Rack Garza
(Ia) Note that if $x \in C$ is an endpoint of a removed interval, then $x=k / 3^{n}$ for some integers $n \geq 1$ and $0 \leq k \leq 3^{n}$. So we just need a real number $x \in(0,1)$ satisfying
a) X has some ternary expansion $x=\sum_{i=1}^{\infty} a_{i} 3^{-i}$ where $a_{i} \neq 1$ for any i, and
b) $x \neq k / 3^{n} \quad$ for any $k, n \in \mathbb{N}^{\circ}$.
then we will have $x \in C$ by (a) and x not an endpoint by (b).

Claim: $\quad x=(0 . \overline{02})_{3}=(0.020202 \cdots)_{3}$ works.

Pf. By construction, x satisfies

$$
\text { (a) } \quad x=\sum_{i=0}^{\infty} a_{i} 3^{-i}, a_{i} \in\{0,2\}
$$

So no $a_{i}=1$ and thus $x \in C$.
(b) To see that x satisfies (b), we can compute

$$
\begin{aligned}
x & =(0.020202 \cdots)_{3} \\
& =0 \cdot 3^{-1}+2 \cdot 3^{-2}+0 \cdot 3^{-3}+2 \cdot 3^{-4}+\ldots \\
& =\sum_{i=1}^{\infty} 2 \cdot 3^{-2 i}=2 \sum_{i=1}^{\infty} 3^{-2 i}=2 \sum_{i=1}^{\infty}\left(\frac{1}{a}\right)^{i} \\
& =2\left(-1+\sum_{i=0}^{\infty}\left(\frac{1}{9}\right)^{i}\right) \\
& =2\left(-1+\frac{1}{1-\frac{1}{a}}\right)=1 / 4
\end{aligned}
$$

where $4 \neq 3^{n}$ for any integer n.
(1b) If a set X is nowhere dense in a topological space, it equivalently satisfies

$$
(\bar{x})^{0}=\varnothing
$$

(ie, the interior of the closure is empty.)

It then suffices to show that
a) C is closed, so $\bar{C}=C$, and
b) C has no interior points, so $C^{0}=\varnothing$.
(a) T_{0} see that $C_{\text {is }}$ closed, we will show $C^{c}:=[0,1] \backslash C$ is open. An arbitrary union of open sets is open, so the claim is that $C^{C}=\bigcup_{j \in J} A_{j}$ for some collection of open sets $\left\{A_{j}\right\}_{j} \in J$.

Consider C_{n}, the $n^{\text {th }}$ stage of the process used to construct the $C_{\text {anton set, so }} C=\bigcap_{i=1}^{\infty} C_{n}$. But by induction, C_{n}^{c} is a union of open sets.
In particular, $C_{1}^{c}=\left(\frac{1}{3}, \frac{2}{3}\right)$, and

$$
C_{n}^{c}=\underbrace{\left(\bigcup_{i=1}^{n-1} C_{i}^{c}\right) \cup\binom{\text { Exactly } n \text { open intervals }}{\text { that were deleted }},}_{\text {Open by hypothesis }}
$$

So C_{n}^{c} is open for each n. But then

$$
C^{c}=\left(\bigcap_{n=1}^{\infty} C_{n}\right)^{c}=\bigcup_{i=1}^{\infty} C_{n}^{c}
$$

is a union of open sets and thus open. So C is closed.
(b) To see that $C^{0}=\varnothing$, suppose to wards a contradiction that $x \in C^{0}$, so there exists some $\varepsilon>0$ such that $N_{\varepsilon}(x):=(x-\varepsilon, x+\varepsilon) \subsetneq C$. Letting $\mu(I)$ denote the length of an interval, we have $\mu\left(N_{\varepsilon}(x)\right)=2 \varepsilon>0$.

Claim: Let $L_{n}:=\mu\left(C_{n}\right)$, then $L_{n}=\left(\frac{2}{3}\right)^{n}$.
This follows immediately by noting that L_{n} satisfies the recurrence relation

$$
L_{n+1}=\frac{2}{3} L_{n}, \quad L_{0}=1
$$

Since an interval of length $\frac{1}{3} L_{n-1}$ is removed at the $n^{\text {th }}$ stage, which has the unique claimed solution.

But if $I_{1} \subseteq I_{2}$ are real intervals, we must have $\mu\left(I_{1}\right) \leq \mu\left(I_{2}\right)$, whereas if we choose n large enough such that $\left(\frac{2}{3}\right)^{n}<2 \varepsilon$, we have

$$
\begin{aligned}
& (x-\varepsilon, x+\varepsilon) \subsetneq C=\bigcap_{i=1}^{\infty} C_{i} \Rightarrow \overline{(x-\varepsilon, x+\varepsilon) \subseteq C_{n}}, \text { but } \\
& \mu((x-\varepsilon, x+\varepsilon))=2 \varepsilon>\left(\frac{2}{3}\right)^{n}=\mu\left(C_{n}\right), \text { a contradiction. }
\end{aligned}
$$

So such an $X \in C^{\circ}$ can't exist, and $C^{\circ}=\phi$.
Thus $(\bar{C})^{\circ}=C^{\circ}=\varnothing$, and C is nowhere dense, and since a meager set is a countable union of nowhere dense sets, C is meager.

Claim: C is measure zero.
Measures are additive over disjoint sets, i.e.

$$
A \cap B=\varnothing \Rightarrow \mu(A \sqcup B)=\mu(A)+\mu(B)
$$

And if $A \subseteq B$, we have

$$
\begin{aligned}
\mu(B) & =\mu(B \sqcup(B \backslash A))=\mu(B)+\mu(B \backslash A) \\
& \Rightarrow \mu(B \backslash A)=\mu(B)-\mu(A) .
\end{aligned}
$$

Now let B_{n} be the union of the intervals that are deleted at the $n^{\text {th }}$ step. We have

$$
\begin{aligned}
& \mu\left(B_{0}\right)=0 \\
& \mu\left(B_{1}\right)=1 / 3 \\
& \mu\left(B_{2}\right)=2\left(\frac{1}{9}\right)=2 / 9 \\
& \mu\left(B_{3}\right)=4\left(\frac{1}{27}\right)=4 / 27 \\
& \vdots \\
& \mu\left(B_{n}\right)=2^{n-1} / 3^{n}
\end{aligned}
$$

Moreover, if $i \neq j$, then $B_{i} \cap B_{j}=\varnothing$, and

$$
C^{c}:=[0,1]-C=\bigcup_{i=1}^{\infty} B_{i}
$$

We thus have

$$
\begin{aligned}
\mu(c) & =\mu([0,1]) \cdot \mu\left(c^{c}\right) \\
& =1-\mu\left(\sum_{n=1}^{\infty} B_{n}\right) \\
& =1-\sum_{n=1}^{\infty} \mu\left(B_{n}\right) \\
& =1-\sum_{n=1}^{\infty} 2^{n-1} / 3^{n}
\end{aligned}
$$

$$
\begin{aligned}
& =1-(1 / 3) \sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n} \\
& =1-(1 / 3)(1 / 1-2 / 3) \\
& =0 .
\end{aligned}
$$

(Ic) Let $y \in[0,1]$ be arbitrary, we will produce an $x \in C$ such that $f(x)=c$.
Write $y=\left(a_{1} a_{2} \cdots\right)_{2}=\sum_{i=1}^{\infty} a_{i} 2^{-i}$ where $a_{i} \in\{0,1\}$
Now define

$$
x=\left(2 a_{1}, 2 a_{2} \cdots\right)_{3}=\sum_{i=1}^{\infty}\left(2 a_{i}\right) 3^{-i}:=\sum_{i=1}^{\infty} b_{i} 3^{-i}
$$

Since $a_{i} \in\{0,1\}, b_{i}=2 a_{i} \in\{0,2\}$, meaning x has no 1^{s} in its ternary expansion and so $x \in C$.
Moreover, under f we have

$$
\left.\begin{array}{l}
b_{i} \mapsto \frac{1}{2} b_{i} \\
11 \\
2 a_{i} \mapsto \frac{11}{2}\left(2 a_{i}\right)=a_{i}
\end{array}\right\} \begin{aligned}
& \text { so } b_{i} \mapsto a_{i} \text { and } \\
& \text { thus } f(x)=y .
\end{aligned}
$$

So $C \rightarrow[0,1]$, which is uncountable, thus so is C.
(2a) \Rightarrow Suppose X is G_{δ}, so $X=\bigcup_{n=1}^{\infty} A_{i}$ with each A_{i} closed. Then A_{i}^{c} is open by definition, and so

$$
X^{c}=\left(\bigcup^{\infty} A_{i=1}\right)^{c}=\bigcap_{i=1}^{\infty} A_{i}^{c}
$$

is a countable intersection of open sets, and thus F_{σ}. (\Leftarrow) Suppose X^{c} is an F_{σ}, so $X^{c}=\prod_{i=1}^{\infty} B_{i}$ with each B_{i} open. Then each B_{i}^{c} is closed by definition, and

$$
X=\left(X^{c}\right)^{c}=\left(\bigcap_{i=1}^{\infty} B_{i}\right)^{c}=\bigcup_{i=1}^{\infty} B_{i}^{c}
$$

is a countable union of closed sets, and thus $G s$.
(2b) Suppose X is closed, we will show $X=\bigcap_{n=1}^{\infty} C_{n}$ with each C_{n} open. For each $x \in X$ and $n \in \mathbb{N}$, define

$$
\begin{aligned}
& \text { - } B_{n}(x)=\left\{y \in \mathbb{R}^{n} \left\lvert\, d(x, y)<\frac{1}{n}\right.\right\} \\
& \text { - } C_{n}=\bigcup_{x \in X} B_{n}(x) \\
& \text { - } W=\bigcap_{n=1}^{\infty} C_{n}=\bigcap_{n=1}^{\infty} \bigcup_{x \in X} B_{n}(x)
\end{aligned}
$$

Since each $B_{n}(x)$ is open by construction and C_{n} is a union of opens, each C_{n} is open.

Claim: $W=X$.
$X \subseteq W^{\text {. I }}$. If $x \in X$, then $x \in B_{n}(x) \subseteq C_{n}$ for all n, and so $x \in \bigcap_{n=1}^{\infty} C_{n}=W$.
$W \subseteq X$: Suppose there is some $\omega \in W X$ (so $\omega \neq X$ for any $X \in X$) towards a contradiction.
Since $\omega \in \bigcap_{i=1}^{n} C_{n}, \omega \in C_{n}$ for every n. So $\omega \in \bigcup_{x \in X} B_{n}(x)$ for every n. But then there is some particular $x_{0} \in X$ such that $\omega \in B_{n}\left(X_{0}\right)$ for every n (otherwise we could take N large enough so that $\omega \notin B_{N}(x)$ for any $x \in X$, so $X \not \bigcup_{X \in X} B_{N}(x)$) where $\omega \neq x_{0}$. But then if $N_{\varepsilon}(x)$ is an arbitrary neighborhood of x, We can take $\frac{1}{n}<\varepsilon$ to obtain $\omega \in B_{n}(x) \subsetneq N_{\varepsilon}(x)$, which makes w a limit point of X. But since X is closed, it contains its limit points, forcing the contradiction $\omega \in X$.
So X is a countable intersection of open sets, and thus a Gs set.

Now suppose X is open. Then X^{c} is closed, and thus a $G \delta$ set. But then $\left(X^{c}\right)^{c}=X$ is an F_{σ} set by problem (Ra).
(2c) Using the fact that singletons are closed in metric spaces, We can write $\mathbb{Q}=\bigcup_{q \in \mathbb{Q}}\{q\}$ as a countable union of closed sets, so \mathbb{Q} is an F_{δ} set. Suppose \mathbb{Q} was also a $G \delta$ set, so $Q=\bigcap_{i=1}^{\infty} A_{i}$ with each A_{i} open. Then for any fixed $n, \mathbb{Q} \subseteq A_{i}$, so A_{i} is dense in \mathbb{R} for every i.
However, it is also true that $\{q\}^{c}:=\mathbb{R} \backslash\{q\}$ is an open, dense subset of \mathbb{R}, and we can write

$$
\mathbb{R} \backslash \mathbb{Q}=\mathbb{R} \backslash \bigcup_{q \in \mathbb{Q}}\{q\}=\bigcap_{q \in \mathbb{Q}}(\mathbb{R} \backslash\{q\})
$$

as in intersection of open dense sets; since \mathbb{R} is a
Baire space, countable intersections of open dense sets are dense.
But then $\left(\bigcap_{i=1}^{\infty} A_{i}\right) \cap\left(\bigcap_{q \in \mathbb{Q}}\{ \}^{q}\right)=\mathbb{Q} \cap(\mathbb{R} \backslash \mathbb{Q})=\varnothing$
must be dense in \mathbb{R}, which is absurd.

Note that this argument also works when \mathbb{R} is replaced with any open interval I and \mathbb{Q} is replaced with $\mathbb{Q} \cap I$.

For a set that is neither GS nor FS, consider
$A=\mathbb{Q} \cap(0, \infty)$, positive rationals
$B=(\mathbb{R} \backslash \mathbb{Q}) \cap(-\infty, 0)$, negative irrationals
A is F_{σ} but not $G \delta$, using above argument, and dually B is G_{δ} but not F_{σ}.
Claim. $X=A \cup B$ is neither G_{g} nor F_{σ}.
Suppose X is G_{δ}. Then $X \cap \frac{o \times n}{(0, \infty)}=A$ is G_{δ} as well. $\not \approx$
Suppose X is F_{σ}. Then X^{c} is G_{δ}, but

$$
X^{c}=(A \cup B)^{c}=A^{c} \cap B^{c}=(\mathbb{Q} \cap(-\infty, 0)) \cup((\mathbb{R} \cap \mathbb{Q}) \cap(0, \infty))
$$

and thus $X^{c} \cap \stackrel{\text { open }}{(-\infty, 0)}=A$ is G_{δ}. \#
So X is neither G_{δ} or F_{σ}.
(3a) Claim: $c \in[0,1] \Rightarrow \lim _{x \rightarrow c} f(x)=0$.
This holds iff $\forall c \in I, \forall \varepsilon, \exists \delta$ s.t. $|x-c|<\delta \Rightarrow|f(x)|<\varepsilon$, so let $\varepsilon>0$ be arbitrary. Consider the set
$S=\left\{n \in \mathbb{N} \left\lvert\, \frac{1}{n} \geq \varepsilon\right.\right\}$, which is a finite set, and so $S_{q}=\left\{r_{n} \in \mathbb{Q} \left\lvert\, \frac{1}{n} \geq \varepsilon\right.\right\}$ is finite as well.

So choose $\delta<\min d\left(c, r_{n}\right)$ so $N_{g}(c) \cap S_{q}=\varnothing$ $r_{n} \in S_{q}$

Then $|x-c|<\delta \Rightarrow\left\{\begin{array}{l}\cdot f(x)=0 \text { if } x \in I \backslash \mathbb{Q}, \text { or } \\ \cdot x=r_{m} \in\left(\mathbb{Q} \backslash S_{q}\right) n I \text { for some } m \text { such that } \\ 1 / m<\varepsilon \text { by construction. }\end{array}\right.$
But then $|f(x)|=|1 / m|<\varepsilon$ as desired.

$$
\text { So } \begin{aligned}
\text { S } c \in I \backslash \mathbb{Q} \Rightarrow f(c)=0=\lim _{x \rightarrow c} f(x), \\
\cdot c=r_{n} \in I \cap \mathbb{Q} \Rightarrow f(c)=\frac{1}{n} \neq 0=\lim _{x \rightarrow c} f(x)
\end{aligned}
$$

and f is discontinuous on $I \cap \mathbb{Q}$.
(3b.1) Claim: w_{f} is well.defined
This amounts to showing that the sup and limit exist in

$$
w_{f}(x)=\lim _{\delta \rightarrow 0^{+}} \sup _{y, z \in B_{\delta}(x)}|f(y)-f(z)|
$$

Let $x \in \mathbb{R}$ be arbitrary and δ fixed.
Since f is bounded, there is some M such that
$\forall y \in \mathbb{R},|f(y)|<M$, and so

$$
\begin{aligned}
y, z \in \mathbb{R} \Rightarrow|f(y)-f(z)|=|f(y)+(-f(z))| & \leq|f(y)|+|-f(z)| \\
& =|f(y)|+|f(z)|<2 M
\end{aligned}
$$

which holds for $y, z \in B_{\delta}(x) \subseteq \mathbb{R}$ as well.
And so $\left\{|f(y)-f(z)|\right.$ s.t. $\left.y, z \in B_{\delta}(x)\right\}$ is bounded above and thus has a least upper bound, and thus the following supremum exists.

$$
S(\delta, x)=\sup _{y, z \in B_{\delta}(x)}|f(y)-f(z)|
$$

To see that the $\lim _{\delta \rightarrow 0} S(\delta, x)$ exists, note that

$$
\delta_{1} \leq \delta_{2} \Rightarrow B_{\delta_{1}}(x) \subseteq B_{\delta_{2}}(x)
$$

and so for a fixed $x, S(\delta, x)$ is a monotonically
decreasing function of δ that is bounded below by 0 , which converges by the monotone convergence theorem.

Claim: f is continuous at x iff $\omega_{f}(x)=0$.
(\Leftarrow) Suppose $\omega_{f}(x)=0$ and let $\varepsilon>0$ be arbitrary; we will produce a δ to use in the definition of continuity.

Since $\omega_{f}(x)=\lim _{d \rightarrow 0^{+}} S(d, x)=0$, we can choose δ such that
$d<\delta \Rightarrow|S(d, x)|<\varepsilon$, which means

$$
d<\delta \Rightarrow \sup _{y, z \in B_{d}(x)}|f(y)-f(z)|<\varepsilon
$$

So fix $z=x$ and let y vary, yielding

$$
d<\delta \Rightarrow \sup _{y \in B_{d}(x)}|f(y)-f(x)|<\varepsilon
$$

But now for an arbitrary $t \in B_{\delta}(x)$, we have $|x-t|<\delta$ and

$$
|f(x)-f(t)| \leq \sup _{y \in B_{s}(x)}|f(x)-f(y)|<\varepsilon,
$$

which exactly says $|x-t|<\delta \Rightarrow|f(x)-f(t)|<\varepsilon$.
(\Rightarrow) Suppose f is continuous at x and let $\varepsilon>0$ be arbitrary; we will show $\omega_{f}(x)<\varepsilon$.

Since f is continuous, choose δ such that

$$
|x-y|<\delta \Rightarrow|f(x)-f(y)|<\varepsilon / 2
$$

We then have

$$
\begin{aligned}
& y, z \in B_{\delta}(x) \Rightarrow|x-y|<\delta \text { and }|x-z|<\delta, \\
& \Rightarrow|f(x)-f(y)|<\frac{\varepsilon}{2} \text { and }|f(x)-f(z)|<\frac{\varepsilon}{2} \\
& \Rightarrow|f(y)-f(z)| \leq|f(y)-f(x)|+|f(x)-f(z)|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,
\end{aligned}
$$

and so

$$
\begin{aligned}
y, z \in B_{g}(x) \Rightarrow|f(y)-f(z)|<\varepsilon & \Rightarrow \sup _{y, z \in B_{\delta}(x)}|f(y)-f(z)| \leq \varepsilon \\
& \Rightarrow S(\delta, x) \leq \varepsilon,
\end{aligned}
$$

and since $S(d, x)$ is monotonically decreasing in d,

$$
w_{f}(x)=\lim _{d \rightarrow 0^{+}} S(d, x) \leq S(S, x) \leq \varepsilon
$$

as desired.
(3b.2) We will show that

$$
A_{\varepsilon}^{c}=\left\{x \in \mathbb{R} \mid \omega_{f}(x)<\varepsilon\right\}
$$

is open by showing every point is an interior point.
Fix $\varepsilon>0$ and let $x \in A_{\varepsilon}^{c}$ be arbitrary. We want to produce a δ such that
$B_{\delta}(x) \nsubseteq A_{\varepsilon}^{c}$ or equivalently $|y-x|<\delta \Rightarrow \omega_{f}(y)<\varepsilon$.
Write $\omega_{f}(x)=\lim _{d \rightarrow 0^{+}} S(d, x)$; since $w_{f}(x)<\varepsilon$ and this limit exists, we can choose S such that

$$
d<\delta \Rightarrow|S(d, x)-o|<\varepsilon \Rightarrow|S(d, x)|<\varepsilon
$$

Now suppose $y \in B_{\delta}(x)$, so $|y-x|<\delta$. Then there exists some δ^{\prime} such that $B_{\delta^{\prime}}(y) \subset B_{g}(x)$, and we claim that

$$
S\left(\delta^{\prime}, y\right) \leqslant S(\delta, x)
$$

Note that if this is true, then

$$
\omega_{f}(y)=\lim _{d \rightarrow 0} S(d, y) \stackrel{\substack{s, \\ \text { decreasing mind }}}{S} S\left(S^{\prime}, y\right) \leq S(\delta, x)<\varepsilon
$$

To see why this is true, we just note that

$$
\begin{aligned}
& a, b \in B_{\delta^{\prime}(y)} \subset B_{g}(x) \Rightarrow a, b \in B_{g}(x) \\
& \Rightarrow \sup _{a, b \in B_{g^{\prime}(y)}}|f(y)-f(z)| \leq \sup _{y, z \in B_{g}(x)}|f(y)-f(z)|,
\end{aligned}
$$

Since the supremum can only increase over a larger set.

So $\omega_{f}(y)<\varepsilon$ as desired.
Finally, note that if $D_{f}=\{x \in \mathbb{R} \mid f$ is discontinuous at $x\}$, then $D_{f}=\left\{x \in \mathbb{R} \mid \omega_{f}(x) \neq 0\right\}=\bigcup_{n=1}^{\infty}\left\{x \in \mathbb{R} \left\lvert\, \omega_{f}(x) \geq \frac{1}{n}\right.\right\}$

$$
=\bigcup_{n=1}^{\infty} A_{\frac{1}{n}}
$$

is a countable union of closed sets and thus F_{σ}.
(4) Claim: f is increasing, i.e. $x \leq y \Rightarrow f(x) \leq f(y)$ $F_{i x} x \in \mathbb{R}$, and define

$$
A_{x}=\{t \in x \mid x>t\}, \quad A_{x}^{c}:=\{t \in X \mid x \leq t\} .
$$

(Note that $t \in A_{x}$ or $t \in A_{x}^{c} \Rightarrow t=x_{n}$ for some n, and $X=A_{x} \sqcup A_{x}^{c}$.)

Then noting that

$$
\begin{aligned}
& x_{n} \in A_{x} \Rightarrow f_{n}(x) \equiv 1 \\
& \text { and } \\
& x_{n} \in A_{x}^{c} \Rightarrow f_{n}(x) \equiv 0,
\end{aligned}
$$

We can Write

$$
\begin{aligned}
f(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} f_{n}(x) & =\sum_{\left.\left\{n \mid x_{0} \in A\right\}\right\}} \frac{1}{n^{2}} \cdot 1+\sum_{\{n \mid x \in A A \in\}} \frac{1}{n^{2}} \cdot 0 \\
& =\sum_{\left\{n \mid x_{n} \in A_{1}\right\}} \frac{1}{n^{2}} .
\end{aligned}
$$

Now if $y \geq x$, then $y \geq t$ for every $t \in A_{x}$, so $A_{y} \supseteq A_{x}$.

