

$$
\int_{-\infty}^{\infty} e^{-2 \pi|\xi|} e^{2 \pi i x \xi} d \xi=P(x)
$$

and hence that

$$
\widehat{P}(\xi)=e^{-2 \pi|\xi|}
$$

Be careful to fully justify your answer.

Remark: In Questions $4 b$ and 5 above D is for Dirichlet, F is for Fejér, P is for Poisson, and G is for Gauss-Weierstrass. The respective "approximate identities", namely $\left\{(\widehat{D})_{t}\right\}_{t>0},\left\{(\widehat{F})_{t}\right\}_{t>0},\left\{P_{t}\right\}_{t>0}$, and $\left\{G_{\sqrt{t}}\right\}_{t>0}$, are generally referred to as Dirichlet, Fejér, Poisson, and Gauss-Weierstrass kernels.
6. Show that for any $\varepsilon>0$ the function $F(\xi)=\left(1+|\xi|^{2}\right)^{-\varepsilon}$ is the Fourier transform of an $L^{1}\left(\mathbb{R}^{n}\right)$ function. Hint: Consider the function

$$
f(x)=\int_{0}^{\infty} G_{t}(x) e^{-\pi t^{2}} t^{2 \varepsilon-1} d t,
$$

where $G_{t}(x)=t^{-n} e^{-\pi|x|^{2} / t^{2}}$. Now use Fubini/Tonelli to prove that $f \in L^{1}\left(\mathbb{R}^{n}\right)$ with $\widehat{f}(\xi)=F(\xi)\|f\|_{1}$.

Extra Challenge Problems

Not to be handed in with the assignment

1. By considering the iterated integral

$$
\int_{0}^{\infty}\left(\int_{0}^{\infty} x e^{-x^{2}\left(1+y^{2}\right)} d x\right) d y
$$

show (with justification) that

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}
$$

and hence that

$$
\int_{-\infty}^{\infty} e^{-\pi x^{2}} d x=1
$$

Math 8100 Assignment 7
 Hilbert Spaces

Due date: Thursday 14th of November 2019

1. (a) Prove that $\ell^{2}(\mathbb{N})$ is complete.

Recall that $\ell^{2}(\mathbb{N}):=\left\{x=\left\{x_{j}\right\}_{j=1}^{\infty}:\|x\|_{\ell^{2}}<\infty\right\}$, where $\|x\|_{\ell^{2}}:=\left(\sum_{j=1}^{\infty}\left|x_{j}\right|^{2}\right)^{1 / 2}$.
(b) Let H be a Hilbert space. Prove the so-called polarization identity, namely that for any $x, y \in H$,

$$
\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right)
$$

and conclude that any invertible linear map from H to $\ell^{2}(\mathbb{N})$ is unitary if and only if it is isometric.
Recall that if H_{1} and H_{2} are Hilbert spaces with inner products $\langle\cdot, \cdot\rangle_{1}$ and $\langle\cdot, \cdot\rangle_{2}$, then a mapping $U: H_{1} \rightarrow H_{2}$ is said to be unitary if it is an invertible linear map that preserves inner products, namely $\langle U x, U y\rangle_{2}=\langle x, y\rangle_{1}$, and an isometry if it preserves"lengths", namely $\|U x\|_{2}=\|x\|_{1}$.
2. Let E be a subset of a Hilbert space H.
(a) Show that $E^{\perp}:=\{x \in H:\langle x, y\rangle=0$ for all $y \in E\}$ is a closed subspace of H.
(b) Show that $\left(E^{\perp}\right)^{\perp}$ is the smallest closed subspace of H that contains E.
3. In $L^{2}([0,1])$ let $e_{0}(x)=1, e_{1}(x)=\sqrt{3}(2 x-1)$ for all $x \in(0,1)$.
(a) Show that e_{0}, e_{1} is an orthonormal system in $L^{2}(0,1)$.
(b) Show that the polynomial of degree 1 which is closest with respect to the norm of $L^{2}(0,1)$ to the function $f(x)=x^{2}$ is given by $g(x)=x-1 / 6$. What is $\|f-g\|_{2}$?
4. (a) Verify that the following systems are orthogonal in $L^{2}([0,1])$:
i. $\{1 / \sqrt{2}, \cos (2 \pi x), \sin (2 \pi x), \ldots, \cos (2 \pi k x), \sin (2 \pi k x), \ldots\}$
ii. $\left\{e^{2 \pi i k x}\right\}_{k=-\infty}^{\infty}$
(b) Let $f \in L^{1}([0,1])$.
i. Show that for any $\epsilon>0$ we can write $f=g+h$, where $g \in L^{2}$ and $\|h\|_{1}<\epsilon$.
ii. Use this decomposition of f to prove the so-called Riemann-Lebesgue lemma:

$$
\lim _{k \rightarrow \infty} \int_{0}^{1} f(x) \cos (2 \pi k x) d x=\lim _{k \rightarrow \infty} \int_{0}^{1} f(x) \sin (2 \pi k x) d x=0
$$

