MATH 8320 HOMEWORK

PETE L. CLARK

0. Problem Set 0

Exercise 0.1. There three notions of finite generation in play for a field extension l/k: (i) l is finitely generated as a k-module (equivalently, finite-dimensional as a k-vector space) – we also say that l/k has finite degree – (ii) l is finitely generated as a k-algebra: there are $x_1, \ldots, x_n \in l$ such that $l = k[x_1, \ldots, x_n]$: every element of l can be expressed as a polynomial in x_1, \ldots, x_n with coefficients in k. (iii) l/k is finitely generated as a field extension.

- a) Show: l/k finitely generated as a module implies l/k finitely generated as a k-algebra implies l/k finitely generated as a field extension.
- b) Let k(t) be the rational function field over k the fraction field of the polynomial ring k[t]. Show: k(t)/k is finitely generated as a field extension but is not finitely generated as a k-algebra.
- c) Show: k[t]/k is finitely generated as a k-algebra but not as a k-module. (However k[t] is not a field!)
- d) Can you exhibit a field extension l/k such that l is finitely generated as a k-algebra but not as a k-vector space?
 - (*Hint: no, you can't this is a famous result of commutative algebra!*)
- e) Suppose l/k is algebraic and finitely generated as a field extension. Show that l/k has finite degree.

Exercise 0.2. Show that every finitely generated field extension $K = k(x_1, \ldots, x_n)$ is the fraction field of a quotient of $k[t_1, \ldots, t_n]$ by a (not necessarily principal) prime ideal.

Exercise 0.3. Let k be a field, and let k(a, b) be a field extension of k of transcendence degree 1.

- a) Let k[x, y] be the polynomial ring in two variables. Let $f : k[x, y] \to k(a, b)$ be the unique k-algebra homomorphism such that f(x) = a and f(y) = b. Show that the kernel \mathfrak{p} of f is a prime ideal, and let K be the fraction field of $k[x, y]/\mathfrak{p}$. Show that f induces a k-algebra isomorphism $K \xrightarrow{\sim} k(a, b)$.
- b) Show: p is generated by an irreducible polynomial, and deduce that there is an irreducible polynomial f ∈ k[x, y], unique up to scaling by an element of k[×], such that f(a, b) = 0 and k(a, b) is the fraction field of k[x, y]/(f).

(Suggestion: by [CA, Cor. 12.17], the prime ideal \mathfrak{p} has height 0, 1 or 2. Rule out the possibilities of height 0 and height 2, and then find and use a fact about height one prime ideals in a UFD.)

c) Show that if K/k is a separable one variable function field, then K = k(a, b) for some a and b. (Remark: In the third lecture I mention that in this case we can actually take the polynomial f to be geometrically irreducible.)

Exercise 0.4. Let k be a field, let G be a finite group of order n, and let $G \hookrightarrow S_n$ be the Cayley embedding. Permutation of variables gives a natural action of S_n and hence also G on $k(t_1, \ldots, t_n)$. Put $l := k(t_1, \ldots, t_n)^G$, so $k(t_1, \ldots, t_n)/l$ is a finite Galois extension with automorphism group G. Notice that this is an instance of the Lüroth problem.

a) Let $k = \mathbb{Q}$. Show: if l/\mathbb{Q} is purely transcendental, then G occurs as a Galois group over \mathbb{Q} . Thus: an affirmative answer to the Lüroth problem yields an affirmative answer to the Inverse Galois Problem over \mathbb{Q} .

(Suggestion: This holds whenever k is a Hilbertian field.)

b) Alas, l/\mathbb{Q} need not be purely transcendental. Explore the literature on this – the first example was due to Swan, where G is cyclic of order 47.

Exercise 0.5. Let R_1 and R_2 be two k-algebras that are also domains, with fraction fields K_1 and K_2 . Show that $R_1 \otimes_k R_2$ is a domain iff $K_1 \otimes_k K_2$ is a domain.

- **Exercise 0.6.** a) Let l/k be an algebraic field extension. Show: $l \otimes_k l$ is a domain iff l = k.
 - b) Let l/k be any field extension. Show: $k(t) \otimes_k l$ is always a domain with fraction field l(t). It is already a field iff l/k is algebraic.

