# Thursday September 19th ## Review of the Lebesgue Integral for $L^+$ Recall the definition of $L^+$, and the fact that for any $f\in L^+$, there is a sequence $\theset{f_n}$ of simple functions in $L^+$ such that $f_n \nearrow f$. Given any simple function $\phi$, we defined $$ \int \phi = \sum_j a_j m(E_j) $$ **iff** this is a standard representation for $\phi$. We then extend to all functions in $L^+$ by defining $$ \int f \definedas \sup \theset{\int \phi \suchthat 0\leq \phi \leq f,~\phi\text{ simple }} .$$ **Some properties:** - $f\leq g \implies \int f \leq \int g$ (monotonicity, easy to show) - $\int cf = c\int f$ (also easy to show) - $\int (f + g) = \int f + \int g$ (less obvious, follows from MCT) **Theorem:** If $\theset{f_n} \subset L^+$, then $\sum \int f_k = \int \sum f_k$. *Proof:* Exercise, not too tricky. ## Proof of Monotone Convergence Theorem **Theorem (MCT):** If $\theset{f_n} \subset L^+$ with $f_k \leq f_{k+1}$ and $f_k \to f$, then $\lim \int f_n = \int \lim f_n = \int f$. *Proof of MCT:* Given any simple $\phi \in L^+$, define the set function \begin{align*} \mu_\phi: \mathcal M \to [0, \infty] \\ A \mapsto \int_A \phi .\end{align*} So if $\theset{E_k} \subset \mathcal M$ and $E_1 \subseteq E_2 \subseteq \cdots$, then $\mu_\phi(\union E_k) = \lim \mu_\phi(E_k)$. > Note that $$ f_k \in L^+ \implies \lim f_k \in L^+ \quad \text{ and }\quad f_k \leq f_{k+1} \implies \int f_k \leq \int f_{k+1} ,$$ so the limit on the LHS makes sense. Let $f = \lim f_k$, then $$ \int f_k \leq \int f \text{ for all } k ,$$ so $$ \lim \int f_k \leq \int f.$$ So we need to show that $\lim \int f_k \geq \int f$. Fix $\alpha \in (0, 1)$ and let $\phi$ be simple with $0 \leq \phi \leq f$. (We'll later show that the result is independent of this choice.) Let $$ E_k = \theset{x \suchthat f_k(x) \geq \alpha \phi(x)} ,$$ which we can now say is *clearly* measurable. Then $E_1 \subseteq E_2 \subseteq \cdots$ since the $f_k$ are increasing. Moreover, $\union E_k = \RR^n$ (check!), since $f_k \to f, \alpha \phi < \phi \leq f$. Then \begin{align*} \int f_g \geq \int_{E_k} \geq \alpha \int_{E_k}\phi \definedas \alpha \mu_\phi(E_k) .\end{align*} But then \begin{align*} \lim \int f_k \geq \lim \alpha \mu_\phi(E_k) = \alpha \mu_\phi(\RR^n) = \alpha \int \phi \quad \forall \alpha, \forall \phi .\end{align*} So $\lim \int f_k \geq \int \phi$ for all $\phi$ simple with $0\leq \phi \leq f$. Thus $$ \int f = \sup_\phi \int \phi \leq \lim \int f_k ,$$ which is what we wanted to show. $\qed$ ### Chebyshev's Inequality **Theorem (Chebyshev's Inequality):** If $f\in L^+$, then $$m(\theset{x \suchthat f(x) \geq \alpha}) \geq \frac 1 \alpha \int f \forall \alpha .$$ *Proof:* ![Image](figures/2019-09-19-11:46.png)\ Just note that $$ \alpha m(\theset{x \suchthat f(x) > \alpha}) = \int \alpha \chi_{f \geq \alpha} \leq \int f .$$ $\qed$ ### The Integral Detects Almost-Everywhere Equality **Proposition:** Suppose $f\in L^+$. Then $$ \int f = 0 \implies f = 0 \text{ a.e. } $$ > Nice trick: showing $a_n \to L$ can be done by showing $a_n - L \to 0$. Similarly, $$ \int f = \int g \iff \int (f-g) = 0 $$ *Proof of Proposition:* This is obvious for simple functions: If $f = \sum a_i \chi_{E_i}$ in standard representation, then $$ \int f = \sum a_j m(E_j) = 0 \iff \text{ either } a_j = 0 ~\forall j, \text{ or } a_j \neq 0 \text{ and } m(E_j) = 0 .$$ So it only disagrees with zero on a measure zero set. In general, suppose $f = 0$ a.e., note that $$ \phi \leq f = 0 \implies \phi = 0 \text{ a.e. } $$ and thus $\int \phi = 0$ by the previous case. But then $$ \int f = \sup_\phi \int \phi = 0 \text{ a.e. } ,$$ and we're done. Now suppose $\int f = 0$ a.e.; we can apply Chebyshev,which says that $$ m(\theset{x \suchthat f(x) \geq \alpha}) = 0 \text{ for any } \alpha \geq 0 .$$ But then \begin{align*} m(\theset{x \suchthat f(x) > 0}) &= m(\union_n \theset{x\suchthat f(x) > \frac 1 n}) \\ &= \lim m(\text{stuff}) \\ &= \lim 0 \\ &= 0 .\end{align*} $\qed$ > *Remark:* In the MCT, the monotonicity is necessary, i.e. we really need $f_k \nearrow f$. *Examples:* - $f_k = k \chi_{[0, \frac 1 k]}$. Then $f_k \to 0$ a.e. but $\int f_k = 1$ for all $k$ while $\int f = 0$. - $f_k = \chi_{[k, k+1]} \to 0$ a.e. (the skateboard to infinity!) ## Fatou's Theorem Another convergence theorem, this time with virtually no hypothesis: **Theorem (Fatou):** If $\theset{f_k} \subset L^+$, then $\int \liminf f_k \leq \liminf \int f_k$ > How to remember: in the above examples, we had $\int \lim f_k = 0$, so we can saturate the LHS to zero to obtain an inequality of the form $a\leq b$. *Proof of Fatou:* We can write $$ \liminf_k f_k = \lim_k g_k \quad \text{ where }\quad g_k = \inf_{n \geq k} f_n .$$ Note that $g_k \nearrow \liminf_k f_k$, we can apply MCT. So \begin{align*} \int \liminf_k f_k &= \int \lim_k g_k \\ &=_\text{MCT} \lim_k \int g_k \\ &= \liminf \int g_k \\ &\leq \liminf \int f_k ,\end{align*} where we can note that $$ g_k \leq f_k \implies \int g_k \leq \int f_k .$$ $\qed$ ## Dominated Convergence Theorem **Theorem (DCT):** If $\theset{f_k} \subset L^+$, $f_k \to f$ a.e., **and** $f_k \leq g \in L^+$ where $\int g < \infty$, then $$ \int f = \int \lim f_k = \lim \int f_k .$$