5. (a) The first three Legendre polynomials are

$$
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\left(3 x^{2}-1\right) / 2 .
$$

Show that the orthonormal system in $L^{2}([-1,1])$ obtained by applying the Gram-Schmidt process to $1, x, x^{2}$ are scalar multiples of these.
(b) Compute

$$
\min _{a, b, c} \int_{-1}^{1}\left|x^{3}-a-b x-c x^{2}\right|^{2} d x
$$

(c) Find

$$
\max \int_{-1}^{1} x^{3} g(x) d x
$$

where g is subject to the restrictions

$$
\int_{-1}^{1} g(x) d x=\int_{-1}^{1} x g(x) d x=\int_{-1}^{1} x^{2} g(x) d x=0 ; \quad \int_{-1}^{1}|g(x)|^{2} d x=1 .
$$

6. Let

$$
\mathcal{C}=\left\{f \in L^{2}([0,1]): \int_{0}^{1} f(x) d x=1 \text { and } \int_{0}^{1} x f(x) d x=2\right\}
$$

(a) Let $g(x)=18 x^{2}-5$. Show that $g \in \mathcal{C}$ and that

$$
\mathcal{C}=g+\mathcal{S}^{\perp}
$$

where \mathcal{S}^{\perp} denotes the orthogonal complement of $\mathcal{S}=\operatorname{Span}(\{1, x\})$.
(b) Find the function $f_{0} \in \mathcal{C}$ for which

$$
\int_{0}^{1}\left|f_{0}(x)\right|^{2} d x=\inf _{f \in \mathcal{C}} \int_{0}^{1}|f(x)|^{2} d x .
$$

Extra Challenge Problems

Not to be handed in with the assignment

1. Prove that every closed convex set K in a Hilbert space has a unique element of minimal norm.
2. The Mean Ergodic Theorem: Let U be a unitary operator on a Hilbert space H.

Prove that if $M=\{x: U x=x\}$ and $S_{N}=\frac{1}{N} \sum_{n=0}^{N-1} U^{n}$, then $\lim _{N \rightarrow \infty}\left\|S_{N} x-P x\right\|=0$ for all $x \in H$, where $P x$ denotes the orthogonal projection of x onto M.

Math 8100 Assignment 8
 Basic Function Spaces

Due date: Tuesday the 26th of November 2019

1. Prove the following basic properties of $L^{\infty}=L^{\infty}(X)$, where X is a measurable subset of \mathbb{R}^{n} :
(a) $\|\cdot\|_{\infty}$ is a norm on L^{∞} and when equipped with this norm L^{∞} is a Banach space.
(b) $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$ iff there exists $E \in \mathbb{R}^{n}$ such that $m\left(E^{c}\right)=0$ and $f_{n} \rightarrow f$ uniformly on E.
(c) Simple functions are dense in L^{∞}, but continuous functions with compact support are not. Recall that if $X \subseteq \mathbb{R}^{n}$ is measurable and f is a measurable function on X, then we define

$$
\|f\|_{\infty}=\inf \{a \geq 0: m(\{x \in X:|f(x)|>a\})=0\}
$$

with the convention that $\inf \emptyset=\infty$, and

$$
L^{\infty}=L^{\infty}(X)=\left\{f: X \rightarrow \mathbb{C} \text { measuarable }:\|f\|_{\infty}<\infty\right\}
$$

with the usual convention that two functions that are equal a.e. define the same element of L^{∞}. Thus $f \in L^{\infty}$ if and only if there is a bounded function g such that $f=g$ almost everywhere; we can take $g=f \chi_{E}$ where $E=\left\{x:|f(x)| \leq\|f\|_{\infty}\right\}$.
2. Let $X \subseteq \mathbb{R}^{n}$ be measurable.
(a) i. Prove that if $m(X)<\infty$, then

$$
\begin{equation*}
L^{\infty}(X) \subset L^{2}(X) \subset L^{1}(X) \tag{1}
\end{equation*}
$$

with strict inclusion in each case, and that for any measurable $f: X \rightarrow \mathbb{C}$ one in fact has

$$
\|f\|_{L^{1}(X)} \leq m(X)^{1 / 2}\|f\|_{L^{2}(X)} \leq m(X)\|f\|_{L^{\infty}(X)}
$$

ii. Give examples to show that no such result of the form (1) can hold if one drops the assumption that $m(x)<\infty$. Prove, furthermore, that if $L^{2}(X) \subseteq L^{1}(X)$, then $m(X)<\infty$.
(b) Prove that

$$
\underbrace{L^{1}(X) \cap L^{\infty}(X) \subset L^{2}(X)}_{(\star)} \subset L^{1}(X)+L^{\infty}(X)
$$

and that in addition to (\star) one in fact has

$$
\|f\|_{L^{2}(X)} \leq\|f\|_{L^{1}(X)}^{1 / 2}\|f\|_{L^{\infty}(X)}^{1 / 2}
$$

for any measurable function $f: X \rightarrow \mathbb{C}$.
3. Prove that

$$
\ell^{1}(\mathbb{Z}) \subset \ell^{2}(\mathbb{Z}) \subset \ell^{\infty}(\mathbb{Z})
$$

with strict inclusion in each case, and that for any sequence $a=\left\{a_{j}\right\}_{j \in \mathbb{Z}}$ of complex numbers one in fact has

$$
\|a\|_{\ell^{\infty}(\mathbb{Z})} \leq\|a\|_{\ell^{2}(\mathbb{Z})} \leq\|a\|_{\ell^{1}(\mathbb{Z})}
$$