Exercise 0.7. Describe the \mathbb{R} -algebra $\mathbb{C}(t) \otimes_{\mathbb{R}} \mathbb{C}$.

Exercise 0.8. a) Show: k(t)/k is regular.

- b) Show: every purely transcendental extension is regular.
- c) Show: every extension K/k is regular iff k is algebraically closed.
- d) Show: K/k is regular iff every finitely generated s subextension is regular.

Exercise 0.9. Let k be a field, let $d \ge 2$ be such that $4 \nmid d$, and let $p(x) \in k[x]$ be a polynomial of positive degree. In $\overline{k}[t]$ we factor p as $(x - a_1)^{e_1} \cdots (x - a_r)^{e_r}$ with a_1, \ldots, a_r distinct elements of \overline{k} and $e_1, \ldots, e_r \in \mathbb{Z}^+$. Suppose that there is some $1 \le i \le r$ such that $d \nmid e_i$. Show that the

$$f(x,y) = y^d - p(x) \in k[x,y]$$

is geometrically irreducible and thus the fraction field of $k[x,y]/(y^d - p(x))$ is a regular one variable function field over k.

(Suggestion: use [FT, Thm. 9.21].)

Exercise 0.10. Let k be a field of characteristic different from 2.

- a) Show that the function field K_f attached to $f(x,y) = x^2 y^2 1$ is rational: i.e., there is $z \in K$ such that $K_f = k(z)$.
- b) Show that the function field K_f attached to $f(x,y) = x^2 + y^2 1$ is rational.
- c) If $k = \mathbb{C}$, show that the function field K_f attached to $f(x, y) = x^2 + y^2 + 1$ is rational.
- d) If k = ℝ, is the function field attached to f(x, y) = x² + y² + 1 rational? (Answer: it is not, but at the moment we have precisely no tools to show that a regular function field is not rational, so I don't know how you could prove this. But keep it in mind – as we develop more theory, it will become possible, then easy, then clear.)

Exercise 0.11. Give a purely algebraic proof of the Lüroth Theorem: for any field k, if K is a field such that $k \subseteq K \subset k(t)$, then K = k(f) for some $f \in K$.

Exercise 0.12. Fix $n \in \mathbb{Z}^+$. Exhibit a finite degree field extension l/k such that needs n+1 generators: that is, $l \neq k(x_1, \ldots, x_n)$ for any $x_1, \ldots, x_n \in l$.

I do not know how to do the following exercise:

- **Exercise 0.13.** a) For each $n \in \mathbb{Z}^+$, find a one variable function field K/k that needs n + 1 generators or show that no such exists. (Idea: As in Exercise 0.12, there is a finite degree field extension l/k that needs n+1 generators. It seems likely that l(t)/k also needs n + 1 generators!)
 - b) Prove or disprove: every one variable function field K/k with $\kappa(K) = k$ is 2-generated.

1. Problem Set 1

Exercise 1.1. Let k be any field, and let $\frac{p(t)}{q(t)} \in k(t)$ be a nonconstant rational function. Show:

 $\deg[k(t): k(p/q)] = \max\deg(p), \deg(q).$

Exercise 1.2. Let R be a valuation ring with fraction field K. Let F be a subfield of K. Show: $R \cap F$ is a valuation ring with fraction field F. We call it the "restriction of R to F."

Exercise 1.3. Let $(G, +, \leq)$ be a totally ordered commutative group, and let

$$v: K \to G \cup \{\infty\}$$

be a Krull valuation on K:

(VRK0) For all $x \in K$, we have $v(x) = \infty$ iff x = 0.

(VRK1) For all $x, y \in K^{\times}$, we have v(xy) = v(x) + v(y).

(VRK2) For all $x, y \in K^{\times}$ such that $x + y \neq 0$, we have $v(x + y) \geq \min v(x), v(y)$.

Show that, as expected, if $v(x) \neq v(y)$, then we have $v(x+y) = \min v(x), v(y)$.

Exercise 1.4. Let k be a field, and let $K = k(t_1, \ldots, t_n)$ be a rational function field in n indeterminates. Let $G := \mathbb{Z}^n$, with the lexicographic ordering. Let $G^{\geq 0} = \mathbb{N}^n$ (it is indeed the submonoid of non-negative elements for the given ordering).

