MATH 8320 HOMEWORK

PETE L. CLARK

0. Problem Set 0

Exercise 0.1. There three notions of finite generation in play for a field extension l / k : (i) l is finitely generated as a k-module (equivalently, finite-dimensional as a k-vector space) - we also say that l / k has finite degree - (ii) l is finitely generated as a k-algebra: there are $x_{1}, \ldots, x_{n} \in l$ such that $l=k\left[x_{1}, \ldots, x_{n}\right]:$ every element of l can be expressed as a polynomial in x_{1}, \ldots, x_{n} with coefficients in k. (iii) l / k is finitely generated as a field extension.
a) Show: l / k finitely generated as a module implies l / k finitely generated as a k-algebra implies l / k finitely generated as a field extension.
b) Let $k(t)$ be the rational function field over k - the fraction field of the polynomial ring $k[t]$. Show: $k(t) / k$ is finitely generated as a field extension but is not finitely generated as a k-algebra.
c) Show: $k[t] / k$ is finitely generated as a k-algebra but not as a k-module. (However $k[t]$ is not a field!)
d) Can you exhibit a field extension l / k such that l is finitely generated as a k-algebra but not as a k-vector space?
(Hint: no, you can't - this is a famous result of commutative algebra!)
e) Suppose l / k is algebraic and finitely generated as a field extension. Show that l / k has finite degree.

Exercise 0.2. Show that every finitely generated field extension $K=k\left(x_{1}, \ldots, x_{n}\right)$ is the fraction field of a quotient of $k\left[t_{1}, \ldots, t_{n}\right]$ by a (not necessarily principal) prime ideal.

Exercise 0.3. Let k be a field, and let $k(a, b)$ be a field extension of k of transcendence degree 1.
a) Let $k[x, y]$ be the polynomial ring in two variables. Let $f: k[x, y] \rightarrow k(a, b)$ be the unique k-algebra homomorphism such that $f(x)=a$ and $f(y)=b$. Show that the kernel \mathfrak{p} of f is a prime ideal, and let K be the fraction field of $k[x, y] / \mathfrak{p}$. Show that f induces a k-algebra isomorphism $K \xrightarrow{\sim} k(a, b)$.
b) Show: \mathfrak{p} is generated by an irreducible polynomial, and deduce that there is an irreducible polynomial $f \in k[x, y]$, unique up to scaling by an element of k^{\times}, such that $f(a, b)=0$ and $k(a, b)$ is the fraction field of $k[x, y] /(f)$.
(Suggestion: by [CA, Cor. 12.17], the prime ideal \mathfrak{p} has height 0, 1 or 2 . Rule out the possibilities of height 0 and height 2, and then find and use a fact about height one prime ideals in a UFD.)
c) Show that if K / k is a separable one variable function field, then $K=k(a, b)$ for some a and b. (Remark: In the third lecture I mention that in this case we can actually take the polynomial f to be geometrically irreducible.)

Exercise 0.4. Let k be a field, let G be a finite group of order n, and let $G \hookrightarrow S_{n}$ be the Cayley embedding. Permutation of variables gives a natural action of S_{n} and hence also G on $k\left(t_{1}, \ldots, t_{n}\right)$. Put $l:=k\left(t_{1}, \ldots, t_{n}\right)^{G}$, so $k\left(t_{1}, \ldots, t_{n}\right) / l$ is a finite Galois extension with automorphism group G. Notice that this is an instance of the Lüroth problem.
a) Let $k=\mathbb{Q}$. Show: if l / \mathbb{Q} is purely transcendental, then G occurs as a Galois group over \mathbb{Q}. Thus: an affirmative answer to the Lüroth problem yields an affirmative answer to the Inverse

Galois Problem over \mathbb{Q}.
(Suggestion: This holds whenever k is a Hilbertian field.)
b) Alas, l / \mathbb{Q} need not be purely transcendental. Explore the literature on this - the first example was due to Swan, where G is cyclic of order 47.

Exercise 0.5. Let R_{1} and R_{2} be two k-algebras that are also domains, with fraction fields K_{1} and K_{2}. Show that $R_{1} \otimes_{k} R_{2}$ is a domain iff $K_{1} \otimes_{k} K_{2}$ is a domain.

Exercise 0.6. a) Let l / k be an algebraic field extension. Show: $l \otimes_{k} l$ is a domain iff $l=k$.
b) Let l / k be any field extension. Show: $k(t) \otimes_{k} l$ is always a domain with fraction field $l(t)$. It is already a field iff l / k is algebraic.