But then

$$
f(x)=\sum_{\{n \mid x \times 0 \times 1,\}} \frac{1}{n^{2}} \leq \sum_{\{n \mid x \times 0,0,\}} \frac{1}{n^{2}}=f(y),
$$

where the inequality holds because

$$
\begin{aligned}
A_{x} \subseteq A_{y} & \Rightarrow\left\{n \mid x_{n} \in A_{x}\right\} \subseteq\left\{n \mid x_{n} \in A_{y}\right\} \\
& \Rightarrow\left|\left\{n \mid x_{n} \in A_{x}\right\}\right| \leq\left|\left\{n \mid x_{n} \in A_{y}\right\}\right|,
\end{aligned}
$$

So the latter sum has at least as many terms and everything is positive. So $f(x) \leqslant f(y)$.

Claim. f is continuous on $\mathbb{R} \backslash X$ since $\sum f_{n} \xrightarrow{u} f$ and each f_{n} is continuous there.

Since $\left|f_{n}(x)\right| \leqslant 1$ by de finition, and

$$
\left|f_{n}(x) / n^{2}\right| \leqslant\left|1 / n^{2}\right|:=M_{n} \text { where } \sum M_{n}<\infty \text {. }
$$

$\sum f_{n} \xrightarrow{u} f$ by the M test.
Note that for a fixed $n, D_{f_{n}}=\left\{x_{n}\right\}$. This is
because if we take a sequence $\left\{y_{i}\right\} \rightarrow x_{n}$ with each
$y_{i}>x_{n}$, then $f\left(y_{i}\right)=1$ for every i, and

$$
\lim _{i \rightarrow \infty} f\left(y_{i}\right)=\lim _{i \rightarrow \infty} 1=1 \neq f\left(\lim _{i \rightarrow \infty} y_{i}\right)=f\left(x_{n}\right)=0
$$

So f_{n} is not continuous at $x=x_{n}$. Otherwise, either $x>x_{n}$ or $x<x_{n}$, in which case we can let ε be arbitrary and choose $\delta<\left|x-x_{n}\right|$ to get

$$
y \in B_{\delta}(x) \Rightarrow\left\{\begin{array}{l}
y>x_{n} \Rightarrow|f(y)-f(x)|=|0-0|<\varepsilon \\
y<x_{n} \Rightarrow|f(y)-f(x)|=|1-1|<\varepsilon
\end{array}\right.
$$

Letting $F_{N}=\sum_{n=1}^{N} f_{n}$, we find that $F_{N}=f_{1}+f_{2}+\ldots+f_{N}$
discontinuous at: $\left\{\begin{array}{c}\uparrow \\ \uparrow\end{array}\right\} \cup\left\{x_{2}\right\} \cup \cdots \cup\left\{x_{N}\right\}$$\quad\left\{\begin{array}{c}S_{0} F_{N} \text { is continuous on } \\ \mathbb{R} \backslash \bigcup_{i=1}^{N}\left\{x_{N}\right\} .\end{array}\right.$ and since $\mathbb{R} \backslash X \subseteq \mathbb{R} \backslash \bigcup_{i=1}^{N}\left\{x_{N}\right\}, \quad F_{N}$ is continuous there too. But then $f=$ uniform limit $\left(F_{N}\right)$ is continuous on $\mathbb{R} \backslash X$.
(5a) Let $X=\left(C(I),\|\cdot\|_{\infty}\right)$ where $I=[0,1]$, $C(I)=\{f: I \rightarrow \mathbb{R} \mid f$ is continuous $\}$, and $d(f, g)=\|f-g\|_{\infty}=\sup _{x \in I}|f(x)-g(x)|$.

Claim: X is a metric space.

1) $d(f, g)=0 \Rightarrow f=g$

If $\sup _{x \in I}|f(x)-g(x)|=0$ then $|f(x)-g(x)|=0 \quad \forall x \in \mathbb{R}$, so $f(x)=g(x) \forall x \in \mathbb{R}$ and $f=g$.
2) $d(f, g)=d(g, f)$

We have $d(f, g)=\sup _{x \rightarrow 1}^{x+1}|f(x)-g(x)|$
$\sup _{x \in I}|g(x)-f(x)|$

$$
=d(g, f)
$$

3) $d(f, h) \leq d(f, g)+d(g, h)$

We have $d(f, g)=\sup _{x \in I}|f(x)-g(x)|$

$$
=\sup _{x \in I}|f(x)-h(x)+h(x)-g(x)|
$$

$$
\begin{aligned}
& \leq \sup _{x \in I}(|f(x)-h(x)|+|h(x)-g(x)|)^{\curvearrowleft \sim^{\Delta} \mathbb{R}^{- \text {ineq }}} \\
& =\sup _{x \in I}|f(x)-h(x)|+\sup _{x \in I}|h(x)-g(x)| \\
& =d(f, h)+d(h, g) .
\end{aligned}
$$

So X is a metric space.
Claim: X is complete
Let $\left\{f_{i}\right\}$ be a Cauchy sequence in X, we will show that it converges in X. Since $\left\{f_{i}\right\}$ is Cauchy in X, we have

$$
\forall \varepsilon>0, \exists N_{0} \mid n \geq m \geq N_{0} \Rightarrow\left\|f_{n}-f_{m}\right\|_{\infty}<\varepsilon
$$

First we will define a candidate limit function f, then show $f \in X$.

1) Define $f:=\lim _{n \rightarrow \infty} f_{n}$ by $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$.

This is well-defined; let $S_{x}=\left\{f_{i}(x)\right\} \subseteq \mathbb{R}$ for a fixed x, and we claim S_{x} is Cauchy in \mathbb{R}, which is complete. This follows because if $\left\{f_{i}\right\}$ is Cauchy in X, then

$$
\left|f_{n}(x)-f_{m}(x)\right| \leq \sup _{x \in I}\left|f_{n}(x)-f_{m}(x)\right|=\left\|f_{n}-f_{m}\right\|_{\infty} \rightarrow 0
$$

2) $f \in X$, for which it suffices to show f is continuous.

Let $\varepsilon>0$, and since $\left\{f_{i}\right\}$ is Cauchy, choose No large s.t.

$$
n \geq N_{0} \Rightarrow\left\|f_{n}-f\right\|_{\infty}<\frac{\varepsilon}{3}
$$

Now fix $n \geq N_{0}$; since f_{n} is continuous, choose δ such that

$$
|x-y|<\delta \Rightarrow\left|f_{n}(x)-f_{n}(y)\right|<\frac{\varepsilon}{3}
$$

Then

$$
\begin{aligned}
|x-y|<\delta \Rightarrow|f(x)-f(y)| & \left|f(x)-f_{n}(x)+f_{n}(x)-f_{n}(y)+f_{n}(y)-f(y)\right| \\
& \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}(y)\right|+\left|f_{n}(y)-f(y)\right| \\
& \leq \sup _{x \in I}\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}(y)\right|+\sup _{y \in I}\left|f_{n}(y)-f(y)\right| \\
& =\left\|f-f_{n}\right\|_{\infty}+\left|f_{n}(x)-f_{n}(y)\right|+\left\|f_{n}-f\right\|_{\infty} \\
& \leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon,
\end{aligned}
$$

So f is continuous, $f=\lim f_{n} \in X$, and X is complete.
(5b) Let $B=\left\{f \in X \mid\|f\|_{\infty} \leq 1\right\}$
Claim: B is closed.
Let f be a limit point of B, so there is some sequence $f_{n} \rightarrow f$ in X with each $f_{n} \in B$ so $\left\|f_{n}\right\|_{\infty} \leq 1 \forall n$.

Let $\varepsilon>0$, and since $f_{n} \rightarrow f$ in $X_{\text {, choose }}^{N_{0}}$ such that

$$
n \geq N_{0} \Rightarrow\left\|f_{n}-f\right\|<\varepsilon
$$

Then,

$$
\begin{aligned}
\|f\|_{\infty} & =\left\|f-f_{n}+f_{n}\right\|_{\infty} \\
& \leq\left\|f \cdot f_{n}\right\|_{\infty}+\left\|f_{n}\right\|_{\infty} \\
& <\varepsilon+1
\end{aligned}
$$

and taking $\varepsilon \rightarrow 0$ yields $\|f\|_{\infty} \leq 1$.
Claim: B is bounded
A subset $B \subseteq X$ is bounded iff there is some $X \in X$ and Some $r>0$ in \mathbb{R} where $B \subset N(r, x)=\{y \in X \mid d(y, x)<r\}$.

Choose $x=0, r=2$, then $f \in B \Rightarrow d(f, 0)=\|f-0\|_{\infty}=1<2$, so $f \in N(2,0)$.

Claim: B is not compact.
Since B is a metric space, B is compact of B is sequentially compact.
Define f_{n} as the triangle.

Then $f\left(\xrightarrow{\mathbb{R}} f\right.$ where $f(x)= \begin{cases}1, & x=0 \\ 0, & x \in(0,1],\end{cases}$ and so $\forall n,\left\|f_{n}-f\right\|_{\infty}=1$, attained at $x=0$. So $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{\infty} \neq 0$, and $\left\{f_{n}\right\}$ does not converge in X, nor can any subsequence.

Claim: B is not totally bounded.
If it were, $\forall \varepsilon$ there would exist a finite collection $\left\{g_{i}\right\}_{i=1}^{N} \subseteq B$ such that $B \subseteq \bigcup_{i=1}^{N} N\left(\varepsilon, g_{i}\right)$ where

$$
N\left(\varepsilon, g_{i}\right)=\left\{h \in B \mid\left\|h-g_{i}\right\|<\varepsilon\right\} .
$$

Note that if $h_{1}, h_{2} \in N\left(\varepsilon, g_{i}\right)$ then $\left\|h_{1}-h_{2}\right\| \leq\left\|h_{1}-g\right\|+\left\|g-h_{2}\right\|<2 \varepsilon$.

So choose $\varepsilon=\frac{1}{2}$, and consider the collection $\left\{f_{n}\right\}_{n=1}^{\infty}$.
Since $\left\|f_{n}-f_{m}\right\|=1$, each $N\left(\varepsilon, g_{i}\right)$ can contain at most one f_{n}, since $f_{n}, f_{m} \in N\left(\varepsilon, g_{i}\right)$ for $n \neq m$ would imply $\left\|f_{n}-f_{m}\right\|_{\infty}<2 \varepsilon=2\left(\frac{1}{2}\right)=1$. But there are finitely many $N\left(\varepsilon, g_{i}\right)$ and infinitely many f_{n}, so if this is a cover of B, so $N\left(\varepsilon, g_{i}\right)$ must contain at least $2 f_{n}^{s}$. 耿
(Ga) Claim: If $\sum g_{n} \xrightarrow{u} G$, then $g_{n} \xrightarrow{u} 0$.
Let $G_{N}=\sum_{n=1}^{N} g_{n}$ and $G=\lim _{N \rightarrow \infty} G_{N}$.
Suppose $G_{N} \xrightarrow{u} G$, then choose N large enough so that

$$
\forall x \in X, n \geq N \Rightarrow\left|G_{n}(x)-G(x)\right|<\frac{\varepsilon}{2}
$$

Then letting $n>n-1>N$, we have

$$
\begin{aligned}
\left|g_{n}(x)\right| & =\left|\sum_{i=1}^{n} g_{i}(x)-\sum_{i=1}^{n-1} g_{i}(x)\right| \\
& =\left|\left(\sum_{i=1}^{n} g_{i}(x)-G(x)\right)-\left(\sum_{i=1}^{n-1} g_{i}-G(x)\right)\right| \\
& \leq\left|\sum_{i=1}^{n} g_{i}(x)-G(x)\right|+\left|\sum_{i=1}^{n-1} g_{i}-G(x)\right| \\
& \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

So $\forall x \in X,\left|g_{n}(x)\right|<\varepsilon \Rightarrow g_{n} \xrightarrow{u} 0$.
Now let $g_{n}=1 / 1+n^{2} x$, weill show g_{n} does not converge to 0 uniformly.
Note $g_{n} \xrightarrow{u} g$ iff $\forall \varepsilon, \exists N_{0}\left|\forall x, n \geq N_{0} \Rightarrow\right| g_{n}(x)-g(x) \mid<\varepsilon$, so let $\varepsilon<\frac{1}{2}, N_{0}$ be arbitrary, and choose $x_{0}<1 / N_{0}^{2}$. Then,

$$
\left|g_{N_{0}}\left(x_{0}\right)\right|=\frac{1}{\left|1+N_{0}^{2} x\right|}=\frac{1}{\mid 1+N_{0}^{2}\left(1 / N_{0}^{2}\right)}=\frac{1}{2}>\varepsilon .
$$

Claim: g is continuous on $(0, \infty)$.
Let $x \in(0, \infty)$ be arbitrary, and choose $a<x$. We will show g converges uniformly on $[a, \infty)$, and since each g_{n} is continuous on $[a, \infty)$ as well, g will be the uniform limit of continuous functions and thus continuous itself.

We can use the M-test. Since $x>a$,

$$
\begin{aligned}
& \left|1 / 1+n^{2} x\right| \leq\left|1 / n^{2} x\right| \leq\left|1 / n^{2} a\right|=\frac{1}{a}\left|\frac{1}{n^{2}}\right|, \\
& \text { where } \sum_{n=1}^{\infty} \frac{1}{a} \frac{1}{n^{2}}=\frac{1}{a} \sum \frac{1}{n^{2}}<\infty,
\end{aligned}
$$

So g converges uniformly on $[a, \infty)$.
(bb) Claim: g is differentiable on $(0, \infty)$.
If $g^{\prime}(x)$ exists, we have

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{a \rightarrow x}(x-a)^{-1}(g(x)-g(a)) \\
& =\lim _{a \rightarrow x}(x-a)^{-1} \sum_{n=1}^{\infty} \frac{-n^{2}(x-a)}{\left(1+n^{2} x\right)\left(1+n^{2} a\right)} \\
& =\lim _{a \rightarrow x} \sum_{n=1}^{\infty} \frac{-n^{2}}{\left(1+n^{2} x\right)\left(1+n^{2} a\right)} \\
& =\sum\left(-n^{2}\right) /\left(1+n^{2} x\right)^{2}
\end{aligned}
$$

which exists because it converges uniformly on $[a, \infty)$, as

$$
\left|\frac{-n^{2}}{\left(1+n^{2} x\right)^{2}}\right| \leq\left|\frac{n^{2}}{\left(n^{2} x\right)^{2}}\right|=\left|\frac{1}{n^{2} x^{2}}\right| \leq\left|\frac{1}{a^{2} n^{2}}\right|:=M_{n}
$$

where $\sum M_{n}=\sum \frac{1}{a^{2} n^{2}}=\frac{1}{a^{2}} \sum \frac{1}{n^{2}}<\infty$.
So g is continuously differentiable on $(0, \infty)$.
(Ta) Claim: $h_{n} \xrightarrow{u} 0$ on $[0, \infty)$
Note that $h_{n}^{\prime}(x)=\frac{1-n x}{(1+x)^{n}} \Rightarrow h_{n}^{\prime}=0$ iff $x=1 / n$ and

$$
h_{n}^{\prime \prime}(x)=\frac{1+x+n x}{n x^{2}(1+x)^{n-1}} \text { and } h_{n}^{\prime \prime}\left(\frac{1}{n}\right)<0 \text {, }
$$

So $x=\frac{1}{n}$ is a global maximum and thus

$$
\forall x, \quad\left|h_{n}(x)\right| \leq\left|h_{n}\left(\frac{1}{n}\right)\right|=\left|\frac{1 / n}{\left(1+\frac{1}{n}\right)^{n}}\right|=\frac{1}{n\left(1+\frac{1}{n}\right)^{n}} \leq \frac{1}{2 n} \quad \text { for } n>1
$$

so $\sup _{x \in[0, \infty)}\left|h_{n}(x)\right|=\left|h_{n}\left(\frac{1}{n}\right)\right|=O\left(\frac{1}{n}\right) \rightarrow 0$, thus $\left\|h_{n}\right\|_{\infty} \rightarrow 0$ and $h_{n} \rightarrow 0$ uniformly.
(7b) Let $h(x)=\sum_{n=1}^{\infty} h_{n}(x)=\sum_{n=1}^{\infty} x /(1+x)^{n+1}$
i) Demonstrably, $h(0)=0$, and for a fixed x we have

$$
\begin{aligned}
h(x)=\sum_{n=1}^{\infty} x /(1+x)^{n+1} & =(x / 1+x) \sum_{n=1}^{\infty}(1 / 1+x)^{n} \\
& =\frac{x}{1+x}\left(\frac{1}{1-(1 / 1+x)}\right) \quad \begin{array}{l}
\text { since } x>0 \Rightarrow \\
(1 / 1+x)<1
\end{array} \\
& =1 .
\end{aligned}
$$

ii) It can not converge uniformly on $[0, \infty)$, otherwise h would be the uniform limit of continuous functions, but h is discontinuous.
(7c) Let $a>0$ and $X=[a, \infty)$.
Claim: $\sum h_{n} \xrightarrow{u} h$ on X.
Since $x>a$, we have

$$
\left|h_{n}(x)\right|=\left|\frac{x}{(1+x)^{n+1}}\right| \leq\left|\frac{x}{1+n x+n^{2} x^{2}}\right| \leq\left|\frac{a}{1+n a+n^{2} a^{2}}\right| \leq\left|\frac{a}{n^{2} a}\right|=\left|\frac{1}{n^{2} a}\right|
$$

So let $M_{n}=1 / a n^{2}$, then $\sum M_{n}<\infty \Rightarrow \sum h_{n} \xrightarrow{u} h$
by the M test.

Back
Garza
(1) Suppose E is bounded, so $\operatorname{diam}(E) \leq M$ for some fixed
M. In particular, if $Q_{i} \subseteq E$ is an interval, then $\left|Q_{i}\right| \leq M$. Let $\varepsilon>0$, and choose $\left\{Q_{i}\right\} \rightarrow E$ s.t.
for each $i, \quad\left|Q_{i}\right| \leq \varepsilon / 2 M$
Then let $L_{i}=Q_{i}^{2}$. We then have

$$
\begin{aligned}
\left|L_{i}\right| \leqslant\left|b^{2}-a^{2}\right|=|b-a| \cdot|b+a| & =\left|Q_{i}\right| \cdot|b+a| \\
& \leq\left|Q_{i}\right| \cdot 2 M \\
& \leq\left(\varepsilon / 2^{i+1} M\right) 2 M \\
& =\varepsilon / 2^{i}
\end{aligned}
$$

So $\sum_{i=1}^{\infty}\left|L_{i}\right| \leq \sum_{i=1}^{\infty} \varepsilon / 2^{i}=\varepsilon$, and $\left\{L_{i}\right\} \rightarrow E^{2}$, so

$$
m_{*}\left(E^{2}\right)<\varepsilon \rightarrow 0
$$

Claim. It suffices to consider the bounded case. Pf If E is not bounded, consider $F_{n}=E \cap \overline{B(n, 0)}$.

Then F_{n} is bounded (by n), and since $F_{n} \subseteq E \Rightarrow m_{*}\left(F_{n}\right) \leq m_{*}\left(E_{-}\right)=0$ by subadditivity, $m_{*}\left(F_{n}^{2}\right)=0$ by the bounded case.

But then $E^{2}=\bigcup_{n=1}^{\infty} F_{n}^{2} \Rightarrow m_{*}\left(E^{2}\right)=m\left(\bigcup_{n=1}^{\infty} F_{n}^{2}\right) \leq \sum_{n=1}^{\infty} m_{*}\left(F_{n}^{2}\right)=0$ by countable subadditivity.
(2) Note

1) $E_{1}=E_{1} \backslash E_{2} \sqcup E_{1} \cap E_{2}$
2) $E_{2}=E_{2} \backslash E_{1} \sqcup E_{1} \cap E_{2}$
3) $E_{1} \Delta E_{2}=E_{2} \backslash E_{1} \sqcup E_{1} \backslash E_{2}$
4) $E_{1} \cup E_{2}=\left(E_{1} \Delta E_{2}\right) \sqcup\left(E_{1} \cap E_{2}\right)$
$\left.\begin{array}{l}] \\ \\ \end{array}\right]$

All disjoint unions, so we con freely apply measures and use countable additivity.

So

$$
\begin{align*}
m\left(E_{1}\right)+m\left(E_{2}\right) & =m\left(E_{1} \backslash E_{2}\right)+m\left(E_{1} \cap E_{2}\right) \\
& +m\left(E_{2} \backslash E_{1}\right)+m\left(E_{1} \cap E_{2}\right) \quad \text { by }(1),(2) \\
& \left.=m\left(E_{1} \Delta E_{2}\right)+m\left(E_{1} \cap E_{2}\right)+m\left(E_{1} \cap E_{2}\right)\right\} \text { by } \tag{3}\\
& \left.=m\left(E_{1} \cup E_{2}\right)+m\left(E_{1} \cap E_{2}\right) . \quad\right\} \text { by }(4)
\end{align*}
$$

Ba) Suppose $m(A)=m(B)<\infty$.
Since $A \subseteq E \subseteq B$, we have $E \backslash A \subseteq B \backslash A$. However,

$$
\begin{aligned}
B=A \sqcup(B \backslash A) \Rightarrow & m(B)=m(A)+m(B \backslash A) \\
\Rightarrow & m(B)-m(A)=m(B \backslash A) \\
& (\text { since } m(A)<\infty) \\
\Rightarrow & m(B \backslash A)=0 \\
& \text { (since } m(B)=m(A))
\end{aligned}
$$

So $m_{*}(E \backslash A)=0$ by subadditivity.
But then
$E=A L(E \backslash A)$, where A is measurable by assumption and $E \backslash A$ is an outer measure O set and thus measurable.

So E is measurable, and

$$
\begin{aligned}
m(E) & =m(A)+m(E \backslash A) \\
& =m(A)+0 \\
\Rightarrow m(E) & =m(A)=m(B)<\infty
\end{aligned}
$$

Bb) Idea: $[0,1] \subseteq N \subseteq[-1,2]$, so take

- $A=(-\infty, 0)$
- $E=A \cup(N+1)$, where N is the non-measurable set, and

$$
B=\mathbb{R}
$$ $N+1=\{x+1 \mid x \in \mathcal{N}\}$ is non-measurable by the same argument used for N.