- a) Observe/recall that the polynomial ring $k[t_1, \ldots, t_n]$ can be viewed as the semigroup algebra $k[G^{\geq 0}]$.
- b) Define a map $v: k[G^{\geq 0}]^{\bullet} \to G^{\geq 0}$ by mapping each polynomial to the smallest monomial in it support.
- c) Extend v to a surjective map $K^{\bullet} \to G$ that satisfies (VRK1) and (VRK2). Show that $R_v := v^{-1}(G^{\geq 0}) \cup \{0\}$ is a valuation ring with value group G. In particular, if $n \geq 2$ then K carries a valuation of rank $n \geq 2$.
- d) Suppose now that L/k is any function field in n variables. Show that L carries a valuation of rank n. (It suffices to know that higher rank valuations on a field can be exended to a a finite degree field extension. This is true, although it is not discussed in [NTII].)

Exercise 1.5. Define a map $v_{\infty}: k(t)^{\times} \to \mathbb{Z}, x = \frac{p(t)}{q(t)} \mapsto \deg q - \deg p$.

- a) Show that v_{∞} is a k[1/t]-regular discrete valuation on k(t).
- b) Deduce from the above discussion that the valuations v_{∞} and $v_{1/t}$ are equivalent: i.e., have the same valuation ring.
- c) Show that $v_{\infty} = v_{1/t}$.

Exercise 1.6. Let K/k be a one-variable function field.

- a) Show that $\Sigma(K/k)$ is infinite.
- b) More precisely, show that the cardinality of $\Sigma(K/k)$ is equal to the number of monic irreducible polynomials $p \in k[t]$, which is $\# \max(\#k, \aleph_0)$.

Exercise 1.7. Let K/k be a one variable function field, let $v \in \Sigma(K/k)$, let R_v be the valuation of v, \mathfrak{m}_v its maximal ideal, and $k(v) = R_v/m_v$ its residue field. We showed in the lecture that [k(v) : k] is finite using "afine grounding" and Zariski's Lemma. In [St], Stichtenoth gives a different proof. He chooses $f \in K$ such that v(f) = 1 and shows that $[k(v) : k] \leq [K : k(f)]$. Show this by showing first that if \overline{v} is the restriction of v to k(f) then $k(\overline{v}) = k$ and then applying the Degree Equality (??).

Exercise 1.8. Let K/k be a one variable function field with constant field $\kappa(K)$. Show that for all $v \in \Sigma(K/k)$, we have

$$[\kappa(K):k] \mid \deg v.$$

In particular, if $\kappa(K) \supseteq k$, then K has no degree one points.

Exercise 1.9. Let K/k be a one variable function field. Show that the following are equivalent:

- (i) Every $v \in \Sigma(K/k)$ has degree 1.
- (ii) The ground field k is algebraically closed.

Exercise 1.10. For any field k, let $\mathbb{P}^1(k)$ denote the set $k \cup \{\infty\}$. (You can certainly go ahead and think of this as the set of lines through the origin in k^2 . However it is not necessary, or even immediately helpful, to think in terms of algebraic varieties.) Show that there is a natural bijection

$$\Sigma_1(k(t)/k) = \mathbb{P}^1(k).$$

Combining with Exercise 1.9 we get: $\Sigma(k(t)/k) = \mathbb{P}^1(k)$ iff k is algebraically closed.

Exercise 1.11. Show: If A is an affine Dedekind domain with fraction field K, then we have $A = R^{\Sigma(K/k) \setminus \text{MaxSpec } A}$.

Exercise 1.12. Let $Z \subset \Sigma(K/k)$ be infinite and proper. Show: \mathbb{R}^Z is a Dedekind domain with fraction field K that is not finitely generated as a k-algebra.

Exercise 1.13. Let K/k be a one-variable function field. Show: there are affine Dedekind domains A_1, A_2 over k with fraction field K such that $\Sigma(K/k) = \text{MaxSpec } A_1 \cup \text{MaxSpec } A_2$ (the union is very far from being disjoint).

2. Problem Set 2

Exercise 2.1. Let K/k be a one variable function field.