Recall that for $p=1,2, \infty$ we define

$$
\ell^{p}(\mathbb{Z})=\left\{a=\left\{a_{j}\right\}_{j \in \mathbb{Z}} \subseteq \mathbb{C}:\|a\|_{\ell^{p}(\mathbb{Z})}<\infty\right\}
$$

where

$$
\|a\|_{\ell^{1}(\mathbb{Z})}=\sum_{j=-\infty}^{\infty}\left|a_{j}\right|, \quad\|a\|_{\ell^{2}(\mathbb{Z})}=\left(\sum_{j=-\infty}^{\infty}\left|a_{j}\right|^{2}\right)^{1 / 2}, \text { and }\|a\|_{\ell^{\infty}(\mathbb{Z})}=\sup _{j}\left|a_{j}\right| .
$$

4. Let $C([0,1])$ denote the space of all continuous real-valued functions on $[0,1]$.
(a) Prove that $C([0,1])$ is complete under the uniform norm $\|f\|_{u}:=\sup _{x \in[0,1]}|f(x)|$.
(b) Prove that $C([0,1])$ is not complete under the L^{1}-norm $\|f\|_{1}=\int_{0}^{1}|f(x)| d x$
5. Let H be a Hilbert space with orthonormal basis $\left\{u_{n}\right\}_{n=1}^{\infty}$.
(a) Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of complex numbers. Prove that

$$
\sum_{n=1}^{\infty} a_{n} u_{n} \text { converges in } H \Longleftrightarrow \sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty
$$

and moreover that if $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}<\infty$, then $\left\|\sum_{n=1}^{\infty} a_{n} u_{n}\right\|=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}\right)^{1 / 2}$.
(b) i. Is there a continuous linear functional L on H such that $L\left(u_{n}\right)=n^{-1}$ for all $n \in \mathbb{N}$? If L exists, find its norm.
ii. Is there a continuous linear functional L on H such that $L\left(u_{n}\right)=n^{-1 / 2}$ for all $n \in \mathbb{N}$?

If L exists, find its norm.
6. For each $1 \leq p \leq \infty$, define $\Lambda_{p}: L^{p}([0,1]) \rightarrow \mathbb{R}$ by

$$
\Lambda_{p}(f)=\int_{0}^{1} x^{2} f(x) d x
$$

Explain why Λ_{p} is a continuous linear functional and compute its norm (in terms of p).

Extra Practice Problems
 Not to be handed in with the assignment

1. Let f and g be two non-negative Lebesgue measurable functions on $[0, \infty)$. Suppose that

$$
A:=\int_{0}^{\infty} f(y) y^{-1 / 2} d y<\infty \quad \text { and } \quad B:=\left(\int_{0}^{\infty}|g(y)|^{2} d y\right)^{1 / 2}<\infty
$$

Prove that

$$
\int_{0}^{\infty}\left(\int_{0}^{x} f(y) d y\right) \frac{g(x)}{x} d x \leq A B
$$

2. Let $\left\{f_{k}\right\}$ be any sequence of functions in $L^{2}([0,1])$ satisfying $\left\|f_{k}\right\|_{2} \leq 1$ for all $k \in \mathbb{N}$.
(a) i. Prove that if $f_{k} \rightarrow f$ either a.e. on $[0,1]$ or in $L^{1}([0,1])$, then $f \in L^{2}([0,1])$ with $\|f\|_{2} \leq 1$.
ii. Do either of the above hypotheses guarantee that $f_{k} \rightarrow f$ in $L^{2}([0,1])$?
(b) Prove that if $f_{k} \rightarrow f$ a.e. on $[0,1]$, then this in fact implies that $f_{k} \rightarrow f$ in $L^{1}([0,1])$.
3. Let $1 \leq p \leq \infty$. Prove that if $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a sequence of functions in $L^{p}\left(\mathbb{R}^{n}\right)$ with the property that

$$
\sum_{k=1}^{\infty}\left\|f_{k}\right\|_{p}<\infty
$$

then $\sum f_{k}$ converges almost everywhere to an $L^{p}\left(\mathbb{R}^{n}\right)$ function with

$$
\left\|\sum_{k=1}^{\infty} f_{k}\right\|_{p} \leq \sum_{k=1}^{\infty}\left\|f_{k}\right\|_{p}
$$