Claim: E is not measurable.
Supposing it were, note that A^{c} is measurable, and countable intersections of measurable sets are measurable, so

$$
E \cap A^{c}=(A \cup(N+1)) \cap A^{c}=N+1
$$

must be measurable.
4) Let A, B be fixed, and define

$$
\begin{aligned}
E_{t} & :=\left\{x \in \mathbb{R}^{n}\left|\inf _{a \in \mathbb{A}}\right| x-a \mid \leq t\right\} \cap B \\
& =\left\{x \in \mathbb{R}^{n} \mid \operatorname{dist}(x, A) \leq t\right\} \cap B
\end{aligned}
$$

and

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

$$
t \mapsto \mu\left(E_{t}\right)
$$

Note that $E_{0}=A$, so $f(0)=\mu(A)$, and since B is compact and thus bounded, there is some $t=T$ such that $B \subseteq E_{T}$. So $f \operatorname{maps}[0, T]$ to $[\mu(A), \mu(B)+M]$ for some M.
Claim: f is cts, and for all $t \in\left[0, T^{1}\right]$ for some $T^{\prime}, A \subseteq E_{t} \subseteq B$ and each E_{t} is compact.

Note that if this is true, we can first apply the intermediate value theorem to find a T^{\prime} such that $f\left(T^{\prime}\right)=m(B)$, then restrict f to map $\left[0, T^{\prime}\right]$
to $[m(A), m(B)]$. We can apply it again to pull back any $c \in[m(A), m(B)]$ to a t satisfying $c=f(t)=\mu\left(E_{t}\right)$, in which case $A \subseteq E_{t} \subseteq B$ and $\mu(A) \leq c=\mu\left(E_{t}\right) \leq \mu(B)$ as desired.

- f is cts. Well show that the 2 -sided limit $\lim _{t_{i} \rightarrow t} f\left(t_{i}\right)$ exists and is equal to $f(t)$, using the fact that $a \leq b \Rightarrow E_{a} \leq E_{b}$.

If $t_{i} \nearrow t_{1}$ then $E_{t_{1}} \subseteq E_{t_{2}} \subseteq \cdots \subseteq E_{t_{1}}$, and $\bigcup_{i \in \mathbb{N}} E_{t_{i}}=E$, so
by continuity of measure from below, we have $\lim _{i \rightarrow \infty} \mu\left(E_{t_{i}}\right)=\mu(E)$, so

$$
\lim _{t_{i} \rightarrow t} f\left(t_{i}\right)=\lim _{i \rightarrow \infty} \mu\left(E_{t_{i}}\right)=\mu\left(E_{t}\right)=f(t) .
$$

Similarly, if $t_{i}>t$, noting that $t_{i} \leq T^{\prime} \Rightarrow t_{1} \leqslant T^{\prime} \Rightarrow \mu\left(E_{t_{1}}\right) \leq \mu(B)<\infty$, and $E_{t_{1}} \geq E_{t_{2}} \geq \cdots \geq E$, so
we can apply continuity of measure from above to obtain

$$
\lim _{t_{i} \rightarrow t} f\left(t_{i}\right)=\lim _{i \rightarrow \infty} \mu\left(E_{t_{i}}\right) \stackrel{\downarrow}{=} \mu\left(E_{t}\right)=f(t)
$$

So f is cts.

- E_{t} is compact:

Since $E_{t} \subseteq B$ which is compact and thus bounded, it suffices to show that E_{t} is closed. But letting $N_{t}=\left\{x \in \mathbb{R}^{n} \mid \operatorname{dist}(x, A)<t\right\}$, we have $E_{t}=\overline{N_{t} \cap B}$, where N_{t} is open because $N_{t}=\bigcup_{a \in A} \frac{\left\{x \in \mathbb{R}^{n} \mid \text { dist }(x, a)<r\right\}}{\text { Open ball around a }}$, and $N_{t} \subseteq B \Rightarrow N_{t} \cap B$ is still open. But the closure of any open set is closed. - $t \in\left[0, T^{1}\right] \Rightarrow A \subseteq E_{t} \subseteq B$.
$E_{0}=A$ and $t \leqslant s \Rightarrow E_{t} \subseteq E_{s}$, so $A \leq E_{t}$ for all t.
But $E_{t}=\overline{N_{t} \cap B} \subseteq \bar{B}=B$ since B is closed, so $E_{t} \subseteq B$ for all t as well.

5a) Recalling that N is constructed by considering $\frac{\mathbb{R} \cap[0,1)}{\mathbb{Q} \cap[0,1)}$ and taking exactly one element from each equivalence class, we can note that if $E \subseteq N$, then E contains a choice of at most one element from each equivalence class. We can then take a similar enumeration $Q \cap[-1,1]=\left\{q_{i}\right\}_{i=1}^{\infty}$ and define $E_{j}:=E+q_{j}$.
Then $E \subseteq N \Rightarrow \bigsqcup_{j \in N} E_{j} \subseteq \bigsqcup_{j \in \mathbb{N}} N_{j} \subseteq[-1,2]$, and since E is measurable, we must have

$$
u(E)=u\left(\bigsqcup_{j \in \mathbb{N}} E_{j}\right)=\sum_{j \in \mathbb{N}} \mu\left(E_{j}\right)=\sum_{j \in \mathbb{N}} \mu(E) \leq 3,
$$

which can only hold if $m(E)=0$.

5b) Suppose $\mu(I \backslash N)<1$, so $m(I \backslash N)=1-2 \varepsilon$ for Some $\varepsilon>0$. Then choose an open $G \geq I \backslash N$ such that $\mu(G)=\mu(I \backslash N)+\varepsilon=1-\varepsilon$. Then $I \backslash G \subseteq N$,
and so by (1) we must have $\mu(I \backslash G)=0$. But then

$$
\begin{aligned}
I=G U I \backslash G & \Rightarrow \mu(I)=\mu(G)+\mu(I \backslash G) \\
& \Rightarrow 1=1-\varepsilon<1, \text { a contradiction. }
\end{aligned}
$$

5c) Let

$$
\left.\begin{array}{l}
E_{1}=N \\
E_{2}=I \backslash N
\end{array}\right\} \Rightarrow I=E_{1} \cup E_{2}
$$

but $m_{*}\left(E_{1}\right)=m_{*}(N)>0$, otherwise N would be measurable so $m_{x}\left(E_{1} \cup F_{2}\right)=1$ but

$$
m_{*}\left(E_{1}\right)+m_{*}\left(E_{2}\right)=1+\varepsilon \text { for some } \varepsilon>0 \text {. }
$$

Ga) Claim. E is a countable union of a countable intersection of measurable sets, and thus measurable.

Proof: Write $E=\left\{\left.x\right|_{x \in E}\right.$ for infinitely many $\left.j\right\}$, the claim is that

$$
E=\bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} E_{j} .
$$

$\cdot E \subseteq \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} E_{j} \cdot S_{\text {uppose }} x$ is in infinitely many E_{j}. Then for any fixed k, there is some $M \geq k$ such that $x \in E_{M} \subseteq \bigcup_{j=k}^{\infty} E_{j}:=S_{k}$. But this happens for every k,

So $\quad x \in \bigcap_{k=1}^{\infty} S_{k}$.

- $E \supseteq \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} E_{j}$. Suppose $x \in \bigcup_{j=k}^{\infty} E_{j}$ for every k. Then if x were in only finitely many E_{j}, we could pick a maximal E_{M} such that $K \geq M \Rightarrow x \notin E_{k}$, and so $x \otimes \bigcup_{j=M}^{\infty} E_{j}$ - a contradiction.

Claim. $m(E)=0$
We ll use the fact that $\sum_{n=1}^{\infty} a_{n}<\infty \Rightarrow \lim _{j \rightarrow \infty} \sum_{n=j}^{\infty} a_{n}=0$, i.e. the tails of a convergent sum must become arbitrarily small.
Since $E=\bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} E_{j}, E \subseteq \bigcup_{j=k}^{\infty} E_{j}$ for all k. So $m(E) \leq \sum_{j=k}^{\infty} E_{j} \rightarrow 0$, forcing $m(E)=0$.
Gb) Fix x and let $E_{p i j}=\left\{x \in \mathbb{R}| | x-P / j \mid \leq 1 / j^{3}\right\}$ and $E_{j}=\bigcup_{p \text { caprine }} E_{p, j} \subseteq \bigcup_{p=1}^{j} E_{p, j}$, and since $E_{p, j} \subseteq B\left(1 / j^{3}, p / j\right)$, $m\left(E_{p, j}\right) \leqslant 2 / j^{3}$ and thus $m\left(E_{j}\right) \leqslant q\left(2 / j^{3}\right)=2 / j^{2}$.

But then $\sum_{j=1}^{\infty} m\left(E_{j}\right) \leqslant \sum_{j=1}^{\infty} 2 / j^{2}<\infty$. Moreover,
$E=\bigcap_{j=1}^{\infty} \bigcup_{j=k}^{\infty} E_{j}=\left\{x \in \mathbb{R} \mid\right.$ there are infinitely many $j^{\text {ss }}$ such that there exists ap coprime to j st. $\left.|x-1 / j| \leq 1 / j^{3}\right\}$,
which is precisely the set we want. So by (1), $m(E)=0$.
(Ia) If $m_{*}(E)$, take $B=\mathbb{R}^{n}$, otherwise suppose $m_{*}(E)<\infty$ and let $\varepsilon>0$. Choose $\left\{Q_{i}\right\} \rightarrow E$ then choose open $\left\{L_{i}\right\}$ s.t. $Q_{i} \leq L_{i}$ and $\left|L_{i}\right|<\left(m_{*}(E)+\varepsilon\right) / 2^{i}$.
Then define $L(\varepsilon)=\bigcup_{i=1} L_{i}$; then $L(\varepsilon)$ is open (and thus Bore) and

$$
m(L(\varepsilon))=m_{*}(L(\varepsilon)) \leqslant \sum_{i=1}^{\infty}\left|L_{i}\right|<m_{*}(E)+\varepsilon .
$$

So take the sequence $\varepsilon_{k}=1 / k \rightarrow 0$; then let $L^{n}=\bigcap_{k=1}^{n} L_{1 / k}$. We have $L^{k+1} \subseteq L^{k} \forall k$, and $m\left(L^{1}\right) \leq m_{*}(E)+1<\infty$, so $\left.L^{n}\right\rangle E$ and by upper continuity of measure,

$$
m\left(\bigcap_{n=1}^{\infty} L^{n}\right)=m\left(\bigcap_{k=1}^{\infty} L_{1 / k}\right)=\lim _{k \rightarrow \infty} m\left(L_{1 / k}\right)=\lim _{k \rightarrow \infty} m_{*}(E)+1 / k=m_{*}(E),
$$

So take $B=\bigcap_{n=1}^{\infty} L^{n}$.
(116) Let $\varepsilon>0$; since $E \in \mathcal{Z}\left(\mathbb{R}^{n}\right)$, there exists a closed set K_{ε} st. $m\left(E \backslash K_{\varepsilon}\right)<\varepsilon$. If $m(E)<\infty$, then $m\left(K_{\varepsilon}\right)=m(E)-\varepsilon$, so take the sequence $\varepsilon_{n}=1 / n$ and let $K^{n}=\bigcup_{i=1}^{n} K_{y_{i}}$, then $K^{n} \leq K^{n+1} \forall i$ and $K^{n} \nearrow E$, so by continuity of measure from below,

$$
m\left(\bigcup_{n=1}^{\infty} K^{n}\right)=\lim _{n \rightarrow \infty} m\left(K^{n}\right)=\lim _{n \rightarrow \infty} m(E)-1 / n=m(E),
$$

so take $B=\bigcup_{n=1}^{\infty} k^{n}$, which is a countable union of closed sets and thus Borel.
If $m(F)=\infty$, let $E_{n}=E \cap \overline{B(n, 0)}$. Then $\exists B_{n}$ (by the bounded case) such that $B_{n} \subseteq E_{n}$ is closed and $m\left(B_{n}\right)=m\left(E_{n}\right)$. But $E_{n} \nearrow E$, so

$$
m(E)=m\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)=\lim _{n \rightarrow \infty} m\left(B_{n}\right)=m\left(\bigcup_{n=1}^{\infty} B_{n}\right),
$$

So take $B=\bigcup_{n=1}^{\infty} B_{n}$, which is bored since each B_{n} is.
(Ic) Since $m(E)=m_{*}(E)$, choose $\left\{Q_{j}\right\} \rightrightarrows E$ closed cubes such that $\sum_{j=1}^{\infty}\left|Q_{j}\right|<m(E)+\varepsilon / 2$.
Since $\sum_{i=1}^{\infty}\left|Q_{i}\right|$ converges, choose N such that $\sum_{i=N}^{\infty}\left|Q_{i}\right|<\varepsilon / 2$, and let $A=\bigcup_{i=1}^{N-1} Q_{i}$. Then,

$$
\begin{aligned}
& E \Delta A=(\underbrace{\left.E \bigcup_{i}^{N-1} Q_{i}\right)}_{i=1} \sqcup\left(\bigcup_{i=1}^{N-1} Q_{i} \backslash E\right) \\
& \subseteq \bigcup_{i=N}^{\infty} Q_{i} \bigcup_{i=1}^{\infty}\left(\bigcup_{i=1}^{\infty} Q_{i} \backslash E\right) \\
& \Rightarrow m(E \Delta A) \leq m\left(\bigcup_{i=N}^{\infty} Q_{i}\right)+\left(m\left(\bigcup_{\tilde{i=1}}^{\infty} Q_{i}\right)-m(E)\right) \leq \varepsilon / 2+((m(E)+\varepsilon / 2)-m(E))=\varepsilon .
\end{aligned}
$$

(2a) Choose an open set $0 \Rightarrow E$ s.t. $m_{*}(0)<(1 / 1-\varepsilon) m_{*}(E)$, so that $(1-\varepsilon) m_{*}(0)<m_{*}(E)$. Then write $\mathcal{O}=\bigcup_{i=1}^{\infty} Q_{i}$ with each Q_{i} a closed cube, then towards a contradiction Suppose that $m\left(E \cap Q_{i}\right)<(1-\varepsilon) m\left(Q_{i}\right) \forall i$. Then, writing $E=\bigcup_{i=1}^{\infty}\left(E \cap Q_{i}\right)$, we have

$$
m(E)=\sum_{i=1}^{\infty} m\left(E \cap Q_{i}\right)<\sum_{i=1}^{\infty}(1-\varepsilon) m\left(Q_{i}\right)=(1-\varepsilon) m\left(\bigcup_{i=1}^{\infty} Q_{i}\right)=(1-\varepsilon) m(\theta)<m(E) * *
$$

So we must have $m\left(E \cap Q_{j}\right) \geq(1-\varepsilon) m\left(Q_{j}\right)$ for some j.
(2b) Let $\varepsilon>0$ be arbitrary, and by (a) choose Q such that $m(E \cap Q) \geq(1-\varepsilon) m(Q)$. Then let $E_{0}=E \cap Q \subseteq E$, so $E_{0}-E_{0} \subseteq E-E$, and supposing towards a contradiction that $E_{0}-E_{0}$ contains no ball around O, choose $d \ll 1$ such that $d \& E_{0}-E_{0}$, and thus $E_{0} \cap E_{0}+d=\varnothing$. Also choose d small enough that $m(Q \cup Q+d)<m(Q)+\varepsilon$.
Then $E_{0} \cup E_{0}+d=E_{0} \cup E_{0}+d$, so $m\left(E_{0} \cup E_{0}+d\right)=2 m\left(E_{0}\right) \geq 2(1-\varepsilon) m(Q)$
Since $E_{0} \cup E_{0}+d \subseteq Q \cup Q+d$, we also have $m\left(E_{0} \cup E+d\right)<m(Q)+\varepsilon$.
But then

$$
2(1-\varepsilon)_{m}(Q) \leq m\left(E_{0} \cup E_{0}+d\right)<m(Q)+\varepsilon
$$

and taking $\varepsilon \rightarrow 0$ yields $2 m(Q)<m(Q)$.
So $E_{0}-E_{0} \subseteq E-E$ must contain an open ball around 0 .
(3) Fix x and let $L=\limsup _{y \rightarrow x} f(y)=\lim _{\delta \rightarrow 0} \sup _{y \in B_{g}(x)} f(y)$. Then consider $S_{\alpha}=\left\{x \in \mathbb{R}^{n} \mid f(x) \leq \alpha\right\}$; we will show every $x \in S_{\alpha}$ has a ball $B_{\delta}(x) \subseteq S_{\alpha}$, making S_{α} open, and since α is arbitrary, this will show f is Bore measurable. Let $x \in S_{\alpha}$, so $f(x)<\alpha$. Then since f is upper semicts, pick δ s.t. $y \in B_{\delta}(x) \Rightarrow f(y) \leq f(x)$. But then $y \in B_{\delta}(x) \Rightarrow f(y) \leq f(x)<\alpha \Rightarrow y \in S_{\alpha}$, so $B_{\delta}(x) \subseteq S_{\alpha}$ as desired.
(4) $S=\left\{x \in \mathbb{R}^{n} \mid \lim f_{n}(x)\right.$ exists $\} \in \mathscr{M}$ iff $S^{c} \in \mathscr{M}$, which is what well show. Noting that if we let $F(x)=\limsup _{n \rightarrow \infty} f_{n}(x), G(x)=\liminf _{n \rightarrow \infty} f_{n}(x)$, then

$$
\begin{aligned}
S^{c} & =\{x \mid F(x)>G(x)\} \\
& =\bigcup_{q \in \mathbb{Q}}\{x \mid F(x)>q>G(x)\} \\
& =\bigcup_{q \in Q}(\{x \mid F(x)>q\} \cap\{x \mid G(x)<q\}
\end{aligned}
$$

$=\bigcup_{q \in \mathbb{Q}}\left(M_{q} \cap N_{q}\right)$ where each M_{q}, N_{q} is measurable, thus making S^{c} a countable union of measurable sets \& thus measurable. ($E . g ., M q$ is measurable exactly because if $\left\{f_{n}\right\}$ are measurable, then $\limsup _{n \rightarrow \infty} f_{n}:=F$ is measurable, as shown in class.)
(5a) f is well-defined because each $x \in C$ has a unique ternary expansion which contains no 1^{s}, and f is cts as we can write $g_{n}(x)=\frac{\left(a_{n} / 2\right) \cdot\left(\frac{1}{2}\right)^{n}}{c t s}$, so $f=\sum_{n=1}^{\infty} g_{n}$, where we have $\lg _{n}(x) \mid \leqslant 1 / 2^{n+1}$ which is summable, so f is uniformly cts by the M-test. Moreover, $(0)_{10}=(0)_{3}=(0.000 \cdots)_{3} \stackrel{f}{\longmapsto}(0.000 \cdots)_{2}=(0)_{10}$, so $f(0)=0$, and $(1)_{10}=(0.222 \cdots)_{3} \stackrel{f}{\longmapsto}(0.111 \cdots)_{2}=(1)_{10}$, so $f(1)=1$.
(5b) $f \rightarrow[0,1]$, so consider $f^{-1}(N)$ for N the non-measurable set. Since this is a subset of a measure zero set, it is measurable, and so $\underbrace{f^{-1}(N)}_{\text {measurable }} \underbrace{\stackrel{f}{\longmapsto}}_{\text {cts }} \underbrace{N}_{\text {mot mexvorabe }}$
(Ga) Since f is cts, constant fus are cts, and f is a piecewise combination of cts $f n s$ that agree on intersections, F is cts. Constant fins are non decreasing, so it only remains to show f is non decreasing on C. Let $x=\sum a_{n} 3^{-n}, y=\sum b_{n} 3^{-n}$, and $x>y$. Then there is some minimal N such that $a_{k}=b_{k} \forall k<N$ and $a_{N}>b_{N}$. Then $\frac{1}{2} a_{N}>\frac{1}{2} b_{N}$, and $\frac{1}{2} a_{k}=\frac{1}{2} b_{k} \forall k<N$, which means that $f(x)>f(y)$ since

$$
f(x)-f(y)=\sum_{n=1}^{\infty}\left(\frac{1}{2} a_{n}-\frac{1}{2} b_{n}\right) 2^{-n}=\frac{1}{2}\left(a_{N}-b_{N}\right) 2^{-N}+\frac{1}{2} \sum_{n=N+1}^{\infty}\left(a_{n}-b_{n}\right) 2^{-n} \geq \frac{1}{2}\left(a_{N}-b_{N}\right) 2^{-N}>0 .
$$

(6b) Since $F(x)$ and $x \mapsto x$ are continuous and nondecreasing, and in fact $x \mapsto x$ is strictly increasing, G is continuous and strictly increasing \& thus injective. To see that G is surjective, we just note that $G(0)=0$ and $G(1)=2$, so this follows from the $I \vee T$.
(6c1) Let I be one of the intervals in C^{c}, then $x, y \in I \Rightarrow F(x)=F(y)$ and so $G(b)-G(a)=b-a=m(I)$. Then $m(I)=m(G(I))$ since G is cts, and so $m\left(G\left(c^{c}\right)\right)=m\left(G\left(\bigsqcup_{n=1}^{\infty} I_{n}\right)\right)=m\left(\bigsqcup_{n=1}^{\infty} I_{n}\right)=1$, so

$$
m(G(c))=m\left([0,2] \backslash G\left(c^{c}\right)\right)=2-1=1
$$

(6c2 We have $\mathbb{R}=\bigsqcup_{q \in \mathbb{Q}}(\mathcal{N}+q)$, so $G(C)=\bigsqcup_{q \in \mathbb{Q}}(G(C) \cap N+q)$, so $m(G(C)) \leq \sum_{i=1}^{\infty}\left(G(C) \cap N+q_{i}\right)$.

$$
0<1=m(G(C))=\sum_{i=1}^{\infty} m\left(G(C) \cap N+q_{i}\right)
$$

Not every term can have $m_{*}\left(E_{i}\right)=0$, so some E_{i} has $m\left(E_{i}\right)>0$. But then E_{i} can not be be measurable, since if we let $E_{i}=G(C) \cap N+q_{i}$, then $x, y \in E_{i} \Rightarrow x-y \in \mathbb{R} \mathbb{Q}$,
so $E_{i}-E_{i}$ can't contain any ball around zero and thus E cant be Lebesgue measurable by (ib). Since $E_{i} \subseteq G(C)$ is a nonmeasurable set, were done.
(6c3) Let $N^{\prime}=E_{i}$, then $N^{\prime}=G(C) \cap N+q_{i}$ for some i, so $G^{-1}\left(N^{\prime}\right) \subseteq C$ and $m(c)=0$ implies $G^{-1}\left(N^{\prime}\right)$ is measurable and $m\left(G^{-1}\left(N^{\prime}\right)\right)=0$. But every cts function is Borel measurable, and since $G\left(G^{-1}\left(N^{\prime}\right)\right)=N^{\prime}$ is not Borel, it can not pull back to a Borel set.
(6d) As shown above, E_{i} is not measurable and $G^{-1}\left(E_{i}\right)$ is null, so take $\varphi=\chi_{G^{-1}\left(E_{i}\right)}$. Then $S_{\alpha}=\{x \in[0,1] \mid \varphi(x)>\alpha\}=\left\{\begin{array}{cc}G^{-1}\left(E_{i}\right), & 0 \leq \alpha<1 \\ {[0,1],} & \alpha=0 \\ \varnothing, & \text { else }\end{array}\right\}$ both of which are measurable, so $\varphi \in \mathbb{M}$. But for $\alpha=\frac{1}{2}, S_{\frac{1}{2}}=\left\{x \in[0,2] \left\lvert\,\left(\varphi \cdot G^{-1}\right)(x)>\frac{1}{2}\right.\right\}=\left\{x \in[0,2] \mid G^{-1}(x) \in G^{-1}\left(E_{i}\right)\right\}=E_{i} \notin M$.