- a) Show: If $\Sigma_1(K/k) \neq \emptyset$, then K has index 1.
- b) We will see later that if k is finite, K always has index 1 but $\Sigma(K/k)$ may be empty. You can try to prove this now if you like!
- c) Deduce: if k is algebraically closed, then K has index 1.
- d) Show: The index of K is divisible by $[\kappa(K):k]$.

Exercise 2.2. Let K/k be a one variable function field, and let $f \in K^{\times}$. Show that the divisor of f is 0 iff f lies in the constant subfield of K.

Exercise 2.3. Let $f, g \in K^{\times}$.

- a) Show: $(\frac{1}{f}) = -(f)$.
- b) Show: (fg) = (f) + (g).
- c) Deduce the principal divisors form a subgroup of $\text{Div}^0 K$, denoted Prin K.

Exercise 2.4. a) Show that every degree zero divisor on k(t) is the divisor of a rational function. b) Deduce that the degree map induces an isomorphism $\operatorname{Cl} k(t) \xrightarrow{\sim} \mathbb{Z}$ and that $\operatorname{Cl}^0 k(t) = (0)$.

Exercise 2.5. This exercise takes place in the setting of Rosen's Theorem [NTII, Thm. 3.28].

- a) Show: $D^0(S) \cong \mathbb{Z}^{\#S-1}$.
- b) Suppose that $S = \{P\}$ consists of a single place, of degree $d \in \mathbb{Z}^+$. Show that (??) simplifies to

 $0 \to \operatorname{Cl}^0(K) \xrightarrow{\alpha} \operatorname{Cl} R^S \xrightarrow{\beta} C(d/I(K)) \to 0.$

Deduce that in this case α is an isomorphism iff I(K) = d.

c) Deduce that if S consists of a single degree 1 place, then $\alpha : \operatorname{Cl}^0 K \xrightarrow{\sim} \operatorname{Cl} R^S$.

Exercise 2.6. This exercise takes place in the setting of Rosen's Theorem [NTII, Thm. 3.28].

- a) Suppose that $\operatorname{Cl}^0 K$ is finite. Show that every affine Dedekind domain \mathbb{R}^S in K has finite ideal class group.¹
- b) Suppose $\operatorname{Cl}^0 K$ is infinite and finitely generated. Show that for any nonempty finite subset $S \subset \Sigma(K/k)$, there is a nonempty finite subset $S' \supset S$ such that $\operatorname{Cl} R^{S'}$ is finite.

Exercise 2.7. a) Show: $\mathbb{R}[\cos\theta, \sin\theta] \cong \mathbb{R}[x, y]/(x^2 + y^2 - 1)$. Show that the latter is an affine Dedekind domain. By Exercise 0.10, its fraction field K is isomorphic to $\mathbb{R}(t)$.

- b) Use Rosen's Theorem to show that $\operatorname{Cl} \mathbb{R}[\cos \theta, \sin \theta] \cong \mathbb{Z}/2\mathbb{Z}$.
- c) Show: $\mathbb{C}[\cos\theta, \sin\theta] = \mathbb{C}[e^{i\theta}, e^{-i\theta}]$ and deduce that $\mathbb{C}[\cos\theta, \sin\theta]$ is a PID.
- d) Use Rosen's Theorem to show that $\operatorname{Cl}\mathbb{C}[\cos\theta, \sin\theta]$ is trivial.

¹Later we will show that $\operatorname{Cl}^0 K$ is always finite when k is a finite field. Thus this exercise shows the finiteness of all the class groups $\operatorname{Cl} R^S$, which is the function field analogue of the finiteness of the class group of the ring of integers (or better, of the rings of S-integers; but the latter follows easily from the former) of a number field.

MATH 8320 HOMEWORK

References

- P.L. Clark, Commutative Algebra. http://math.uga.edu/~pete/integral2015.pdf P.L. Clark, Field Theory. http://math.uga.edu/~pete/FieldTheory.pdf [CA]
- [FT]
- [NTII] P.L. Clark, Algebraic Number Theory II: Valuations, Local Fields and Adeles. http://math.uga.edu/~pete/ 8410FULL.pdf
- [St]H. Stichtenoth, Algebraic function fields and codes. Second edition. Graduate Texts in Mathematics, 254. Springer-Verlag, Berlin, 2009.