
MATH 8320 HOMEWORK

PETE L. CLARK

0. Problem Set 0

Exercise 0.1. There three notions of finite generation in play for a field extension l/k: (i) l is
finitely generated as a k-module (equivalently, finite-dimensional as a k-vector space) – we also say
that l/k has finite degree – (ii) l is finitely generated as a k-algebra: there are x1, . . . , xn ∈ l such that
l = k[x1, . . . , xn]: every element of l can be expressed as a polynomial in x1, . . . , xn with coefficients in
k. (iii) l/k is finitely generated as a field extension.

a) Show: l/k finitely generated as a module implies l/k finitely generated as a k-algebra implies
l/k finitely generated as a field extension.

b) Let k(t) be the rational function field over k – the fraction field of the polynomial ring k[t].
Show: k(t)/k is finitely generated as a field extension but is not finitely generated as a k-algebra.

c) Show: k[t]/k is finitely generated as a k-algebra but not as a k-module. (However k[t] is not a
field!)

d) Can you exhibit a field extension l/k such that l is finitely generated as a k-algebra but not as
a k-vector space?
(Hint: no, you can’t – this is a famous result of commutative algebra!)

e) Suppose l/k is algebraic and finitely generated as a field extension. Show that l/k has finite
degree.

Exercise 0.2. Show that every finitely generated field extension K = k(x1, . . . , xn) is the fraction field
of a quotient of k[t1, . . . , tn] by a (not necessarily principal) prime ideal.

Exercise 0.3. Let k be a field, and let k(a, b) be a field extension of k of transcendence degree 1.

a) Let k[x, y] be the polynomial ring in two variables. Let f : k[x, y] → k(a, b) be the unique
k-algebra homomorphism such that f(x) = a and f(y) = b. Show that the kernel p of f is
a prime ideal, and let K be the fraction field of k[x, y]/p. Show that f induces a k-algebra

isomorphism K
∼→ k(a, b).

b) Show: p is generated by an irreducible polynomial, and deduce that there is an irreducible
polynomial f ∈ k[x, y], unique up to scaling by an element of k×, such that f(a, b) = 0 and
k(a, b) is the fraction field of k[x, y]/(f).
(Suggestion: by [CA, Cor. 12.17], the prime ideal p has height 0, 1 or 2. Rule out the
possibilities of height 0 and height 2, and then find and use a fact about height one prime ideals
in a UFD.)

c) Show that if K/k is a separable one variable function field, then K = k(a, b) for some a and b.
(Remark: In the third lecture I mention that in this case we can actually take the polynomial
f to be geometrically irreducible.)

Exercise 0.4. Let k be a field, let G be a finite group of order n, and let G ↪→ Sn be the Cayley
embedding. Permutation of variables gives a natural action of Sn and hence also G on k(t1, . . . , tn).
Put l := k(t1, . . . , tn)G, so k(t1, . . . , tn)/l is a finite Galois extension with automorphism group G.
Notice that this is an instance of the Lüroth problem.

a) Let k = Q. Show: if l/Q is purely transcendental, then G occurs as a Galois group over Q.
Thus: an affirmative answer to the Lüroth problem yields an affirmative answer to the Inverse
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Galois Problem over Q.
(Suggestion: This holds whenever k is a Hilbertian field.)

b) Alas, l/Q need not be purely transcendental. Explore the literature on this – the first example
was due to Swan, where G is cyclic of order 47.

Exercise 0.5. Let R1 and R2 be two k-algebras that are also domains, with fraction fields K1 and
K2. Show that R1 ⊗k R2 is a domain iff K1 ⊗k K2 is a domain.

Exercise 0.6. a) Let l/k be an algebraic field extension. Show: l ⊗k l is a domain iff l = k.
b) Let l/k be any field extension. Show: k(t) ⊗k l is always a domain with fraction field l(t). It

is already a field iff l/k is algebraic.

Exercise 0.7. Describe the R-algebra C(t)⊗R C.

Exercise 0.8. a) Show: k(t)/k is regular.
b) Show: every purely transcendental extension is regular.
c) Show: every extension K/k is regular iff k is algebraically closed.
d) Show: K/k is regular iff every finitely generated s subextension is regular.

Exercise 0.9. Let k be a field, let d ≥ 2 be such that 4 - d, and let p(x) ∈ k[x] be a polynomial of
positive degree. In k[t] we factor p as (x − a1)e1 · · · (x − ar)er with a1, . . . , ar distinct elements of k
and e1, . . . , er ∈ Z+. Suppose that there is some 1 ≤ i ≤ r such that d - ei. Show that the

f(x, y) = yd − p(x) ∈ k[x, y]

is geometrically irreducible and thus the fraction field of k[x, y]/(yd − p(x)) is a regular one variable
function field over k.
(Suggestion: use [FT, Thm. 9.21].)