Analysis HW \#4
Rack Garza
(a) Let f_{k} be the following function:

Note that this yields a triangle of area $\frac{1}{2} b h=\frac{1}{2}\left(k+1 / 2^{k+1}-k\right) \cdot 1=2^{-k}$, so we have $\int_{R} f_{k}=\int_{k}^{k+1 / f^{k+1}} f_{k}=2^{-k}$. Moreover, $k \neq j \Rightarrow\left[k, k+1 / 2^{++1]} \cap\left[j, j+1 / 2^{+1}\right]=\phi\right.$, so let $g_{N}=\sum_{k=0}^{N} f_{k}$ and $g=\lim _{N \rightarrow \infty} g_{N}=\sum_{k=0}^{\infty} f_{k}$. Then $g_{N} \nearrow g$, so we can apply the MCT to obtain

$$
\int_{\mathbb{R}} g=\int_{\mathbb{R}} \lim _{N \rightarrow \infty} g_{N}=\lim _{N \rightarrow \infty} \int_{\mathbb{R}} g_{N}=\lim _{N \rightarrow \infty} \int_{\mathbb{R}} \sum_{k=0}^{N} f_{k}=\lim _{N \rightarrow \infty} \sum_{N=0}^{N} \int_{\mathbb{R}} f_{k}=\lim _{N \rightarrow \infty} \sum_{k=0}^{N} 2^{-k}=1
$$

However, $\limsup _{x \rightarrow \infty} g(x)=1>0$, so $\lim _{x \rightarrow \infty} g(x) \neq 0$.
(b) Towards a contradiction, suppose $f_{\varepsilon} L^{+}$is uniformly cts and $\lim _{x \rightarrow \infty} s f(x)=\varepsilon>0$. Choose a sequence $\left\{x_{n}\right\}>\infty$ such that for all i, j we have $\left|x_{i}-x_{j}\right|>1$. Then, for any $\delta<1$ and any $x_{i} x_{j}$, we have $B_{\delta}\left(x_{i}\right) \cap B_{\rho}\left(x_{j}\right)=\phi$. Now by uniform continuity of f, choose δ such that $\delta<1$ and

$$
y \in B_{\delta}(x) \Rightarrow|f(x)-f(y)|<\varepsilon \quad \forall x, y \in \mathbb{R}^{u} .
$$

Now let n be fixed, and consider some $x_{\in} B_{g}\left(x_{n}\right)$. We have $\left|f(x)-f\left(x_{n}\right)\right|<\varepsilon$; note that $\left|f\left(x_{n}\right)\right|>0$ for all n large enough; otherwise the limsup would be zero. It also must be the case that $|f(x)|>\varepsilon$;

$$
\begin{aligned}
\text { otherwise }|f(x)|<\varepsilon \Rightarrow| | f\left(x_{n}\right)|-|f(x)||>|0-\varepsilon|=\varepsilon \text {, so } \\
\qquad \varepsilon<\left|f\left(x_{0}\right)\right|-|f(x)|\left|\leq\left|f\left(x_{n}\right)-f(x)\right|<\varepsilon\right.
\end{aligned}
$$

So $|f(x)|>\varepsilon$. But then

$$
\int_{B S x, 1}|f| \geq \int_{B s x, 1} \varepsilon=\varepsilon \cdot m\left(B_{\delta}\left(x_{n}\right)\right)=\varepsilon \cdot 2 \delta,
$$

and so if we let

$$
X=\bigsqcup_{n=1}^{\infty} B_{\delta}\left(x_{n}\right) \subseteq \mathbb{R}_{1}^{N}
$$

we have

$$
\int_{\mathbb{R}^{\prime}}|f| \geq \int_{x}|f|=\sum_{n=1}^{\infty} \int_{B_{s, n \times 1}}|f| \leq \sum_{n=1}^{\infty} \varepsilon \cdot 2 \delta \longrightarrow \infty \text {, }
$$

contradicting $f \in L^{\prime}$.
2a) Let $X=\left\{x \in \mathbb{R}^{n}\|f(x)\|=\infty\right\}$, then $X \cap X^{c}=\varnothing$ and $\mathbb{R}^{n}=X \sqcup X^{c}$, so

$$
\int_{\mathbb{R}^{n}}|f|=\int_{x}|f|+\int_{x^{c}}|f|=\infty \cdot m(X)+\int_{x^{c}}|f|<\infty
$$

since $f \in L^{\prime}$; but if $m(X)>0$ this yields a contradiction. So we must have $m(X)=0$.
2b) Well use the fact that $A \subseteq B$ and $\int_{B}|f|<\infty$, then $\int_{B}|f|-\int_{A}|f|=\int_{B}|f|$. Noting that

$$
\int_{E}|f|>\left(\int_{\mathbb{R}^{n}}|f|\right)-\varepsilon \Longleftrightarrow \int_{\mathbb{R}^{n}}|f|-\int_{E}|f|<\varepsilon \Longleftrightarrow \int_{E^{c}}|f|<\varepsilon,
$$

we will produce an E s.t. E^{c} satisfies this condition. Write $\mathbb{R}^{n}=\lim _{k \rightarrow \infty} B(K, \vec{O})$, the n-ball of radius k centered at $\vec{O} \in \mathbb{R}^{n}$. Since the map $\left(A \mapsto \int_{A}|f|\right)$ is a measure, it satisfies continuity from below, and since $B(k, \overrightarrow{0}) \nearrow \mathbb{R}^{n}$, we have $\lim _{k \rightarrow \infty} \int_{B(k, \overrightarrow{0})}|f|=\int_{\mathbb{R}^{n}}|f|$.
Since this limit exists, let $\varepsilon>0$ and choose N such that
so $E:=B(N, \vec{O})$ satisfies the desired property.
(3) We want to show a iff b iff c, where
a) $\int f<\infty$
b) $\sum_{k \in \mathbb{Z}} 2^{k} m\left(E_{k}\right)<\infty, \quad E_{k}=\left\{x \mid f(x)>2^{k}\right\}$
c) $\sum_{k \in \mathbb{Z}} 2^{k} m\left(F_{k}\right)<\infty, \quad F_{k}=\left\{x \mid 2^{k}<f(x) \leq 2^{k+1}\right\}$

Note that $F_{:} \cap F_{j}=\varnothing$ if $i \neq j$, and $F_{k}=E_{k} \backslash E_{k+1}$
(b) iff (c): We have

$$
\left.\begin{array}{rl}
\sum_{m=2} 2^{k} m\left(F_{k}\right) & =\sum_{m=2} 2^{k}\left[m\left(E_{k}\right)-m\left(E_{k+1}\right)\right] \\
& =\sum_{k=1}^{k} 2^{k} m\left(E_{k}\right)-\sum_{i=2} 2^{k} m\left(E_{k+1}\right) \\
& =\sum_{k=2}^{k} m\left(E_{k}\right)-\frac{1}{2} \sum_{k=2} 2^{k+1} m\left(E_{k+1}\right) \\
& =\sum_{k=1}^{k} m\left(E_{k}\right)-\frac{1}{2} \sum_{i=2}^{k} m\left(E_{k}\right) \\
& =\sum_{k=1}\left(1-\frac{1}{2}\right) 2^{k} m\left(E_{k}\right) \\
& \left.=\frac{1}{2} \sum_{m=2} 2^{k} m\left(E_{k}\right)\right)
\end{array}\right\}
$$

and so either sum is finite iff the other is.
$(a) \Rightarrow(c)$ and $(b) \Rightarrow(a)$.
Write $X:=\{x \mid f(x)>0\}=\bigsqcup_{v i} F_{k}$, then $\int_{x} f=\sum_{k=2} \int_{F_{k}} f$ and we have

$$
\sum_{k=2} 2^{k} m\left(F_{k}\right) \leq \sum_{k=2} \int_{F_{k}} f \leq \sum_{k=2} 2_{m}^{k+1}\left(F_{k}\right)=\sum_{k=2} 2^{k} m\left(E_{k}\right)
$$

So

$$
\int_{x} f<\infty \Rightarrow \sum_{k=2} 2^{k} m\left(F_{k}\right)<\infty
$$

and

$$
\sum_{k \geq} 2^{k} m\left(E_{k}\right)<\infty \Rightarrow \int_{x} f<\infty .
$$

4) Let $A_{k}=\left\{x \in \mathbb{R}^{n} \mid 2^{k}<\|x\| \leq 2^{k+1}\right\}$, so we have

$$
\begin{aligned}
& A:=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 1\right\}=\sum_{k=1}^{\infty} A_{-k} \\
& B:=\left\{x \in \mathbb{R}^{n} \mid\|x\|>1\right\}=\bigcup_{k=0}^{\infty} A_{k} \\
& \omega_{n} 2^{n k} \leq m\left(A_{k}\right) \leq \omega_{n} 2^{n(k+1)}, \quad \omega_{n} 2^{-n k} \leq m\left(A_{(-k)}\right) \leq \omega_{n} 2^{-n(k-1)}
\end{aligned}
$$

Volume of
unit n-ball.
Then noting that

$$
\begin{aligned}
& x \in A_{k} \Rightarrow 2^{k}<\|x\| \leq 2^{k+1} \Rightarrow 2^{-p(k+1)} \leq\|x\|^{-p}<2^{-k p} \\
& x \in A_{(-k)} \Rightarrow 2^{-k}<\|x\| \leq 2^{-(k-1)} \Rightarrow 2^{p(k-1)} \leq\|x\|^{-p}<2^{p k}
\end{aligned}
$$

we define
$(4 a)$

$$
I_{A}=\int_{A}\|\vec{x}\|^{-p}, \quad I_{B}=\int_{B}\|\overrightarrow{\|}\|^{-p}
$$

and find

$$
\begin{aligned}
I_{A} \leq \sum_{k=1}^{\infty} 2^{r k} m\left(A_{(-k)}\right) \leq \sum_{k=1}^{\infty} 2^{p k} 2^{-n(k-1)}=\omega_{n} \sum_{k=1}^{\infty}\left(2^{-k}\right)^{n-p}<\infty & \text { iff } p<n, \\
\text { and } \infty>I_{A} \geq \sum_{k=1}^{\infty} 2^{p(k-1)}\left(A_{(-k)}\right) \geq \sum_{k=1}^{\infty} 2^{p(k-1)} \omega_{n} 2^{-n k}=\omega_{n} P^{-2} \sum_{k=1}^{\infty}\left(2^{-k}\right)^{n-p} & \text { of } p<n
\end{aligned}
$$

(4b)
Similarly

$$
I_{B} \leq \sum_{k=0}^{\infty} 2^{-k p} \omega_{n} 2^{n(k+1)}=\omega_{n} 2^{n} \sum_{k=0}^{\infty}\left(2^{-k}\right)^{p-n}<\infty \text { iff } p>n \text {, }
$$

and $\infty>I_{B} \geq \sum_{k=0}^{\infty} 2^{-p(k+1)} \omega_{n} 2^{n k}=\omega_{n} 2^{-p} \sum_{k=0}^{\infty}\left(2^{-k}\right)^{p-n} \quad$ ff $p>n$.

(5) To see that \hat{f} is bounded, supposing that $f_{\in} L^{\prime}\left(\mathbb{R}^{n}\right)$, we have

$$
|\hat{f}(\xi)| \leq \int|f(x)| \cdot \underbrace{e^{2 \pi i x \cdot \xi} \mid}_{\leq 1} \leq \int_{\mathbb{R}^{\prime}}|f|<\infty .
$$

To see that it is cts, we will use the sequential defn. of continuity.
So let $\left\{\xi_{n}\right\} \rightarrow \xi$ be any sequence converging to ξ. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\hat{f}\left(\xi_{n}\right)-\hat{f}(\xi)\right| & =\lim _{n \rightarrow \infty}\left|\int f(x)\left[e^{2 \pi i x \cdot \xi_{n}}-e^{2 \pi i x \cdot \xi}\right]\right| \\
& =\lim _{n \rightarrow \infty}\left|\int f(x) e^{2 \pi i x \cdot \xi}\left[e^{2 \pi i x \cdot\left(\xi_{n}-\xi\right)}-1\right]\right| \\
& \leq \lim _{n \rightarrow \infty} \int\left|f(x) e^{2 \pi i x \cdot \xi}\right| \cdot\left|e^{2 \pi i x \cdot\left(\xi_{n}-\xi\right)}-1\right|
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{D C T}{ }=\int \lim _{n \rightarrow \infty}\left|f(x) e^{2 \pi i x \cdot \xi}\right| \cdot\left|e^{2 \pi i x \cdot\left(\xi_{n}-\xi\right)}-1\right| \\
& =\int \underbrace{\left|f(x) e^{2 \pi i x \cdot \xi}\right| \cdot \lim _{n \rightarrow \infty}\left|e^{2 \pi i x \cdot\left(\xi_{n}-\xi\right)}-1\right|}_{n 0 \text { n involved }} \\
& =\int\left|f(x) e^{2 \pi i x \cdot \xi}\right| \cdot 0 \\
& =0
\end{aligned}
$$

Where the DCT can be applied by letting

$$
\begin{aligned}
f_{n}=f(x) & e^{2 \pi i x \cdot \xi}\left(e^{2 \pi i x \cdot\left(\xi_{n}-\xi\right)}-1\right) \\
\Rightarrow\left|f_{n}\right| & =\left|f(x) e^{2 \pi i x \cdot \xi}\right| \cdot\left|e^{2 \pi i x \cdot\left(\xi_{n}-\xi\right)}-1\right| \\
& \leq\left|f(x) e^{2 \pi i x \cdot \xi}\right| \cdot(\underbrace{\left|e^{2 \pi i x \cdot\left(\xi_{n}-\xi\right)}\right|}+|-1|) \\
& \leq\left|f(x) e^{2 \pi i x \cdot \xi}\right| \cdot 2 \\
& \leq 2|f| \in L^{\prime} .
\end{aligned}
$$

But this says $\lim _{n \rightarrow \infty}\left|\hat{f}\left(\xi_{n}\right)-\hat{f}(\xi)\right|=0$, so \hat{f} is continuous.
Ga.i) Let $g_{n}=\left|f_{n}\right|-\left|f_{n}-f\right|$; then $g_{n} \rightarrow|f|$ and

$$
\begin{aligned}
&\left|g_{n}\right|=\left|\left|f_{n}\right|-\left|f_{n}-f\right|\right| \leq\left|f_{n}-\left(f_{n}-f\right)\right|=|f| \in L^{\prime}, \\
& \uparrow \text { Reverse } \Delta \text {-ineq }
\end{aligned}
$$

so $\lim _{n \rightarrow \infty} \int g_{n}=\int \lim _{n \rightarrow \infty} g_{n}=\int|f|=B$ by the DCT. We can then write

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right| & =\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right|-\left|f_{n}\right|+\left|f_{n}\right| \\
& =\lim _{n \rightarrow \infty} \int\left|f_{n}\right|-\left(\left|f_{n}\right|-\left|f_{n}-f\right|\right) \\
& =\lim _{n \rightarrow \infty} \int\left|f_{n}\right|-g_{n} \\
& =\lim _{n \rightarrow \infty} \int\left|f_{n}\right|-\lim _{n \rightarrow \infty} \int g_{n}=A-B
\end{aligned}
$$

6a.ii) Let $f_{n}=n \cdot \chi_{\left(0, \frac{1}{n}\right]}$, then $f_{n} \rightarrow 0:=f$ ae., so $\int f=\int 0=0 \Rightarrow B=0$, but $\int f_{n}=1$ for all n, so $\lim _{n \rightarrow \infty} \int\left|f_{n}\right|=1=A \neq B$.
bb)

$$
\begin{aligned}
& \left(\Leftrightarrow \lim _{k \rightarrow \infty} \int\left|f_{k}-f\right|=0=A-B \Rightarrow A=B \Rightarrow \lim \int\left|f_{k}\right|=\int|f| .\right. \\
& (\Leftrightarrow) \lim _{\int} \int\left|f_{k}\right|=\int|f| \Rightarrow A=B \Rightarrow A-B=0 \Rightarrow \int\left|f_{k}-f\right|=A-B=0 .
\end{aligned}
$$

Ta) Let $\left\{t_{n}\right\} \rightarrow t$ and define

$$
g_{n}(x)=f(x)\left(\frac{\cos \left(t_{n} x\right)-\cos (t x)}{t_{n}-t}\right) .
$$

Then $\lim _{n \rightarrow \infty} g_{n}(x)=f(x) \partial z t(\cos (t x))=f(x) x \sin (t x)$, and applying the Mean Value Theorem, we have

$$
\begin{gathered}
\frac{\cos \left(t_{n} x\right)-\cos (t x)}{t_{n}-t}=\left.x \sin (t x)\right|_{x=\xi}=\xi \sin (t \xi) \text { for some } \xi \text {, so } \\
\left|g_{n}\right|=|f(x) x \sin (t x)|=|f(x) \xi \sin (t \xi)| \leq \xi|f| \in L^{\prime},
\end{gathered}
$$

so $\lim _{n \rightarrow \infty} \int g_{n}=\int \lim _{n \rightarrow \infty} g_{n}=\int g=\int f(x) x \sin (t x) d x$, which is integrable because

$$
\int|f(x) \times \underbrace{\sin (t x)}_{\leqslant 1}| \leq \int|x f(x)|<\infty \text { since } \times f \in L^{\prime} \text {. }
$$

Thus $F^{\prime}(t)=\int_{R} f(x) x \sin (t x) d x$.
Tb)

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \int_{0}^{1} \frac{e^{t \sqrt{x}}-1}{t} d x=\lim _{t \rightarrow 0} \int_{0}^{1} \frac{e^{t \sqrt{x}}-e^{0 \sqrt{x}}}{t-0} d x \stackrel{0}{=}=\int_{0}^{1} \lim _{t \rightarrow 0}\left(\frac{e^{t \sqrt{x}}-e^{0 \sqrt{x}}}{t-0}\right) d x \\
& :=\left.\int_{0}^{1} \frac{\partial}{\partial t} e^{t \sqrt{x}}\right|_{t=0} d x=\left.\int_{0}^{1} \sqrt{x} e^{t \sqrt{x}}\right|_{t=0} d x=\int_{0}^{1} \sqrt{x} d x=\left.(2 / 3) x^{3 / 2}\right|_{0} ^{1}=2 / 3 .
\end{aligned}
$$

The DCT here is justified by letting $\left\{t_{n}\right\} \rightarrow 0$ and setting $g_{n}(t)=\frac{e^{t \sqrt{x}}-e^{t_{n} \sqrt{x}}}{t-t_{n}}$ Then by the MVT, for each n we have $g_{n}(t)=2 /\left.\partial t e^{t \sqrt{x}}\right|_{t=c}$ for some $c \in\left[0, t_{n}\right] \leq[0,1]$. But $\partial /\left.\partial t e^{t \sqrt{x}}\right|_{t=c}=\left.\sqrt{x} e^{t \sqrt{x}}\right|_{t=c}=\sqrt{x} e^{c \sqrt{x}} \leq \sqrt{1} e^{c \cdot \sqrt{1}}=e^{c} \leq e^{\prime}$, so $\lg n \mid \leq e^{\prime} \epsilon L^{\prime}([0,1])$, Since $\int_{0}^{1} e d x=e<\infty$, so $f(x)=e$ is a dominating function.

Problem Set 5

D. Zack Garza

October 23, 2019

Contents

1 Problem 1 1
2 Problem 2 3
3 Problem 3 4
4 Problem 4 4
4.1 Part (a) 4
4.2 Part (b) 6
5 Problem 5 6
6 Problem 6 7
6.1 Part (a) 7
6.2 Part (b) 8

1 Problem 1

We first make the following claim:

$$
\begin{aligned}
& S:=\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{j k}=\sup \left\{\sum_{(j, k) \in B} a_{j k} \ni B \subset \mathbb{N}^{2},|B|<\infty\right\} \\
& T:=\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} a_{k j}=\sup \left\{\sum_{(j, k) \in C} a_{k j} \ni C \subset \mathbb{N}^{2},|B|<\infty\right\} .
\end{aligned}
$$

It suffices to show the first equality holds, as the other case will follow similarly. Let $S=$ $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{j} k$ and $S^{\prime}=\sup \left\{\sum_{(j, k) \in B} a_{j k} \ni B \subset \mathbb{N}^{2},|B|<\infty\right\}$.
Then consider any bounded set $B \subset \mathbb{N}^{2} ;$ so $B \subset\left\{1, \cdots, n_{1}\right\} \times\left\{1, \cdots, n_{2}\right\}$ for some $n_{1}, n_{2} \in \mathbb{N}$. We then have

$$
\sum_{B} a_{j k} \leq \sum_{j=1}^{n_{1}} \sum_{k=1}^{n_{2}} a_{j k} \leq \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{j k}
$$

where the first equality holds $a+j k \geq 0$ for all j, k, so the sum can only increase if we add more terms. But this holds for every B and thus holds if we take the supremum over all of them, so $S^{\prime} \leq S$.

To see that $S \leq S^{\prime}$, we can just note that

$$
\begin{aligned}
S & =\lim _{J \rightarrow \infty} \sum_{j=1}^{J}\left(\lim _{K \rightarrow \infty} \sum_{k=1}^{K} a_{j k}\right) \\
& =\lim _{J \rightarrow \infty} \lim _{K \rightarrow \infty} \sum_{j=1}^{J} \sum_{k=1}^{K} a_{j k} \\
& \leq \lim _{J \rightarrow \infty} \lim _{K \rightarrow \infty} S^{\prime} \\
& =S^{\prime}
\end{aligned}
$$

where the limits commute with finite sums, and we the sum can be replaced with S^{\prime} because the set $\{1, \cdots, K\} \times\{1, \cdots J\}$ is one of the finite sets over which the supremum is taken. Moreover, S^{\prime} is a number that doesn't depend on J, K, yielding the final equality.

We will show that $S=T$ by showing that $S \leq T$ and $T \leq S$.
Let $B \subset \mathbb{N}^{2}$ be finite, so $B \subseteq[0, I] \times[0, J] \subset \mathbb{N}^{2}$.
Now letting $R>\max (I, J)$, we can define $C=[0, R]^{2}$, which satisfies $B \subseteq C \subset \mathbb{N}^{2}$ and $|C|<\infty$.
Moreover, since $a_{j k} \geq 0$ for all pairs (j, k), we have the following inequality:

$$
\sum_{(j, k) \in B} a_{j k}<\sum_{(k, j) \in C} a_{j k} \leq \sum_{(k, j) \in C} a_{j k} \leq T
$$

since T is a supremum over all such sets C, and the terms of any finite sum can be rearranged.
But since this holds for every B, we this inequality also holds for the supremum of the smaller term by order-limit laws, and so

$$
S:=\sup _{B} \sum_{(k, j) \in B} a_{j k} \leq T
$$

(Use epsilon-delta argument)
An identical argument shows that $T \leq S$, yielding the desired equality.