Exercise 0.7. Describe the \mathbb{R}-algebra $\mathbb{C}(t) \otimes_{\mathbb{R}} \mathbb{C}$.
Exercise 0.8. a) Show: $k(t) / k$ is regular.
b) Show: every purely transcendental extension is regular.
c) Show: every extension K / k is regular iff k is algebraically closed.
d) Show: K / k is regular iff every finitely generated s subextension is regular.

Exercise 0.9. Let k be a field, let $d \geq 2$ be such that $4 \nmid d$, and let $p(x) \in k[x]$ be a polynomial of positive degree. In $\bar{k}[t]$ we factor p as $\left(x-a_{1}\right)^{e_{1}} \cdots\left(x-a_{r}\right)^{e_{r}}$ with a_{1}, \ldots, a_{r} distinct elements of \bar{k} and $e_{1}, \ldots, e_{r} \in \mathbb{Z}^{+}$. Suppose that there is some $1 \leq i \leq r$ such that $d \nmid e_{i}$. Show that the

$$
f(x, y)=y^{d}-p(x) \in k[x, y]
$$

is geometrically irreducible and thus the fraction field of $k[x, y] /\left(y^{d}-p(x)\right)$ is a regular one variable function field over k.
(Suggestion: use [FT, Thm. 9.21].)
Exercise 0.10. Let k be a field of characteristic different from 2.
a) Show that the function field K_{f} attached to $f(x, y)=x^{2}-y^{2}-1$ is rational: i.e., there is $z \in K$ such that $K_{f}=k(z)$.
b) Show that the function field K_{f} attached to $f(x, y)=x^{2}+y^{2}-1$ is rational.
c) If $k=\mathbb{C}$, show that the function field K_{f} attached to $f(x, y)=x^{2}+y^{2}+1$ is rational.
d) If $k=\mathbb{R}$, is the function field attached to $f(x, y)=x^{2}+y^{2}+1$ rational?
(Answer: it is not, but at the moment we have precisely no tools to show that a regular function field is not rational, so I don't know how you could prove this. But keep it in mind - as we develop more theory, it will become possible, then easy, then clear.)

Exercise 0.11. Give a purely algebraic proof of the Lüroth Theorem: for any field k, if K is a field such that $k \subsetneq K \subset k(t)$, then $K=k(f)$ for some $f \in K$.

Exercise 0.12. Fix $n \in \mathbb{Z}^{+}$. Exhibit a finite degree field extension l / k such that needs $n+1$ generators: that is, $l \neq k\left(x_{1}, \ldots, x_{n}\right)$ for any $x_{1}, \ldots, x_{n} \in l$.

I do not know how to do the following exercise:
Exercise 0.13. a) For each $n \in \mathbb{Z}^{+}$, find a one variable function field K / k that needs $n+1$ generators or show that no such exists.
(Idea: As in Exercise 0.12, there is a finite degree field extension l / k that needs $n+1$ generators. It seems likely that $l(t) / k$ also needs $n+1$ generators!)
b) Prove or disprove: every one variable function field K / k with $\kappa(K)=k$ is 2 -generated.

1. Problem Set 1

Exercise 1.1. Let k be any field, and let $\frac{p(t)}{q(t)} \in k(t)$ be a nonconstant rational function. Show:

$$
\operatorname{deg}[k(t): k(p / q)]=\max \operatorname{deg}(p), \operatorname{deg}(q)
$$

Exercise 1.2. Let R be a valuation ring with fraction field K. Let F be a subfield of K. Show: $R \cap F$ is a valuation ring with fraction field F. We call it the "restriction of R to F."
Exercise 1.3. Let $(G,+, \leq)$ be a totally ordered commutative group, and let