Exercise 0.10. Let k be a field of characteristic different from 2.

a) Show that the function field Kf attached to f(x, y) = x2 − y2 − 1 is rational: i.e., there is
z ∈ K such that Kf = k(z).

b) Show that the function field Kf attached to f(x, y) = x2 + y2 − 1 is rational.
c) If k = C, show that the function field Kf attached to f(x, y) = x2 + y2 + 1 is rational.
d) If k = R, is the function field attached to f(x, y) = x2 + y2 + 1 rational?

(Answer: it is not, but at the moment we have precisely no tools to show that a regular function
field is not rational, so I don’t know how you could prove this. But keep it in mind – as we
develop more theory, it will become possible, then easy, then clear.)

Exercise 0.11. Give a purely algebraic proof of the Lüroth Theorem: for any field k, if K is a field
such that k ( K ⊂ k(t), then K = k(f) for some f ∈ K.

Exercise 0.12. Fix n ∈ Z+. Exhibit a finite degree field extension l/k such that needs n+1 generators:
that is, l 6= k(x1, . . . , xn) for any x1, . . . , xn ∈ l.

I do not know how to do the following exercise:

Exercise 0.13. a) For each n ∈ Z+, find a one variable function field K/k that needs n + 1
generators or show that no such exists.
(Idea: As in Exercise 0.12, there is a finite degree field extension l/k that needs n+1 generators.
It seems likely that l(t)/k also needs n+ 1 generators!)

b) Prove or disprove: every one variable function field K/k with κ(K) = k is 2-generated.

1. Problem Set 1

Exercise 1.1. Let k be any field, and let p(t)
q(t) ∈ k(t) be a nonconstant rational function. Show:

deg[k(t) : k(p/q)] = max deg(p),deg(q).
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Exercise 1.2. Let R be a valuation ring with fraction field K. Let F be a subfield of K. Show: R∩F
is a valuation ring with fraction field F . We call it the “restriction of R to F .”

Exercise 1.3. Let (G,+,≤) be a totally ordered commutative group, and let

v : K → G ∪ {∞}
be a Krull valuation on K:
(VRK0) For all x ∈ K, we have v(x) =∞ iff x = 0.
(VRK1) For all x, y ∈ K×, we have v(xy) = v(x) + v(y).
(VRK2) For all x, y ∈ K× such that x+ y 6= 0, we have v(x+ y) ≥ min v(x), v(y).
Show that, as expected, if v(x) 6= v(y), then we have v(x+ y) = min v(x), v(y).

Exercise 1.4. Let k be a field, and let K = k(t1, . . . , tn) be a rational function field in n indeterminates.
Let G := Zn, with the lexicographic ordering. Let G≥0 = Nn (it is indeed the submonoid of non-negative
elements for the given ordering).

a) Observe/recall that the polynomial ring k[t1, . . . , tn] can be viewed as the semigroup algebra
k[G≥0].

b) Define a map v : k[G≥0]• → G≥0 by mapping each polynomial to the smallest monomial in it
support.

c) Extend v to a surjective map K• → G that satisfies (VRK1) and (VRK2). Show that Rv :=
v−1(G≥0) ∪ {0} is a valuation ring with value group G. In particular, if n ≥ 2 then K carries
a valuation of rank n ≥ 2.

d) Suppose now that L/k is any function field in n variables. Show that L carries a valuation of
rank n. (It suffices to know that higher rank valuations on a field can be exended to a a finite
degree field extension. This is true, although it is not discussed in [NTII].)

Exercise 1.5. Define a map v∞ : k(t)× → Z, x = p(t)
q(t) 7→ deg q − deg p.

a) Show that v∞ is a k[1/t]-regular discrete valuation on k(t).
b) Deduce from the above discussion that the valuations v∞ and v1/t are equivalent: i.e., have the

same valuation ring.
c) Show that v∞ = v1/t.

Exercise 1.6. Let K/k be a one-variable function field.

a) Show that Σ(K/k) is infinite.
b ) More precisely, show that the cardinality of Σ(K/k) is equal to the number of monic irreducible

polynomials p ∈ k[t], which is # max(#k,ℵ0).