2 Problem 2

We want to show the following equality:

$$
\int_{0}^{1} g(x) d x=\int_{0}^{1} f(x) d x
$$

To that end, we can rewrite this using the integral definition of $g(x)$:

$$
\int_{0}^{1} \int_{x}^{1} \frac{f(t)}{t} d t d x=\int_{0}^{1} f(x) d x
$$

Note that if we can switch the order of integration, we would have

$$
\begin{aligned}
\int_{0}^{1} \int_{x}^{1} \frac{f(t)}{t} d t d x & =? \int_{0}^{1} \int_{0}^{t} \frac{f(t)}{t} d x d t \\
& =\int_{0}^{1} \frac{f(t)}{t} \int_{0}^{t} d x d t \\
& =\int_{0}^{1} \frac{f(t)}{t}(t-0) d t \\
& =\int_{0}^{1} f(t) d t
\end{aligned}
$$

which is what we wanted to show, and so we are simply left with the task of showing that this is switch of integrals is justified.
To this end, define

$$
\begin{aligned}
F: \mathbb{R}^{2} & \rightarrow \mathbb{R} \\
(x, t) & \mapsto \frac{\chi_{A}(x, t) \hat{f}(x, t)}{t}
\end{aligned}
$$

where $A=\left\{(x, t) \subset \mathbb{R}^{2} \ni 0 \leq x \leq t \leq 1\right\}$ and $\hat{f}(x, t):=f(t)$ is the cylinder on f.
This defines a measurable function on \mathbb{R}^{2}, since characteristic functions are measurable, the cylinder over a measurable function is measurable, and products/quotients of measurable functions are measurable.

In particular, $|F|$ is measurable and non-negative, and so we can apply Tonelli to $|F|$. This allows us to write

$$
\begin{aligned}
\int_{\mathbb{R}^{2}}|F| & =\int_{0}^{1} \int_{0}^{t}\left|\frac{f(t)}{t}\right| d x d t \\
& =\int_{0}^{1} \int_{0}^{t} \frac{|f(t)|}{t} d x d t \quad \text { since } t>0 \\
& =\int_{0}^{1} \frac{|f(t)|}{t} \int_{0}^{t} d x d t \\
& =\int_{0}^{1}|f(t)|<\infty
\end{aligned}
$$

where the switch is justified by Tonelli and the last inequality holds because f was assumed to be measurable.
Since this shows that $F \in L^{1}\left(\mathbb{R}^{2}\right)$, and we can thus apply Fubini to F to justify the initial switch.

3 Problem 3

Let $A=\{0 \leq x \leq y\} \subset \mathbb{R}^{2}$, and define

$$
\begin{aligned}
f(x, y) & =\frac{x^{1 / 3}}{(1+x y)^{3 / 2}} \\
F(x, y) & =\chi_{A}(x, y) f(x, y)
\end{aligned}
$$

Note that F Then, if all iterated integrals exist and a switch of integration order is justified, we would have

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} F & =? \int_{0}^{\infty} \int_{y}^{\infty} f(x, y) d x d y \\
& =? \int_{0}^{\infty} \int_{x}^{\infty} \frac{x^{1 / 3}}{(1+x y)^{3 / 2}} d y d x \\
& =2 \int_{\mathbb{R}} \frac{1}{x^{2 / 3} \sqrt{1+x^{2}}} d x \\
& =2 \int_{0}^{1} \frac{1}{x^{2 / 3} \sqrt{1+x^{2}}} d x+2 \int_{1}^{\infty} \frac{1}{x^{2 / 3} \sqrt{1+x^{2}}} d x \\
& \leq \int_{0}^{1} x^{-2 / 3} d x+\int_{0}^{\infty} x^{-5 / 3} \\
& =2(3)+2\left(\frac{3}{2}\right)<\infty
\end{aligned}
$$

where the first term in the split integral is bounded by using the fact that $\sqrt{1+x^{2}} \geq \sqrt{x^{2}}=x$, and the second term from $x>1 \Longrightarrow x>0 \Longrightarrow \sqrt{1+x^{2}} \geq \sqrt{1}$.

Since F is non-negative, we have $|F|=F$, and so the above computation would imply that $F \in$ $L^{1}\left(\mathbb{R}^{2}\right)$. It thus remains to show that $\int F$ is equal to its iterated integrals, and that the switch of integration order is justified

Since F is non-negative, Tonelli can be applied directly if F is measurable in \mathbb{R}^{2}. But f is measurable on A, since it is continuous at almost every point in A, and χ_{A} is measurable, so F is a product of measurable functions and thus measurable.

4 Problem 4

4.1 Part (a)

For any $x \in \mathbb{R}^{n}$, let $A_{x}:=A \bigcap(x-B)$.

We can then write $A_{t}:=A \bigcap(t-B)$ and $A_{s}:=A \bigcap(s-B)$, and thus

$$
\begin{aligned}
g(t)-g(s) & =m\left(A_{t}\right)-m\left(A_{s}\right) \\
& =\int_{\mathbb{R}^{n}} \chi_{A_{t}}(x) d x-\int_{\mathbb{R}^{n}} \chi_{A_{s}}(x) d x \\
& =\int_{\mathbb{R}^{n}} \chi_{A_{t}}(x)-\chi_{A_{s}}(x) d x \\
& =\int_{\mathbb{R}^{n}} \chi_{A_{t}}(x)-\chi_{A_{t}}(t-s+x) d x \\
& \quad \quad \text { (since } x \in s-B \Longleftrightarrow s-x \in B \Longleftrightarrow t-(s-x) \in t-B),
\end{aligned}
$$

and thus by continuity in L^{1}, we have

$$
|g(t)-g(s)| \leq \int_{\mathbb{R}^{n}}\left|\chi_{A_{t}}(x)-\chi_{A_{t}}(t-s+x)\right| d x \rightarrow 0 \quad \text { as } \quad t \rightarrow s
$$

which means g is continuous.
To see that $\int g=m(A) m(B)$, if an interchange of integrals is justified, we can write

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} g(t) d t & =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \chi_{A_{t}}(x) d x d t \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \chi_{A}(x) \chi_{t-B}(x, t) d x d t \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \chi_{A}(x) \chi_{t-B}(x, t) d x d t \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \chi_{A}(x) \chi_{B}(t-x) d x d t \\
& \quad \text { (since } x \in t-B \Longleftrightarrow t-x \in B) \\
& =? \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \chi_{A}(x) \chi_{B}(t-x) \mathrm{dt} \mathrm{dx} \\
& =\int_{\mathbb{R}^{n}} \chi_{A}(x) \int_{\mathbb{R}^{n}} \chi_{B}(t-x) d t d x \\
& =\int_{\mathbb{R}^{n}} \chi_{A}(x) m(B) d t
\end{aligned}
$$

(by translation invariance of Lebesgue integral)
$=m(B) \int_{\mathbb{R}^{n}} \chi_{A} d t$

$$
=m(B) m(A)
$$

To see that this is justified, we note that that the map $F(x, t)=\chi_{A}(x) \chi_{B}(x-t)$ is non-negative, and we claim is measurable in $\mathbb{R}^{2 n}$.

- The first component is $\chi_{A}(x)$, which is measurable on \mathbb{R}^{n}, and thus the cylinder over it will be measurable on $\mathbb{R}^{2 n}$.
- The second component involves $\chi_{B}(t-x)$, which is $\chi_{B}(x)$ composed with a reflection (which is still measurable) followed by a translation (which is again still measurable).
- Thus, as a product of two measurable functions, the integrand is measurable.

So Tonelli applies to $|F|$, and thus $\int|F|=m(A) m(B)<\infty$ since A, B were assumed to be bounded. But then F is integrable by Fubini, and the claimed equality holds.

4.2 Part (b)

Supposing that $m(A), m(B)>0$, we have $\int g(t) d t>0$, using the fact that $\int g=0$ a.e. $\Longleftrightarrow g=0$ a.e., we can conclude that if $T=\{t \ni g(t) \neq 0\}$, then $m(T)>0$. So there is some $t \in \mathbb{R}^{n}$ such that $g(t) \neq 0$, and since g is continuous, there is in fact some open ball B_{t} containing t such that $t^{\prime} \in B_{t} \Longrightarrow g\left(t^{\prime}\right) \neq 0$. So we have

- $\forall t^{\prime} \in B_{t}, A \bigcap t^{\prime}-B \neq \emptyset \Longleftrightarrow$
- $\forall t^{\prime} \in B_{t}, \exists x \in A \bigcap t^{\prime}-B \Longleftrightarrow$
- $\forall t^{\prime} \in B_{t}, \exists x$ such that $x \in A$ and $x \in t^{\prime}-B \Longleftrightarrow$
- $\forall t^{\prime} \in B_{t}, \exists x$ such that $x \in A$ and $x=t^{\prime}-B$ for some $b \in B \Longleftrightarrow$
- $\forall t^{\prime} \in B_{t}, \exists x$ such that $x \in A$ and $t^{\prime}=x+B$ for some $b \in B \Longleftrightarrow$
- $\forall t^{\prime} \in B_{t}, \exists t^{\prime}$ such that $t^{\prime} \in A+B$

And thus $B_{t} \subseteq A+B$.

5 Problem 5

If the iterated integrals exist and are equal (so an interchange of integration order is justified), we have

$$
\begin{aligned}
\int_{0}^{1} F(x) g(x) & :=\int_{0}^{1}\left(\int_{0}^{x} f(y) d y\right) g(x) d x \\
& =\int_{0}^{1} \int_{0}^{x} f(y) g(x) d y d x \\
& =? \int_{0}^{1} \int_{y}^{1} f(y) g(x) \mathbf{d x} \mathbf{d y} \\
& =\int_{0}^{1} f(y)\left(\int_{y}^{1} g(x) d x\right) d y \\
& =\int_{0}^{1} f(y)(G(1)-G(y)) d y \\
& =G(1) \int_{0}^{1} f(y) d y-\int_{0}^{1} f(y) G(y) d y \\
& =G(1)(F(1)-F(0))-\int_{0}^{1} f(y) G(y) d y \\
& =G(1) F(1)-\int_{0}^{1} f(y) G(y) d y \quad \text { since } F(0)=0
\end{aligned}
$$

which is what we want to show.

To see that this is justified, let $I=[0,1]$ and note that the integrand can be written as $H(x, y)=$ $\hat{f}(x, y) \hat{g}(x, y)$ where $\hat{f}(x, y)=\chi_{I} f(y)$ and $\hat{g}(x, y)=\chi_{I} g(x)$ are cylinders over f and g respectively. Since f, g are in $L^{1}(I)$, their cylinders are measurable over $\mathbb{R} \times I$, and thus \hat{f}, \hat{g} are measurable on \mathbb{R}^{2} as products of measurable functions. Then H is a measurable function as a product of measurable functions as well.

But then $|H|$ is non-negative and measurable, so by Tonelli all iterated integrals will be equal. We want to show that $H \in L^{1}\left(\mathbb{R}^{2}\right)$ in order to apply Fubini, so we will show that $\int|H|<\infty$.
To that end, noting that $f, g \in L^{1}$, we have $\int_{0}^{1} f:=C_{f}<\infty$ and $\int_{0}^{1} g:=C_{g}<\infty$. Then,

$$
\begin{aligned}
\int_{\mathbb{R}^{2}}|H| & =\int_{0}^{1} \int_{0}^{1}|f(x) g(y)| d x d y \\
& =\int_{0}^{1} \int_{0}^{1}|f(x)||g(y)| d x d y \\
& =\int_{0}^{1}|g(y)|\left(\int_{0}^{1}|f(x)| d x\right) d y \\
& =\int_{0}^{1}|g(y)| C_{f} d y \\
& =C_{f} \int_{0}^{1}|g(y)| d y \\
& =C_{f} C_{g}<\infty
\end{aligned}
$$

and thus by Fubini, the original interchange of integrals was justified.

6 Problem 6

6.1 Part (a)

We have

$$
\begin{aligned}
\int_{\mathbb{R}}\left|A_{h}(f)(x)\right| d x & =\int_{\mathbb{R}}\left|\frac{1}{2 h} \int_{x-h}^{x+h} f(y) d y\right| d x \\
& =\frac{1}{2 h} \int_{\mathbb{R}}\left|\int_{x-h}^{x+h} f(y) d y\right| d x \\
& \leq \frac{1}{2 h} \int_{\mathbb{R}}\left(\int_{x-h}^{x+h}|f(y)| d y\right) d x \\
& =\frac{1}{2 h} \int_{\mathbb{R}} \int_{x-h}^{x+h}|f(y)| d y d x \\
& =? \frac{1}{2 h} \int_{\mathbb{R}} \int_{y-h}^{y+h}|f(y)| \mathbf{d x} \mathbf{d y} \\
& =\frac{1}{2 h} \int_{\mathbb{R}}|f(y)| \int_{y-h}^{y+h} d x d y \\
& =\frac{1}{2 h} \int_{\mathbb{R}}|f(y)|((y+h)-(y-h)) d y \\
& =\frac{1}{2 h} \int_{\mathbb{R}} 2 h|f(y)| d y \\
& =\int_{\mathbb{R}}|f(y)| d y<\infty
\end{aligned}
$$

since f was assumed to be in $L^{1}(\mathbb{R})$, where the changed bounds of integration are determined by considering the following diagram:

To justify the change in the order of integration, consider the function $H(x, y)=\frac{1}{2 h} \chi_{A}(x, y) f(y)$ where $A=\left\{(x, y) \in \mathbb{R}^{2} \ni-\infty<x-h \leq x, y \leq x+h\right\}$. Since f is measurable, the constant function $(x, y) \mapsto \frac{1}{2 h}$ is measurable, and characteristic functions are measurable, H is a product of measurable functions and thus measurable.

Thus it makes sense to write $\int|H|$ as an iterated integral by Tonelli, and since $\int_{\mathbb{R}^{2}}|H|=\int_{\mathbb{R}}\left|A_{h}(f)\right|<$ ∞ by the above calculation, we have $H \in L^{1}\left(\mathbb{R}^{2}\right)$, and Fubini applies.

6.2 Part (b)

Let $\varepsilon>0$; we then have

Figure 1: Changing the bounds of integration

$$
\begin{aligned}
\int_{\mathbb{R}}\left|A_{h}(f)(x)-f(x)\right| d x= & \int_{\mathbb{R}}\left|\left(\frac{1}{2 h} \int_{B(h, x)} f(y) d y\right)-f(x)\right| d x \\
= & \int_{\mathbb{R}}\left|\left(\frac{1}{2 h} \int_{B(h, x)} f(y) d y\right)-\frac{1}{2 h} \int_{B(h, x)} f(x) d y\right| d x \\
& \quad \text { since } \frac{1}{2 h} \int_{x-h}^{x+h} f(x) d y=\frac{1}{2 h} f(x)((x+h)-(x-h))=\frac{1}{2 h} f(x) 2 h=f(x) \\
= & \int_{\mathbb{R}}\left|\frac{1}{2 h} \int_{B(h, x)} f(y)-f(x) d y\right| d x \\
\leq & \int_{\mathbb{R}} \frac{1}{2 h} \int_{x-h}^{x+h}|f(y)-f(x)| d y d x \\
\leq & \int_{\mathbb{R}} \frac{1}{2 h} \int_{-h}^{h}|f(y-x)-f(x)| d y d x
\end{aligned}
$$

but since $h \rightarrow 0$ will force $y \rightarrow x$ in the integral, for a fixed x we can let $\tau_{x}(y)=f(y-x)$ and we have $\left\|\tau_{x}-f\right\|_{1} \rightarrow 0$ by continuity in L^{1}. Thus $\int_{-h}^{h}|f(y-x)-f(x)| \rightarrow 0$, forcing $\left\|A_{h}(f)-f\right\|_{1} \rightarrow 0$ as $h \rightarrow 0$.

Assignment 6: The Fourier Transform

D. Zack Garza

November 5, 2019

Contents

1 Problem 1 1
2 Problem 2 2
$2.1 \quad$ Part (a) 2
2.2 Part (b) 3
2.2.1 (i) 3
2.2.2 (ii) 3
3 Problem 3 4
3.1 (a) 4
3.1.1 (i) 4
3.1.2 (ii) 4
3.2 (b) 4
4 Problem 4 5
4.1 (a) 5
4.1.1 (i) 5
4.1.2 (ii) 5
$4.2 \quad$ (b) 6
5 Problem 5 7
5.1 (a) 7
5.2 (b) 8
$5.2 .1 \quad$ (i) 8
5.2 .2 (ii) 8
5.3 (c) 8
6 Problem 6 9

1 Problem 1

Assuming the hint, we have

$$
\left.\lim _{|\xi| \rightarrow \infty} \hat{f}(\xi)=\lim _{\left|\xi^{\prime}\right| \rightarrow 0} \frac{1}{2} \int_{\mathbb{R}^{n}}[f(x))-f\left(x-\xi^{\prime}\right)\right] e^{-2 \pi i x \cdot \xi} d x
$$

The fact that the limit as $\xi \rightarrow \infty$ is equivalent to the limit $\xi^{\prime} \rightarrow 0$ is a direct consequence of computing

$$
\lim _{|\xi| \rightarrow \infty} \frac{\xi}{2|\xi|^{2}}=\lim _{|\xi| \rightarrow \infty} \frac{1}{2|\xi|} \frac{\xi}{|\xi|}=\mathbf{0}
$$

since $\frac{\xi}{|\xi|}$ is a unit vector, and the term $\frac{1}{2|\xi|}$ is a scalar that goes to zero. But as an immediate consequence, this yields

$$
\begin{aligned}
|\hat{f}(\xi)| & =\frac{1}{2}\left|\int_{\mathbb{R}^{n}}\left[f(x)-f\left(x-\xi^{\prime}\right)\right] e^{-2 \pi i x \cdot \xi} d x\right| \\
& \leq \int_{\mathbb{R}^{n}}\left|f(x)-f\left(x-\xi^{\prime}\right)\right|\left|e^{-2 \pi i x \cdot \xi}\right| d x \\
& \leq \int_{\mathbb{R}^{n}}\left|f(x)-f\left(x-\xi^{\prime}\right)\right| d x \\
& \rightarrow 0
\end{aligned}
$$

which follows from continuity in L^{1} since $f\left(x-\xi^{\prime}\right) \rightarrow f(x)$ as $\xi^{\prime} \rightarrow 0$.
It thus only remains to show that the hint holds.
Note: Sorry, I couldn't figure out how to prove the hint!!

2 Problem 2

2.1 Part (a)

Assuming an interchange of integrals is justified, we have

$$
\begin{aligned}
\widehat{f * g}(\xi) & :=\iint f(x-y) g(y) e^{-2 \pi i x \cdot \xi} d y d x \\
& =? \iint f(x-y) g(y) e^{-2 \pi i x \cdot \xi} d x d y \\
& =\iint f(t) e^{-2 \pi i(x-y) \cdot \xi} g(y) e^{-2 \pi i y \cdot \xi} d x d y \\
& \left.=\int t=x-y, d t=d x\right) \\
& =\iint f(t) e^{-2 \pi i t \cdot \xi} g(y) e^{-2 \pi i y \cdot \xi} d t d y \\
& =\int f(t) e^{-2 \pi i t \cdot \xi}\left(\int g(y) e^{-2 \pi i y \cdot \xi} d y\right) d t \\
& =\int f(t) e^{-2 \pi i t \cdot \xi} \hat{g}(\xi) d t \\
& =\hat{g}(\xi) \int f(t) e^{-2 \pi i t \cdot \xi} d t \\
& =\hat{g}(\xi) \hat{f}(\xi) .
\end{aligned}
$$

To see that this swap is justified, we'll apply Fubini-Tonelli. Note that if $f, g \in L^{1}\left(\mathbb{R}^{n}\right)$, then the map $(x, y) \mapsto f(x-y)$ is measurable on $\mathbb{R}^{n} \times \mathbb{R}^{n}$. Since g is measurable as well, taking the cylinder on g is also measurable on $\mathbb{R}^{n} \times \mathbb{R}^{n}$. The exponential is continuous, and thus measurable on \mathbb{R}^{n}. Thus the integrand $F(x, y)$ is a product of measurable functions and thus measurable. In particular, $|F|=|f g|$ is measurable, and ths computation shows that one iterated integral is finite. From a previous homework question, we know that $f \in L^{1} \Longrightarrow \hat{f}$ is bounded, and thus $\hat{f} \hat{g}$ is bounded. Since $|F|$ is measurable and one iterated integrable was finite, Fubini-Tonelli applies.

2.2 Part (b)

We'll use the following lemma: if $\hat{f}=\hat{g}$, then $f=g$ almost everywhere.

2.2.1 (i)

By part 1, we have

$$
\widehat{f * g}=\hat{f} \hat{g}=\hat{g} \hat{f}=\widehat{g * f}
$$

and so by the lemma, $f * g=g * f$.
Similarly, we have

$$
(\widehat{f * g) * h}=\widehat{f * g} \hat{h}=\hat{f} \hat{g} \hat{h}=\hat{f} \widehat{g * h}=f *(g * h)
$$

2.2 .2 (ii)

Suppose that there exists some $I \in L^{1}$ such that $f * I=f$. Then $\widehat{f * I}=\hat{f}$ by the lemma, so $\hat{f} \hat{I}=\hat{f}$ by the above result.

But this says that $\hat{f}(\xi) \hat{I}(\xi)=\hat{f}(\xi)$ almost everywhere, and thus $\hat{I}(\xi)=1$ almost everywhere. Then

$$
\lim _{|\xi| \rightarrow \infty} \hat{I}(\xi) \neq 0
$$

which by Problem 1 shows that I can not be in L^{1}, a contradiction.

