# Monday, September 14 :::{.exercise} \hfill a. Show that for all divisors $D$, $\mathcal{L}(D)$ is a $k\dash$vector space. b. If $D\sim D'$, then $\mathcal{L}(D) \sim \mathcal{L}(D')$. ::: :::{.lemma} Let $A\leq B$ in $\Div(K)$. Then a. $\mathcal{L}(A) \subset_k \mathcal{L}(B)$. b. We have $\dim \mathcal{L}(B) / \mathcal{L}(A) \leq \deg(B) - \deg(A) = \deg(B-A)$. ::: :::{.corollary title="?"} For $D\in \Div(K)$, a. If $\deg D< 0$ then $\mathcal{L}(0) = (0)$. b. If $\deg D \geq 0$ then $\dim \mathcal{L}(D) \leq \deg D + 1$. ::: :::{.proof title="of corollary"} \hfill a. A divisor of negative degree is not linearly equivalent to an effective divisor. b. WLOG $D$ is effective, so write $D = P_1 + \cdots + P_r$. Using the fact that $\dim \mathcal{L}(0) = 1$, apply the previous lemma $r$ times. ::: :::{.proof title="of lemma"} **Part a**: Easily reduce to the case $B = A + P$ for some place $P$ not necessarily of degree 1. **Part b**: > Try to work this out when the place is degree 1. Choose $t\in K$ with $v_p(t) = v_p(B) = v_p(A) + 1$. For $f\in \mathcal{L}(B)$ we have \[ v_p(f) \geq -v_p(B) = -v_p(t) \implies ft\in R_p .\] We can thus define a $k\dash$linear map into the residue field $k(p)$: \[ \psi: \mathcal{L}(B) &\to k(P) = R_p / \mfm_p \\ f &\mapsto ft \mod \mfm_p .\] We can compute the kernel, \[ \ker \psi = \ts{ f\in \mathcal{L}(B) \st v_p(t) \geq -v_p(t) + 1 = -v_p(A) } = \mathcal{L}(A) .\] thus $\dim \mathcal{L}(B) / \mathcal{L}(A) \leq [k(P) : k]$ since this map descends to an injection. ::: :::{.remark} For $P \in \Sigma(K/k)$ with residue field $k_p$ and $[k_p: k] = d$ and $K_p$ is the completion of $K$ with respect to $\abs{\wait}_P$, then $K_P \cong k_p((t))$. This comes from the structure theory of complete discretely valued fields. ::: :::{.exercise title="Important"} If $D\in \Div k(t)$, show that \[ \mathcal{L}(D) = \begin{cases} \deg(D) + 1 & \deg(D) \geq 0 \\ 0 & \deg(D) < 0 \end{cases} .\] ::: The *Riemann-Roch Problem* asks for good upper and lower bounds on $\mathcal{L}(D)$ and especially on $\mathcal{L}(nD)$ as a function of $n$. The last corollary gives an upper bounds on $\mathcal{L}(D)$ in terms of $\deg(D)$: \[ \deg(D) \geq 0 &\implies \deg(D) - \mathcal{L}(D) \geq -1 .\] :::{.proposition title="?"} There exists some constant $\gamma = \gamma(K/k) \in \ZZ$ such that for all $A\in \Div(K)$ we have \[ \deg A - \mcl(A) \leq \gamma .\] :::