# Monday, November 09 ## Chapter 1 Let $k$ be a field, not necessarily algebraically closed. :::{.definition title="Algebraic Function Field"} An one variable **algebraic function field** $F/K$ is a field extension $F$ of $K$ which factors as \begin{tikzcd} F \ar[dr, "\text{algebraic}"] & \\ & k(x) \ar[dl, "\text{transcendental}"] \\ k \end{tikzcd} where $x\in \bar{k}$ is some element that is not algebraic over $k$. ::: :::{.definition title="Field of Constants"} The subfield \[ \tilde{k} \da \ts{z\in F \intersect K^{\text{alg}}} \leq F ,\] consisting of elements that are algebraic over $F$ is denoted the **field of constants**. ::: :::{.definition title="Algebraically Closed"} If $\tilde k = k$, we say that $k$ is **algebraically closed** in $F$. ::: :::{.definition title="Rational Function Field"} An extension $F/k$ is **rational** iff $F = k(y)$ for some $y\in k^{\text{transc}}$ which is transcendental over $k$. ::: :::{.definition title="Valuation Ring"} A ring $\OO \subseteq F$ is a **valuation ring** for $F$ iff $k\subset \OO \subseteq F$ and $z\in F \implies z\in \OO$ or $z^{-1} \in \OO$. ::: :::{.definition title="Discrete Valuation Ring"} A ring local $R$ (thus with a unique maximal ideal) which is a PID but not a field is a **discrete valuation ring**. ::: :::{.definition title="Place"} A **place** of a function field $F/K$ is the maximal ideal of a valuation ring of $F/K$. ::: :::{.definition title="Discrete Valuation"} A **discrete valuation** of $F/k$ is a function \[ v: F\to \ZZ\union\ts{\infty} \] that is 1. Nondegenerate: $v(x) = \infty$ iff $x=0$. 2. Multiplicative: $v(xy) = v(x) + v(y)$. 3. Ultrametric triangle inequality: $v(x+y) \geq \min(v(x), v(y))$. 4. Fiber over one: there exist a $z\in F$ with $v(z) = 1$. 5. $\ro{v}{k} = 0$. ::: :::{.definition title="Rational Place"} A place of degree one is said to be a **rational place**. ::: :::{.definition title="Valuation Ring of a Place"} The **valuation ring of a place** is defined by \[ \OO_p \da \ts{z\in F \st z^{-1} \not\in P} .\] ::: :::{.definition title="Degree of a Place"} The **degree** of a place $P$ is defined by \[ \deg(P) \da [F_p : k] ,\] where $F_p = \OO_P / P$. ::: :::{.definition title="Discrete Valuation of a Place"} To any place $P$ we associate the function \[ v_p: F\to \ZZ\union\ts{\infty} \] defined by choosing any prime $t\in P$, writing any $x\in F$ as $x = t^n u$ with $u \in \OO_P\units$, and setting \[ v_p(x) = \begin{cases} n & \text{if } x = t^n u \\ 0 & x=\infty. \end{cases} \] ::: Note: from now on we assume $\tilde K = K$ :::{.definition title="Divisor"} The **divisor group** of $F/K$ is the free abelian group on the set of places of $F/K$, i.e. a formal sum \[ D = \sum_{\text{Places} p} b_p P \qquad n_p \in \ZZ m\] where cofinitely many $n_p$ are zero. ::: :::{.definition title="Degree of a Divisor"} The **degree** of a divisor is defined by \[ \deg(D) \da \sum_P v_p(D) \deg(P) .\] ::: :::{.definition title="Principle Divisors"} The set of divisors \[ \operatorname{Princ}(F) \da \ts{(x) \st 0\neq x \in F} .\] ::: :::{.definition title="Divisor Class Group"} TRh ::: :::{.definition title="Riemann-Roch Space"} For a divisor $A\in \div(F)$, the **Riemann-Roch** space is defined as \[ \mathcal{L}(A) \da \ts{x\in F \st (x) \geq - A}\union \ts{0} .\] :::