3 Problem 3

3.1 (a)

3.1.1 (i)

Let $g(x)=f(x-y)$. We then have

$$
\begin{aligned}
& \hat{g}(\xi):=\int g(x) e^{-2 \pi i x \cdot \xi} d x \\
&=\int f(x-y) e^{-2 \pi i x \cdot \xi} d x \\
&=\int f(x-y) e^{-2 \pi i(x-y) \cdot \xi} e^{-2 \pi i y \cdot \xi} d x \\
&=e^{-2 \pi i y \cdot \xi} \int f(x-y) e^{-2 \pi i(x-y) \cdot \xi} d x \\
& \quad(t=x-y, d t=d x) \\
&=e^{-2 \pi i y \cdot \xi} \int f(t) e^{-2 \pi i t \cdot \xi} d t \\
&=e^{-2 \pi i y \cdot \xi} \hat{f}(\xi)
\end{aligned}
$$

3.1 .2 (ii)

Let $h(x)=e^{2 \pi i x \cdot y} f(x)$. We then have

$$
\begin{aligned}
\hat{h}(\xi) & :=\int e^{2 \pi i x \cdot y} f(x) e^{-2 \pi i x \cdot \xi} d x \\
& =\int e^{2 \pi i x \cdot y-2 \pi i x \cdot \xi) f(x} d x \\
& =\int f(\xi-y) e^{-2 \pi i x \cdot(\xi-y)} d x \\
& =\hat{f}(\xi-y)
\end{aligned}
$$

3.2 (b)

We'll use the fact that if $\langle\cdot, \cdot\rangle$ is an inner product on a vector space V and A is an invertible linear transformation, then for all $\mathbf{x}, \mathbf{y} \in V$ we have

$$
\langle A \mathbf{x}, \mathbf{y}\rangle=\left\langle\mathbf{x}, A^{T} \mathbf{y}\right\rangle
$$

where A^{-T} denotes the transpose of the inverse of A (or $\left(A^{-1}\right)^{*}$ if V is complex).
We then have

$$
\begin{aligned}
\frac{1}{|\operatorname{det} T|} \hat{f}\left(T^{-T} \xi\right)= & \frac{1}{|\operatorname{det} T|} \int f(x) e^{-2 \pi i x \cdot T^{-T} \xi} d x \\
& x \mapsto T x, d x \mapsto|\operatorname{det} T| d x \\
= & \frac{1}{|\operatorname{det} T|} \int f(T x) e^{-2 \pi i T x \cdot T^{-T} \xi}|\operatorname{det} T| d x \\
= & \int f(T x) e^{-2 \pi i x \cdot \xi} d x \\
& \quad \text { since } T x \cdot T^{-T} \xi=T^{-1} T x \cdot \xi=x \cdot \xi \\
= & (\widehat{f \circ T})(\xi) .
\end{aligned}
$$

4 Problem 4

4.1 (a)

4.1.1 (i)

Let $g(x)=x f(x)$. Then if an interchange of the derivative and the integral is justified, we have

$$
\begin{aligned}
\frac{\partial}{\partial \xi} \hat{f}(\xi) & :=\frac{\partial}{\partial \xi} \int f(x) e^{-2 \pi i x \cdot \xi} d x \\
& =? \int f(x) \frac{\partial}{\partial \xi} e^{-2 \pi i x \cdot \xi} d x \\
& =\int f(x) 2 \pi i x e^{-2 \pi i x \cdot \xi} d x \\
& =2 \pi i \int x f(x) e^{-2 \pi i x \cdot \xi} d x \\
& :=2 \pi i \hat{g}(\xi)
\end{aligned}
$$

To see that the interchange is justified, we just note that we can apply the dominated convergence theorem, since $\int\left|f(x) e^{-2 \pi i x \cdot \xi}\right| \leq \int|f|<\infty$, where we assumed $f \in L^{1}$.

4.1 .2 (ii)

We have

$$
\begin{aligned}
\hat{h}(\xi): & : \int \frac{\partial f}{\partial x}(x) e^{-2 \pi i x \cdot \xi} d x \\
= & \left.f(x) e^{-2 \pi i x \cdot \xi}\right|_{x=-\infty} ^{x=\infty}-\int f(x)(2 \pi i \xi) e^{-2 \pi i x \cdot \xi} d x \\
& \quad(\text { integrating by parts }) \\
= & -\int f(x)(-2 \pi i \xi) e^{-2 \pi i x \cdot \xi} d x \\
& \quad(\text { since } f(\infty)=f(-\infty)=0) \\
= & 2 \pi i \xi \int f(x) e^{-2 \pi i x \cdot \xi} d x \\
:= & 2 \pi i \xi \hat{f}(\xi) .
\end{aligned}
$$

4.2 (b)

Let $G(x)=e^{-\pi x^{2}}$ and ∂_{ξ} be the operator that differentiates with respect to ξ. Then

$$
\partial_{\xi}\left(\frac{\hat{G}(\xi)}{G(\xi)}\right)=\frac{G(\xi) \partial_{\xi} \hat{G}(\xi)-\hat{G}(\xi) \partial_{\xi} G(\xi)}{G(\xi)^{2}}
$$

and the claim is that this is zero. This happens precisely when the numerator is zero, so we'd like to show that

$$
G(\xi) \partial_{\xi} \hat{G}(\xi)-\hat{G}(\xi) \partial_{\xi} G(\xi)=0 .
$$

A direct computation shows that

$$
\begin{equation*}
\partial_{\xi} G(\xi)=-2 \pi \xi G(\xi), \tag{1}
\end{equation*}
$$

and we claim that $\partial_{\xi} \hat{G}(\xi)=-2 \pi \xi \hat{G}(\xi)$ as well, which follows from the following computation:

$$
\begin{aligned}
\partial_{\xi} \hat{G}(\xi) & :=\partial_{\xi} \int G(x) e^{-2 \pi i x \cdot \xi} d x \\
& =\int G(x) \partial_{\xi} e^{-2 \pi i x \cdot \xi} d x \\
& =\int G(x)(-2 \pi i x) e^{-2 \pi i x \cdot \xi} d x \\
& =\int G(x)(-2 \pi i x) e^{-2 \pi i x \cdot \xi} d x \\
& =i \int 2 \pi x G(x) e^{-2 \pi i x \cdot \xi} d x \\
& =i \int \partial_{x} G(x) e^{-2 \pi i x \cdot \xi} d x \quad \text { by (1) } \\
& :=i \widehat{\partial_{x} G(x)}(\xi) \\
& =i(2 \pi i \xi \hat{G}(\xi)) \quad \text { by part (i) } \\
& =-2 \pi \xi \hat{G}(\xi) .
\end{aligned}
$$

We can thus write

$$
G(\xi) \partial_{\xi} \hat{G}(\xi)-\hat{G}(\xi) \partial_{\xi} G(\xi)=G(\xi)(-2 \pi \xi \hat{G}(\xi))-\hat{G}(\xi)(-2 \pi \xi G(\xi)),
$$

which is patently zero.
It follows that $\frac{\hat{G}(\xi)}{G(\xi)}=c_{0}$ for some constant c_{0}, from which it follows that $\hat{G}(\xi)=c_{0} G(\xi)$.
Using the fact that $G(0)=1$ by direct evaluation and $\hat{G}(0)=\int G(x) d x=1$, we can conclude that $c_{0}=1$ and thus $\hat{G}(\xi)=G(\xi)$.

5 Problem 5

5.1 (a)

By a direct computation. we have

$$
\begin{aligned}
\hat{D}(\xi) & :=\int_{-\frac{1}{2}}^{\frac{1}{2}} 1 e^{-2 \pi i x \xi} d x \\
& =\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos (-2 \pi x \xi)+i \sin (-2 \pi x \xi) d x \\
& =\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos (-2 \pi x \xi) d x
\end{aligned}
$$

(since \sin is odd and the domain is symmetric about 0)

$$
=2 \int_{0}^{\frac{1}{2}} \cos (-2 \pi x \xi) d x
$$

(since cos is even and the domain is symmetric about 0)

$$
\begin{aligned}
& =2\left(\left.\frac{1}{2 \pi \xi} \sin (-2 \pi x \xi)\right|_{x=0} ^{x=\frac{1}{2}}\right) \\
& =\frac{\sin (\pi \xi)}{\pi \xi}
\end{aligned}
$$

5.2 (b)

5.2.1 (i)

Since $F(x)=D(x) * D(x)$, we have $\hat{F}(\xi)=(\hat{D}(\xi))^{2}$ by question 2a, and so $\hat{F}(\xi)=\left(\frac{\sin (\pi \xi)}{\pi \xi}\right)^{2}$.

5.2 .2 (ii)

Letting \mathcal{F} denote the Fourier transform operator, we have $\mathcal{F}^{2}(h)(\xi)=h(-\xi)$ for any $h \in L^{1}$. In particular, if f is an even function, then $f(\xi)=-f(\xi)$ and $\mathcal{F}^{2}(f)=f$.
In this case, letting F be the box function, F can be seen to be even from its definition. Since $f:=\mathcal{F}(F)$ by part (i), we have

$$
\hat{f}:=\mathcal{F}(f)=\mathcal{F}(\mathcal{F}(F))=\mathcal{F}^{2}(F)=F,
$$

which says that $\hat{f}(x)=F(x)$, the original box function.

5.3 (c)

By a direct computation of the integral in question, we have

$$
\begin{aligned}
& I(x):=\int e^{-2 \pi|\xi|} e^{2 \pi i x \xi} d \xi \\
&=\int_{-\infty}^{0} e^{-2 \pi(-\xi)} e^{-2 \pi i x \xi} d \xi+\int_{0}^{\infty} e^{2 \pi \xi} e^{2 \pi i x \xi} d \xi \\
&=\int_{0}^{\infty} e^{-2 \pi \xi} e^{-2 \pi i x \xi} d \xi+\int_{0}^{\infty} e^{2 \pi \xi} e^{2 \pi i x \xi} d \xi \\
& \text { by the change of variables } \xi \mapsto-\xi, d \xi \\
&=\int_{0}^{\infty} e^{-2 \pi \xi} e^{-2 \pi i x \xi}+e^{2 \pi \xi} e^{2 \pi i x \xi} d \xi \\
&=\frac{1}{2 \pi} \int_{0}^{\infty} e^{-u} e^{-i x u}+e^{-u} e^{i x u} d u \\
&=\frac{1}{2 \pi} \int_{0}^{\infty} e^{-u(1+i x)}+e^{-u(1-i x)} d u \\
&=\frac{1}{2 \pi}\left(\left.\frac{-e^{-u(1+i x)}}{1+i x}\right|_{u=0} ^{u=\infty}+\left.\frac{-e^{-u(1-i x)}}{1+i x}\right|_{u=0} ^{u=\infty}\right) \\
&=\frac{1}{2 \pi}\left(\frac{1}{1+i x}+\frac{1}{1-i x}\right) \\
&=\frac{1}{2 \pi} \frac{2}{1+x^{2}} \\
&=\frac{1}{\pi} \frac{1}{1+x^{2}},
\end{aligned}
$$

$$
\text { by the change of variables } \xi \mapsto-\xi, d \xi \mapsto-d \xi \text { and swapping integration bounds }
$$

so $P(x)=I(x)$.
Then, by the Fourier inversion formula, we have

$$
\begin{aligned}
I(x)=P(x) & =\int \hat{P}(\xi) e^{-2 \pi i x \xi} d x \\
\Longrightarrow \int e^{-2 \pi|\xi|} e^{2 \pi i x \xi} & =\int \hat{P}(\xi) e^{-2 \pi i x \xi} d x \\
\Longrightarrow \int e^{-2 \pi|\xi|} e^{2 \pi i x \xi}-\hat{P}(\xi) e^{-2 \pi i x \xi} d x & =0 \\
\Longrightarrow \int\left(e^{-2 \pi|\xi|}-\hat{P}(\xi)\right) e^{-2 \pi i x \xi} d x & =0 \\
\Longrightarrow\left(e^{-2 \pi|\xi|}-\hat{P}(\xi)\right) e^{-2 \pi i x \xi} & ={ }_{\text {a.e. }} 0 \\
\Longrightarrow e^{-2 \pi|\xi|} & ={ }_{\text {a.e }} \hat{P}(\xi),
\end{aligned}
$$

where equality is almost everywhere and follows from the fact that if $\int f=0$ then $f=0$ almost everywhere.

6 Problem 6

We first note that if $G_{t}(x):=t^{-n} e^{-\pi|x|^{2} / t^{2}}$, then $\hat{G}_{t}(\xi)=e^{-\pi t^{2}|\xi|^{2}}$.

Moreover, if an interchange of integrals is justified, we have have

$$
\begin{aligned}
\|f\|_{1} & :=\int_{\mathbb{R}^{n}}\left|\int_{0}^{\infty} G_{t}(x) e^{-\pi t^{2}} t^{2 \varepsilon-1} d t\right| d x \\
& =\int_{\mathbb{R}^{n}} \int_{0}^{\infty} G_{t}(x) e^{-\pi t^{2}} t^{2 \varepsilon-1} d t d x
\end{aligned}
$$

since the integrand and thus integral is positive.

$$
\begin{aligned}
& =? \int_{0}^{\infty} \int_{\mathbb{R}^{n}} G_{t}(x) e^{-\pi t^{2}} t^{2 \varepsilon-1} d x d t \\
& =\int_{0}^{\infty} e^{-\pi t^{2}} t^{2 \varepsilon-1}\left(\int_{\mathbb{R}^{n}} G_{t}(x) d x\right) d t \\
& =\int_{0}^{\infty} e^{-\pi t^{2}} t^{2 \varepsilon-1}(1) d t \\
& =\int_{0}^{\infty} e^{-\pi t^{2}} t^{2 \varepsilon-1} d t,
\end{aligned}
$$

which we claim is finite, so $f \in L^{1}$.
To see that the norm is finite, we note that

$$
t \in[0,1] \Longrightarrow e^{-\pi t^{2}}<1
$$

and if we take $\varepsilon<\frac{1}{2}$, we have $2 \varepsilon-1<0$ and thus

$$
t \in[1, \infty) \Longrightarrow t^{2 \varepsilon-1} \leq 1
$$

Thus

$$
\begin{aligned}
\int_{0}^{\infty} e^{-\pi t^{2}} t^{2 \varepsilon-1} d t & =\int_{0}^{1} e^{-\pi t^{2}} t^{2 \varepsilon-1} d t+\int_{1}^{\infty} e^{-\pi t^{2}} t^{2 \varepsilon-1} d t \\
& \leq \int_{0}^{1} t^{2 \varepsilon-1} d t+\int_{1}^{\infty} e^{-\pi t^{2}} d t \\
& \leq \int_{0}^{1} t^{2 \varepsilon-1} d t+\int_{0}^{\infty} e^{-\pi t^{2}} d t \\
& =\frac{1}{2 \varepsilon}+\frac{1}{2}<\infty,
\end{aligned}
$$

where the first term is obtained by directly evaluating the integral, and the second is derived from the fact that its integral over the real line is 1 and it is an even function.

> Justifying the interchange: we note that the integrand $G_{t}(x) e^{-\pi t^{2}} t^{2 \varepsilon-1}$ is non-negative, and we've just showed that one of the iterated integrals is absolutely convergent, so Tonelli will apply if the integrand is measurable. But $G_{t}(x)$ is a continuous function on \mathbb{R}^{n} and the remaining terms are continuous on \mathbb{R}, so they are all measurable on \mathbb{R}^{n} and \mathbb{R} respectively But then taking cylinders on everything in sight yields measurable functions, and the product of measurable functions is measurable.

If another interchange of integrals is justified, we can compute

$$
\begin{aligned}
\hat{f}(\xi) & :=\int_{\mathbb{R}^{n}}\left(\int_{0}^{\infty} G_{t}(x) e^{-\pi t^{2}} t^{2 \varepsilon-1} d t\right) e^{-2 \pi i x \cdot \xi} d x \\
& =\int_{\mathbb{R}^{n}} \int_{0}^{\infty} G_{t}(x) e^{-\pi t^{2}} t^{2 \varepsilon-1} e^{-2 \pi i x \cdot \xi} d t d x \\
& =? \int_{0}^{\infty} \int_{\mathbb{R}^{n}} G_{t}(x) e^{-\pi t^{2}} t^{2 \varepsilon-1} e^{-2 \pi i x \cdot \xi} d x d t \\
& =\int_{0}^{\infty} e^{-\pi t^{2}} t^{2 \varepsilon-1}\left(\int_{\mathbb{R}^{n}} G_{t}(x) e^{-2 \pi i x \cdot \xi} d x\right) d t \\
& =\int_{0}^{\infty} e^{-\pi t^{2}} t^{2 \varepsilon-1} \hat{G}_{t}(\xi) d t \\
& =\int_{0}^{\infty} e^{-\pi t^{2}} t^{2 \varepsilon-1} e^{-\pi t^{2}|\xi|^{2}} d t \\
& =\int_{0}^{\infty} e^{-\pi t^{2}\left(1+|\xi|^{2}\right)} t^{2 \varepsilon-1} d t \\
& =\int_{0}^{\infty} e^{-\pi\left(t \sqrt{1+|\xi|^{2}}\right)^{2}} t^{2 \varepsilon-1} d t \\
& s=t \sqrt{1+|\xi|^{2}}, d s=\sqrt{1+|\xi|^{2}} d t \\
& =\int_{0}^{\infty} e^{-\pi s^{2}}\left(\frac{s}{\sqrt{1-|\xi|^{2}}}\right)^{2 \varepsilon-1} \frac{1}{\sqrt{1+|\xi|^{2}}} d s \\
& =\left(1+|\xi|^{2}\right)^{-\frac{2 \varepsilon-1}{2}}\left(1+|\xi|^{2}\right)^{-\frac{1}{2}} \int_{0}^{\infty} e^{-\pi s^{2}} s^{2 \varepsilon-1} d s \\
& =\left(1+|\xi|^{2}\right)^{-\varepsilon} \int e^{-\pi t^{2}} t^{2 \varepsilon-1} d t \\
& :=F(\xi)\|f\|_{1} .
\end{aligned}
$$

To see that the interchange is justified, note that

$$
\int_{\mathbb{R}^{n}} \int_{0}^{\infty}\left|G_{t}(x) e^{-\pi t^{2}} t^{2 \varepsilon-1} e^{-2 \pi i x \cdot \xi}\right| d t d x=\int_{\mathbb{R}^{n}} \int_{0}^{\infty}\left|G_{t}(x) e^{-\pi t^{2}} t^{2 \varepsilon-1}\right| d t d x
$$

since $\left|e^{2 \pi i x \cdot \xi}\right|=1$. The integrand appearing is precisely what we showed was measurable when computed $\|f\|_{1}$ above, so Tonelli applies.

Thus $F(\xi)$ is the Fourier transform of the function $g(x):=f(x) /\|f\|_{1}$.

Problem Set 7

D. Zack Garza

November 14, 2019

Contents

1 Problem 1 1
1.1 Part a 1
1.2 Part b 2
2 Problem 2 3
2.1 Part a: 4
2.2 Part b: 4
3 Problem 3 5
3.1 Part a 5
3.2 Part b 5
4 Problem 4 6
4.1 Part a 6
4.1.1 6
4.1.2 ii 7
4.2 Part b 7
4.2.1 7
4.2 .2 ii 8
5 Problem 5 9
5.1 Part 1 9
5.2 Part b 10
5.3 Part c 10
6 Problem 6 11
6.1 Part a 11
$6.2 \quad$ Part b 11

1 Problem 1

1.1 Part a

We want to show that $\ell^{2}(\mathbb{N})$ is complete, so let $\left\{x_{n}\right\} \subseteq \ell^{2}(\mathbb{N})$ be a Cauchy sequence. We then have $\left\|x^{j}-x^{k}\right\|_{\ell^{2}} \rightarrow 0$, and we want to produce some $\mathbf{x}:=\lim _{n \rightarrow \infty} x^{n}$ such that $x \in \ell^{2}$.

To this end, for each fixed index i, define

$$
\mathbf{x}_{i}:=\lim _{n \rightarrow \infty} x_{i}^{n}
$$

This is well-defined since $\left\|x^{j}-x^{k}\right\|_{\ell^{2}}=\sum_{i}\left|x_{i}^{j}-x_{i}^{k}\right|^{2} \rightarrow 0$, and since this is a sum of positive real numbers that approaches zero, each term must approach zero. But then for a fixed i, the sequence $\left|x_{i}^{j}-x_{i}^{k}\right|^{2}$ is a Cauchy sequence of real numbers which necessarily converges by thethe completeness of \mathbb{R}.
We also have $\left\|\mathbf{x}-x^{j}\right\|_{\ell^{2}} \rightarrow 0$ since

$$
\left\|\mathbf{x}-x^{j}\right\|_{\ell^{2}}=\left\|\lim _{k \rightarrow \infty} x^{k}-x^{j}\right\|_{\ell^{2}}=\lim _{k \rightarrow \infty}\left\|x^{k}-x^{j}\right\|_{\ell^{2}} \rightarrow 0
$$

where the limit can be passed through the norm because the map $t \mapsto\|t\|_{\ell^{2}}$ is continuous. So $x^{j} \rightarrow \mathbf{~}$ in ℓ^{2} as well.
It remains to show that $\mathbf{x} \in \ell^{2}(\mathbb{N})$, i.e. that $\sum_{i}\left|\mathbf{x}_{i}\right|^{2}<\infty$. To this end, we write

$$
\begin{aligned}
\|\mathbf{x}\|_{\ell^{2}} & =\left\|\mathbf{x}-x^{j}+x^{j}\right\|_{\ell^{2}} \\
& \leq\left\|\mathbf{x}-x^{j}\right\|_{\ell^{2}}+\left\|x^{j}\right\|_{\ell^{2}} \\
& \rightarrow M<\infty,
\end{aligned}
$$

where $\lim _{j}\left\|\mathbf{x}-x^{j}\right\|_{\ell^{2}}=0$ by the previous argument, and the second term is bounded because $x^{j} \in \ell^{2} \Longleftrightarrow\left\|x^{j}\right\|_{\ell^{2}}:=M<\infty$.

1.2 Part b

Let H be a Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and induced norm $\|\cdot\|$.
Lemma: For any complex number z, we have

$$
\Im(z)=\Re(-i z),
$$

and as a corollary, since the inner product on H takes values in \mathbb{C}, we have

$$
\Re(\langle x, i y\rangle)=\Re(-i\langle x, y\rangle)=\Im(\langle x, y\rangle) .
$$

We can compute the following:

$$
\begin{aligned}
\|x+y\|^{2} & =\|x\|^{2}+\|y\|^{2}+2 \Re(\langle x, y\rangle) \\
\|x-y\|^{2} & =\|x\|^{2}+\|y\|^{2}-2 \Re(\langle x, y\rangle) \\
\|x+i y\|^{2} & =\|x\|^{2}+\|y\|^{2}+2 \Re(\langle x, i y\rangle) \\
& =\|x\|^{2}+\|y\|^{2}+\Im(\langle x, y\rangle) \\
\|x-i y\|^{2} & =\|x\|^{2}+\|y\|^{2}-2 \Re(\langle x, i y\rangle) \\
& =\|x\|^{2}+\|y\|^{2}+\Im(\langle x, y\rangle)
\end{aligned}
$$

and summing these all

$$
\begin{aligned}
\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x+i y\| & =4 \Re(\langle x, y\rangle)+4 i \Im(\langle x, y\rangle) \\
& =4\langle x, y\rangle .
\end{aligned}
$$

To conclude that a linear map U is an isometry iff U is unitary, if we assume U is unitary then we can write

$$
\|x\|^{2}:=\langle x, x\rangle=\langle U x, U x\rangle:=\|U x\|^{2}
$$

Assuming now that U is an isometry, by the polarization identity we can write

$$
\begin{aligned}
\langle U x, U y\rangle & =\frac{1}{4}\left(\|U x+U y\|^{2}+\|U x-U y\|^{2}+i\|U x+U y\|^{2}-i\|U x+U y\|^{2}\right) \\
& =\frac{1}{4}\left(\|U(x+y)\|^{2}+\|U(x-y)\|^{2}+i\|U(x+y)\|^{2}-i\|U(x+y)\|^{2}\right) \\
& =\frac{1}{4}\left(\|x+y\|^{2}+\|x-y\|^{2}+i\|x+y\|^{2}-i\|x+y\|^{2}\right) \\
& =\langle x, y\rangle .
\end{aligned}
$$

2 Problem 2

Lemma: The map $\langle\cdot, \cdot\rangle: H \times H \rightarrow \mathbb{R}$ is continuous.
Proof:
Let $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then

$$
\begin{aligned}
\left|\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle\right| & =\left|\left\langle x_{n}, y_{n}\right\rangle-\left\langle x, y_{n}\right\rangle+\left\langle x, y_{n}\right\rangle-\langle x, y\rangle\right| \\
& =\left|\left\langle x_{n}-x, y_{n}\right\rangle+\left\langle x, y_{n}-y\right\rangle\right| \\
& \leq\left\|x_{n}-x\right\|\left\|y_{n}\right\|+\|x\|\left\|y_{n}-y\right\| \\
& \rightarrow 0 \cdot M+C \cdot 0<\infty,
\end{aligned}
$$

where $\left\|y_{n}\right\| \rightarrow\|y\|:=M<\infty$ since $y \in H$ implies that $\|y\|$ is finite.