$$
v: K \rightarrow G \cup\{\infty\}
$$

be a Krull valuation on K :
(VRK0) For all $x \in K$, we have $v(x)=\infty$ iff $x=0$.
(VRK1) For all $x, y \in K^{\times}$, we have $v(x y)=v(x)+v(y)$.
(VRK2) For all $x, y \in K^{\times}$such that $x+y \neq 0$, we have $v(x+y) \geq \min v(x), v(y)$.
Show that, as expected, if $v(x) \neq v(y)$, then we have $v(x+y)=\min v(x), v(y)$.
Exercise 1.4. Let k be a field, and let $K=k\left(t_{1}, \ldots, t_{n}\right)$ be a rational function field in n indeterminates. Let $G:=\mathbb{Z}^{n}$, with the lexicographic ordering. Let $G^{\geq 0}=\mathbb{N}^{n}$ (it is indeed the submonoid of non-negative elements for the given ordering).
a) Observe/recall that the polynomial ring $k\left[t_{1}, \ldots, t_{n}\right]$ can be viewed as the semigroup algebra $k\left[G^{\geq 0}\right]$.
b) Define a map $v: k\left[G^{\geq 0}\right] \rightarrow G^{\geq 0}$ by mapping each polynomial to the smallest monomial in it support.
c) Extend v to a surjective map $K^{\bullet} \rightarrow G$ that satisfies (VRK1) and (VRK2). Show that $R_{v}:=$ $v^{-1}\left(G^{\geq 0}\right) \cup\{0\}$ is a valuation ring with value group G. In particular, if $n \geq 2$ then K carries a valuation of rank $n \geq 2$.
d) Suppose now that L / k is any function field in n variables. Show that L carries a valuation of rank n. (It suffices to know that higher rank valuations on a field can be exended to a a finite degree field extension. This is true, although it is not discussed in [NTII].)

Exercise 1.5. Define a map $v_{\infty}: k(t)^{\times} \rightarrow \mathbb{Z}, x=\frac{p(t)}{q(t)} \mapsto \operatorname{deg} q-\operatorname{deg} p$.
a) Show that v_{∞} is a $k[1 / t]$-regular discrete valuation on $k(t)$.
b) Deduce from the above discussion that the valuations v_{∞} and $v_{1 / t}$ are equivalent: i.e., have the same valuation ring.
c) Show that $v_{\infty}=v_{1 / t}$.

Exercise 1.6. Let K / k be a one-variable function field.
a) Show that $\Sigma(K / k)$ is infinite.
b) More precisely, show that the cardinality of $\Sigma(K / k)$ is equal to the number of monic irreducible polynomials $p \in k[t]$, which is $\# \max \left(\# k, \aleph_{0}\right)$.
Exercise 1.7. Let K / k be a one variable function field, let $v \in \Sigma(K / k)$, let R_{v} be the valuation of v, \mathfrak{m}_{v} its maximal ideal, and $k(v)=R_{v} / m_{v}$ its residue field. We showed in the lecture that $[k(v): k]$ is finite using "afine grounding" and Zariski's Lemma. In [St], Stichtenoth gives a different proof. He chooses $f \in K$ such that $v(f)=1$ and shows that $[k(v): k] \leq[K: k(f)]$. Show this by showing first that if \bar{v} is the restriction of v to $k(f)$ then $k(\bar{v})=k$ and then applying the Degree Equality (??).

Exercise 1.8. Let K / k be a one variable function field with constant field $\kappa(K)$. Show that for all $v \in \Sigma(K / k)$, we have

$$
[\kappa(K): k] \mid \operatorname{deg} v
$$

In particular, if $\kappa(K) \supsetneq k$, then K has no degree one points.
Exercise 1.9. Let K / k be a one variable function field. Show that the following are equivalent:
(i) Every $v \in \Sigma(K / k)$ has degree 1.
(ii) The ground field k is algebraically closed.

Exercise 1.10. For any field k, let $\mathbb{P}^{1}(k)$ denote the set $k \cup\{\infty\}$. (You can certainly go ahead and think of this as the set of lines through the origin in k^{2}. However it is not necessary, or even immediately helpful, to think in terms of algebraic varieties.) Show that there is a natural bijection

$$
\Sigma_{1}(k(t) / k)=\mathbb{P}^{1}(k)
$$

Combining with Exercise 1.9 we get: $\Sigma(k(t) / k)=\mathbb{P}^{1}(k)$ iff k is algebraically closed.
Exercise 1.11. Show: If A is an affine Dedekind domain with fraction field K, then we have $A=$ $R^{\Sigma(K / k) \backslash \operatorname{MaxSpec} A}$.

Exercise 1.12. Let $Z \subset \Sigma(K / k)$ be infinite and proper. Show: R^{Z} is a Dedekind domain with fraction field K that is not finitely generated as a k-algebra.

Exercise 1.13. Let K / k be a one-variable function field. Show: there are affine Dedekind domains A_{1}, A_{2} over k with fraction field K such that $\Sigma(K / k)=\operatorname{MaxSpec} A_{1} \cup \operatorname{MaxSpec} A_{2}$ (the union is very far from being disjoint).