Exercise 1.7. Let K/k be a one variable function field, let v ∈ Σ(K/k), let Rv be the valuation of v,
mv its maximal ideal, and k(v) = Rv/mv its residue field. We showed in the lecture that [k(v) : k] is
finite using “afine grounding” and Zariski’s Lemma. In [St], Stichtenoth gives a different proof. He
chooses f ∈ K such that v(f) = 1 and shows that [k(v) : k] ≤ [K : k(f)]. Show this by showing first
that if v is the restriction of v to k(f) then k(v) = k and then applying the Degree Equality (??).

Exercise 1.8. Let K/k be a one variable function field with constant field κ(K). Show that for all
v ∈ Σ(K/k), we have

[κ(K) : k] | deg v.

In particular, if κ(K) ) k, then K has no degree one points.

Exercise 1.9. Let K/k be a one variable function field. Show that the following are equivalent:

(i) Every v ∈ Σ(K/k) has degree 1.
(ii) The ground field k is algebraically closed.

Exercise 1.10. For any field k, let P1(k) denote the set k∪{∞}. (You can certainly go ahead and think
of this as the set of lines through the origin in k2. However it is not necessary, or even immediately
helpful, to think in terms of algebraic varieties.) Show that there is a natural bijection

Σ1(k(t)/k) = P1(k).
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Combining with Exercise 1.9 we get: Σ(k(t)/k) = P1(k) iff k is algebraically closed.

Exercise 1.11. Show: If A is an affine Dedekind domain with fraction field K, then we have A =
RΣ(K/k)\MaxSpecA.

Exercise 1.12. Let Z ⊂ Σ(K/k) be infinite and proper. Show: RZ is a Dedekind domain with fraction
field K that is not finitely generated as a k-algebra.

Exercise 1.13. Let K/k be a one-variable function field. Show: there are affine Dedekind domains
A1, A2 over k with fraction field K such that Σ(K/k) = MaxSpecA1 ∪MaxSpecA2 (the union is very
far from being disjoint).

2. Problem Set 2

Exercise 2.1. Let K/k be a one variable function field.

a) Show: If Σ1(K/k) 6= ∅, then K has index 1.
b) We will see later that if k is finite, K always has index 1 but Σ(K/k) may be empty. You can

try to prove this now if you like!
c) Deduce: if k is algebraically closed, then K has index 1.
d) Show: The index of K is divisible by [κ(K) : k].

Exercise 2.2. Let K/k be a one variable function field, and let f ∈ K×. Show that the divisor of f
is 0 iff f lies in the constant subfield of K.

Exercise 2.3. Let f, g ∈ K×.

a) Show: ( 1
f ) = −(f).

b) Show: (fg) = (f) + (g).
c) Deduce the principal divisors form a subgroup of Div0K, denoted PrinK.

Exercise 2.4. a) Show that every degree zero divisor on k(t) is the divisor of a rational function.

b) Deduce that the degree map induces an isomorphism Cl k(t)
∼→ Z and that Cl0 k(t) = (0).

Exercise 2.5. This exercise takes place in the setting of Rosen’s Theorem [NTII, Thm. 3.28].

a) Show: D0(S) ∼= Z#S−1.
b) Suppose that S = {P} consists of a single place, of degree d ∈ Z+. Show that (??) simplifies

to

0→ Cl0(K)
α→ ClRS

β→ C(d/I(K))→ 0.

Deduce that in this case α is an isomorphism iff I(K) = d.

c) Deduce that if S consists of a single degree 1 place, then α : Cl0K
∼→ ClRS.

Exercise 2.6. This exercise takes place in the setting of Rosen’s Theorem [NTII, Thm. 3.28].

a) Suppose that Cl0K is finite. Show that every affine Dedekind domain RS in K has finite ideal
class group.1

b) Suppose Cl0K is infinite and finitely generated. Show that for any nonempty finite subset

S ⊂ Σ(K/k), there is a nonempty finite subset S′ ⊃ S such that ClRS
′

is finite.

Exercise 2.7. a) Show: R[cos θ, sin θ] ∼= R[x, y]/(x2 + y2 − 1). Show that the latter is an affine
Dedekind domain. By Exercise 0.10, its fraction field K is isomorphic to R(t).

b) Use Rosen’s Theorem to show that ClR[cos θ, sin θ] ∼= Z/2Z.
c) Show: C[cos θ, sin θ] = C[eiθ, e−iθ] and deduce that C[cos θ, sin θ] is a PID.
d) Use Rosen’s Theorem to show that ClC[cos θ, sin θ] is trivial.

1Later we will show that Cl0 K is always finite when k is a finite field. Thus this exercise shows the finiteness of all

the class groups ClRS , which is the function field analogue of the finiteness of the class group of the ring of integers (or

better, of the rings of S-integers; but the latter follows easily from the former) of a number field.
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