2.1 Part a:

We want to show that sequences in E^{\perp} converge to elements of E^{\perp}. Using the lemma, letting $\left\{e_{n}\right\}$ be a sequence in E^{\perp}, so $y \in E \Longrightarrow\left\langle e_{n}, y\right\rangle=0$. Since H is complete, $e_{n} \rightarrow e \in H$; we can show that $e \in E^{\perp}$ by letting $y \in E$ be arbitrary and computing

$$
\langle e, y\rangle=\left\langle\lim _{n} e_{n}, y\right\rangle=\lim _{n}\left\langle e_{n}, y\right\rangle=\lim _{n} 0=0,
$$

so $e \in E^{\perp}$.

2.2 Part b:

Let $S:=\operatorname{span}_{H}(E)$; then the smallest closed subspace containing E is \bar{S}, the closure of S. We will proceed by showing that $E^{\perp \perp}=\bar{S}$.
$\bar{S} \subseteq E^{\perp \perp}$:
Let $\left\{x_{n}\right\}$ be a sequence in S, so $x_{n} \rightarrow x \in \bar{S}$.
First, each x_{n} is in $E^{\perp \perp}$, since if we write $x_{n}=\sum a_{i} e_{i}$ where $e_{i} \in E$, we have

$$
y \in E^{\perp} \Longrightarrow\left\langle x_{n}, y\right\rangle=\left\langle\sum_{i} a_{i} e_{i}, y\right\rangle=\sum_{i} a_{i}\left\langle e_{i}, y\right\rangle=0 \Longrightarrow x_{n} \in\left(E^{\perp}\right)^{\perp}
$$

It remains to show that $x \in E^{\perp \perp}$, which follows from

$$
y \in E^{\perp} \Longrightarrow\langle x, y\rangle=\left\langle\lim _{n} x_{n}, y\right\rangle=\lim _{n}\left\langle x_{n}, y\right\rangle=0 \Longrightarrow x \in\left(E^{\perp}\right)^{\perp}
$$

where we've used continuity of the inner product.
$E^{\perp \perp} \subseteq \bar{S}:$
For notational convenience, let S_{c} denote the closure \bar{S}. Let $x \in E^{\perp \perp}$. Noting that S_{c} is closed, we can define P, the operator projecting elements onto S_{c}, and write

$$
x=P x+(x-P x) \in S_{c} \oplus S_{c}^{\perp}
$$

But since $\langle x, x-P x\rangle=0$ (because $x-P x \in E^{\perp}$ and $x \in\left(E^{\perp}\right)^{\perp}$), we can rewrite the first term in this inner product to obtain

$$
0=\langle x, x-P x\rangle=\langle P x+(x-P x), x-P x\rangle=\langle P x, x-P x\rangle+\langle x-P x, x-P x\rangle
$$

where we can note that the first term is zero because $P x \in S_{c}$ and $x-P x \in S_{c}^{\perp}$, and the second term is $\|x-P x\|^{2}$.
But this says $\|x-P x\|^{2}=0$, so $x-P x=0$ and thus $x=P x \in S_{c}$, which is what we wanted to show.

3 Problem 3

3.1 Part a

We compute

$$
\begin{aligned}
\left\|e_{0}\right\|^{2} & =\int_{0}^{1} 1^{2} d x=1 \\
\left\|e_{1}\right\|^{2} & =\int_{0}^{1} 3(2 x-1)^{2}=\left.\frac{1}{2}(2 x-1)^{2}\right|_{0} ^{1}=1 \\
\left\langle e_{0}, e_{1}\right\rangle & =\int_{0}^{1} \sqrt{3}(2 x-1) d x=\left.\frac{\sqrt{3}}{4}(2 x-1)\right|_{0} ^{1}=0
\end{aligned}
$$

which verifies that this is an orthonormal system.

3.2 Part b

We first note that this system spans the degree 1 polynomials in $L^{2}([0,1])$, since we have

$$
\left[\begin{array}{rr}
1 & 0 \\
2 \sqrt{3} & \sqrt{3}
\end{array}\right][1, x]^{t}=\left[e_{0}, e_{1}\right]
$$

which exhibits a matrix that changes basis from $\{1, x\}$ to $\left\{e_{0}, e_{1}\right\}$ which is invertible, so both sets span the same subspace.
Thus the closest degree 1 polynomial f to x^{3} is given by the projection onto this subspace, and since $\left\{e_{i}\right\}$ is orthonormal this is given by

$$
\begin{aligned}
f(x) & =\sum_{i}\left\langle x^{3}, e_{i}\right\rangle e_{i} \\
& =\left\langle x^{3}, 1\right\rangle 1+\left\langle x^{3}, \sqrt{3}(2 x-1)\right\rangle \sqrt{3}(2 x-1) \\
& =\int_{0}^{1} x^{2} d x+\sqrt{3}(2 x-1) \int_{0}^{1} \sqrt{3} x^{2}(2 x-1) d x \\
& =\frac{1}{3}+\sqrt{3}(2 x-1) \frac{\sqrt{3}}{6} \\
& =x-\frac{1}{6}
\end{aligned}
$$

We can also compute

$$
\begin{aligned}
\|f-g\|_{2}^{2} & =\int_{0}^{1}\left(x^{2}-x+\frac{1}{6}\right)^{2} d x \\
& =\frac{1}{180} \\
\Longrightarrow\|f-g\|_{2} & =\frac{1}{\sqrt{180}} .
\end{aligned}
$$

4 Problem 4

4.1 Part a

4.1.1 i

We can first note that $\langle 1 / \sqrt{2}, \cos (2 \pi n x)\rangle=\langle 1 / \sqrt{2}, \sin (2 \pi m x)\rangle=0$ for any n or m, since this involves integrating either sine or cosine over an integer multiple of its period.

Letting $m, n \in \mathbb{Z}$, we can then compute

$$
\begin{aligned}
\langle\cos (2 \pi n x), \sin (2 \pi m x)\rangle & =\int_{0}^{1} \cos (2 \pi n x) \sin (2 \pi m x) d x \\
& =\frac{1}{2} \int_{0}^{1} \sin (2 \pi(n+m) x)-\sin (2 \pi(n-m) x) d x \\
& =\frac{1}{2} \int_{0}^{1} \sin (2 \pi(n+m) x)-\frac{1}{2} \int_{0}^{1} \sin (2 \pi(n-m) x) d x \\
& =0
\end{aligned}
$$

which again follows from integration of sine over a multiple of its period (where we use the fact that $m+n, m-n \in \mathbb{Z}$).

Similarly,

$$
\begin{aligned}
\langle\cos (2 \pi n x), \cos (2 \pi m x)\rangle & =\int_{0}^{1} \cos (2 \pi n x) \cos (2 \pi m x) d x \\
& =\frac{1}{2} \int_{0}^{1} \cos (2 \pi(m+n) x)+\cos (2 \pi(m-n) x) d x \\
& = \begin{cases}\frac{1}{2} \int_{0}^{1} \cos (4 \pi n x)+1 d x=1 & m=n \\
0 & m \neq n\end{cases} \\
\langle\sin (2 \pi n x), \sin (2 \pi m x)\rangle & =\int_{0}^{1} \sin (2 \pi n x) \sin (2 \pi m x) d x \\
& =\frac{1}{2} \int_{0}^{1} \cos (2 \pi(m-n) x)+\cos (2 \pi(m+n) x) d x \\
& = \begin{cases}\frac{1}{2} \int_{0}^{1} 1+\cos (4 \pi n x) d x=1 & m=n \\
0 & m \neq n\end{cases}
\end{aligned}
$$

Thus each pairwise combination of elements are orthonormal, making the entire set orthonormal.

4.1.2 ii

We have

$$
\begin{aligned}
\left\langle e^{2 \pi k x}, e^{-2 \pi i \ell x}\right\rangle & =\int_{0}^{1} e^{2 \pi i k x} \overline{e^{2 \pi i \ell x}} d x \\
& =\int_{0}^{1} e^{2 \pi i k x} e^{-2 \pi i \ell x} d x \\
& =\int_{0}^{1} e^{2 \pi i(k-\ell) x} d x \\
& \left(=\int_{0}^{1} 1 d x=1 \quad \text { if } k=\ell, \text { otherwise: }\right) \\
& =\left.\frac{e^{2 \pi i(k-\ell) x}}{2 \pi i(k-\ell)}\right|_{0} ^{1} \\
& =\frac{e^{2 \pi i(k-\ell)}-1}{2 \pi i(k-\ell)} \\
& =0
\end{aligned}
$$

since $e^{2 \pi i k}=1$ for every $k \in Z$, and $k-\ell \in \mathbb{Z}$. Thus this set is orthonormal.

4.2 Part b

4.2 .1 i

By the Weierstrass approximation theorem for functions on a bounded interval, we can find a polynomials $P_{n}(x)$ such that $\left\|f-P_{n}\right\|_{\infty} \rightarrow 0$, i.e. the P_{n} uniformly approximate f on $[0,1]$.

Letting $\varepsilon>0$, we can thus choose a P such that $\|f-P\|_{\infty}<\varepsilon$, which necessarily implies that $\|f-P\|_{L^{1}}<\varepsilon$ since we have

$$
\int_{0}^{1}|f(x)-P(x)| d x \leq \int_{0}^{1} \varepsilon d x=\varepsilon
$$

Thus we can write

$$
f(x)=P(x)+(f(x)-P(x))
$$

where $h(x):=f(x)-P(x)$ satisfies $\|h\|_{L^{1}}<\varepsilon$. It only remains to show that $P \in L^{2}([0,1])$, but this follows from the fact that any polynomial on a compact interval is uniformly bounded, say $|P(x)| \leq M<\infty$ for all $x \in[0,1]$, and thus

$$
\|P\|_{L^{2}}^{2}=\int_{0}^{1}|P(x)|^{2} d x \leq \int_{0}^{1} M^{2} d x=M^{2}<\infty
$$

It follows that we can let $g=P$ and $h=f-P$ to obtain the desired result.

4.2.2 ii

By part (i), the claim is that it suffices to show this is true for $f \in L^{2}$. In this case, we can identify

$$
\begin{aligned}
& \int_{0}^{1} f(x) \cos (2 \pi k x) d x:=\Re(\hat{f}(k)) \\
& \int_{0}^{1} f(x) \sin (2 \pi k x) d x:=\Im(\hat{f}(k))
\end{aligned}
$$

the real and imaginary parts of the k th Fourier coefficient of f respectively.
By Bessel's inequality, we know that $\{\hat{f}(k)\}_{k \in \mathbb{N}} \in \ell^{1}(\mathbb{N})$, and so $\sum_{k}|\hat{f}(k)|<\infty$.
But this is a convergent sequence of real numbers, which necessarily implies that $|\hat{f}(k)| \rightarrow 0$. In particular, this also means that its real and imaginary parts tend to zero, which is exactly what we wanted to show.
If we instead have $f \in L^{1}$, write $f=g+h$ where $g \in L^{2}$ and $\|h\|_{L^{1}} \rightarrow 0$. Then

$$
\begin{aligned}
\left|\int_{0}^{1} f(x) \cos (2 \pi k x) d x\right| & =\left|\int_{0}^{1}(g(x)+h(x)) \cos (2 \pi k x) d x\right| \\
& \leq\left|\int_{0}^{1} g(x) \cos (2 \pi k x) d x\right|+\left|\int_{0}^{1} h(x) \cos (2 \pi k x) d x\right| \\
& \leq\left|\int_{0}^{1} g(x) \cos (2 \pi k x) d x\right|+\int_{0}^{1}|h(x)||\cos (2 \pi k x)| d x \\
& =|\hat{g}(k)|+\varepsilon \\
& \rightarrow 0,
\end{aligned}
$$

with a similar computation for $\int f(x) \sin (2 \pi k x)$.

5 Problem 5

5.1 Part 1

We use the following algorithm: given $\{v\}_{i}$, we set

- $e_{1}=v_{1}$, and then normalize to obtain $\hat{e_{1}}=e_{1} /\left\|e_{1}\right\|$
- $e_{i}=v_{i}-\sum_{k \leq i-1}\left\langle v_{i}, \hat{e}_{i}\right\rangle \hat{e}_{i}$

The result set $\left\{\hat{e}_{i}\right\}$ is the orthonormalized basis.
We set $e_{1}=1$, and check that $\left\|e_{1}\right\|^{2}=2$, and thus set $\hat{e}_{1}=\frac{1}{\sqrt{2}}$.
We then set

$$
\begin{aligned}
e_{2} & =x-\left\langle x, \hat{e}_{1}\right\rangle \hat{e}_{1} \\
& =x-\langle x, 1\rangle 1 \\
& =x-\int_{-1}^{1} \frac{1}{\sqrt{2}} x d x \\
& =x-\int \text { odd function } \\
& =x
\end{aligned}
$$

and so $e_{2}=x$. We can then check that

$$
\left\|e_{2}\right\|=\left(\int_{-1}^{1} x^{2} d x\right)^{1 / 2}=\sqrt{\frac{2}{3}}
$$

and so we set $\hat{e}_{2}=\sqrt{\frac{3}{2}} x$.
We continue to compute

$$
\begin{aligned}
e_{3} & =x^{2}-\left\langle x^{2}, \hat{e}_{1}\right\rangle \hat{e}_{1}-\left\langle x^{2}, \hat{e}_{2}\right\rangle \hat{e}_{2} \\
& =x^{2}-\frac{1}{2} \int_{-1}^{1} x^{2} d x-\frac{3}{2} x \int_{-1}^{1} x^{3} d x \\
& =x^{2}-\left.\left(\frac{1}{6} x^{3}\right)\right|_{-1} ^{1}+\frac{3}{2} x \int_{-1}^{1} \text { odd function } \\
& =x^{2}-\frac{1}{3}
\end{aligned}
$$

We can then check that $\left\|e_{3}\right\|^{2}=\frac{8}{45}$, so we set

$$
\begin{aligned}
\hat{e}_{3} & =\sqrt{\frac{45}{8}}\left(x^{2}-\frac{1}{3}\right) \\
& =\frac{1}{2} \sqrt{\frac{45}{2}} \frac{1}{3}\left(3 x^{2}-1\right) \\
& =\frac{1}{3} \sqrt{\frac{45}{2}}\left(\frac{3 x^{2}-1}{2}\right) .
\end{aligned}
$$

In summary, this yields

$$
\begin{aligned}
& \hat{e}_{1}=\frac{1}{\sqrt{2}} \\
& \hat{e}_{2}=x \\
& \hat{e}_{3}=\frac{1}{3} \sqrt{\frac{45}{2}}\left(\frac{3 x^{2}-1}{2}\right),
\end{aligned}
$$

which are scalar multiples of the first three Legendre polynomials.

5.2 Part b

Let $p(x)=a+b x+c x^{2}$, we are then looking for p such that $\left\|x^{3}-p(x)\right\|_{2}^{2}$ is minimized. Noting that

$$
p(x) \in \operatorname{span}\left\{1, x, x^{2}\right\}=\operatorname{span}\left\{P_{0}(x), P_{1}(x), P_{2}(x)\right\}:=S,
$$

we can conclude that $p(x)$ will be the projection of x^{3} onto S. Thus $p(x)=\sum_{i=0}^{2}\left\langle x^{3}, \hat{e}_{i}\right\rangle \hat{e}_{i}$.
Proceeding to compute the terms in this expansion, we can note that $\left\langle x^{3}, f\right\rangle$ for any f that is even will result in integrating an odd function over a symmetric interval, yielding zero. So only one term doesn't vanish:

$$
\left\langle x^{3}, x\right\rangle x=x \int_{-1}^{1} x^{4} d x=\frac{2}{5} x
$$

And thus $p(x)=\frac{2}{5} x$ is the minimizer.

5.3 Part c

The first three conditions necessitate $g \in S^{\perp}$ and $\|g\|=1$. Since S is a closed subspace, we can write $x^{3}=p(x)+\left(x^{3}-p(x)\right) \in S \oplus S^{\perp}$, and so $x^{3}-p(x) \in S^{\perp}$.

The claim is that $g(x):=x^{3}-p(x)$ is a scalar multiple of the desired maximizer. This follows from the fact that

$$
\left|\left\langle x^{3}-p, g\right\rangle\right| \leq\left\|x^{3}-p\right\|\|g\|
$$

by Cauchy-Schwarz, with equality precisely when $g=\lambda\left(x^{3}-p\right)$ for some scalar λ. However, the restriction $\|g\|=1$ forces $\lambda=\left\|x^{3}-p\right\|^{-1}$.
A computation shows that

$$
\left\|x^{3}-p\right\|^{2}=\int_{0}^{1}\left(x^{3}-\frac{2}{5} x\right)^{2} d x=\frac{19}{525},
$$

and so we can take

$$
g(x):=\frac{25}{\sqrt{19}}\left(x^{3}-\frac{2}{5} x\right) .
$$

6 Problem 6

6.1 Part a

To see that $g \in \mathcal{C}$, we can compute

$$
\begin{aligned}
& \langle g, 1\rangle=\int_{0}^{1} 18 x^{2}-5 d x=6-5=1 \\
& \langle g, x\rangle=\int_{0}^{1} 18 x^{3}-5 x d x=\frac{18}{4}-\frac{5}{2}=2
\end{aligned}
$$

To see that $\mathcal{C}=g+S^{\perp}$, let $f \in \mathcal{C}$, so $\langle f, 1\rangle=1$ and $\langle f, x\rangle=2$. We can then conclude that $f-g \in S^{\perp}$, since we have

$$
\begin{aligned}
& \langle f-g, 1\rangle=\langle f, 1\rangle-\langle g, 1\rangle=1-1=0 \\
& \langle f-g, x\rangle=\langle f, x\rangle-\langle g, x\rangle=2-2=0
\end{aligned}
$$

6.2 Part b

Note that this equivalent to finding an $f_{0} \in \mathcal{C}$ such that $\left\|f_{0}\right\|$ is minimized.
Letting $f_{0} \in \mathcal{C}$, be arbitrary and noting that by part (a) we have $f_{0}=g+s$ where $s \in S^{\perp}$, we can compute

$$
\begin{aligned}
\left\|f_{0}\right\|^{2} & =\left\langle f_{0}, f_{0}\right\rangle \\
& =\langle g+s, g+s\rangle \\
& =\|g\|^{2}+2 \Re\langle g, s\rangle+\|s\|^{2},
\end{aligned}
$$

which can be minimized by taking $s=0$, which forces $\|s\|^{2}=0$ and $\langle g, s\rangle=0$. But this imposes the condition $f_{0}=g+0=g$.

Problem Set 8

D. Zack Garza

November 28, 2019

Contents

1 Problem 1 1
1.1 Part a 1
1.2 Part b 2
1.3 Part c 2
2 Problem 2 3
2.1 Part a 3
2.1.1 Part i 3
2.1.2 Part ii 4
2.2 Part b 5
3 Problem 3 5
4 Problem 4 7
4.1 Part a 7
4.2 Part b 7
5 Problem 5 8
5.1 Part a 8
5.2 Part b 9
6 Problem 6 10

1 Problem 1

1.1 Part a

It follows from the definition that $\|f\|_{\infty}=0 \Longleftrightarrow f=0$ almost everywhere, and if $\|f\|_{\infty}$ is the best upper bound for f almost everywhere, then $\|c f\|_{\infty}$ is the best upper bound for $c f$ almost everywhere.
So it remains to show the triangle inequality. Suppose that $|f(x)| \leq\|f\|_{\infty}$ a.e. and $|g(x)| \leq\|g\|_{\infty}$ a.e., then by the triangle inequality for the $|\cdot|_{\mathbb{R}}$ we have

$$
\begin{aligned}
|(f+g)(x)| & \leq|f(x)|+|g(x)| \quad \text { a.e. } \\
& \leq\|f\|_{\infty}+\|g\|_{\infty} \quad \text { a.e. },
\end{aligned}
$$

which means that $\|f+g\|_{\infty} \leq\|f\|_{\infty}+\|g\|_{\infty}$ as desired.

1.2 Part b

\Longrightarrow : Suppose $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$, then for every $\varepsilon, N_{\varepsilon}$ can be chosen large enough such that $\left|f_{n}(x)-f(x)\right|<\varepsilon$ a.e., which precisely means that there exist sets E_{ε} such that $x \in E_{\varepsilon} \Longrightarrow$ $\left|f_{n}(x)-f(x)\right|$ and $m\left(E_{\varepsilon}^{c}\right)=0$.
But then taking the sequence $\varepsilon_{n}:=\frac{1}{n} \rightarrow 0$, we have $f_{n} \rightrightarrows f$ uniformly on $E:=\bigcap_{n} E_{n}$ by definition, and $E^{c}=\bigcup_{n} E_{n}^{c}$ is still a null set.
\Longleftarrow : Suppose $f_{n} \rightrightarrows f$ uniformly on some set E and $m\left(E^{c}\right)=0$. Then for any ε, we can choose N large enough such that $\left|f_{n}(x)-f(x)\right|<\varepsilon$ on E; but then ε is an upper bound for $f_{n}-f$ almost everywhere, so $\left\|f_{n}-f\right\|_{\infty}<\varepsilon \rightarrow 0$.

1.3 Part c

To see that simple functions are dense in $L^{\infty}(X)$, we can use the fact that $f \in L^{\infty}(X) \Longleftrightarrow$ there exists a g such that $f=g$ a.e. and g is bounded.
Then there is a sequence s_{n} of simple functions such that $\left\|s_{n}-g\right\|_{\infty} \rightarrow 0$, which follows from a proof in Folland:

Proof. (a) For $n-0,1,2, \ldots$ and $0 \leq k \leq 2^{2 n}-1$, let

$$
E_{n}^{k}=f^{-1}\left(\left(k 2^{-n},(k+1) 2^{-n}\right]\right) \quad \text { and } \quad F_{n}=f^{-1}\left(\left(2^{n}, \infty\right]\right)
$$

and define

$$
\phi_{n}=\sum_{k=0}^{2^{2 n}-1} k 2^{-n} \chi_{E_{n}^{k}}+2^{n} \chi_{F_{n}}
$$

(This formula is messy in print but easily understood graphically; see Figure 2.1.) It is easily checked that $\phi_{n} \leq \phi_{n+1}$ for all n, and $0 \leq f-\phi_{n} \leq 2^{-n}$ on the set where $f \leq 2^{n}$. The result therefore follows.