2. Problem Set 2

Exercise 2.1. Let K / k be a one variable function field.
a) Show: If $\Sigma_{1}(K / k) \neq \varnothing$, then K has index 1.
b) We will see later that if k is finite, K always has index 1 but $\Sigma(K / k)$ may be empty. You can try to prove this now if you like!
c) Deduce: if k is algebraically closed, then K has index 1.
d) Show: The index of K is divisible by $[\kappa(K): k]$.

Exercise 2.2. Let K / k be a one variable function field, and let $f \in K^{\times}$. Show that the divisor of f is 0 iff f lies in the constant subfield of K.

Exercise 2.3. Let $f, g \in K^{\times}$.
a) Show: $\left(\frac{1}{f}\right)=-(f)$.
b) Show: $(f g)=(f)+(g)$.
c) Deduce the principal divisors form a subgroup of $\operatorname{Div}^{0} K$, denoted Prin K.

Exercise 2.4. a) Show that every degree zero divisor on $k(t)$ is the divisor of a rational function.
b) Deduce that the degree map induces an isomorphism $\mathrm{Cl} k(t) \xrightarrow{\sim} \mathbb{Z}$ and that $\mathrm{Cl}^{0} k(t)=(0)$.

Exercise 2.5. This exercise takes place in the setting of Rosen's Theorem [NTII, Thm. 3.28].
a) Show: $D^{0}(S) \cong \mathbb{Z}^{\# S-1}$.
b) Suppose that $S=\{P\}$ consists of a single place, of degree $d \in \mathbb{Z}^{+}$. Show that (??) simplifies to

$$
0 \rightarrow \mathrm{Cl}^{0}(K) \xrightarrow{\alpha} \mathrm{Cl} R^{S} \xrightarrow{\beta} C(d / I(K)) \rightarrow 0
$$

Deduce that in this case α is an isomorphism iff $I(K)=d$.
c) Deduce that if S consists of a single degree 1 place, then $\alpha: \mathrm{Cl}^{0} K \xrightarrow{\sim} \mathrm{Cl} R^{S}$.

Exercise 2.6. This exercise takes place in the setting of Rosen's Theorem [NTII, Thm. 3.28].
a) Suppose that $\mathrm{Cl}^{0} K$ is finite. Show that every affine Dedekind domain R^{S} in K has finite ideal class group. ${ }^{1}$
b) Suppose $\mathrm{Cl}^{0} K$ is infinite and finitely generated. Show that for any nonempty finite subset $S \subset \Sigma(K / k)$, there is a nonempty finite subset $S^{\prime} \supset S$ such that $\mathrm{Cl} R^{S^{\prime}}$ is finite.

Exercise 2.7. a) Show: $\mathbb{R}[\cos \theta, \sin \theta] \cong \mathbb{R}[x, y] /\left(x^{2}+y^{2}-1\right)$. Show that the latter is an affine Dedekind domain. By Exercise 0.10, its fraction field K is isomorphic to $\mathbb{R}(t)$.
b) Use Rosen's Theorem to show that $\mathrm{Cl} \mathbb{R}[\cos \theta, \sin \theta] \cong \mathbb{Z} / 2 \mathbb{Z}$.
c) Show: $\mathbb{C}[\cos \theta, \sin \theta]=\mathbb{C}\left[e^{i \theta}, e^{-i \theta}\right]$ and deduce that $\mathbb{C}[\cos \theta, \sin \theta]$ is a PID.
d) Use Rosen's Theorem to show that $\mathrm{Cl} \mathbb{C}[\cos \theta, \sin \theta]$ is trivial.

[^0]
References

[CA] P.L. Clark, Commutative Algebra. http://math.uga.edu/~pete/integral2015.pdf
[FT]
[NTII] P.L. Clark, Field Theory. http://math.uga.edu/~pete/FieldTheory.pdf
P.L. Clark, Algebraic Number Theory II: Valuations, Local Fields and Adeles. http://math.uga.edu/~pete/ 8410FULL.pdf
[St] H. Stichtenoth, Algebraic function fields and codes. Second edition. Graduate Texts in Mathematics, 254. Springer-Verlag, Berlin, 2009.

[^0]: ${ }^{1}$ Later we will show that $\mathrm{Cl}^{0} K$ is always finite when k is a finite field. Thus this exercise shows the finiteness of all the class groups $\mathrm{Cl} R^{S}$, which is the function field analogue of the finiteness of the class group of the ring of integers (or better, of the rings of S-integers; but the latter follows easily from the former) of a number field.