However, $C_{c}^{0}(X)$ is dense $L^{\infty}(X) \Longleftrightarrow$ every $f \in L^{\infty}(X)$ can be approximated by a sequence $\left\{g_{k}\right\} \subset C_{c}^{0}(X)$ in the sense that $\left\|f-g_{n}\right\|_{\infty} \rightarrow 0$. To see why this can not be the case, let $f(x)=1$, so $\|f\|_{\infty}=1$ and let $g_{n} \rightarrow f$ be an arbitrary sequence of C_{c}^{0} functions converging to f pointwise.
Since every g_{n} has compact support, $\operatorname{say} \operatorname{supp}\left(g_{n}\right):=E_{n}$, then $\left.g_{n}\right|_{E_{n}^{c}} \equiv 0$ and $m\left(E_{n}^{c}\right)>0$. In particular, this means that $\left\|f-g_{n}\right\|_{\infty}=1$ for every n, so g_{n} can not converge to f in the infinity norm.

2 Problem 2

2.1 Part a

2.1.1 Part i

Lemma: $\|1\|_{p}=m(X)^{1 / p}$
This follows from $\|1\|_{p}^{p}=\int_{X}|1|^{p}=\int_{X} 1=m(X)$ and taking p th roots.
By Holder with $p=q=2$, we can now write

$$
\begin{aligned}
\|f\|_{1} & =\|1 \cdot f\|_{1} \leq\|1\|_{2}\|f\|_{2}=m(X)^{1 / 2}\|f\|_{2} \\
\Longrightarrow\|f\|_{1} & \leq m(X)^{1 / 2}\|f\|_{2}
\end{aligned}
$$

Letting $M:=\|f\|_{\infty}$, We also have

$$
\begin{aligned}
\|f\|_{2}^{2} & =\int_{X}|f|^{2} \leq \int_{X}|M|^{2}=M^{2} \int_{X} 1=M^{2} m(X) \\
\Longrightarrow\|f\|_{2} & \leq m(X)^{1 / 2}\|f\|_{\infty} \\
\Longrightarrow m(X)^{1 / 2}\|f\|_{2} & \leq m(X)\|f\|_{\infty}
\end{aligned}
$$

and combining these yields

$$
\|f\|_{1} \leq m(X)^{1 / 2}\|f\|_{2} \leq m(X)\|f\|_{\infty}
$$

from which it immediately follows

$$
m(X)<\infty \Longrightarrow L^{\infty}(X) \subseteq L^{2}(X) \subseteq L^{1}(X)
$$

The Inclusions Are Strict:

1. $\exists f \in L^{1}(X) \backslash L^{2}(X)$:

Let $X=[0,1]$ and consider $f(x)=x^{-\frac{1}{2}}$. Then

$$
\|f\|_{1}=\int_{0}^{1} x^{-\frac{1}{2}}<\infty \quad \text { by the } p \text { test }
$$

while

$$
\|f\|_{2}^{2}=\int_{0}^{1} x^{-1} \rightarrow \infty \quad \text { by the } p \text { test. }
$$

2. $\exists f \in L^{2}(X) \backslash L^{\infty}(X)$:

Take $X=[0,1]$ and $f(x)=x^{-\frac{1}{4}}$. Then

$$
\|f\|_{2}^{2}=\int_{0}^{1} x^{-\frac{1}{4}}<\infty \quad \text { by the } p \text { test }
$$

while $\|f\|_{\infty}>M$ for any finite M, since f is unbounded in neighborhoods of 0 , so $\|f\|_{\infty}=\infty$.

2.1.2 Part ii

1. $\exists f \in L^{2}(X) \backslash L^{1}(X)$ when $m(X)=\infty$:

Take $X=[1, \infty)$ and let $f(x)=x^{-1}$, then

$$
\begin{array}{ll}
\|f\|_{2}^{2}=\int_{0}^{\infty} x^{-2}<\infty & \text { by the } p \text { test }, \\
\|f\|_{1}=\int_{0}^{\infty} x^{-1} \rightarrow \infty & \text { by the } p \text { test. }
\end{array}
$$

2. $\exists f \in L^{\infty}(X) \backslash L^{2}(X)$ when $m(X)=\infty$:

Take $X=\mathbb{R}$ and $f(x)=1$. then

$$
\begin{aligned}
\|f\|_{\infty} & =1 \\
\|f\|_{2}^{2} & =\int_{\mathbb{R}} 1 \rightarrow \infty .
\end{aligned}
$$

3. $L^{2}(X) \subseteq L^{1}(X) \Longrightarrow m(X)<\infty$:

Let $f=\chi_{X}$, by assumption we can find a constant M such that $\left\|\chi_{X}\right\|_{2} \leq M\left\|\chi_{X}\right\|_{1}$.
Then pick a sequence of sets $E_{k} \nearrow X$ such that $m\left(E_{k}\right)<\infty$ for all $k, \chi_{E_{k}} \nearrow \chi_{X}$, and thus $\left\|\chi_{E_{k}}\right\|_{p} \leq M\left\|\chi_{E}\right\|_{p}$. By the lemma, $\left\|\chi_{E_{k}}\right\|_{p}=m\left(E_{k}\right)^{1 / p}$, so we have

$$
\begin{aligned}
\left\|\chi_{E_{k}}\right\|_{2} \leq M\left\|\chi_{E_{k}}\right\|_{1} & \Longrightarrow \frac{\left\|\chi_{E_{k}}\right\|_{2}}{\left\|\chi_{E_{k}}\right\|_{1}} \leq M \\
& \Longrightarrow \frac{m\left(E_{k}\right)^{1 / 2}}{m\left(E_{k}\right)} \leq M \\
& \Longrightarrow m\left(E_{k}\right)^{-1 / 2} \leq M \\
& \Longrightarrow m\left(E_{k}\right) \leq M^{2}<\infty
\end{aligned}
$$

and by continuity of measure, we have $\lim _{K} m\left(E_{k}\right)=m(X) \leq M^{2}<\infty$.

2.2 Part b

1. $L_{1}(X) \cap L^{\infty}(X) \subset L^{2}(X)$:

Let $f \in L^{1}(X) \cap L^{\infty}(X)$ and $M:=\|f\|_{\infty}$, then

$$
\begin{equation*}
\|f\|_{2}^{2}=\int_{X}|f|^{2}=\int_{X}|f||f| \leq \int_{X} M|f|=M \int|f|:=\|f\|_{\infty}\|f\|_{1}<\infty . \tag{1}
\end{equation*}
$$

The inclusion is strict, since we know from above that there is a function in $L^{2}(X)$ that is not in $L^{\infty}(X)$.

Note that taking square roots in (1) immediately yields

$$
\|f\|_{L^{2}(X)} \leq\|f\|_{L^{1}(X)}^{1 / 2}\|f\|_{L^{\infty}(X)}^{1 / 2}
$$

2. $L^{2}(X) \subset L^{1}(X)+L^{\infty}(X)$:

Let $f \in L^{2}(X)$, then write $S=\{x \ni|f(x)| \geq 1\}$ and $f=\chi_{S} f+\chi_{S^{c}} f:=g+h$.
Since $x \geq 1 \Longrightarrow x^{2} \geq x$, we have

$$
\|g\|_{1}^{2}=\int_{X}|g|=\int_{S}|f| \leq \int_{S}|f|^{2} \leq \int_{X}|f|^{2}=\|f\|_{2}^{2}<\infty
$$

and so $g \in L^{1}(X)$.
To see that $h \in L^{\infty}(X)$, we just note that h is bounded by 1 by construction, and so $\|h\|_{\infty} \leq 1<\infty$.

3 Problem 3

For notational convenience, it suffices to prove this for $\ell^{p}(\mathbb{N})$, where we re-index each sequence in $\ell^{p}(\mathbb{Z})$ using a bijection $\mathbb{Z} \rightarrow \mathbb{N}$.

Note: this technically reorders all sums appearing, but since we are assuming absolute convergence everywhere, this can be done. One can also just replace $\sum_{j=n}^{m}\left|a_{j}\right|^{p}$ with $\sum_{n \leq|j| \leq m}\left|a_{j}\right|^{p}$ in what follows.

1. $\ell^{1}(\mathbb{N}) \subset \ell^{2}(\mathbb{N})$:

Suppose $\sum_{j}|a|_{j}<\infty$, then its tails go to zero, so choose N large enough so that

$$
j \geq N \Longrightarrow\left|a_{j}\right|<1
$$

But then

$$
j \geq N \Longrightarrow\left|a_{j}\right|^{2}<\left|a_{j}\right|
$$

and

$$
\begin{aligned}
\sum_{j}\left|a_{j}\right|^{2} & =\sum_{j=1}^{N}\left|a_{j}\right|^{2}+\sum_{j=N+1}^{\infty}\left|a_{j}\right|^{2} \\
& \leq \sum_{j=1}^{N}\left|a_{j}\right|^{2}+\sum_{j=N+1}^{\infty}\left|a_{j}\right| \\
& \leq M+\sum_{j=N+1}^{\infty}\left|a_{j}\right| \\
& \leq M+\sum_{j=1}^{\infty}\left|a_{j}\right| \\
& <\infty
\end{aligned}
$$

where we just note that the first portion of the sum is a finite sum of finite numbers and thus bounded.

To see that the inclusion is strict, take $\mathbf{a}:=\left\{j^{-1}\right\}_{j=1}^{\infty}$; then $\|\mathbf{a}\|_{2}<\infty$ by the p-test by $\|\mathbf{a}\|_{1}=\infty$ since it yields the harmonic series.
2. $\ell^{2}(\mathbb{N}) \subset \ell^{\infty}(\mathbb{N}):$

This follows from the contrapositive: if \mathbf{a} is a sequence with unbounded terms, then $\|\mathbf{a}\|_{2}=\sum\left|a_{j}\right|^{2}$ can not be finite, since convergence would require that $\left|a_{j}\right|^{2} \rightarrow 0$ and thus $\left|a_{j}\right| \rightarrow 0$.

To see that the inclusion is strict, take $\mathbf{a}=\{1\}_{j=1}^{\infty}$. Then $\|\mathbf{a}\|_{\infty}=1$, but the corresponding sum does not converge.
3. $\|\mathbf{a}\|_{2} \leq\|\mathbf{a}\|_{1}$:

Let $M=\|\mathbf{a}\|_{1}$, then

$$
\|\mathbf{a}\|_{2}^{2} \leq\|\mathbf{a}\|_{1}^{2} \Longleftrightarrow \frac{\|\mathbf{a}\|_{2}^{2}}{M^{2}} \leq 1 \Longleftrightarrow \sum_{j}\left|\frac{a_{j}}{M}\right|^{2} \leq 1
$$

But then we can use the fact that

$$
\left|\frac{a_{j}}{M}\right| \leq 1 \Longrightarrow\left|\frac{a_{j}}{M}\right|^{2} \leq\left|\frac{a_{j}}{M}\right|
$$

to obtain

$$
\sum_{j}\left|\frac{a_{j}}{M}\right|^{2} \leq \sum_{j}\left|\frac{a_{j}}{M}\right|=\frac{1}{M} \sum_{j}\left|a_{j}\right|:=1 .
$$

4. $\|\mathbf{a}\|_{\infty} \leq\|\mathbf{a}\|_{2}$:

This follows from the fact that, we have

$$
\|\mathbf{a}\|_{\infty}^{2}:=\left(\sup _{j}\left|a_{j}\right|\right)^{2}=\sup _{j}\left|a_{j}\right|^{2} \leq \sum_{j}\left|a_{j}\right|^{2}=\|\mathbf{a}\|_{2}^{2}
$$

and taking square roots yields the desired inequality.

> Note: the middle inequality follows from the fact that the supremum S is the least upper bound of all of the a_{j}, so for all j, we have $a_{j}+\varepsilon>S$ for every $\varepsilon>0$. But in particular, $a_{k}+a_{j}>a_{j}$ for any pair a_{j}, a_{k} where $a_{k} \neq 0$, so $a_{k}+a_{j}>S$ and thus so is the entire sum.

4 Problem 4

4.1 Part a

Let $\left\{f_{k}\right\}$ be a Cauchy sequence, then $\left\|f_{k}-f_{j}\right\|_{u} \rightarrow 0$. Define a candidate limit by fixing x, then using the fact that $\left|f_{j}(x)-f_{k}(x)\right| \rightarrow 0$ as a Cauchy sequence in \mathbb{R}, which converges to some $f(x)$.
We want to show that and $\left\|f_{n}-f\right\|_{u} \rightarrow 0$ and $f \in C([0,1])$.
This is immediate though, since $f_{n} \rightarrow f$ uniformly by construction, and the uniform limit of continuous functions is continuous.

4.2 Part b

It suffices to produce a Cauchy sequence of continuous functions f_{k} such that $\left\|f_{j}-f_{j}\right\|_{1} \rightarrow 0$ but if we define $f(x):=\lim f_{k}(x)$, we have either $\|f\|_{1}=\infty$ or f is not continuous.
To this end, take $f_{k}(x)=x^{k}$ for $k=1,2, \cdots, \infty$.
Then pointwise we have

$$
f_{k} \rightarrow \begin{cases}0 & x \in[0,1) \\ 1 & x=1\end{cases}
$$

which has a clear discontinuity, but

$$
\left\|f_{k}-f_{j}\right\|_{1}:=\int_{0}^{1} x^{k}-x^{j}=\frac{1}{k+1}-\frac{1}{j+1} \rightarrow 0 .
$$

5 Problem 5

5.1 Part a

\Longleftarrow : It suffices to show that the map

$$
\begin{aligned}
H & \rightarrow \ell^{2}(\mathbb{N}) \\
\mathbf{x} & \mapsto\left\{\left\langle\mathbf{x}, \mathbf{u}_{n}\right\rangle\right\}_{n=1}^{\infty}:=\left\{a_{n}\right\}_{n=1}^{\infty}
\end{aligned}
$$

is a surjection, and for every $\mathbf{a} \in \ell^{2}(\mathbb{N})$, we can pull back to some $\mathbf{x} \in H$ such that $\|\mathbf{x}\|_{H}=\|\mathbf{a}\|_{\ell^{2}(\mathbb{N})}$. Following the proof in Neil's notes, let $\mathbf{a} \in \ell^{2}(\mathbb{N})$ be given by $\mathbf{a}=\left\{a_{j}\right\}$, and define $S_{N}=\sum_{n=1}^{N} a_{n} \mathbf{u}_{n}$. We then have

$$
\begin{aligned}
\left\|S_{N}-S_{M}\right\|_{H} & =\left\|\sum_{n=M+1}^{N} a_{n} \mathbf{u}_{n}\right\|_{H} \\
& =\sum_{n=M+1}^{N}\left\|a_{n} \mathbf{u}_{n}\right\|_{H} \\
& =\sum_{n=M+1}^{N}\left|a_{n}\right|_{\mathbb{C}}\left\|\mathbf{u}_{n}\right\|_{H}
\end{aligned}
$$

$$
=\sum_{n=M+1}^{N}\left\|a_{n} \mathbf{u}_{n}\right\|_{H} \quad \text { by Pythagoras, since the } \mathbf{u}_{n} \text { are orthogonal }
$$

$$
=\sum_{n=M+1}^{N}\left|a_{n}\right|_{\mathbb{C}} \quad \text { since the } \mathbf{u}_{n} \text { are orthonormal }
$$

$$
\rightarrow 0 \quad \text { as } N, M \rightarrow \infty,
$$

which goes to zero because it is the tail of a convergent sum in \mathbb{R}.
Since H is complete, every Cauchy sequence converges, and in particular $S_{N} \rightarrow \mathbf{x} \in H$ for some \mathbf{x}. We now have

$$
\begin{aligned}
\left|\left\langle\mathbf{x}, \mathbf{u}_{n}\right\rangle\right| & =\left|\left\langle\mathbf{x}-S_{N}+S_{N}, \mathbf{u}_{n}\right\rangle\right| \\
& =\left|\left\langle\mathbf{x}-S_{N}, \mathbf{u}_{n}\right\rangle+\left\langle S_{N}, \mathbf{u}_{n}\right\rangle\right| \\
& \leq\left\|\mathbf{x}-S_{N}\right\|_{H}\left\|\mathbf{u}_{n}\right\|_{H}+\left|\left\langle S_{N}, \mathbf{u}_{n}\right\rangle\right| \\
& =\left\|\mathbf{x}-S_{N}\right\|_{H}+\left|\left\langle S_{N}, \mathbf{u}_{n}\right\rangle\right| \\
& =\left\|\mathbf{x}-S_{N}\right\|_{H}+\left|a_{n}\right| \\
& \rightarrow 0+\left|a_{n}\right|
\end{aligned}
$$

$$
\forall n, N
$$

$$
\forall n, N
$$

$$
\forall n, N \text { by Cauchy-Schwartz }
$$

$$
\begin{array}{r}
\forall n, N \\
\forall N \geq n
\end{array}
$$

$$
\text { as } N \rightarrow \infty,
$$

where we just note that

$$
\left\langle S_{N}, \mathbf{u}_{n}\right\rangle=\left\langle\sum_{j=1}^{N} a_{j} \mathbf{u}_{j}, \mathbf{u}_{n}\right\rangle=\sum_{j=1}^{N} a_{j}\left\langle\mathbf{u}_{j}, \mathbf{u}_{n}\right\rangle=a_{n} \Longleftrightarrow N \geq n
$$

since $\left\langle\mathbf{u}_{j}, \mathbf{u}_{n}\right\rangle=\delta_{j, n}$ and so the a_{n} term is extracted iff \mathbf{u}_{n} actually appears as a summand.
We thus have

$$
\left\langle\mathbf{x}, \mathbf{u}_{n}\right\rangle=\left|a_{n}\right| \quad \forall n,
$$

and since $\left\{\mathbf{u}_{n}\right\}$ is a basis, we can apply Parseval's identity to obtain

$$
\|\mathbf{x}\|_{H}^{2}=\sum_{n=1}^{\infty}\left|\left\langle\mathbf{x}, \mathbf{u}_{n}\right\rangle\right|:=\sum_{n=1}^{\infty}\left|a_{n}\right| .
$$

\Longrightarrow : Given a vector $\mathbf{x}=\sum_{n} a_{n} \mathbf{u}_{n}$, we can immediately note that both $\|\mathbf{x}\|_{H}<\infty$ and $\left\langle\mathbf{x}, \mathbf{u}_{n}\right\rangle=$ a_{n}. Since $\left\{\mathbf{u}_{n}\right\}$ being a basis is equivalent to Parseval's identity holding, we immediately obtain

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty}\left|\left\langle\mathbf{x}, \mathbf{u}_{n}\right\rangle\right|=\|\mathbf{x}\|_{H}^{2}<\infty .
$$

5.2 Part b

In both cases, suppose such a linear functional exists.

1. Using part (a), we know that H is isometrically isomorphic to $\ell^{2}(\mathbb{N})$, and thus $H_{f}^{\vee} \cong$ $\left(\ell^{2}(\mathbb{N})\right)^{\vee} \cong_{d} \ell^{2}(\mathbb{N})$.
Note: this follows since $\ell^{p}(\mathbb{N})^{\vee} \cong \ell^{q}(\mathbb{N})$ where p, q are Holder conjugates.
But then, since $L \in H^{\vee}$, under the isometry f it maps to the functional

$$
\begin{array}{r}
L_{\ell}: \ell^{2}(\mathbb{Z}) \rightarrow \mathbb{C} \\
\mathbf{a}=\left\{a_{n}\right\} \mapsto \sum_{n \in \mathbb{N}} a_{n} n^{-1},
\end{array}
$$

which under the identification of dual spaces g identifies L_{ℓ} with the vector $\mathbf{b}:=\left\{n^{-1}\right\}_{n \in \mathbb{N}}$.
Most importantly, these are all isometries, so we have the equalities

$$
\|L\|_{H}=\left\|L_{\ell}\right\|_{\ell^{2}(\mathbb{N})^{v}}=\|\mathbf{b}\|_{\ell^{2}(\mathbb{N})}
$$

so it suffices to compute the ℓ^{2} norm of the sequence $b_{n}=\frac{1}{n}$. To this end, we have

$$
\begin{aligned}
\|\mathbf{b}\|_{\ell^{2}(\mathbb{N})}^{2} & =\sum_{n}\left|\frac{1}{n}\right|^{2} \\
& =\sum_{n} \frac{1}{n^{2}} \\
& =\frac{\pi^{2}}{6},
\end{aligned}
$$

which shows that $\|L\|_{H}=\pi / \sqrt{6}$.
2. Using the same argument, we obtain $\mathbf{b}=\left\{n^{-1 / 2}\right\}_{n \in \mathbb{N}}$, and thus

$$
\|L\|_{H}^{2}=\|\mathbf{b}\|_{\ell^{2}(\mathbb{N})}^{2}=\sum_{n}\left|n^{-1 / 2}\right|^{2} \rightarrow \infty .
$$

which shows that L is unbounded, and thus can not be a continuous linear functional.

6 Problem 6

We can use the fact that $\Lambda_{p} \in\left(L^{p}\right)^{\vee} \cong L^{q}$, where this is an isometric isomorphism given by the map

$$
\begin{gathered}
I: L^{q} \rightarrow\left(L^{p}\right)^{\vee} \\
g \mapsto\left(f \mapsto \int f g\right) .
\end{gathered}
$$

Under this identification, for any $\Lambda \in\left(L^{p}\right)^{\vee}$, to any $\Lambda \in\left(L^{p}\right)^{\vee}$ we can associate a $g \in L^{q}$, where we have

$$
\|\Lambda\|_{\left(L^{p}\right)^{\vee}}=\|g\|_{L^{q}} .
$$

In this case, we can identify $\Lambda_{p}=I(g)$, where $g(x)=x^{2}$ and we can verify that $g \in L^{q}$ by computing its norm:

$$
\begin{aligned}
\|g\|_{L^{q}}^{q} & =\int_{0}^{1}\left(x^{2}\right)^{q} d x \\
& =\left.\frac{x^{2 q+1}}{2 q+1}\right|_{0} ^{1} \\
& =\frac{1}{2 q+1} \\
& =\frac{p-1}{3 p-1}<\infty
\end{aligned}
$$

where we identify $q=\frac{p}{p-1}$, and note that this is finite for all $1 \leq p \leq \infty$ since it limits to $\frac{1}{3}$. But then

$$
\left\|\Lambda_{p}\right\|_{\left(L^{p}\right) \vee}=\|g\|_{L^{q}}=\left(\frac{p-1}{3 p-1}\right)^{\frac{1}{q}}=\left(\frac{p-1}{3 p-1}\right)^{\frac{p-1}{p}}
$$

which shows that Λ_{p} is bounded and thus a continuous linear functional.

